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Abstract. The serial and parallel performance of one of the world's fastest general purpose computers, the CRAY-2, is 
analyzed using the standard Los Alamos Benchmark Set plus codes adapted for parallel processing. For comparison, 
architectural and performance data are also given for the CRAY X-MP/416. Factors affecting performance, such 
as memory bandwidth, size and access speed of memory, and software exploitation of hardware, are examined. 
The parallel processing environments of both machines are evaluated, and speedup measurements for the parallel 
codes are given. 
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1. Introduction 

In 1985, the first Cray Research Incorporated CRAY-2 supercomputer was installed at the 
National Magnetic Fusion Energy Computational Center (NMFECC). Since that time this 
series of machine has undergone many changes, both in hardware and software. This paper 
evaluates some of these changes by observing their effect on a series of  computationally 
intensive benchmark codes. We measured the performance of  three models of  the CRAY-2 
that differ in their common memory hardware. The first two models we measured had 
common memory implemented with dynamic random-access memory (DRAM) with chip 
access times of 120 and 80 nanoseconds (ns). These machines are Serial 2003, located 
at the University of Minnesota, and Serial 2011, located at the Air Force Weapons Laboratory 
in Albuquerque, New Mexico. The third model, Serial 2012, located at Cray Research, 
uses smile random-access memory (SRAM) with a chip access time of  55 ns. 

In Section 2, we present a brief outline of the architectural and functional features of 
the CRAY-2, with emphasis on those features that affect performance. For comparison, 
corresponding architectural features from another Cray Research product, the X-MP/416, 
are included. Later sections present benchmark data with single-processor and 
mulilprocessor results discussed separately. 

2. Comparison of  Architectures 

The CRAY-2 is a general-purpose parallel/vector supercomputer system. There are four 
central processing units (CPUs), each with vector and scalar capabilities. Up to 256 million 
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Figure 1. CRAY-2 mainframe configuration. 

words of dynamic CMOS memory give the CRAY-2 one of the largest memory capacities 
of any supercomputer on the market today. For a schematic of the mainframe configuration, 
see Figure 1. For comparison, the X-MP is also a 4-CPU machine, each CPU having vector 
and scalar capabilities, but with a common memory of up to 16 million 64-bit words of 
static bi-polar memory. 
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2.1 CPUs 

The CPU clock period on the CRAY-2 is 4.1 ns, while on the X-MP/416, the CPU clock period 
is 8.5 ns. The effect of this difference is not always as large as it at first seems. Instructions 
can issue from the instruction buffer on the X-MP every clock period (CP), while on the 
CRAY-2 the rate is one every other clock period. This gives the CRAY-2 an effective clock 
period of 8.2 ns with respect to instruction issue, nearly equal to that on the X-ME After 
an appropriate start-up, however, arithmetic results are produced every CP on both machines. 

The CPUs on both machines contain three sets of registers that serve as source and destina- 
tion for computations in the functional units. These are address registers, scalar registers, 
and vector registers, referred to as A-, S-, and V-registers, respectively. In addition, the 
CRAY-2 has 16K words of local (or fast) memory that can be used by these registers as 
temporary storage. The access time between local memory and A- and S-registers is 5 
and 4 CPs, respectively. The access time for V-registers is 8 CPs + length of the vector. 
Instead of local memory, the X-MP has an extra set of 72 temporary storage registers called 
B- and T-registers. Access times for these registers is 1 CE The V-registers on the X-MP 
have no corresponding temporary registers. In addition to these registers, the CRAY-2 has 
eight semaphore flags to enable synchronization of common memory during multitasking. 
Only one of these semaphores can be assigned to a job. In contrast, the X-MP has five 
sets of shared registers (shared among the four CPUs), including 32 semaphores. Arithmetic 
on both machines is done in fully segmented (pipelined) functional units. This pipelining 
allows the functional units, some of which can also operate in parallel, to deliver a result 
every clock period, after a suitable start-up time. Chaining, which allows the output of 
one arithmetic operation to serve as the immediate input to a subsequent operation, is not 
available on the CRAY-2. There are also different numbers of functional units on the two 
machines: the X-MP has 14 while the CRAY-2 has 9, including the reciprocal square root 
unit. Table 1 gives some representative times for arithmetic operations. For a more complete 
explanation of the CPU organization, see [Kampe and Nguyen 1986]. 

2.2 Memory 

As mentioned previously, the CRAY-2 has up to 256 million 64-bit words of common, or 
shared, memory, interleaved up to 128 ways. The memory is organized into quadrants with 
32 banks in each quadrant. Each quadrant has a data path to four common memory ports, 
one for each processor. The four quadrants are accessed by the four processors in phase 
time. This means that each processor can access one particular quadrant every fourth clock 
period. The quadrants are accessed in a round robin fashion; that is, processor 1 can access 

Table 1. Scalar floating point operation times. 

Operation CRAY-2 X-MP/416 

Add 76 ns (19 CP) 51 ns (6 CP) 
Multiply 76 ns (19 CP) 59.5 ns (7 CP) 
Reciprocal 88 ns (22 CP) 119 ns (14 CP) 
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quadrant 1 at cycle 1, quadrant 2 at cycle 2, and so on, back to quadrant 1 at cycle 5. This 
arrangement has important implications for strided memory references, as discussed below. 
With one port per processor, the CRAY-2 can do one load or one store at a time. The X-MP, 
with its four ports per processor, can do two vector loads, one vector store, and one I/O 
memory reference simultaneously. 

While the large size of the memory on the CRAY-2 is an asset, the memory cycle time 
on the early CRAY-2 models of 234 ns (57 CPs) was slow enough to be a detriment. Cray's 
first solution to the memory Speed problem was pseudobanking, a technique that allows access 
to a physical memory in less time than the memory chip cycle time. Cycle time is made up 
of two parts, access time and off-chip time. The logic chips are busy for a time equal to the 
access time, while the memory chips are busy for an additional time equal to the off-chip 
time. Pseudobanking uses the simple trick of addressing alternate planes of chips within 
the module. This can be done in a time equal to the access time, effectively reducing the 
cycle time by nearly half. Using this approach the effective cycle time on the 256-Mword 
DRAM decreased from 57 CPs to 33 CPs [Numrich 1985]. Pseudobanking is only needed 
on CRAY-2s with DRAM. Later solutions have involved the use of faster memory chips 
and static rather than dynamic memories. The X-MP uses chips with a scalar memory 
access time of 14 CPs (119 ns). 

Several factors affect the rate of data transfer between common memory and the vector 
registers on the CRAY-2. The first is the rate of instruction issue for vector reads and writes. 
With only one common memory port per processor, each read or write instruction must 
wait for the port to be free before it can issue. I f  one word transfers per clock period, 
then the next instruction can issue VL + 8 CPs later [Numrich 1985], where VL is the 
requested vector length. The minimum transfer time per word, T(min), is approximated by 

T(min) = (VL + 8)/VL CPs. (1) 

For a vector length of 64, this time is 72/64 or 1.125 CP/word, giving a maximum transfer 
rate of 217 Mwords/s (assuming a 4.1-ns clock). This rate is highly optimistic and assumes 
no quadrant or bank conflicts. 

Memory conflicts also reduce the data transfer rate. Memory conflicts on the CRAY-2s 
occur at two levels: quadrant conflicts and bank conflicts. Quadrant conflicts are caused 
by the difference in the rate at which memory-request addresses arrive at the port and the 
rate at which the port can process these requests. Recall that each memory quadrant on 
the CRAY-2 can be addressed by each processor only once every 4 CPs. The time between 
memory requests to the same quadrant is called the quadrant period. Quadrant periods 
of four cause no conflicts to occur, while periods of two or one can cause conflicts. Vectors 
with odd strides, including strides of one, have a quadrant period of four, and thus cause 
no conflicts. Even strides, however, cause conflicts of varying severity. The worst case 
is a stride divisible by four; here the quadrant period is one. Even in the absence of other 
conflicts, memory quadrant conflicts can cause performance degradation. 

Bank conflicts, like quadrant conflicts, are caused by attempts to access data in the same 
bank within too small a time period. The bank conflict effect is a function of bank cycle 
time and number of banks. See Table 2 for a list of cycle times for the machines we tested. 
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Table 2. Memory characteristics for three tested models of the CRAY-2. 

Chip Access Memory Cycle Memory Size 
Model Time (ns) Time (CP) Memory Type (Mword) 

2003 120 57 Dynamic 256 
2011 80 45 Dynamic 256 
2012 55 41 Static 128 

When a bank conflict occurs, the address in the quadrant buffer requires more than the 
4-CP quadrant access time to clear. Memory backup then occurs because these quadrant 
buffers remain full until the requested bank is free. 

3. Description of Benchmark Programs 

The Computing and Communications Division at Los Alamos National Laboratory maintains 
a set of portable benchmark programs representing characteristic tasks that a large super- 
computer would be required to run at the Laboratory. This benchmark set has been run on 
a wide range of both scalar and vector machines [Brickner et al. 1986; Griffin and Simmons 
1984; Lubeck et al. 1985, 1987; Simmons and Lubeck 1986; Simmons and Wasserman 1987; 
Wasserman et al. 1987]. A database is maintained containing results of past runs of these 
programs on a variety of computers. A report from the National Research Council [1986] 
has characterized supercomputer benchmarks in terms of a hierarchy. Using the Council's 
characterization, the Los Alamos benchmark set consists of tests at the levels of hardware 
demonstration programs, basic routines, and stripped-down applications. A description of 
the codes is given in the appendix. Additional information can be found in [Wasserman 
1988]. The programs are coded in ANSI Fortran for portability and typically can be run 
on a new machine with little or no change. Execution rates will be indicative of the potential 
initial usefulness of a new machine. 

4. Single-Processor Results 

The benchmark of CRAY-2 Serial 2003 took place in July 1987, while Serial 2011 was measured 
in October 1987, and Serial 2012 was measured in January 1988. The X-MP results were 
obtained in November 1987. Two of the CRAY-2s, Serial 2003 and 2012, ran UNICOS, a 
UNIX-like operating system; Serial 2011 and the X-MP/416 ran the Cray Timesharing System 
(CTSS). All measurements were made during dedicated time on a single processor. 

4.1. Comparison of Three Types of CRAY-2 Hardware 

Table 3 shows the effect of the faster memory hardware on our benchmark codes. The 
results for the 80-ns DRAM CRAY-2 are not always consistent with results from the other 
two machines. That is, the times for some benchmarks increase in going from the 120-ns 
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Table 3. Comparison of benchmark execution times (in seconds) for CRAY-2 (one 
processor) showing effect of hardware a 

120-ns DRAM 80-ns DRAM 55-ns SRAM 
Code (SN 2003) (SN 2011) (SN 2012) 

FFT 10.7 10.5 9.6 
GAMTEB 5.3 7.5 4.7 
SCALGAM 104.6 100.9 92.2 
LSS 9.5 9.5 8.9 
MATRIX 61.9 59.4 57.3 
INTMC 20.8 20.6 18.6 
HYDRO 79.7 79.6 68.8 
WAVE 186.6 203.0 174.6 
ESN NR 21.5 22.9 
MCNP NR 94.1 77.8 

aCFT77 version 1.3 compiler. 

CRAY-2 to the 80-ns CRAY-2. We believe this is due to different implementations of 
the CFT77 compiler and, in particular, the implementation of CFT77 under CTSS on Serial 
2011. For this reason, and also because we wish to illustrate the maximum performance 
gain that could be realized from faster memory, in this discussion we focus on the difference 
in performance between the 120-ns DRAM CRAY-2 and the 55-ns SRAM CRAY-2S. 
Speedups due to the static memory are in the range of 7-16%. The two scalar codes 
SCALGAM and GAMTEB show identical speedups of 13%. HYDRO, which is nearly 
100% vectorizable, shows the largest speedup. Note that a twofold change in memory 
chip access time should not yield anything close to a twofold speedup in the codes. The 
more pertinent hardware feature is the memory latency, which is the time to do loads 
from common memory. On the DRAM machine, the scalar access latency is 59 CPs, while 
on the SRAM machine, the latency for scalar loads is 43 CP. Thus, the maximum speedup 
we could observe here is about 37 %. That the maximum observed speedup is still smaller 
than this may suggest that the compiler could hide some of the memory latency, perhaps 
by more use of the local memory. 

4.2. Comparison of Compilers 

Table 4 shows a comparison of execution times on the fast memory CRAY-2S (Serial 2012) 
using the two CFT77 compilers (1.3) and (2.0). 2 Version 2.0 yields a dramatic improvement 
on some of the codes. The FFT code speeds up by a factor of 2.3 relative to CFT77 1.3. 
All previous versions of CFT77 vectorized several loops in FFT conditionally; the repeated 
execution of the conditional code at run time caused much slower execution rates. In FFT 
the conditional code is generated because a loop bound is passed as an argument to a sub- 
routine. These loops are now fully vectorized in version 2.0. 

Using CFT77 2.0, HYDRO speeds up by 35 %. HYDRO contains one minor loop that 
conditionally vectorized with CFT77 1.3 and now fully vectorizes with CFT77 2.0. HYDRO 
also has three loops, in the time-consuming subroutines VSETUV and VQTERM, that had 
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Table 4. Comparison of benchmark execution times (in seconds) for Serial 2012 
CRAY-2S (55-ns memory, one processor) showing effect of compiler. 

Code CFT77 1.3 CFT77 2.0 Speedup 

FFT 9.6 4.1 2.34 
GAMTEB 4.7 4.4 1.04 
SCALGAM 92.2 92.8 0 
LSS 8.9 8.9 0 
MATRIX 57.3 57.0 0 
INTMC 18.6 18.2 1.02 
HYDRO 68.8 51.1 1.35 
WAVE 174.6 109.7 1.6 
ESN 21.5 20.4 1.05 
MCNP a 77.8 78.1 0 

aFour thousand source particles. 

not vectorized at all in version 1.3 and now vectorize in version 2.0. Each of these three 
loops did not vectorize with version 1.3 because of function references in conditional blocks. 
However, another loop in HYDRO that consumes a considerable portion of the execution 
time does not vectorize with any Cray Research compiler, although we know of other 
compilers that are successful in vectorizing this loop. 

The WAVE code also derives an impressive gain from the use of CFT77 2.0 on the 
CRAY-2S. The 60% decrease in execution time results from the full vectorization of over 
50 loops that had been conditionally vectorized in version 1.3. However, 16 loops in WAVE 
remain conditionally vectorized. 

So far we have focused on CRAY-2 results obtained with the CFT77 compiler. A version 
of the Cray Research CFT compiler, called CFT2, is also available on the CRAY-2. A 
comparison of benchmark execution times for code produced using both compilers is given 
in Table 5. The CFT77 2.0 compiler produces much better code in all cases. 

4. 3. Comparison of CRAY-2S with CRAY-MP/416 

In this section we examine the performance of only the CRAY-2S with that of the CRAY 
X-MP/416 results. We used a pre-release of CFT77 2.0 (BF185) on a CRAY X-MP/416 

Table 5. Comparison of benchmark execution times (in seconds) for CRAY-2 
(one processor) using CFT2 and CFT77 compilers on SN-2012. 

Code CFT2 CFT77 2.0 

FFT 4.9 4.1 
GAMTEB 10.0 4.4 
SCALGAM 144.7 92.8 
LSS 12.4 8.9 
MATRIX a 57.0 
INTMC 20.6 18.2 
HYDRO 107.0 51.1 
WAVE a 109.7 
ESN 27.0 20.4 
MCNP a 78.1 

aDid not compile. 
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running the CTSS operating system at Los Alamos National Laboratory (LANL).  (The 
version of CFT77 2.0 we used on the CRAY-2S was also a pre-release, BFI84.) 

4 . 3 3 .  P r i m i t i v e  V e c t o r  O p e r a t i o n s .  First,  we examine the performance of selected elementary 
vector operations, listed in Tables 6 and 7. These tables contain rates, in Mflops, for various 
elementary vector operations as a function of vector length. Al l  operations were carried 
out with unit stride except for the second and third operations in both tables. Al l  measure- 
ments were done on a dedicated system using a single processor. On the X-MP, an in-register 

infinite loop was also used to keep the idle processors occupied. The X-MP/416 tests used 

bidirectional memory. 
For the nonslrided, nonscatter/gather operations in Tables 6 and 7, the differences between 

the two machines at vector length 1000 can generally be reconciled with the rate at which 
each machine is capable of  producing results. For  example, on the first operation, V = 
V + S, we expect comparable rates, and we observe 83 Mflops for the CRAY-2S and 100 
Mflops for the X-MP. As another example, on the fourth operation, V = V * V, we expect 
the asymptotic rate on the CRAY-2S to be less than that of the X-MP by about a factor 
of  1.5; at vector length 1000, the observed ratio is 1.78 (51 Mflops for the CRAY-2S and 
93 Mflops for the X-MP). However, the CRAY-2S compiler  has to unroll  all these loops 
(to a depth of  four) to achieve this performance.  At shorter vector lengths the X-MP is 

faster than the CRAY-2 by about a factor of  2. 

Table 6 Rates (Mflops) on the CRAY-2S for selected vector operations as a function of vector length (single 
processor; CFT77 2.0). 

Operation 10 50 100 200 1000 

a(i) = b(i) + s 10 37 44 47 83 
a(i) = b(i) + s ( i=  1, n, 23) 9 35 42 46 84 
a(i) = b(i) + s(i=l,  n, 8) 8 16 16 16 18 
a(i) = b(i)*c(i) 8 28 33 36 51 
a(l') = b(i) + s*c(i) 15 54 65 72 113 
a(i) = b(i)*c(i) + d(i)*e(i) 19 60 66 76 90 
a(i) = bq(i)) + s 7 19 21 22 29 
aq(i))  = b(~]*c(i) 8 28 29 34 35 

Table 7. Rates (Mflops) on the CRAY-X-MP/416 for selected vector operations as a function of vector length (single 
processor; CFT77 2.0; bidirectional memory). 

Operation 10 50 100 200 1000 

a(t) = b(f) + s 20 64 70 83 100 
a(i) = b(i) + s ( i=  1, n, 23) 19 65 74 83 99 
a(i) = b(i) + s(i=l,  n, 8) 19 65 74 81 100 
a(i) = b(i)*c(i) 17 58 67 75 93 
a(i) = b(i) + s*c(i) 36 113 127 151 181 
a(i) = b(i)*c(i) + d(i)*e(i) 43 105 122 128 148 
a(i) = bfj(i)) + s 17 41 51 51 59 
afj(i)) = b(i)*c(i) 16 38 41 42 50 
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Comparison of the first and second operations in Table 6 shows that, as expected, the 
CRAY-2S suffers no performance degradation with odd strides. However, with stride 8, 
performance on the CRAY-2S is about one-fourth of the nonstrided rate. The minimum 
time for memory transfer on the CRAY-2S is slightly more than 1 CP/word. However, with 
stride 8 all words of data reside in the same quadrant. Therefore, the minimum transfer 
time, delayed by quadrant conflict only, is about 6.5 CP/word. With a stride of 8, there 
are no bank conflicts on the machine we used. 

Scatter/gather operations, the last two rows in Tables 6 and 7, are much more efficient 
on the X-MP than they are on the CRAY-2, over the entire range of vector lengths. The 
gather operation on the CRAY-2 is subject to a special hardware delay so that references 
are allowed roughly once every 4 CPs. 

4.3.2. Benchmark Codes. A comparison of the current CRAY-2S results with the CRAY 
X-MP/416 for the rest of the benchmark codes is shown in Table 8. Two sets of results are given 
for the X-MP: one from a pre-release of CFT77 2.0 and one from the production compiler, 
CFT 1.14. The first thing tonotice in Table 8 (comparing colunms two and three) is that 
on the X-MP, CFT77 2.0 now produces better code than CFT 1.14 (with no compiler options) 
for all but one benchmark. The only (minor) exception is MATRIX, for which CFT 1.14 
with the BTREG option (shown in parenthesis in Table 8) is slightly faster than CFT77 2.0. 

The X-MP has a significant performance advantage over the CRAY-2S on seven of the 
ten codes. Of the seven, four are highly vectorizable: HYDRO, LSS, MATRIX, and WAVE. 
In HYDRO, LSS, and MATRIX, the predominant loop length is about 100. The VECOPS 
data in Tables 6 and 7 showed that the X-MP ran loops at vector length 100 nearly twice 
as fast as the CRAY-2S did. In WAVE, the predominant loop length is 256. WAVE also 
involves many gathers for which, as shown above, the X-MP is superior. 

Interestingly, in contrast with the VECOPS data, the X-MP is only about 5% faster on 
the FFT code, a highly vectorized code with short vector lengths on which the X-MP should 
be fastest. 

Table 8. Comparison of benchmark execution times (in seconds) for CRAY-2S 
(Serial 2012) and CRAY X-MP/416 (single processor). 

CRAY-2 X-MP/416 X-MP/416 
Code (CFT77 2.0) (CFT77 2.0) (CFT 1.14) 

FFT 4.1 3.9 4.3 
GAMTEB 4.4 5.2 7.6 
SCALGAM 92.8 76.2 88.4 
LSS 8.9 7.6 11.6 
MATRIX 57.0 49.2 54.7 
INTMC 18.2 12.1 40.2 
HYDRO 51.1 39.8 48.9 
WAVE 109.7 86.0 111.2 
ESN 20.4 15.9 18.2 
MCNP b 78.1 73.2 76.7 

(6.7) a 
(33.2) a 

aTime in parenthesis is with bidirectional memory and OPT=BTREG for the 
CFT 1.14 compiler. 
bFour thousand source particles started. 
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An important aspect of vectorization on the CRAY-2S concerns the way in which arrays 
are dimensioned. Because of quadrant conflicts that can have a noticeable effect on perfor- 
mance, arrays with even dimensions will suffer performance degradations relative to arrays 
with odd dimensions. This fact is highlighted in the performance of the codes LSS and 
MATRIX relative to the X-MP. Both codes spend most of their time in SAXPY, and both 
have loop lengths of 100. Yet MATRIX runs nearly 63 % faster on the X-MP than it does 
on the CRAY-2S, whereas LSS runs about 45 % faster on the X-MP. In MATRIX, two of 
three critical arrays have even dimensions, while in LSS all critical arrays have odd dimen- 
sions. Thus, relative to the X-MP, one must be far more careful of program array dimensions 
on the CRAY-2S. 

The relationship between the X-MP and the CRAY-2S on codes not overwhelmingly vector in 
nature is harder to explain. Of the two Monte Carlo photon transport codes, one, SCALGAM, 
runs about 28% faster on the X-MP, while the other, GAMTEB, runs about 18% faster 
on the CRAY-2S. ESN, a totally scalar code, runs about 28% faster on the X-MP. But 
on MCNP, the X-MP is only 7 % faster than the CRAY-2. The reason for this is not clear. 

4.3.3. X-MP/416 External Storage Performance. The larger central memory on the CRAY-2 
is an important asset for this machine. However, the X-MP can be equipped with an external 
solid-state storage device (SSD) that can also offer potential for large codes. An obvious 
question is: i f  a problem can be programmed with an out-of-core algorithm, how does the 
X-MP with SSD perform relative to the same problem run in-memory on the CRAY-2? 

The WAVE code can be so programmed. We ran a job requiring about 20 Mwords of 
storage on the CRAY-2 (Serial 2011, 80-ns memory). We ran the same code on an X-MP/416 
runnning CTSS and equipped with a 512-Mword SSD using one channel (1250 Mbyte/s). 
Both machines used the CFT77 version 2.0 compiler. The X-MP/416 version transferred 
to the SSD in block sizes of 204,800 words. The CRAY-2 ran the job in 461 seconds, while 
the X-MP required 355 seconds of CPU time and 360 seconds of elapsed (wall-clock) time. 
Although we did not run this code on the 55-ns CRAY-2S, we can approximate what the 
performance will be. Using the CFT77 version 2.0 compiler, the standard WAVE benchmark 
runs about 12 % faster on the 55-ns CRAY-2S than it does on the 80-ns CRAY-2, so the 
best CRAY-2S time for the 19-Mword job would be about 411 seconds. This value is still 
larger than the X-MP wall clock time. Note that although I/O to the SSD does not require 
particularly difficult coding (as might I/O to a disk) other than insuring a large block size, 
the CRAY-2 version requires no extra coding. 

5. Multitasking Results 

The four processors of the CRAY-2 can simultaneously be brought to bear on a single job 
through the multitasking environment. We ran our large Monte Carlo transport code, MCNP, 
in this environment on the Serial 2011 CRAY-2 at the Air Force Weapons Laboratory in 
February 1988. The compiler was CFT77 2.0, the operating system was CTSS, and the 
multitasking library was Multilib. We ran a problem size of 60,000 source particles. For 
comparison, we ran the same problem on an X-MP/416 at Los Alamos using the CFT77 
2.0 compiler, the CTSS operating system, and a multitasking library that is a local system. 
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Table 9. Multitasking execution times (in seconds) for MCNP 
on the CRAY-2 (Serial 2011) and the CRAY X-MP/416. 

CRAY-2 CRAY X-MP/416 
Total Total 

1 Processor 1343.3 963.6 
2 Processor 697.4 486.3 
3 Processor 477.2 330.9 
4 Processor 351.5 253.0 
Serial 1240.9 923.8 

We used a parallelization method called macrotasking developed at Cray Research and 
adapted for CTSS on the CRAY-2 by the NMFECC. This method operates at the granularity 
level of the subroutine? Multitasking runs on both machines were done during dedicated 
time. The times are given in Table 9. Note that the X-MP is about 40% faster than the 
CRAY-2 for one to four processors. The serial times differ by 34 %, which is comparable 
to the differences observed for the other scalar serial codes. 

Speedup is defined as 

S = TJTn,  (2) 

where Ts is the serial execution time and Tn is the execution time using n processors. The 
speedups for MCNP are plotted in Figure 2. The CRAY-2 shows a speedup of 3.53 for four 
processors, while on the X-MP speedup is 3.65. This difference might be attributed to several 
factors, one of which is the availability of only a single semaphore per job on the CRAY-2. 
The X-MP has 32 semaphores available to a job. Another factor affecting speedup is the 
implementation of synchronization primitives. The Los Alarnos system has implemented 
spin-wait locks while the Cray Research/NMFECC implementation is somewhat less efficient. 
Since Monte Carlo algorithms are considered to be ideal candidates for parallel processing, 
one might expect a speedup for four processors that is somewhat closer to four. One reason 
that we do not see this for this set of runs is that the time spent in the serial sections, such 
as the setting up of the problem, is constant and independent of the number of source par- 
ticles. This means that as more and more processors are brought to bear on a problem 
of fixed size, the serial portion takes a larger percentage of the time. This is, of course, 
Amdahl's law [Amdahl 1967]. 

I f  we interpret Ware's model [Ware 1972] (of Amdahl's law) of vector performance as 
applying to multiprocessor performance, we can also define speedup as 

S = [(1 -Y3 + (f/P)]-~, (3) 

wheref i s  the fraction of the code that can be executed in parallel and p is the number of 
processors. For MCNP, which is about 98 % parallel, we get a predicted speedup of 3.77 for 
four processors. This is somewhat higher than our measured speedup of 3.53 on the CRAY-2S. 

There are several reasons for the difference in these two speedups. One is the effect of 
multiprocessor synchronization overhead [Buzbee 1984]. Another is the additional time 
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Figure 2. Speedup on a CRAY-2. 

required for system overhead in the multiple processor runs. This serial version of MCNP, 
for example, is not stack based and so incurs no overhead associated with stack management. 

6. Conclusions 

The faster memory chips on recent models of the CRAY-2 provide some improvement on 
our benchmarks, but do not, by themselves, allow the CRAY-2S to perform better than 
the X-MP/416 in single-processor mode. This is because too much of the memory bot- 
tleneck on the CRAY-2 is due to factors other than chip access time. 

The biggest improvements we have observed during the evolution of the CRAY-2 are derived 
from compiler changes, not hardware changes. In particular, HYDRO and WAVE, two bench- 
mark codes that closely resemble production codes at the Laboratory, benefit significantly 
from the combination of new hardware and a new version of CFT77 on the CRAY-2S. 

The X-MP has a clear performance advantage over the CRAY-2S on our codes that are 
highly vectorized. However, the difference between these machines is less clear on codes 
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that are not overwhelmingly vector. The significant factor here appears to be the longer 
memory latency on the CRAY-2. Although the CRAY-2 provides more central memory than 
the X-MP, we have shown that on one code that takes advantage of the X-MP SSD, the 
faster processor and high I/O rates can overcome the lack of X-MP memory. 

In multitasking mode, the CRAY-2 performs about as well as the X-MP on the problem 
that we ran. While the overall times are not as fast as the X-ME the speedups are compar- 
able. The overhead observed for the problem we ran could be reduced either by running 
a larger problem or by using more efficient synchronization (microtasking). 
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Appendix: Description of the Codes in the Benchmark Set 

INTMC: An integer Monte Carlo code containing almost no floating point arithmetic. 
The random number generator requires at least 32-bit integer operations. There 
is no I/O and all data are internally generated. 

FFT: A fast Fotwier transform (FFT) code [Swartztrauber 1984] that is highly vectoriz- 
able. This code measures the speed of single Fourier transformations. Because 
it executes many operations with short vector lengths, it is very sensitive to 
vector start-up times. The FFT library routines supplied by all supercomputer 
manufacturers generally perform multiple FFTs at much higher execution rates 
than this benchmark code. No I/O is performed. 

VECOPS: Tests rates of primitive vector calculations as a function of vector length. Vector 
operands and results are fetched from and stored to contiguous memory loca- 
tions, except for four operations that involve gather/scatter. Typically one 
million floating point operations are timed. 

VECSKIP: Performs the same operations as VECOPS. The vectors are accessed in non- 
contiguous memory locations with several values for the stride, which can 
be adjusted to test for performance during memory conflicts. 

MATRIX: Basic matrix operations, including multiplication and transpose, on matrices of 
order 100. The code is highly vectorizable but not optimized for vector computers. 
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GAMTEB: 

SCALGAM: 

LSS: 

MCNP: 

ESN: 

HYDRO: 

WAVE: 

A Monte Carlo photon transport code. This is a relatively small model code with 
a simple source and straightforward geometry. It is only slightly vectorizable. 

Monte Carlo photon transport code that uses the methods of GAMTEB, but 
with more complicated geometry, more materials, and more statistics gathered. 
It requires 64-bit arithmetic for its random number generator as does GAMTEB. 
It also does not vectorize. 

A linear system solver from LINPACK [Dongarra et al. 1979] for systems 
of equations of order 100. It uses the method of Gaussian elimination. Although 
it is fully vectorizable, it is not optimized for supercomputers. Library routines 
supplied by supercomputer manufacturers will achieve considerably higher 
execution rates. 

MCNP is a general-purpose Monte Carlo code [Booth et al. 1986], heavily 
used at the Laboratory and elsewhere, that does neutron, photon, or coupled 
neutron/photon transport. It includes the ability to calculate eigenvalues for 
critical systems. The code treats an arbitrary three-dimensional configuration 
of materials in geometric cells bounded by first- and second-degree surfaces 
and some special fourth-degree surfaces. Point-wise cross sections are used 
throughout. The test problem includes a fair sample of the commonly used 
features of the code. The code has been parallelized for several different 
parallel processors. Typically 100,000 source particles are started. The code 
does not vectorize. 

ESN is a one-dimensional, discrete ordinates, particle transport code that 
solves the transport equation by the discrete ordinates method [Wienke 1982]. 
The current algorithm implemented in ESN was developed by Wienke and 
Hiromoto [1985]. Particles are described by a flux, defined at each point in 
space and time, and the flux is a function of particle energy and direction 
of flight. The discrete ordinates method involves discretizing all these variables 
(space, time, energy, and angle) and applying an iterative solution scheme. 
There are 16 energy groups involved. The code does not vectorize. 

HYDRO is a two-dimensional Lagrangian hydrodynamics code based on an 
algorithm by W.D. Schuitz [1964]. HYDRO is representative of a large class 
of codes in use at the Laboratory. The code is 100% vectorizable. A typical 
problem is run on a 100xl00 mesh for 100 time steps. 

WAVE is a two-dimensional, relativistic, electromagnetic particle-in-ceU sim- 
ulation code used to study various plasma phenomena [Morse and Neilson 
1971]. WAVE solves Maxwell's equations and particle equations of motion 
on a cartesian mesh with a variety of field and particle boundary conditions. 
The benchmark problem involves 500,000 particles on 50,000 grid points for 
20 timesteps; about 4 MW of memory are required. 
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No~s 

1. This work was performed under the auspices of the U.S. Department of Energy. 
2. A later version of CFT'/7 became available after this study was completed, but the CRAY-2 SN 2012 was no 
longer available to us. Because hardware on the CRAY-2 can differ significantly from machine to machine, we 
elected not to test the later versions of the compiler. 
3. Another approach, called microtasking, operates at the granularity of the DO loop and can be much more 
efficient. However, since MCNP does not contain many DO loops, a moderate amount of reprogramming would 
be required in order to take advantage of microtasking. 
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