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Abstract. In this paper we analyze in some detail the geometry of a pair of cameras, i.e., a stereo rig. Contrarily to 
what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume 
that the intrinsic parameters of the cameras are known (coordinates of the principal points, pixels aspect ratio and 
focal lengths). This is important for two reasons. First, it is more realistic in applications where these parameters 
may vary according to the task (active vision). Second, the general case considered here, captures all the relevant 
information that is necessary for establishing correspondences between two pairs of images. This information is 
fundamentally projective and is hidden in a confusing manner in the commonlyused formalism of the Essential 
matrix introduced by Longuet-Higgins (1981). This paper clarifies the projective nature of the correspondence 
problem in stereo and shows that the epipolar geometry can be summarized in one 3 x 3 matrix of rank 2 which we 
propose to call the Fundamental matrix. 

After this theoretical analysis, we embark on the task of estimating the Fundamental matrix from point corre- 
spondences, a task which is of practical importance. We analyze theoretically, and compare experimentally using 
synthetic and real data, several methods of estimation. The problem of the stability of the estimation is studied from 
two complementary viewpoints. First we show that there is an interesting relationship between the Fundamental 
matrix and three-dimensional planes which induce homographies between the images and create unstabilities in the 
estimation procedures. Second, we point to a deep relation between the unstability of the estimation procedure and 
the presence in the scene of so-called critical surfaces which have been studied in the context of motion analysis. 
Finally we conclude by stressing the fact that we believe that the Fundamental matrix will play a crucial role in 
future applications of three-dimensional Computer Vision by greatly increasing its versatility, robustness and hence 
applicability to real difficult problems. 

1 Introduction 

Inferring three-dimensional information from images 
taken from different viewpoints is a central problem 
in computer vision. However, as the measured data in 
images are just pixel coordinates, there are only two ap- 
proaches that can be used in order to perform this task: 

The first one is to establish a model which relates 
pixel coordinates to 3D coordinates, and to compute 
the parameters of such a model. This is done by camera 
calibration (Tsai, 1986; Faugeras and Toscani, 1986), 
which typically computes the 3 x 4 projection matri- 
ces 15, which relate the image pixel coordinates to a 
world reference frame. The 11 parameters of this pro- 
jection matrix account for the internal geometry of the 

*Present address: SRI, 333 Ravenswood Ave., EK231, Menlo 
Park, CA 94025, email: luong@ai.sri.com. 

camera, as well as its position and orientation in space 
with respect to a fixed reference frame. The knowl- 
edge of the internal geometry of a camera allows us 
to obtain directions in 3D space from pixel measure- 
ments, and thus the usual Euclidean concepts can be 
used: the relative positioning of cameras is described 
by a rigid displacement, and the world is described by 
metric quantities. However, it is not always possible 
to assume that cameras can be calibrated off-line, par- 
ticularly when using active vision systems. Another 
drawback is that by doing so, many parameters have to 
be estimated in the case of a stereo rig, namely 11 + 11 
which in our opinion is much more than what is really 
needed in most applications. Even an approach where 
cameras are just calibrated individually for their 5 in- 
ternal parameters, and the rigid displacement between 
them is estimated subsequently would require at least 
the estimation of 15 parameters. 
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Thus a second approach is emerging (Mundy and 
Zisserman, 1992), which consists in using projective 
information, whose non-metric nature allows to use 
cameras whose internal parameters are unknown. This 
approach requires only geometric information which 
relates the different viewpoints, thus a much more small 
number of parameters have to be estimated. They also 
lead to a deeper understanding of the fundamental ele- 
ments in the geometry of two cameras, being very nat- 
urally related to the image formation process. The geo- 
metric relations between the two cariaeras are described 
in projective terms rather than in Euclidean ones. We 
will see in this paper that only 7 parameters are suf- 
ficient to describe the projective relation of two cam- 
eras. This information is entirely contained in a matrix 
called the Fundamental matrix, thus it is very impor- 
tant to develop precise techniques to compute it, and 
to study their stability with respect to various 3D point 
configurations and different camera displacements. 

In spite of the fact that there has been some con- 
fusion between the Fundamental matrix and Longuet- 
Higgins' Essential matrix, it is now known that the 
fundamental matrix can be computed from pixel coor- 
dinates of corresponding points in uncalibrated images, 
which is the basic data we start from, in this paper. 
Methods to obtain such correspondences at a subpixel 
precision are now available, but are detailed elsewhere 
(Luong, 1992; Deriche et al., 1994), since the empha- 
sis of the paper is on geometric and algebraic relations 
which can be used to compute the fundamental matrix 
and to analyze its stability. Line correspondences are 
not sufficient with two views. Another approach is to 
use linear filters tuned to a range of orientations and 
scales. Jones and Malik (1992) have shown that it is 
also possible in this framework to recover the location 
of epipolar lines. 

In Section 2, we clarify the concept of Fundamental 
matrix, and show its relation with the epipolar trans- 
formation and the Essential matrix, and propose some 
parameterizations for its computation. In Section 3, 
we proceed to analyze several methods to compute the 
Fundamental matrix in the general case and show, us- 
ing both large sets of simulations and real data, that our 
non-linear computation techniques provide significant 
improvement in the accuracy of the Fundamental ma- 
trix determination over linear techniques. In Section 4 
we examine the case of planes, and point out an im- 
portant relation between the Fundamental matrix and 
homography matrices, which yield unstability, but al- 
lows some new specific algorithms to be applied. The 
stability of the computation is investigated in a more 

general framework where the influence of the camera 
motion is also considered in Section 5. We end the 
paper by pointing to several applications of the Fun- 
damental matrix in order to stress its importance in 
computer vision. 

2 The Fundamental Matrix 

2.1 Notations 

In this paper we use boldface letters for vectors and 
matrixes i.e.x. Transposition of vectors and matrices is 
indicated by T, i.e. x T. The line between two points M1 
and M2 is represented by (M1, M2). The cross-product 
of two three-dimensional vector x and y is represented 
by x x y. The antisymmetric matrix such that [V]xX = 
v x x for all vectors x is noted [v] ×. We differentiate 
between the projective geometric objects themselves 
and their representations. For example, a point in the 
image plane will be denoted by m whereas one of its 
coordinate vectors will be denoted by m. 

2.2 The Projective Model 

The camera model which we consider is the pinhole 
model. In this model, the camera performs a perspec- 
tive projection of an object point M onto a pixel m in 
the retinal plane through the optical center C. The op- 
tical axis is the line going through C and perpendicular 
to the retinal plane. It pierces that plane at point c. 
If  we consider an orthonormal system of coordinates 
in the retinal plane, which we call normalized coor- 
dinates, centered at c, say (c, u, v) we can define a 
three-dimensional orthonormal system of coordinates 
centered at the optical center C with two axes of co- 
ordinates parallel to the retinal ones and the third one 
parallel to the optical axis (C, x, y, z). In these two 
systems of coordinates, the relationship between the 
coordinates of m, image of M is particularly simple: 

x y 

Z Z 

It is nonlinear but if we write it using the homogeneous 
(projective) coordinates ofm and M, it becomes linear: 

= E ' o o  oO o , o,  llil (1) 
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In this equation U, V and T are the projective co- 
ordinates of the pixel m and X, Y, Z, T are the pro- 
jective coordinates of the point M. If M is not at 
infinity (i.e. T ~ 0), its Euclidean coordinates are 

r z Therefore, x, y and z can x = ,y  = 7 , z  = y.  
also be considered as the projective coordinates of the 
pixel m. 

We write Eq. (1) in matrix form: 

m = I ' M  

where I '  is the 3 x 4 matrix appearing in (1). Introduc- 
ing projective coordinates induces a big simplification 
in the formulation of properties of cameras. It is one 
of the reasons why projective geometry is emerging as 
an attractive framework for computer vision (Mundy 
and Zisserman, 1992). In this paper, we assume that 
the reader is familiar with some elementary projec- 
tive geometry. Such material can be found in classical 
mathematic textbooks such as (Semple and Kneebone, 
1979; Coxeter, 1987; Garner, 1981), but also in the 
computer vision literature where it is presented in chap- 
ters of recent books (Faugeras, 1993; Kanatani, 1992; 
Mundy and Zisserman, 1992), and articles (Maybank 
and Faugeras, 1992; Kanatani, 1991). 

This main property of this camera model is thus that 
the relationship between the worm coordinates and the 
pixel coordinates is Iinear projective. This property is 
independent of the choice of the coordinate systems 
in the retinal plane or in the three-dimensional space. 
Changing projective coordinates in the 3D space is 
equivalent to multiplying matrix P to the right by a 
four by four matrix. Indeed, suppose that we have 
M = DM ~, then m = I 'DM'.  A special case is the 
case of a rigid displacement represented by a rotation 
matrix R and a translation vector t. We have then 

O Lo 'l] 
Similarly, changing coordinates in the retinal plane 
is equivalent to multiplying matrix P to the left by a 
three by three matrix. Indeed, suppose that we have 
m = Am f, then m p = A-1PM. A special case is the 
case where the change of coordinates represents the 
change from the pixel coordinates to the normalized 
pixel coordinates (Faugeras, 1992; Faugeras, 1993), 
accounting for the internal geometry of the camera. A 
pinholecamera can therefore be specified by a 3 x 4 
matrix P which is defined up to a scale factor (it is a pro- 
jective quantity) and is of rank 3 (an easy way is to see 
that this is the case for the matrix appearing in (1) and 

that this rank property is preserved by multiplication 
on the right with matrixes of rank 4 and multiplication 
on the left with matrixes of rank 3). 

Since this will be used in what follows, let us now 
see howthe optical center C can be recovered from the 
matrix P. Let us decompose P as follows 

= [Pp] 

w h e r e P i s a 3  x 3 m a t r i x o f r a n k 3 a n d p i s a 3 x  1 
vector. Let us assume without loss of generality that 
C is not at infinity and let (2 = [C r 1] r be a projective 
representation of this point. C is its 3 × 1 Euclidean 
vector of coordinates and the component equal to 1 
accounts for the fact that C is not at infinity. C satisfies 
the equation P(; = 0 from which we conclude 

C = _ p - i p  

2.3 The Epipolar Geometry and the Fundamental 
Matrix 

We now consider the case of two cameras looking at 
the same scene. The epipolar geometry is the basic 
constraint which arises from the existence of two view- 
points. Let us consider two images taken by linear pro- 
jection from two different locations, as shown in Fig. 1. 
Let C be the optical center of the first camera, and let 
C ~ be the optical center of the second camera. The line 
(C, C') projects to a point e in the first image 7"¢, and 

Fig. 1. The epipolar geometry. 
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to a point e t in the second image TU. The points e, e' 
are the epipoles. The lines through e in the first image 
and the lines through e r in the second image are the 
epipolar lines. The epipolar constraint is well-known 
in stereovision: for each point m in the first retina, 
its corresponding point m t lies on its epipolar line l~m . 
Similarly, for a given point m t in the second retina, its 
corresponding point m lies on its epipolar line lm," F m 
and Ira, are called corresponding epipolar lines. 

The relationship between the retinal coordinates of a 
point m and its corresponding epipolar line l~ is projec- 
tive linear, because the relations between m and (C, m), 
and (C, m) and its projection Ym are both projective lin- 
ear. We call the 3 x 3 matrix F which describes this cor- 
respondence the Fundamental matrix. The importance 
of the Fundamental matrix has been neglected in the lit- 
erature, as almost all the work on motion and stereo has 
been done under the assumption that intrinsic param- 
eters are known. In that case, the Fundamental matrix 
reduces to an Essential matrix. But if one wants to pro- 
ceed only from image measurements, the Fundamental 
matrix is the key concept, as it contains all the geometri- 
cal information relating two different images. One way 
to see it is to remember that the position along epipolar 
lines are related to the three-dimensional depth (Robert, 
1993). But if we do not have any knowledge about the 
scene geometry, we cannot infer such information. 

Let us now express the epipolar constraint using the 
Fundamental matrix, in the case of uncalibrated cam- 
eras. For a given point m in the first image, the pro- 
jective representation F m of its the epipolar line in the 
second image is given by 

1~ = F m  

Since the point m' corresponding to m belongs to the 
line l~ by definition, it follows that: 

m~TFm = 0 (2) 

Note that by reversing the role of the two images, the 
Fundamental matrix is changed to its transpose. In- 
deed, transposing Eq. (2), we obtain 

m T F r m  ~ = 0 

this shows that the epipolar line lm, of m t is represented 
by Frmo 

Just as in the one-camera case where we related the 
optical center to the perspective projection P, in the 
two-cameras case~ we can also relate the fundamental 
matrix F to the two perspective projection matrices 
and P. The epipole in the second image is the projection 

of the optical center of the first camera into the second 
camera, thus: 

The epipolar line of a point m of the first retina is de- 
fined by the image from the second camera of two par- 
ticular points of the optical ray (C, M): the optical 
center C (which is projected to the epipole e') and the 
point of infinity of (C, M). This point is projected to: 

[~, [ P ; m ]  = P ' P - ' m  

The projective representation of the epipolar line l~m 
is obtained by taking the cross-product of these two 
points, and it is seen again that this expression is linear 
in m" 

1~ = [p' - lXP- lp]  x P ' P - l m  

= [p, _ p , p - l p ] × p , p - I  m (4) 

2.4 Projective Interpretation: Relation with the 
Epipolar Transformation 

Let us enrich the idea of epipolar geometry and con- 
sider the one parameter family of planes going through 
(C, C') as shown in Fig. 2. This family is a pencil of 
planes. Let rl be any plane containing (C, C'). Then 

Fig. 2. The epipolar pencils. 
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FI projects to an epipolar line I in the first image and to 
an epipolar line 1 ~ in the second image. The correspon- 
dences l-ITxl and I1/~Y are homographies 1 between the 
two pencils of epipolar lines and the pencil of planes 
containing (C, C'). It follows that the correspondence 
lTxl' is a homography, called the epipolar transforma- 
tion. We relate it to the Fundamental matrix as follows. 

We prove the following interesting property of the 
fundamental matrix. The fundamental matrix is such 
that 

Fe = Fre; = 0 

Indeed, the epipolar line of the epipole e is Fe. Geo- 
metrically, this line F e is the image of the optical ray 
(C, e) in the second image. By construction this line is 
reduced to a point, d. This implies that 1' e = Fe = 0. 
Same for the second epipole. 

As a consequence of this, the rank of F is less than 
or equal to 2. In general, that rank is equal to 2. The 
case where it is equal to 1 is not possible since it can 
be seen that it implies that the line (C, C ') belongs to 
the two retinal planes and hence to their intersection. 
If we note l/r, i = 1, 2, 3 the row vectors of F and ci 
its column vectors, it means that we can write e (resp. 
d) as li × lj (resp. ei x ej) ifli and lj (resp. e; and ej) 
are linearly independent. 

We now find a parameterization of the pencils of 
epipolar lines such that the epipolar correspondence has 
a simple form. One solution, valid in the practical case 
where epipoles are at finite distance, and illustrated 
in Fig. 3, consists in intersecting each epipolar line in 
each retinal plane with the line at infinity l~ of that 
plane; these lines consist of retinal points for which the 
third projective component is zero. Their equation is 
x3 = 0 and their projective representation is (0, 0, 1) r. 
The epipolar transformation can then be expressed as 
a collineation between these two lines. If the epipolar 
line I goes through the point q, then its intersection 
with the line at infinity is yoo = (e x q) x (0, 0, 1) r, 
which can be written as (1, r, 0) r,  with: 

q2 - -  e2 
r - - -  ( 5 )  

ql - el 

Note that r is the direction of the epipolar line 1. Since 
the epipole is at finite distance, thus not on l~, it is 
an appropriate parameterization. If q' corresponds to 
q, then the epipolar line l' of the second image going 
through q; corresponds to l. It is parameterized by the 
point y~  = (1, r t, 0) r,  with its projective parameter 
obtained by priming the quantities in (5). The epipolar 

y3= 0 

- 1 
l , r ; 0 )  

h 

e ~ 

Fig. 3. Parameterizat ion o f  the epipolar  t ransformation.  

transformation maps Yo~ to y~,' and thus is a homo- 
graphic function of the projective parameters: 

a r + b  
r ~ r '  - - -  ( 6 )  

c r + d  

Thus we can characterize the epipolar transformation 
by the four coordinates of the two epipoles e and e p and 
by the three coefficients of the homography. It follows 
that the epipolar transformation, like the Fundamental 
matrix depends on seven independent parameters. 

Replacing r and r '  by their values (5) in (6) and 
identifying the result with Eq. (2), we obtain expres- 
sions for the coefficients of F in terms of the parameters 
describing the epipoles and the homography: 

[ be3e; ae3e;  -ae2e;-bele; 
F : I -de;e3 -ce;e3 -ce;e2+de;el 

kde;e3--be3e~ce;e3--ae3e~--ce;e2--de;el+aeae]+be~e] 

(7) 

The Eqs. (7), yield the coefficients of the homography 



48 Luong and Faugeras 

as functions of the Fundamental matrix: 

a : b : c : d  = ~ z :  ~ 1 : - ~ 2 : - ~ 1  (8)  

Note that in the case where one of the epipole is at in- 
finity, the previous parameterization is no longer valid, 
but we can generalize it by considering instead of the 
lines at infinity, the general lines. A more complicated 
projective parameter r (depending also on the choice of 
the lines (Pl, P2) and (p], p;))  is obtained in the same 
way by intersecting an epipolar line with (p~, p2) in the 
first image, (prl, p;) in the second image, and then the 
relation (6) holds as well. The expression (7) becomes: 

f i j  = (Pll x e ' ) i ( P 2  × e)ja - (P'I × e t ) i ( P l  × e)jb 

+ (p~ x e')i(P2 x e)jc - (p~ x e')i(Pl x e)jd 

2.5 Euclidean Interpretation: Relation with 
Longuet-Higgins Equation 

The Longuet-Higgins equation (1981) applies when us- 
ing normalized coordinates, and thus calibrated cam- 
eras. In that case, the 2-D projective coordinates of a 
pixel m are equivalent to the 3-D direction of the optical 
ray (C, m), which is of course not the case with retinal 
(uncalibrated) coordinates. If the motion between the 
two positions of the cameras is given by the rotation 
matrix R and the translation vector t, and if m and m' 
are corresponding points, then the fact that the three 
vectors Cm',  t, and Cm are coplanar can be written as: 

m t. (t x Rm) = m ' r [ t ]×Rm = m ' r E m  = 0 (9) 

We have replaced the vectors Cm' and Cm with m t 
and m, respectively since, according to a remark of the 
previous section, they are proportional. 

The matrix E, which is the product of an orthogonal 
matrix and an antisymmetric matrix, is called an Es- 
sential matrix. Becaus of the depth/speed ambiguity, E 
depends on five parameters only, the three parameters 
of the 3-D rotation, and the two parameters defining 
the direction of translation. 

It can be seen that the Eq. (9) is a special case of (2). 
Since normalized coordinates (used in (9)) are obtained 
from pixel coordinates (used in (2)) by a multiplication 
by the inverse of the intrinsic parameters matrix A, we 
have the relation: 

F = A-1TEA -1 (10) 

Unlike the essential matrix, which is characterized 
by the two constraints found by Huang and Faugeras 
(1989) which are the nullity of the determinant and the 

equality of the two non-zero singular values, the only 
property of the Fundamental matrix is that it is of rank 
two. As it is also defined only up to a scale factor, the 
number of independent coefficients of F is seven. We 
will see in Section 4.4 that the Fundamental matrix can 
be written as a product of an invertible matrix and an 
antisymmetric matrix. 

2.6 Summary 

In this section, we have described the epipolar transfor- 
mation, both from a geometrical point of view and from 
an algebraic point of view. In order to provide the latter 
one, we have defined the Fundamental matrix. Its prop- 
erties and relations to the well-known Essential matrix 
have been made clear. It must be noted that the Funda- 
mental matrix provides a complete description of the 
projective structure of a set of two cameras. No other 
geometrical information can be obtained from uncal- 
ibrated cameras without making further assumptions 
about the structure of the scene. 

3 General Estimation Methods: An Analysis 
and Experimental Results 

3.1 The Linear Criterion 

The Eight Point Algorithm. Equation (2) is linear and 
homogeneous in the 9 unknown coefficients of ma- 
trix F. Thus we know that if we are given 8 matches 
we will be able, in general, to determine a unique solu- 
tion for F, defined up to a scale factor. This approach, 
known as the eight point algorithm, was introduced 
by Longuet-Higgins (1981) and has been extensively 
studied in the literature (Longuet-Higgins, 1984; Tsai 
and Huang, 1984; Fang and Huang, 1984; Weng et al., 
1989; Lee, 1991), for the computation of the Essential 
matrix. It has proven to be very sensitive to noise. Our 
contribution is to study it in the more general frame- 
work of Fundamental matrix computation. Some re- 
cent work has indeed pointed out that it is also relevant 
for the purpose of working from uncalibrated cameras 
(Olsen, 1992; Faugeras et al., 1992; Hartley, 1992). In 
this framework, we obtain new results about the accu- 
racy of this criterion, which will enable us to present a 
more robust approach. 

In practice, we are given much more than 8 matches 
and we use a least-squares method to solve: 

m~n E (q~ir Fqi) 2 (11) 
i 
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When a Fundamental matrix obtained numerically does 
not verify the rank constraint, there is no exact solution 
to Fe = 0. In that case, we cannot use formulas (7), 
thus the epipole e is determined by solving the follow- 
ing classical constrained minimization problem 

min ]]Fe]] 2 subject to ]Jell2 = 1 (12) 
e 

which yields e as the unit norm eigenvector of matrix 
F r F  corresponding to the smallest eigenvalue. The 
same processing applies in reverse to the computation 
of the epipole e I. The epipolar transformation can then 
be obtained by a linear least-squares procedure, using 
Eqs. (5) and (6). 

The advantage of the linear criterion is that it leads 
to a non-iterative computation method, however, we 
have found that it is quite sensitive to noise, even with 
numerous data points. Let us point out to the two main 
drawbacks of the linear criterion. A more detailed anal- 
ysis of  the linear criterion is performed in (Luong et al., 
1993; Luong, 1992), where some analytical results and 
numerical examples are provided. 

The Linear Criterion Cannot Express the Rank 
Constraint. Let l '  be an epipolar line in the second 
image, computed from a fundamental matrix F that 
was obtained by the linear criterion, and from the point 
m = (u, v, 1) r of  the first image. We can express m 
using the epipole in the first image, and the horizontal 
and vertical distances from this epipole, x and y. A 
projective representation for l' is: 

I ' = F m - - - - - F  e2 y = F e - F  (13) 
1 

11 

If  det(F) = 0, the epipole e satisfies exactly Fe = 0, 
thus the last expression simplifies to 11, which is an 
epipolar line. I f  the determinant is not exactly zero, we 
see that 1' is the sum of a constant vector r = Fe which 
should be zero but is not, and of the vector 1i, whose 
norm is bounded by v / ~  + yZllF[I. We can conclude 
that when (x, y) ~ (0, 0) (m ~ e), the epipolar line 
of m in the second image converges towards a fixed line 
represented by r, which is inconsistent with the notion 
of epipolar geometry. We can also see that the smaller 

+ y2 is (i.e., the closer m is to the epipole), the 
bigger will be the error on its associated epipolar line. 
In particular, it can be concluded that if the epipole is 
in the image, the epipolar geometry described by the 
fundamental matrix obtained from the linear criterion 

will be inaccurate. This problem can be observed in the 
images shown in the experimental part, in Fig. 11 for 
the intersection of epipolar lines, and in Fig. 12, for the 
inconsistency of epipolar geometry near the epipoles. 

The Linear Criterion Suffers from Lack of Normal- 
ization. Let us now give a geometrical interpreta- 
tion of the criterion (11). The Euclidean distance of 
the point qt of the second image to the epipolar line 
1' = (l~, l~, l~) r = Fq of the corresponding point q of  
the first image is: 

Iq'rl ' l  
d(q ' ,  I') = (14) 

v/(ltl)2 -]- ( l;)  2 

We note that this expression is always valid as the nor- 
malizing term k = ~/(l~) 2 + (l~) 2 is null only in the 
degenerate cases where the epipolar line is at infinity. 
The criterion (11) can be written: 

E k2d  . I i [qi, 11) (15) 
i 

This interpretation shows that a geometrically signif- 
icant quantity in the linear criterion is the distance of 
a point to the epipolar line of its corresponding point. 
This quantity is weighted by the coefficients k, defined 
above. To see why it can introduce a bias, let us con- 
sider the case where the displacement is a pure trans- 
lation. The fundamental matrix is antisymmetric and 
has the form: [0 1 

- 1  0 
y --x 

where (x, y, 1) r are the coordinates of  the epipoles, 
which are the same in the two images. If  (ui, vi, 1) T 
are the coordinates of the point qi in the first image, then 
the normalizing factor is kZi = )2 ( (y _ vi) 2 + ( X  - -  Ui)2), 
where )~ is a constant. When minimizing the crite- 
rion (15), we will minimize both ki and dZ(q~, 1~). But 
minimizing ki is the same than favoring the fundamen- 
tal matrices which yield epipoles near the image. This 
is in fact still valid in the general case (Luong, 1992), 
and we conclude that the linear criterion shifts epipoles 
towards the image center. 

3.2 Non-Linear Criteria 

The Distance to Epipolar Lines. We now introduce 
a first non-linear approach, based on the geometric in- 
terpretation of criterion (11) given in 3.1. To obtain a 
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consistent epipolar geometry, it is necessary and suf- 
ficient that by exchanging the two images, the funda- 
mental matrix is changed to its transpose. This yields 
the following symmetric criterion: 

/d2 ( ,, T , Z I, qi Fqi) q- dZ(qi, V qi)) 
i 

and can be written, using (14) and the fact that ql r Fqi = 

qT•T _ , .  
i 1. t l i .  

t~ .  (Vqi) 2 + (rqi)  2 

\ 
+ r , 2  1 2 )  

(F qi)l + (FTql) 
g 

x (q'iT Fqi) 2 (16) 

This criterion, which will be referred to in the sequel 
by DIST is clearly normalized in the sense that it does 
not depend on the scale factor used to compute F. 

The Gradient Criterion and an Interpretation as a 
Distance. Correspondences are obtained with some 
uncertainty. When minimizing the expression (11), we 
have a sum of terms Ei = q'irFqi which have different 
variances. It is natural to weight them so that the con- 
tribution of each of these terms to the total criterion will 
be inversely proportional to its variance. The variance 
of Ei is given as a function of the variance of the points 
qi et q~ by: 

0& 

& = 0 qi 0 ql Aq,/ 0 gi 

where Aqi and Aql are the covariance matrices of the 
points q et q', respectively. These points are uncor- 
related as they are measured in different images. We 
make the classical assumption that their covariance is 
isotropic and uniform, that is: 

A q i = A q I = I c r 0 0 ]  

The Eq. (17) reduces to: 

0 -2 = o-2llV•il l  2 gi 

where V$i denotes the gradient of $/ with respect to 
the four-dimensional vector (ui, vi, u' i, v~) r built from 
the affine coordinates of the points qi and q~. Thus: 

V& = ((Frql)l ,  (Frql)2, (Fqi)l, (Fqi)2) T 

We obtain the following criterion, referred to in the 
sequel as GRAD, which is also normalized: 

(q,r F x2 
i qi) (18) 

Z (Fqi)~ + (Fqi) 2 + (Frq'i) 2 + (Frq'i)~ 

We can note that there is a great similarity between this 
criterion and the distance criterion (16). Each of its 
terms has the form I__A__g whereas the first one has k2+kr2 , 
terms (~  + kJ~2)g. 

We can also consider the problem of the comput- 
ing the fundamental matrix from the definition (2) in 
the general framework of surface fitting. The surface 
S is modeled by the implicit equation g(x, f) = 0, 
where f is the sought parameter vector describing the 
surface which best fits the data points xi. The goal 
is to minimize a quantity ~ i  d(xi ,  S) 2, where d is a 
distance. In our case, the data points are the vectors 
X i = (bli, I)i, /~ ,  13~), f is one of the 7 dimensional pa- 
rameterizations introduced in the next section, and g is 
given by (2). We have developed a method to perform 
the exact computation of this distance (Luong, 1992; 
Luong et al., 1993), based on some special properties 
of the surface S, but this approach is computationally 
very expensive. 

The linear criterion can be considered as a general- 
ization of the Bookstein distance (Bookstein, 1979) for 
conic fitting. The straightforward idea is to approxi- 
mate the true distance of the point x to the surface by the 
number g(x, f), in order to get a closed-form solution. 
A more precise approximation has been introduced by 
Sampson (1982). It is based on the first-order approx- 
imation: 

g(x) ~ g(xo) + (x - xo) • Vg(x) = g(xo) 

+ IIx - x011 IlVg(x)II cos(x - xo, Vg(x))  

If x0 is the point of S which is the nearest from x, 
we have the two properties g(xo) = 0 and cos(x - 
Xo, Vg(xo)) = 1. If we make the further first-order ap- 
proximation that the gradient has the same direction at 
x and atxo: cos(x-xo,  Vg(xo)) ~-- cos(x--xo, Vg(x)), 
we get: 

d ( x ,  S )  : IIx - x011 
g(x) 

IlVg(x)[I 

It is now obvious that the criterion (18) can be written: 
~ i  d ( x i ,  S )  2. 
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3.3 Parameterizations of the Fundamental Matrix 

A Matrix Defined up to a Scale Factor. The most nat- 
ural idea to take into account the fact that F is defined 
only up to a scale factor is to fix one of the coefficients 
to 1 (only the linear criterion allows us to use in a simple 
manner another normalization, namely [IF I I). It yields 
a parameterization of F by eight values, which are the 
ratio of the eight other coefficients to the normalizing 
one. 

In practice, the choice of the normalizing coefficient 
has significant numerical consequences. As we can 
see from the expressions of the criteria previously in- 
troduced (16) and (18), the non-linear criteria take the 
general form: 

QI(Fn,  F12, F13, F21, F22,/723, F31, F32, F33) 

Q2(Fll, F12, El3, F21, F22, F23) 

where Q1 and Q2 are quadratic forms which have null 
values at the origin. A well-known consequence is 
that the function Q1/Q2 is not regular near the origin. 
As the derivatives are used in the course of the mini- 
mization procedure, this will induce unstability. As a 
consequence, we have to choose as normalizing coeffi- 
cients one of the six first ones, as only these coefficients 
appear in the expression of Q2. Fixing the value of one 
of these coefficients to one prevents Q2 from getting 
near the origin. 

We have established using covariance analysis that 
the choices are not equivalent when the order of mag- 
nitude of the different coefficients of F is different. 
The best results are theoretically obtained when nor- 
malizing with the biggest coefficients. We found in 
our experiments this observation to be generally true. 
However, as some cases of divergence during the min- 
imization process sometimes appear, the best is to try 
several normalizations. 

We note that as the matrices which are used to initial- 
ize the non-linear search are not, in general, singular, 
we have to compute first the closest singular matrix, 
and then the parameterization. 

A Singular Matrix. As seen in Section 3.1, the draw- 
back of the previous method is that we do not take into 
account the fact that the rank ofF  is only two, and that F 
thus depends on only 7 parameters. We have first tried 
to use minimizations under the constraint det(F) = 0, 
which is a cubic polynomial in the coefficients of F. 
The numerical implementations were not efficient and 
accurate at all. 

Thanks to a suggestion by Luc Robert, we can ex- 
press the same constraint with an unconstrained mini- 
mization: the idea is to write matrix F as: 

( al a2 a3 ) 
F =-- a4 a5 a6 

a7al  -+- asa4  a7a2 + asa5 a7a3 q- a sa6  

(19) 

The fact that the third line is a linear (thus this pa- 
rameterization will be designated in the sequel by the 
letter L) combination of the two first lines ensures that 
F is singular. Choosing such a representation allows 
us to represent F by the right number of parameters, 
once the normalization is done. A non-linear proce- 
dure is required, but it is not a drawback, as the criteria 
presented in Section 3.2 are already non-linear. 

A FundamentalMatrix with Finite Epipoles. The pre- 
vious representation takes into account only the fact 
that F is singular. We can use the fact it is a Funda- 
mental matrix to parameterize it by the values that are of 
significance for us, those defining the epipolar transfor- 
mation (thus this parameterization will be designated 
in the sequel by the letter T). Using the formulas (7) 
yield: 

F = - - c  cy+dx 

d j  -bx  ~ cy '-ax ~ -cyy ' -d jx- l -ayx '  +bxx ~ 

(20) 

The parameters that we use are the affine coordinates 
(x, y) and (x', y') of the two epipoles, and three of 
the four homography coefficients, which are the coef- 
ficients of the submatrix 2 x 2 obtained by suppressing 
the third line and the third column. We normalize by the 
biggest of them. The initial parameters are obtained by 
computing the epipoles and the epipolar transformation 
by the approximations introduced in 2.4 

3.4 An Experimental Comparison 

We have presented an approach to the computation of 
the fundamental matrix which involves several param- 
eterizations and several criteria. The goal of this part 
is to provide a statistical comparison of the different 
combinations. 

The Method. An important remark is that if we want 
to make a precise assessment of the performance of 
any method, we have to change not only the image 
noise, as it is often done, but also the displacements. 
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Different displacements will give rise to configurations 
with stability properties that are very different. 

We start from 3D points that are randomly scattered 
in a cube, and from a projection matrix P. All these 
values are chosen to be realistic. Each trial consists of: 

• Take a random rigid displacement D, 
• Compute the exact fundamental matrix F0 from D 

and P, 
• Compute the projection matrix P'  from D and P, 
• Project the 3D points in the two 512 x 512 retinas 

using P and P', 
• Add Gaussian noise to the image points, 
• Solve for the fundamental matrix F, 
• Compute the relative distance of the epipoles from 

F and those from F0. 

In many applications (see the last section of this pa- 
per), only the coordinates of the epipoles are needed. 
In some sense, they are the most important piece of 
information contained in the Fundamental matrix, and 
thus it is natural to attempt to quantify errors on this 
matrix by errors on its epipoles. We define the relative 
error, for each coordinate of the epipole: 

m i n [  [x -Xol  1} 
m i ~ l x l ,  ~ol) ' 

We took a relative error since a same (absolute) de- 
viation of the epipole will yield a larger error on the 
epipolar geometry if the epipole lies closer to the image 
center. This allows us to ensure a consistent maximal 
error on the direction of epipolar lines, regardless of 
the distance of the epipole to the image center. It has 
to be noted that the choice of an error measure for the 
epipoles is not an obvious matter, since they are basi- 
cally quantities of the projective plane, which has no 
metric. A further discussion of error measures can be 
found in (Luong and Faugeras, 1994). All the graphs 
shown in this section are averaged over a few hundred 
trials. In a scheme where only such a small number 
of experiments are averaged, a single very large value 
could significantly affect statistics, and this is why the 
relative error is thresholded by 1. 

As our experimentations have shown that the aver- 
age errors on the four coordinates are always coherent, 
we will take the mean of these four values as an error 
measure. Some experimental evidence to show that it 
is indeed an adequate characterization is provided next. 

Epipoles Stability Characterize Fundamental Matrix 
Stability. The estimation of the fundamental matrix 
can be done as a two-stage process, the first one being 

the estimation of the coordinates of the epipoles, and 
the second one the estimation of the coefficients of the 
homography. If one of the two stages is significantly 
more sensitive to noise than the other one, then we can 
conclude that its stability determines the stability of the 
overall estimation. 

• The fundamental matrix has been computed from 
point correspondences using the quadratic criterion 
derived from the linear relation (2). The epipoles e 
and e' are then computed from this matrix using (12). 

• The coefficients of the epipolar homography have 
been computed from the point correspondences and 
the correct epipoles, using a linear least-squares for- 
mulation based on the relation derived by making 
substitutions of (5) in (6). 

Since the four coefficients of the epipolar transforma- 
tion are defined only up to a scale factor, we have 
normalized them by dividing by a, which allows to 
consider a relative error for each of them. From the 
results of the simulation shown Fig. 4, it is clear that: 

• The stability of the epipoles in each of the images 
is comparable, which was to be expected, since the 
criterion (2) is symmetrical. Note that the non-linear 
criteria proposed in (Luong et al., 1993) also share 
this property. 

• Once the epipoles are determined correctly, the com- 
putation of the homography is quite stable, and thus 
that the more unstable part of the computation is the 
determination of the epipoles. 

We thus conclude from this simulation that an adequate 
measure for the stability of the fundamental matrix is 
the stability of one of its epipoles. Note that this is 
consistent with the findings of (Luong and Vi6ville, 
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Table 1. Non-linear methods for the computation of the fundamen- 
tal matrix. 

Abbrev. Criterion Parameterizafion 

LIN Linear Normalization by IIFII 
DIST-L Distance to epipolar Singular matrix (19) 

lines (16) 
DIST-T Distance to epipolar Epipolar transformation 

lines (20) 
GRAD-L Weighting by the Singular matrix 

gradient (18) 
GRAD-T Weighting by the Epipolar transformation 

gradient 

1994), where it has been shown that the epipole plays 
a particular role in the projective description of the 
geometry of a system of two cameras. 
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Relative errors obtained starting from the exact values. 

Non-Linear Criteria. There are two different param- 
eterizations, that are presented Section 3.3, and two 
different non-linear criteria, presented in Section 3.2. 
The abbreviations for the four resulting combinations 
that we studied are in Table 1. We have tried several 
minimization procedures, including material from Nu- 
merical Recipes, and programs from the NAG library. 
The comparison we have done is threefold: 

1o The Stability of the Minimum Corresponding to the 
Exact Solution. When noise is present, the hyper- 
surface which represents the value of the criterion as 
a function of the parameters gets distorted, thus the 
coordinates of the minimum change. A measure of 
this variation is given by the distance between the 
exact epipolc and the one obtained when starting 
the minimization with the exact epipole (Fig. 5). 

2. The Convergence Properties. The question is 
whether it is possible to obtain a correct result start- 
ing from a plausible initialization, the matrix ob- 
tained from the linear criterion. We thus measure 
the distance between the exact epipole and the one 
obtained when starting the minimization with the 
linear solution (Fig. 6), and the distance between 
the epipole obtained when starting the minimiza- 
tion with the exact epipole and the one obtained 
when starting the minimization with the linear so- 
lution (Fig. 7 ) .  

3. The Stability of the Criterion. When the hypersur- 
face which represents the value of the criterion as 
a function of the parameters gets distorted, the val- 
ues of  the criterion at local minima corresponding 
to inexact solutions can become less than the value 
of the criterion at the correct minimum (Fig. 8). 
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Fig. 6. Relative errors obtained starting from the values found by 
the linear criterion. 
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Fig. 7. Relative distances between epipoles obtained by a mini- 
mization started from the exact value and epipoles obtained by a 

minimization started from the values found by the linear c r i t e r i on .  
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Fig. 8. Number of false minima. 

The conclusions are: 

• The Non-Linear Criteria are Always Better than the 
Linear Criterion. When starting a non-linear com- 
putation with the result of the linear computation, we 
always improve the precision of the result, even if 
the noise is not important. The difference increases 
with the noise. 

• The difference due to the choice of the criterion 
(DIST or GRAD,  defined in Section 3.2) is much 
less significant than the one due to the choice of  the 
parameterization (L or T, defined in Section 3.3). 

• The parameterization T yields more stable minima 
than the parameterization L, as seen in Fig. 5. 

• However, the criterion obtained with parameteriza- 
tion T has worse convergence and stability properties 
than the parameterization L ,  as seen in Figs. 7 and 8. 

• As a consequence, when starting from the results of  
the linear criterion, the results of  the four non-linear 
combinations are roughly equivalent, the results ob- 
tained with the parameterization L and the criterion 
D I S T  being slightly better, as seen in Fig. 6. 

• The computation is quite sensitive to pixel noise: a 
Gaussian noise of  variance 1 pixel yields a relative 
error which is about 30%. 

Real Data. We now illustrate the remarks made in 
Section 3.1 with a pair of images. It can be seen in 
Fig. 9 that the pencils of  epipolar lines obtained with 
the linear criterion, and those obtained with the non- 
linear criterion are very different° The epipoles ob- 
tained with the non-linear criterion are much further 
away. It seems at first that if one considers a point that 
was used in the computation, its epipolar line lies very 

close to its corresponding point. However, the zoom of 
Fig. 10 shows that the fit is significantly better with the 
non-linear criterion. Figure 11 shows a set of epipo- 
lar lines obtained from the linear criterion, we can see 
that they don' t  meet exactly at a point, whereas they 
do by construction for the non-linear criterion. A con- 
sequence is illustrated in Fig. 12, which shows some 
more epipolar lines, drawn from points that were not 
used in the computation of the fundamental matrix. It 
can be seen that for the points on the wall, which are 
quite far from the epipole, the corresponding epipolar 
lines seem approximately correct, while for the points 
chosen on the table, the corresponding epipolar lines 
are obviously very incorrect, in the sense they are very 
far from the corresponding points. This situation does 
not occur with the non-linear criterion, as it can be seen 
in the bottom of this figure. 

3.5 Summary 

In this section, we focused on the problem of deter- 
mining in a robust way the Fundamental matrix from 
a given number of image point correspondences. The 
classical linear criterion has been shown to be unable 
to express the rank and normalization constraints. An- 
alyzing these drawbacks enabled us to introduce non- 
linear computation techniques, based on criteria that 
have a nice interpretation in terms of distances, and 
appropriate parameterizations. We have shown, using 
both large sets of simulations and real data, that our 
non-linear computation techniques provide significant 
improvement in the accuracy of the Fundamental ma- 
trix determination, and we have evaluated stability and 
convergence properties of  each method. 

4 Planes and the Fundamental Matrix: 
Unstability and New Algorithms 

4.1 The Correspondence Between the Two Images 

of a Plane 

Definition. Let Mi be space points which happen to 
lie in the same plane 1-I and m i be their images by a 
projective linear relation from ;03 to 792 . Its restriction 
to rI is a projective linear relation between points of 792, 
which is an homography h. This relation is invertible, 
in the generic case. If  two images of  the points M i lying 
in a plane, mi and m~ are available, we can consider 
the relation h ~ o h - l  between these two images. It 
is thus an homography, which means there is a 3 x 3 
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Fig. 9. Epipolar lines obtained from the linear criterion (top), and from the non-linear criterioa (bottom). 

Fig. 10. Zoom showing the fit with the linear criterion (left) and the non-linear criterion (right). 
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Fig. 11. 
criterion. 

Intersection of epipolar lines obtail:ed from the linear 

invertible matrix H, such that the following projective 
relation holds for each i: 

m I ---- Hmi  (21) 

The fact that there is such an analytic relation between 
the coordinates of matched points entails that we are 
able to identify planes using only measurements in 
the image. Predict-and-verify algorithms have been 
already developed by (Faugeras and Lustman, 1988), 
and more recently by (Sinclair et al., 1992) and (Robert 
and Faugeras, 1993), using uncalibrated cameras. The 
idea is to chose four points, to compute the homogra- 
phy, whose knowledge allows the position of the cor- 
responding point of any new point on the plane to be 
predicted. The predicted position and the actual posi- 
tion are compared using a simple distance threshold, to 
decide whether the new point is on the plane defined 
by the four points. In this paper, we will not elaborate 
on this issue,, but rather on the computational problems 

Fig. 12. Additional epipolar lines obtained with the linear criterion (top), and with the non-linear criterion (bottom). 
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which can be solved once the identification of planes 
has been performed. 

Computation. We now study the problem of com- 
puting the parameters of the homography from point 
matches. By writing that the two proportionality con- 
straints obtained from (21) are satisfied, we have two 
equations which are linear in the coefficients of H, and 
can be solved as soon as four point correspondences are 
available. In practice about 10 to 20 points are needed 
to compute an accurate homography, and the (variable) 
number of points used in the experiment conducted 
in this section will never be less than that. We have 
found that with the criteria (LIN) based on a least- 
squares formulation of (21), there is a normalization 
problem, as for the computation of the fundamental 
matrix. A favorable thing is that we do not have a rank 
constraint to consider. The two non-linear criteria that 
we have investigated are similar to the ones introduced 
in Section 3.2: 

DIST: symmeterized Euclidean distance between pre- 
dicted and measured points, 

GRAD: the two linear equations weighted by associ- 
ated uncertainties. 

Convergence properties have been tested by using two 
different initializations: the exact value (-EX) and the 
value obtained from the linear criterion (-LIN). In the 
statistical simulation shown Fig. 13, averaged over 
many widely different set of correspondences, the error 
measure is the average relative error on each coefficient. 
We can conclude from these results that: 
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Fig. 13. Relative errors on homography matrices computed with 
different methods. 

• The non-linear criteria give better results than the 
linear criterion. 

• The results obtained from the two non-linear criteria 
are very close. 

• The computation is more stable from the computa- 
tion of the fundamental matrix, there is almost no 
convergence problem, thus it is possible to com- 
pute homographies with a good accuracy from point 
matches 

4.2 Relation Between Homographies and 
the Fundamental Matrix 

Let F be the fundamental matrix relating two images, 
and H an homography matrix relating the coordinates 
of points of a plane I7 which projects in the two im- 
ages. We consider the point m of the first image to be 
the projection of a virtual point Mr] of plane 1-I. The 
homography enables us to compute the projection m' 
of Mn on the second image. The points m and m' are 
in correspondence, thus, using (2), we obtain: 

m ' r F m  = ( H m ) r F m  = m r H r F m  = 0 

This relation is to be satisfied by any point m, thus we 
can conclude that the matrix H r F  is antisymmetric, 
which yields the important relation: 

H r F  + F r H  = 0 (22) 

We are now going to show that a matrix H satisfies 
condition (22) if, and only if: 

F = [et]×H (23) 

It is straightforward to verify that (22) is satisfied if the 
substitution of (23) is made in that equation. Now let 
us suppose that F and H satisfy (22), and consider a 
pair of corresponding points m and m t. Since the fun- 
damental matrix maps points to corresponding epipolar 
lines, Fm = e' x mt. Using this relation, we see that 
(Fm)THm = 0 (derived from (22)) is equivalent to: 
m tT [e'] × H m  = 0. If we identify this equation with the 
epipolar constraint (2), we obtain the expression (23). 

A first consequence of (22) is: 

H e = e '  or H e = 0  

The first case corresponds to the homography matri- 
ces, defined by a plane in general position. The sec- 
ond case corresponds to the degenerate case where the 
plane contains the optical center C', thus yielding a 
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non-invertible correspondence. The value of the an- 
tisymmetric matrix I-IrF can also be obtained by re- 
marking that the kernel of this matrix is the epipole e, 
thus: 

H r F  ~ [e']× 

A third consequence of (22) is that the matrix H r maps 
epipolar lines to corresponding epipolar lines, as also 
found by (Hartley and Gupta, 1993; Shashua, 1993). 
Let I and l' be correspondent epipolar lines, containing 
respectively the points m and m ~ = Hm. We have, up 
to a scale factor: 

H r l  ' = H r F m  = F r H m  = F r m  ' = ! 

4.3 Planes and Unstability of the Fundamental 
Matrix Computations 

The Basic Observation. As a consequence of rela- 
tion (22), we show in this section that if the points used 
for the computation of the fundamental matrix lie in a 
small number of planes, the computation will be un- 
stable, even if it is theoretically well-defined as long as 
there are at least more than two planes. 

We first consider the ideal case where the coordinates 
of the point matches are known exactly. If we have 
four point matches which come from the image of four 
points that lie in the same plane, a matrix H is deter- 
mined. If we have an additional correspondence from 
the observation of a point that lies in the same plane, the 
coordinates (ms, m~) will verify m~ = Hms, and since 

we have the relation (22), we will have m 'r '~ 0 5 rm5 --- 
necessarily. An interpretation of this fact is: whatever 
the number of correspondences we have, if they come 
from points which lie in the same plane, they will not 
produce more constraints on the matrix F than four 
points do. We see also that the constraints are actually 
the six equations which are derived from (22). Thus, in 
the case of a linear estimation of F, where the rank con- 
straint is ignored, there remains two undetermined pa- 
rameters for F, as shown previously by (Faugeras et al., 
1987). Taking into account this polynomial constraint 
would further restrain F to a one-parameter family. 

This line of reasoning can be extended to the case 
of noisy data, by considering the covariance matrices 
(Luong and Faugeras, 1993; Luong, 1992) 

Experimental Study: Simulations. We have first val- 
idated this result using an extensive simulation with 
noisy synthetic data. More detailed results are in 
(Luong and Faugeras, 1993; Luong, 1992). Each trial 

has been done as in Section 3.4, except that at each time 
we have also chosen n random 3D points on p random 
planes. The conclusions are: 

• When the number of planes is fixed, the quality of 
the estimation increases, as the number of points 
increases, which is classical. 

• When the number of points is fixed, the quality of 
the estimation increases, as the number of planes in 
which they lie increases. 

• The second variation is more important than the first 
one. 

• Better estimations are obtained with a few points 
that are on a several planes than with a great num- 
ber of points which lie on a few planes. We see for 
instance that using 70 points on two planes is sta- 
tistically worse than using only 10 points in general 
configuration. 

Real Cases. The situation with two planes is not 
merely theoretical. We have encountered it several 
times, when trying to use our dihedral calibration grid 
to compute the fundamental matrix. In spite of the fact 
that corners can be detected with a subpixel accuracy 
on those grids, the localization of the epipoles were not 
accurate. An example of such images will be shown in 
the next section. 

We now want to make a more general remark, which 
has very important practical consequences: even if 
the points are not exactly in an unstable configura- 
tion, if they are close enough to such configurations, 
we can observe ambiguity. Let take a real example: 
The upper part of Fig. 14 shows an image pair with 
corresponding points. Even though these points are 
not coplanar, we have estimated an homography from 
them using the method of Section 4.1. The lower part 
of Fig. 14 shows the result of the mapping of the ho- 
mography (respectively of its inverse) to the points of 
the first (respectively second) image. There is a very 
low difference between the real points and the points 
predicted by the homography. This fact indicates that 
while the 3D points are not coplanar, they can be ap- 
proximated with a good precision by a plane. A con- 
sequence is that the epipolar geometry is ambiguous 
as expected, which can be seen on Fig. 15. The four 
frames represent the first image, with some epipolar 
lines. We can see that the position of the epipoles 
varies significantly from an image to another. Yet all 
the solutions give very low residuals (largely inferior 
to pixel) in terms of distance of corresponding point 
to epipolar lines. It is easy to test for an approximate 
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Fig, 14. Actual matches (top), and matches predicted by the homography (bottom). 

single plane coplanarity using the residual of the com- 
putation of the homography. However, it is a little 
harder to test for an approximate bi-plane coplanarity, 
which is even more likely to happen. It will not yield 
ambiguity, as the two plane situation is not degen- 
erate, but the precision of the estimation will suffer 
significantly. 

4.4 Computation of the Fundamental Matrix 
from Planes 

A Direct Method to Obtain the Fundamental Matrix. 
The matrix Eq. (22) yields six scalar equations which 
are linear and homogeneous in the coefficients ofF. Let 
us suppose that we have determined two homographies, 
H1 et H2, from the observation of two different plane 
areas. Putting together the two systems of Eqs. (22), we 
obtain a system S of twelve equations which are linear 
and homogeneous in the coefficients of F. Provided 

that we have identified at least two homographies, we 
can solve the 6N equations by a least-squares technique 
to obtain F. 

Two improvements can be made. The first is to 
into account the rank constraint on the fundamental 
matrix using one of the non-linear parameterizations 
introduced in Section 3.3. The second one is to use 
a symmetric criterion, as explained in Section 3.2, 
by minimizing simultaneously the Eqs. (22) and the 
equations obtained by exchanging the role of the two 
images: 

FH -1 + H - l r F  r = 0 

We also note that if we only have one plane, and the cor- 
respondence of at least two points which do not belong 
to the plane, we can obtain eight equations: six equa- 
tions (22) and two equations (2), which is sufficient to 
compute F. 
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Fig. 15. Ambiguity: four coherent epipolar pencils in the first image. 

A Geometric Interpretation: Determining the Epipoles. 
We start from the following observation, which is il- 
lustrated in Fig. 16: let us suppose that we have two 
cameras, and that we observe in the second camera the 
images mr1 and m~ of two space points M1 and M2, 
which have a same image by the first camera. Then 
(mr1, m~) is an epipolar line in the second image: as 
M1 and M2 have the same image by the first camera, 
the line (MIM2) is an optical ray for this camera. The 
line (m~, m~), as the image of an optical ray of the first 
camera, is an epipolar line. This idea generalizes to 
the case of  uncalibrated cameras with an arbitrary mo- 
tion the notion of motion parallax (Longuet-Higgins 
and Prazdny, 1980). In the original formulation of 
the idea, the two points M1 and M2 considered were 
physical points. This requires significant discontinu- 
ities in depth and identification of points which are 
aligned. By contrast, the idea behind all the methods 

that we will see next is that if we observe a plane, and 
if we know the homography relating the image of the 
points of the plane, we can compute such points m I 
from their images by the first camera mi, by consid- 
ering virtual points Mi. There are two possibilities to 
use this idea. 

A first possibility is to use two planes I-I1 and I72. Let 
M be a space point, and m its image by the first camera. 
Let M1 and M2 be the points of I71 and 1-I2, respectively, 
which image by the first camera is m. The image Mi in 
the second camera is hni(m),  with i = 1, 2. We thus 
obtain an epipolar line (hn,(m),  hn2(m)) from each 
point m of the first image. For this approach it is neces- 
sary to identify two sets of  four coplanar points, which 
define the homographies h l and h2 (which matrices are 
respectively Hi and Hz). The epipole e' is the point 
such that: 

Vm e ' r ( H l m  x Hzm)  = 0 
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C 

Fig. 16. Epipolar line obtained by the observation of two special 
points. 

This equation defines a bilinear form of the coordinates 
of m and thus we can rewrite it as: 

Vm m r B m  = 0 

where B is a 3 x 3 matrix depending quadratiquely of 
H1, H2, and linearly of  e'. From the last relation, we 
conclude that matrix B must be antisymmetric which 
gives a system So of  six linear equations on the co- 
ordinates of  the e', which we solve by a least squares 
method. 

An interesting thing, that is not elaborated on here, is 
that these six equations should yield a rank two system, 
which yield four algebraic constraints on the homog- 
raphy matrices H1 and H2. We note that it was also 
the case with the system S where a system of twelve 
equations had to be of  rank eight. Using the MAPLE 
system, we have shown that the two sets of  constraints 
are equivalent. They can be included in the scheme for 
finding planes. 

A second method (also presented by (Beardsley, 
1992)) uses only one plane 1"I. Let M be a space point 
which do not lie on I-I, m and m' its two images by 
the two cameras. Let M1, the point of I-I which has 
the same image by the first camera as M. Using the 
homography hn,  we obtain the image of  Ms by the 
second camera, which is hn(m).  The line (m ~, hn(m))  
is an epipolar lineo Two epipolar lines are sufficient to 

compute the epipole, thus the minimum number of  cor- 
respondences that are needed in this case is six: four 
coplanar points, and two points that do not lie in the 
plane, which is consistent with the mininal number of 
points needed for the computation of  the fundamental 
matrix using two planes when two of  the points belong 
to both of  the planes. Note that if the additional piece 
of information, coplanarity, was not available, six cor- 
respondences would be compatible with an infinity of 
F-matrices. 

E x p e r i m e n t a l  Resu l t s .  We first show some experi- 
ments conducted with the single plane method. We 
have first done statistical simulations, using 100 trials. 
We generated each time a different configuration of 3D 
points, of  which 30 points were taken in a plane, and 20 
points off it. The displacements between the cameras 
where varied as well. From there, noisy correspon- 
dences were obtained as previously. In each trial, we 
first computed the homography from images of  the pla- 
nar points, assuming that the segmentation is known. 
Then we compute an epipolar line for each of  the off- 
plane points. The epipole is obtained as the point e 
which minimizes the sum of the distances to the epipo- 
lar lines: 

~--~d2(e, li) 
i 

The non-linear minimization is started from a closed- 
form solution obtained with two off-planes points 
which were picked up randomly. 

The results were extremely sensitive to noise, as 
shown by Table 2, which shows the mean of relative 
errors on the coordinates of the epipoles. This basic 
algorithm is very sensitive to noise because it is dif- 
ficult to localize the intersection of  noisy lines, when 

Table 2. An example to illustrate the results obtained with different 
methods. 

Coordinates ex ey e x ely 
EXACT 780.08 -427.04 1823.82 -1255.57 

LIN 

0.1 pixel 677.93 -867.29 2104.51 --1031.93 
0.5 pixel 452.82 -1263.39 1628.43 59.84 
1.0 pixel 330.67 - 1567.84 1467.22 378.28 

NON-LIN-SYM 

0.1 pixel 782.70 -433.09 1845.02 -1283.58 
0.5 pixel 781.70 -455.56 1870.00 -1362.63 
1.0 pixel 760.32 -490.37 1887.33 -1436.37 
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Fig. 17. Set of epipolar lines obtained with an homography. 

they all go through a fixed part of the retinal plane, 
which is the image. If  the error near the epipole is 
comparable to the dimension of  the image, then almost 
any point can be obtained. We can see on the top of  
Fig. 17 that the intersecting point (430,368) is com- 
puted with a big uncertainty, which is to be compared 
to the noiseless case where (left bottom) the epipole is 
found at (640,213). Though, we can see that the noisy 
epipolar lines obtained with the homography are very 
coherent in the image, as they lie very close to the cor- 
responding points. The method might benefit from a 
more refined technique to find the intersection, such as 
used recently by (Lawn and Cipolla, 1994) in a rather 
similar approach. 

Table 3. Statistical results of the single plane method. 

0.4 pixel 0.8 pixel 1.2 pixel 1.6 pixel 

Error 0 .4864 0 .6101 0 .6846  0.7287 

We now turn to a comparison of  the multiplane 
method and the general method. We have used a statis- 
tical method, as in 4.3. 50 to 100 points where placed 
randomly in a controlled number of planes. For each 
configuration, we have run the general algorithm as 
well as the multi-plane algorithm. The results are in 
Table 4. We can conclude that: 

• as soon as the points are in more than three planes, 
the general method will give better results. 

• if the number of  planes increases, the results of the 
general method will improve significantly, whereas 
the performance of the multiplane method will de- 
crease. 

• the multiplane method can be interesting with two 
planes, and only with two planes. 

We can explain these results using a simplified error 
analysis. In the multiplane method, the fundamental 
matrix is obtained from Eqs. (22). These equations 
have a form which is similar to Eq. (2). In order to 
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Table 4. Results of the general method, vs results of the multiplane method. 
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Number of planes 

Image noise Method 2 3 4 5 6 7 8 

0.2 pixel Planes 0.1961 0.2419 0.3056 0.3145 0.2613 0.2996 0.3146 
General 0.2508 0.1713 0.1158 0.0943 0.0697 0.0702 0.0683 

1 pixel Planes 0.4199 0.4462 0.5955 0.5331 0.5668 0.5806 0.5893 
General 0.4853 0.4017 0.3390 0.2926 0.3004 0.2749 0.2651 

Table 5. Results obtained on the grid images. 

1 ---~ 2 2 ---~ 3 3 ---~ 4 

Exact 780.08 -427.04 1823.82 -1255.57 1634.30 -1910.35 3859.44 -3830.30 517.49 203.88 349.39 208.09 
General -31 .68 709.76 174.26 543.61 744.03 -573.65 1112.87 -950.32 523.04 205.67 353.92 209.8I 
Planes 781.70 -455.56 1870.00 -1362.63 943.96 -727.65 1386.38 -1028.40 538.12 206.70 366.34 210.94 

determine F from Eqs. (22) with the same precision 
than from Eq. (2), the coefficients of (22), which are 
the coefficients of homography matrices have to be de- 
termined with the same precision than the coefficients 
of (2), which are very simple functions of the pixel co- 
ordinates of the points. Let us suppose that the noise 
has standard deviation ~7 = 1 pixel. The coefficients 
of (2) can be written Ct = ab or C2 = a, a and b being 
the affine coordinates of the points. With classical hy- 
pothesis, we come to covariances ~rc~ = o'~/h -~- + b 2, 
O'c2 = ~. When using 512 x 512 images, the mean rel- 

ative error for C1 (respectively C2) is thus ~ = 5.5% 2-~ 
t = 3.9%). According to Fig. 13, we (respectively 

can estimate an homography matrix only with an av- 
erage relative error of 13%. In the experiment, the 
total number of points is fixed, thus when we in- 
crease the number of planes, we decrease the number 
of points per plane, which decreases the precision on 

the computation of the homography. We obtain more 
equations, but they are more noisy, and globally the 
result is worse. 

We end by giving a real example of pairs of im- 
ages where the multi-plane method gives better results 
than the general method: the points used are taken on 
the biplane calibration grid. Using a standard calibra- 
tion procedure, we can obtain reference values for the 
epipoles. As there is a great number of points in each 
plane (64) the homography can be determined with a 
good accuracy. But as all the points lie in a small 
number of planes (2), and as they are cluttered in a 
small part of space, the general method will not local- 
ize the epipoles consistently. The Table 5 shows results 
obtained with the three displacements between the four 
images shown on Fig. 18. We can see a drastic improve- 
ment during the first displacement whereas the results 
remain very similar for the two other displacements. 

1 
Fig. 18. The four grid images. 

2 3 4 
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4.5 Summary 

It is known, in the framework of motion analysis that 
when the points lie in a plane, the general methods will 
fail, and that some specific methods can be used (Tsai 
and Huang, 1982; Longuet-Higgins, 1984; Faugeras 
and Lustman, 1988). We have shown that the situa- 
tion is similar for the computation of the Fundamental 
matrix. We have established a very simple and im- 
portant relation between the homography matrices ob- 
tained from the observation of planar surfaces and the 
Fundamental matrix. Using simulations and real im- 
ages to validate our analysis, we have shown that the 
general methods to compute the fundamental matrix are 
unstable when the points lie near planes. We have then 
proposed new algorithms to exploit this situation, and 
have compared their performance to the performance 
of the general algorithm to determine their domain of 
applicability. 

5 A Stability Analysis 

5.1 A Probabilistic Characterization 

A classic characterization of uncertainty is to use co- 
variance matrices. If the measurements are modeled 
by the random vector x, of R e of mean Xo and of co- 
variance Ax = E((x - Xo) r (x - Xo)), then the vector 
y = f ( x )  is a random vector whose first and second 
order moments can be expressed very simply, up to a 
first order approximation, as functions of the first and 
second order moments ofx. In effect, the mean is f(x0) 

and the covariance matrix: 

Ay = J f  (x0)AxJf (Xo) r (24) 

Where Jf(xo) is the Jacobian matrix of f ,  at the point 
x0. In our case, the function f associates to the coor- 
dinates of the point correspondences the entries of the 
fundamental matrices eventually found. In the case of a 
linear criterion, already studied in (Weng et al., 1989) 
and (Philip, 1991) (for the computationally identical 
case of the essential matrix computed from the eight 
point algorithm), we have an explicit formula for the 
function f .  A different approach is needed to cope 
with the case of a nonlinear criterion, since we do not 
have an explicit expression for f .  We only know that 
f minimizes a known criterion, and this can be dealt 
with using a method based on the implicit functions 
theorem, presented in (Faugeras, 1993), and used for 
instance in (Vi6ville and Sander, 1992). Two examples, 
one with epipoles near the image center, the other with 
epipoles far away, are given in Fig. 19, where we have 
superimposed the uncertainty ellipses corresponding 
to a 90% probability, computed from the exact point 
coordinates, and the image frames. The prediction is 
accurate, for the order of magnitude, as well as for the 
major direction of uncertainty. This example illustrates 
the huge difference of stability which might result from 
different camera relative positions, and hence the need 
for a stability analysis. The epipole is nothing else than 
the projection of the optical center of the other camera. 
Areas which are projected down onto the image plane 
in regions far from the image center are more distorted, 
as seen clearly in this example. This explains why con- 
figurations with epipoles which lie far from the image 

Fig. 19. Uncertainty ellipses and noisy epipoles, left: first motion, right: second motion. 
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Fig. 20. Correlation between computed covariances and predicted 

covariances. 

center are less stable, a fact confirmed statistically in 
Section 5.3. 

A statistical test has then been performed using 200 
configurations of points obtained by variation of cam- 
eras and 3D points. The correlation diagram between 
actual standard deviations (computed over 20 trials for 
each configuration) and predicted covariances (both 
from the exact point correspondences: light dots, and 
from the noisy point correspondences: dark dots), pre- 
sented Fig. 20 shows that the correlation between the 
prediction and the actual covariances is quite high, even 
in case of prediction from the noisy data. 

5.2 Ambiguity and the Critical Surface 

Critical surt3ces were known from the photogramme- 
ters of the beginning of the century, who called them 
"gefiihrliche Fliichen". They were then rediscovered 
and studied theoretically by computer vision scien- 
tists in the case of reconstruction from optical flow 
(Maybank, 1985) and point correspondences (Longuet- 
Higgins, 1988; Maybank, 1990b; Horn, 1990). We 
are going to point out some practical consequences 
of the existence of such surfaces. Our approach is to 
provide algorithms which start from the data which is 
available to us in uncalibrated images, that is a set of 
point correspondences between two images. These al- 
gorithms provide us a practical means to quantify the 
proximity of the 3D points which have given rise to 
point correspondences, to such a critical surface, much 

the same way than the computation of an homography 
in Section 4 allowed us to assess the proximity of the 
3D points to a plane. 

The Critical Surface and Quadratic Transforms. If 
all the observed points are in some special configura- 
tion, then the problem to obtain fundamental matrices 
from point correspondences may not have a unique so- 
lution, even with an arbitrarily large number of such 
correspondences. This happens when the measured 
points lie on some special surfaces called critical sur- 
faces and yields several fundamental matrices compat- 
ible with the basic constraint: m ' rFm = 0. Each of 

,4 

these fundamental matrices gives rise to a displace- 
ment which produces identical pairs of views, called 
ambiguous. More precisely, it is not possible to dis- 
tinguish between the image of the set of 3D points QI 
observed during displacement Rl, ta, and the image 
of a set of points set of 3D points Q2 observed during 
displacement R2, t2, as illustrated in Fig. 21. It has 
been shown (Maybank, 1985) that the critical surfaces 
Q1 and Q2 are space quadrics containing the optical 
centers and the baseline of equations: 

(RiM + t~)TE2M = 0 (25) 

(R2M + t2)TE1M = 0 (26) 

Q2 

Fig. 21. Critical surfaces. 

ca 
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It is known that the maximum number of ambigu- 
ous fundamental matrices is three (Longuet-Higgins, 
1988). 

Let us now characterize critical surfaces in terms of 
image quantities. Given two ambiguous images there 
exist two fundamental matrices F1 and F2 such that for 
each pair (m, m') of corresponding points, 

m ' rF l  m = 0  and m t r F 2 m = 0  

we can conclude from these two equations that: 

m '  = F l m  x F2m (27) 

This equation defines in general a quadratic transfor- 
mation between the coordinates of the points in the 
two images. This is a generalization of the homogra- 
phy which we encountered and studied in the case of 
planes. Some details about quadratic transforms and 
their parameterizations can be found in Appendix A. 
The quadratic transformation allows us to check if im- 
age points are close to the projection of a critical sur- 
face, much the same way as the homography allowed 
us to check if they were close to the projection of a 
plane. The epipoles of the three different fundamen- 
tal matrices which are solutions to the problem, in an 
ambiguous situation, are the fundamental points of the 
quadratic transformation. 

Computing the Quadratic Transformation. A first ap- 
proach is to estimate the 14 parameters of the most 
general quadratic transformation do. The method is 
also similar to the estimation of the fundamental ma- 
trix: it consists in a combination of the linear solution 
and non-linear minimization with an appropriate pa- 
rameterization and symmetric Euclidean distance. The 
non-linear criterion 2 that we minimize is: 

min , ~ {d2(mti , dO(mi)) 
I , . 123  f ~ ~ . {gjx,gjy,gjx,gjy} J= , , ,Pl/P3,P2/P3 7" 

+ d 2 ( m i ,  do-1 (me/)) } 

(28) 

, (resp g'. , g'. ) are the coordinates of the where gjx gjy jx jy 
direct (resp inverse) fundamental points, which are also 
the epipoles of the ambiguous fundamental matrices, 
and the p[ are the scale factors defined in Appendix A. 

Let us now describe the linear method used to ini- 
tialize the search. Writing that do is a polynomial ho- 
mogeneous transformation of the projective plane of 

degree 2, gives: 

do(Xl, X2, X3)1 = 

do(Xl, X2, X3)2 = 

do(Xl, X2, X3)3 = 

1 2 _ [ _ 1  2 1 2 a~2xlx 2 a l l X  1 a22x 2 + a33x 3 -I- 

+ a13x2x3 + a~lX3Xl 

2 2 2 2 2 2 a22xlx2 a l l X  1 + a22x 2 -t- a33x 3 + 

+ a223x2x3 + a21x3xl 

3 2 3 2 3 2 a~2xlx 2 a l l X  1 + a22x 2 + a33x 3 + 

+ a33x2x3 -}- a31x3xl (29)  

The Eqs. (29) are linear in the 18 entries a~j, thus if 
we have more than 9 point matches, these entries can 
be obtained by a linear least-squares procedure. Once 
they are computed, the direct fundamental points are 
obtained as an approximate solution to the system of 
equations: 

dP(Xl,X2, X3) 1 = 0 

do(Xl, X2, X3)2 = 0 (30) 
do(Xl, X2, X3) 3 = 0 

By exchanging the two images, the inverse fundamen- 
tal points are computed. We have then to match direct 
and inverse fundamental points, according to (35), and 
to compute the scale factors p~, p~, p~. For each of 
the six distinct configurations (permutations are not to 
be considered), we solve the least squares problem as- 
sociated to the 18 linear homogeneous equations with 
unknowns ' ' ' &,  P2, P3, obtained by identifying (36) with 
(29). We then select the configuration which gives the 
smallest value for the criterion (28). We have found that 
the computation of the 14 parameters of the quadratic 
transformation is rather unstable. A way to reduce the 
dimensionality of the problem is to use a fundamen- 
tal matrix which has already been found. The idea is 
to start from a fundamental matrix FI and to compute 
a second fundamental matrix F2 such that F1 and F2 
define a quadratic transformation (27) minimizing the 
criterion: 

min Z { d2(m'i' Flmi x F 2 m i )  
F2 i 

T / +d2(mi, F71mPixF2mi) } (31) 

We notice that the expression F l m  x F2m is linear in 
F2 which provides a way to initialize the non-linear 
minimization. This procedure is very comparable 
to the one used to compute the fundamental matrix 
studied in Section 3, and the same parameterizations 
are used for F2. This method has turned out to be 
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much more efficient than the one consisting in estimat- 
ing the 14 parameters. Furthermore, the results can 
be used as a starting point for the more complicated 
method. We will use the image distances appearing 
in the criterion (31) as measures of the distance of the 
three-dimensional points to the corresponding critical 
surface, and call it reprojected distance. Although, 
given afixed fundamental matrix F1, the minimization 
of (31) gives us only an upper bound of the reprojected 
distances of the points (m, m') to the critical surface, 
this is sufficient for our purposes, as will be seen later. 
Some experimental comparison of the different com- 
putation methods can be found in (Luong, 1992). 

Theoretical Link between Ambiguity and Unstability. 
Critical surfaces have been presented in (5.2) as sets 
of points yielding ambiguous interpretations of mo- 
tion. Maybank (1990b) has shown that a configuration 
whose 3D reconstruction is unstable is close to a crit- 
ical surface. We are going to provide evidence for the 
reciprocal property. 

The unstability is very clear in the formulation of 
Horn (1990) which defines critical surfaces as sets of 
points M for which the variation of m/rEin is a second- 
order (quadratic) function of the parameters r, t. While 
the equation he obtains is quite different from (26), he 
finds properties similar to the one which are described 
by Maybank (1990a). We are going to see that the two 
forms are indeed equivalent, which will prove that an 
ambiguous situation is also unstable. 

Normalized coordinates are used, the optical cen- 
ter C being mapped onto the optical center C' by the 
displacement R, t, perturbed by the infinitesimal vec- 
tors 3r, 8t. The difference of residual values of the 
Longuet-Higgins equation for unperturbed and per- 
turbed displacement can be expressed in the final co- 
ordinate system, using triple products, as: 

A = [(t + ~t), C'M, CM + ~r x CM] 

- It, C 'M,  C M ]  (32) 

We have used the fact that an infinitesimal rotation ~R 
can be expressed from ~r using the Rodrigues formula, 
with an infinitesimal 0 = ll3rl[: 

sin 0 
~R = e I~r]× = I + ----~--[~r]× 

1 - cos 0 
+ ~ [~r]~ ~ I + [~r]× 

The difference A in (32) is normally a first order quan- 
tity, and the unstable situations are those for which it 

is a higher order quantity. If we drop the second order 
term [St, C'M, 3r x CM] we obtain by expanding the 
products: 

A = [t, C'M, Sr x CM] + [c~t, C'M, CM] 

Using t = C'C and some standard properties of the 
triple product yields (as also found by (Daniilidis, 
1992)): 

A = [ ( I +  [ ~ r ] × ) C / M -  8r x t +  ~t,t, C'M] 

It is easy to see that this is equivalent to Horn's expres- 
sion. Now using M in the initial coordinate system, we 
obtain, by writing that the triple product is zero: 

((I + [~r]×)RM - ~r x t + ~t)r( t  x RM) = 0 (33) 

A critical surface given by (26), can be written in the 
initial coordinate system: 

(R2M + t2)r(t  x RM) = 0 

which has the form (33), with: 

I + [3r]× = R2R -1 

3t = t2 + 3 r  x t = t 2 -  t + R 2 R - l t  

5.3 Experimental Results 

The Nature of the Motion. Since the epipoles are a 
simple function of the camera displacement, we can 
expect that the stability of the fundamental matrix com- 
putation can be related to the stability of motion estima- 
tion (Weng et al., 1989). We have studied three cases 
where the results are unstable: 

• small translational component, 
• translational component parallel to the image plane 

(the epipoles are far from the image center), 
• pure translation (the fundamental matrix is antisym- 

metric). 

In the two last cases, the nature of the (Euclidean) mo- 
tion can be characterized from fundamental matrices. 
Note that whereas the two first cases are known in the 
context of motion analysis (Fang and Huang, 1984; 
Weng et al., 1989; Jerian and Jain, 1991; Spetsakis, 
1992; Zhang and Faugeras, 1992; Fang and Huang, 
1984; Mitiche et al., 1987; Adiv, 1989; Weng et al., 
1989; Horn and Weldon, 1988; Daniilidis and Nagel, 
1990)), the last one is specific to our problem, and 
comes from the fact that the fundamental matrix in the 
case of a pure translation depends only on two inde- 
pendent parameters, instead of seven. 
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We present briefly some experimental results in 
Fig. 22 and refer the interested reader to (Luong and 
Faugeras, 1994) for more simulations and qualitative 
explanations. In the simulations 100 series of  entirely 
different displacements have been used. Within each 
series, we have successively varied only: 

• the norm of the translation (from 1 to 100), 
• the angle between the image plane and the direction 

of  translation (from 5 ° to 85°), 
• the angle of  the rotation (values: 0.001,0.002, 0.005, 

0.01, 0.02, 0.05, 0.1, 0.2, 0.5). 

For each resulting displacement, we have computed 
the 2 x 2 covariance matrix on the coordinates of the 
epipoles, from which we have obtained an estimate of 
the major axis of  the uncertainty ellipsis for a fixed 
level of probability. A measure of  the relative stability 

is obtained by taking a ratio 3 of  these estimates• For 
each value of the parameter which is being studied, we 
then compute the mean value and standard deviation of 
the ratios over the 100 different series of  displacement. 

An Experiment Starting from a Critical Surface° In 
order to show that critical surfaces are a cause of  un- 
stability, we first start from 3D points that are generated 
on such a surface Q, shown in Fig. 23. We then con- 
struct different sets 8a of 3D points which lie close 
to the critical surface. Each point Mi (d) is obtained 
from the point Mi of the surface Q from Mi -I- dni, 
where n i is the unit normal to the surface Q at Mi, and 
d is a fixed scalar which represents the 3D distance 
of 8a to Q. Taking the Sa instead of the Q amounts 
to "add noise to the critical surface", in order to as- 
sess the "robustness of  unstability", or to evaluate the 
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The critical surface used in the experiments (stereogram for cross-fusion). 

"critical volume". To assess the stability of funda- 
mental matrix computation, we have then estimated 
the variance of  the coordinates of the epipoles from 50 
tries, for different values of  the distance to the criti- 
cal surface and the image noise. The results appear in 
Table 6, where we also show the mean values dx and 
dy of the retinal disparities between the projections of 
points of  Q and the projections of  the corresponding 
points of  Sa. 

Let us comment the results. First, it is clear that the 
farther the points are from the critical surface, the more 
stable are the results. When the points are far away 
from the critical surface, an increase of  the image noise 
increases the covariance of  the epipoles, which is to be 
expected, but when they are very close to the critical 
surface, the noise induces a reconstruction error which 
drives the points away from the critical surface, which 
explains why the variances decrease a little. If there 
is no image noise, then 3D points are reconstructed 
exactly. In this case, their 3D distance to the critical 
surface, even if it is very small, is significant, and un- 
stability does not occur. In the case where there is some 

image noise, the 3D points are reconstructed with an 
uncertainty. Now if the original 3D points were close 
to the critical surface, and if this distance is smaller 
that the reconstruction uncertainty, then they cannot be 
distinguished from points lying on the critical surface, 
and thus unstability will occur• Thus, the volume for 
which unstability occurs depends on the 2D noise and 
we call it the cri t ical  vo lume.  

A Global  Exper iment .  So far, we have always started 
from synthetic data which was created to illustrate some 
facts. Now we start from the image data, such that it 
would be available to an algorithm, and we try to ex- 
plain the sources of  uncertainty. This experiment was 
carried on using synthetic data because at that time we 
did not have a reliable system to obtain automatically 
point matches, but the principle would be exactly the 
same with real data. In this experiment, we try to ac- 
count simultaneously for two sources ofunstability, the 
proximity to a critical surface, and the distance of  the 
epipole to the image center. Note that we have elimi- 
nated data with small retinal disparity in order to ignore 

Table 6. Influence of the distance to the critical surface and of image noise on the stability. 

b = 0  b = 0 . 5  b = l  

d dx dy Crex ~ey c&~ ~y ~e~ Ciey 

0 0 0 6140 3639 1466 872 1261 788 
5 3.89 7.74 10 .7 10 -7 2935 1765 3749 2305 
10 7.60 14.51 10 -7 10 -7 726 459 822 492 
20 15.19 29.12 10 -7 10 -7 153 106 280 199 
50 89.34 148.53 10 -7 10 -7 39 40 65 68 
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Fig. 24. 
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A global experiment to characterize the causes of unstability (see text). 

the unstability due to small and pure translations. The 
image noise is 2 pixels. For each of the 500 displace- 
ments, we have computed the epipoles and their co- 
variance matrices, and ordered the trials by increasing 
unstability. The horizontal axis in Fig. 24 represents 
unstability increasing from left to right. 

We have first considered the distance of the epipole 
to the image center, represented (using a non-linear 
scale) on the Y-axis. There is a correlation between 
this distance, and unstability, quantified by the leffmost 
and rightmost columns of Table 7. 

The next idea is to try to fit a critical surface, by com- 
puting the reprojected distance to a critical surface us- 
ing the method described in Section 5.2. Since the 3D 
points are chosen randomly, their probability to lie on 
a critical surface is almost zero. However, and this is 
one of our findings, they may lie near a critical surface, 

Table 7. Sources of nnstability in a statistical experiment. 

Displacements Average distance of 
(increasing Critical surface epipoles to 
unstability) at less than 10 pixels image center 

1-100 9% 754.6 pixels 
101-200 13% 1164 pixels 
201-300 31% 1783 pixels 
301400 40% 2624 pixels 
401-500 49% 25280 pixels 

which means that they are in a critical volume. The idea 
is, after estimating the fundamental matrix F1 from the 
point correspondences, to find the fundamental matrix 
F2 which minimizes (27). This is like trying to fit a 
critical surface to the 3D points which have given rise 
to the point correspondences. If the residual distance, 
which is the value of the criterion (27) at the minimum, 
is high, it means that no fit can be found, and thus the 
critical surface does not exist. But if the residual is 
low, it means that the 2D points lie near the projection 
of a critical surface, the distance of the points to the 
projection of the fitting critical surface being given by 
the residual. Of course, there is a continuum of possi- 
bilities, and we have chosen the threshold of 10 pixels, 
for which we know that unstability is still significant, 
as shown by the example presented in Table 6. 

The black dots in Fig. 24 are those for which the 
distance is under the threshold. Let us consider two 
points N] and N2 in Fig. 24, with approximately the 
same horizontal coordinate, but for which the vertical 
coordinates are different, say Yt > Y2. The points have 
the same stability, but N2 correspond to a motion yield- 
ing an epipole which is closer to the image center than 
N1. The reason may be that N2 represents a configu- 
ration which is close to a critical surface. Now we can 
notice that these points (the dark dots) are statistically 
below the light dots (corresponding to distances to the 
critical surface which are more than 10 pixels), which 
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validate this hypothesis. Another thing which may be 
observed is that there are more black dots in the area of 
high unstability (right), as shown in the middle column 
of Table 7 as well as in Fig. 24. Thus, the combination 
of the proximity to a critical surface and the direction of 
translation provides a better explanation for unstability 
than any of these two causes in isolation. 

Another important observation is the omnipresence 
of the critical surface, which is at less than 10 pixels 
in 28% of the displacements. Although the critical 
surfaces do not exist exactly in normal scenes in the 
sense that real objects rarely are critical surface, they 
have a large practical importance since our experiments 
show that the critical volume where the points have to 
lie in order to yield some unstability is rather large. 

5.4 Summary 

In this section, we have studied the influence of the 
camera motion on the stability of the estimation of 
the fundamental matrix. Two tools have been intro- 
duced, a probabilistic characterization of the stability 
through the computation of the covariance matrix of 
the estimate, and a method to compute the reprojected 
distance to the closest critical surface from image data 
through the estimation of a quadratic transformation. 
Using these tools we have been able to characterize 
the unstable situations. They can arise from the nature 
of the motion (small translational component, transla- 
tional component parallel to the image plane, and pure 
translation), but also in a more subtile way, from the 
interaction of motion and 3D structure of the scene, 
which can be described by a critical surface. These 
characterizations have been validated experimentally 
through statistical simulations. 

6 Conclusion 

Three types of transformations attached to the projec- 
tive structure of a system of two cameras have been 
considered: the correlation between points and epipo- 
lar lines, the homography between images of a plane, 
and the quadratic transformation between images of 
quadrics. We have made several links between them, 
and shown that the two latter ones can be used to char- 
acterize the stability of the fundamental matrix, which 
provides an algebraic formulation for the first one. For 
each of these transformations, we have also provided a 
computational algorithm consisting of both a linear so- 
lution and a non-linear solution. The latter one allows 

to express the constraints of a problem by an appropri- 
ate parameterization, and a criterion which is a distance 
in measurement spaces. In particular, in the case of the 
fundamental matrix, we have done an analysis and pro- 
vided several experimental evidence to show that our 
approach provides much more robust results. Although 
the basic algorithm for their computation through the 
fundamental matrix is simple, the epipoles turn out to 
be rather unstable quantities. One of the contributions 
of this work is not only to provide computational so- 
lutions, but also to characterize the unstable situations, 
which we have found to be numerous. It can be noted 
that we can have very coherent epipolar lines in the 
image, whereas the location of the epipole is very in- 
acurrate. Such situations are not a problem for stereo 
matching, the task for which epipolar geometry has 
been traditionally used, but will prevent stable recov- 
ery of projective structures or invariants. This is prob- 
ably the price to pay for the large generality of the 
formalism. 

The fundamental matrix is indeed central to all 
problems involving uncalibrated cameras, and two 
viewpoints. It captures in a very compact manner the 
epipolar geometry of a stereo rig. This geometry is 
purely projective and independent of the intrinsic pa- 
rameters of the cameras. Even though it is true that, 
by taking them into account, the fundamental matrix 
can be shown to be equivalent to the essential ma- 
trix introduced by Longuet-Higgins (1981), we believe 
and have shown, as well as others (Faugeras, 1992; 
Hartley, 1992; Faugeras et al., 1992; Shashua, 1993b; 
Luong, 1992; Luong and Vi6ville, 1994) just to cite 
the major papers), that abstracting the idea of the fun- 
damental matrix has led to deep theoretical insights 
about the kind of three-dimensional information that 
can be recovered from sets of images (projective, affine, 
Euclidean), and to practical ways of incrementally re- 
covering such information from the environment de- 
pending upon the task at hand and the computing power 
available. 

This idea is at the basis of a flurry of very recent 
and promising developments in three-dimensional vi- 
sion that will most likely lead to robust and flexible 
(i.e., at last practical) solutions for a whole gamut of 
applications involving the use of computer vision in 
simulation, virtual reality, and robotics applications. 
It is indeed remarkable that so many applications of 
the theory were studied by several authors in such a 
short amount of time. To emphasize this point, and 
answer the question "what is the Fundamental matrix 
good for?" we now list a number of recent papers which 
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have studied tasks to be performed when the only in- 
formation relating the cameras are the Fundamental 
matrix (or matrices): 

• Recovery of the 3D projective structure of a scene 
from point matches (Faugeras, 1992; Hartley, 1992; 
Shashua, 1993b; Ponce et al., 1994), and of the 
relative affine structure (Faugeras, 1992; Shashua, 
1993a; Shashua and Navab, 1994), 

• Obtention of projective invariants (Shashua, 1993a; 
Hartley, 1993; Gros and Quan, 1993), 

• Prediction of image features in an image from image 
features in two other images (Barrett et al., 1992; 
Mundy et al., 1992; Demey et al., 1992) (positions) 
(Faugeras andRobert, 1993) (positions, orientations, 
curvatures), 

• Synthesis of an image from several images (Laveau 
and Faugeras, 1994), 

• Convex-hull computation and plane positionning 
(Robert and Faugeras, 1993), 

• Segmentation of rigid independent mo- 
tions (Nishimura et al., 1993; Torr and Murray, 1994; 
Weber and Malik, 1994), 

• Stereo analysis: rectification of images (Harfley 
and Gupta, 1993; Faugeras et al., 1994) and stereo 
matching with uncalibrated cameras (Robert, 1993) 
(feature-based) (Fangeras et al., 1994) (area-based) 
(Robert and Hebert, 1994; Devernay and Faugeras, 
1994) (taking orientation into account). 

• Self-calibration of a moving camera (Maybank and 
Faugeras, 1992; Faugeras et al., 1992; Luong and 
Faugeras, 1993a; Hartley, 1994a). 

The Fundamental matrix represents indeed the mini- 
mal information (two views, no additional hypotheses), 
in a hierarchy of representations obtained by making 
further assumptions and adding views (Vi6ville et al., 
1994; Luong and Vi6ville, 1994). As a consequence, 
it is a theoretical and practical tool of primary impor- 
tance. Its knowledge is essential for further use of 
the hierarchy of representations. For example, if an 
addition to the Fundamental matrix, a certain 3-D vec- 
tor representing the plane at infinity is known, then 
affine structure (considered for instance in (Quan and 
Mohr, 1992; Demey et al., 1992; Shapiro et al., 1993; 
McLauchlan et al., 1994; Beardsley et al., 1994)) could 
be recovered. It is to be noted that there are no need 
for multiple matches across several frames, since the 
fundamental matrices can be computed independently 
from pairs of views. A first extension of this work 
is however to consider multiple views, which leads to 
complex dependencies between fundamental matrices 

(Luong and Vi6ville, 1994). A second extension of this 
work is to consider the case of lines, for which some 
results have been already obtained (Hartley, 1994b; 
ViEville et al., 1994). However, correspondences be- 
tween lines of at least three views are needed. The re- 
suiting information which is possible to extract could 
be obtained more robustly, but at the cost of starting 
from more data than approaches using only two views 
and the fundamental matrix, which is the minimal ex- 
pression of 3D information, and thus the most general. 
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A p p e n d i x  A:  Q u a d r a t i c  T r a n s f o r m a t i o n s  a n d  
the ir  P a r a m e t e r i z a t i o n s  

Quadratic transformations are mappings of 792 into 792, 
whose coordinates are homogeneous polynomials of 
degree 2, which are invertible, and whose inverse are 
also homogeneous polynomials of degree 2. The most 
simple example is the reciprocal transformation, de- 
fined by: 

• o ( X ) = ( x 2 x 3 , x 3 x l , x ~ x 2 )  T 

From this definition, we can see that ~Po is defined in 
each point of 792, except for the points il = (1, 0, 0) r ,  
i2 = (0, 1, 0) r and i3 = (0, 0, 1) T, which are called 
fundamental points of ~0. We also notice that ~o is 
invertible, since it is it own inverse. 

In the general case, a quadratic transformation 
has also three fundamental points gl, g2, g3 which are 
distinct of those of ~-1,  gi1, g~, g~. and we have: 

ep = A~0B (34) 

where A and B are two collineations which can inter- 
preted as changes of retinal coordinates: 

Ail  = g'l Ai2 = g~2 Ai3 = g'3 Ai4 = g4r 

B g  1 = il Bg2 = i2 Bg3 = i3 B g  4 = i4 (35)  
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where i4 = (1, 1, 1) r. The inverse of q5 is tY) - 1  = 

B -1 q~0A - t .  The point g4 can be chosen arbitrarily, 
whereas the point g~ is determined by q~ (Semple 
and Kneebone, 1979). Thus A depends on 8 pa- 
rameters (the projective coordinates of the points g~, 
i = 1, 2, 3, 4) and B depends on 6 parameters (the 
projective coordinates of the points gi, i = 1, 2, 3). 
Thus ~ depends on 14 parameters, which is consistent 
with (27), where qb is defined by two fundamental ma- 
trices, which gives 7 + 7 parameters. In relation (34), 
the matrices A and B do not play a symmetrical role, 
but this relation can be rewritten in a more symmetrical 
way. Let us apply the formula for changing projective 
coordinates (see for example (Faugeras, 1993)): 0j 

A = [g'l g; g3] p; 0 
o p~ 

i; 
t i ]  S i n c e  [g'1 g2 g3 is  inver t ib le ,  t h e r e  is a b i j ec t ive  r e l a t i on  

b e t w e e n  g~ a n d  (P~l, P2, P~), t hus  w e  can  r e w r i t e  (34)  

as; 

d p =  A1 dPlB1 (36) 

where A1 and B1 are obtained from (35) with an arbi- 
trary choice of g4 and g~ and: 

~1 (x) = Dq~0(x) = (PIlX2X3, p;X3Xl,  p;XlX2) T 

Thus we have as the 14 parameters twelve coordinates 
for fundamental points (direct and reverse) and two 
scale ratios. 

Notes 

1. It can be seen that by construction they preserve the cross-ratio. 

2. The fundamental points are supposed to be at finite distance, and 
we take for example g4 = g~ = h = (1, 1, 1) r 

3. Since the order of magnitude of these values has quite a large 
variation in the two first cases, in order to facilitate the visual- 
ization of these results on a graph, we have taken a logarithm. 
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