
International Journal of Computer Vision, 4, 153-162 (1990) 
© 1990 Kluwer Academic Publishers. Manufactured in The Netherlands. 

Linear Shape From Shading 

ALEX R PENTLAND 
Vision and Modeling Group, The Media Lab, Massachusetts Institute o f  Technology, 
Room E15-387,, 20 Ames St., Cambridge, MA 02138 

Abstract 
In many situations the reflectance function of a surface is approximately linear, and there is an efficient closed- 
form solution to the shape-from-shading problem. When boundary conditions (e.g., edges, singular points) are 
not available, good estimates of shape may still be extracted by using the assumption of general viewing position. 
An improved method for estimating the illuminant direction is also presented. 

1 Introduction 

The extraction of shape from shading has a relatively 
long history within the field of computer vision. There 
have been two general classes of algorithm developed: 
global algorithms, which propagate information across 
a shaded surface starting from points with known sur- 
face orientation, and local algorithms, which attempt 
to estimate shape from local variations in image intensity. 

Global algorithms, primarily due to Horn and his 
students [5, 6, 7], use assumptions about surface 
shape--primarily that the surface is smooth in some 
sense--in order to extract estimates of surface orienta- 
tion. The smoothness assumption is used to relate ad- 
joining points, enabling spatially isolated information 
about absolute surface orientation (which must be 
derived using some other technique) to be iteratively 
propagated across the surface. The use of a smoothness 
assumption, however, implies that the algorithms will 
not produce exact solutions except under certain con- 
ditions [8]. A subsequent integration step is normally 
required to convert estimated surface orientation into 
an estimate of surface shape. 

Local algorithms, originally suggested by Pentland 
[1], also use assumptions about surface shape in order 
to extract estimates of surface orientation from the 
shading information within a small image neighbor- 
hood. As with the global estimation algorithms, integra- 
tion is normally required to obtain the surface shape. 
These local methods of estimating surface orientation 
have been shown capable of producing good estimates 
of shape [1, 2, 3], however, they do not produce exact 
estimates except in quite limited situations [2, 4]. 

In this article I develop a new type of shape-from- 
shading algorithm, one that uses assumptions about the 
reflectance function, rather than using assumptions 
about the surface shape. The basic idea of this algorithm 
is to construct a linear approximation to the true reflec- 
tance function, thus permitting an extremely efficient 
closed-form solution for the surface shape. One impor- 
tant characteristic of the solution is that good estimates 
of shape can be obtained even when boundary condi- 
tions are not available, by use of the assumption of 
general viewing position. 

2 The Imaging of Surfaces: Linear Reflectance 
Functions 

The first step is to review the physics of how image 
shading is related to surface shape. As an example, let 
us start by considering a distantly illuminated surface 
whose shape is defined by the function z = z(x, y), and 
with reflectance function l(x, y) = R(p, q, L) where p 
and q are the slope of the surface along the x and y 
image directions respectively, for example, 

p = z(x,y) q = ~yZ(X,y) (1) 

and L = (xL, YL, zD is a unit vector in the mean illu- 
minant direction. For mathematical simplicity, I will 
also assume orthographic projection onto the x, y plane, 
that the surface is not self-shadowing, and that z < 0 
within the region of interest. 
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Given an image region with mean surface orienta- 
tion (P0, q0), we can form a linear approximation to 
the reflectance function by taking a Taylor expansion 
of R around (p, q) = (Po, qo) [9, 12], 

l(x,  y) -- R(po, qo, L) 

+ (P - Po) OR(p, q, L) 
OP P--Po,q = q o  

+ (q - qo) OR(p, q, L) (2) 

Oq P=Po,q--qo 

Given a point on a smooth surface it is always possi- 
ble to choose a neighborhood over which this approx- 
imation is quite accurate, because one can always find 
a neighborhood that contains a small range of (p, q) 
values, as is illustrated in figure la. Over a sufficiently 
small range of (p, q) values the true reflectance func- 
tion R(p, q, L) can always be accurately approximated 
by equation (2), as is illustrated by figure lb. 

Further, when the illuminant is at a large angle to 
the viewer (as in figure lb) equation (2) provides a good 
approximation to the true reflectance function over most 
of the range of p and q. In general the range of (p, q) 
that can be accurately modeled by a single linear ap- 
proximation becomes larger as the illuminant becomes 
more oblique, and smaller as the illuminant moves 
closer to the viewer. 

As an example, for a Lambertian reflectance func- 
tion and (Po, qo) = (0, 0), the linear approximation to 
image intensity l(x,  y) will be 

l ( x , y )  -~ p)~[cos o + p cos r sin a 

+ q sin 7- sin o] (3) 

where p is the albedo of the surface, k is the strength 
(flux density) of  the illuminant at the surface, 7" is the 
tilt of  the illuminant (the angle the image plane com- 
ponent of  the illuminant vector makes with the x-axis), 
and a is its slant (the angle the illuminant vector makes 
with the z-axis), so that L = (xL, YL, zL) = (cos r sin 
o, sin 7- sin o, cos a). When a > 45 ° (i.e., the illumi- 
nant is more than 45 degrees from the viewer) this ap- 
proximation to the Lambcrtian reflectance function is 
accurate to within 10% for - 0 . 2  < p,  q < 0.2, a 
range typical of  mountainous terrain in aerial imagery. 
It is accurate over the range - 1  < p , q  < 1 when 
0 > 7 5  ° 

Thus, within a constrained region it is often the case 
that the true surface reflectance function can be ac- 
curately approximated by a linear reflectance function. 
This can allow us to use specialized algorithms for solv- 
ing the shape-from-shading problem that are much 
more efficient than techniques that solve the problem 
in complete generality. It can also free us from the need 
to know the surface's reflectance function, as we 
merely need to have a sufficiently restricted range of 
(p, q) or sufficiently oblique illumination for the linear 
approximation to be a good one. 

3 Shape Recovery 

Given a linear reflectance function, we have that 

I (x ,y )  = k~ + pk2 + qk3 (4) 

for some constants kt, k2 and k3. I will refer to the vec- 
tor (k2, k3, k0 as the "generalized illuminant direction," 
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F/g. 1. (a) For smooth surfaces, a small image patch corresponds to a small range of (p, q) values. (b) Over a small range of (p, q) values, 
there is always a good linear approximation to the true reflectance function. 



by analogy to the case of a Lambertian surface with 
mean normal (Po, qo) = (0, 0) where we have that 

k~ = cos cr 

k2 = cos r sin er 

k3 = sin r sin a (5) 

and so L = (k2, k3, k0. 
Equation (4) may be transformed into the Fourier do- 

main in order to obtain a convenient and efficient solu- 
tion. Let F,(f, 0) be the complex Fourier spectrum of 
z(x, y) (wheref is  radial frequency and 0 is orientation), 
then, because p and q are the partial derivatives of 
z(x, y), their Fourier transforms Fp(f, 0) and Fq(f, O) 
are simply 

Fp(f, 0) = 27r cos (0)fei~/2Fz(f, O) (6) 

Fq(f, 0) = 27r sin (O)fei~/ZF:.(f, O) (7) 

Equation (4) can now be rewritten in the Fourier do- 
main as 

FI( f ,  O) = H( f  , O)F:(f, O) (8) 

where Fi(f, O) is the Fourier spectrum of the image 
and H(f, 0) is a linear transfer function which relates 
the Fourier transform of the image to that of the sur- 
face. Ignoring the singular DC term, H ~  0) is simply 

H(f, O) = 27rfei~/2[k 2 cos 0 + k3 sin 0] (9) 

Thus given a linear reflectance function, the surface 
shape can be estimated in closed form by use of the 
inverse transfer function, H 10q, 0), 

F:(f, O) = H l(f, O)Ft(f, O) 

= (27rfei~/e[k2 cos 0 + k3 sin 0]) 1Ft(f, 0) (10) 

Assuming that the generalized illuminant direction is 
known, equation (10) may be used to recover the 
Fourier components of  the surface shape. If  only the 
ratio k2/k3 is known (i.e., the tilt component of  the 
generalized illuminant direction), the surface's Fourier 
components may be recovered up to a multiplicative 
constant. Estimation of  the generalized illuminant 
direction is discussed in section 3.1. 

3. O. 1 Boundary Conditions. The Fourier components 
of  the surface that are exactly perpendicular to the illu- 
minant cannot be seen in the image data, and must 
either be obtained from other information sources or 
simply set to some default value. When boundary 
conditions--information about surface shape from con- 
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tours, singular points, or other sources--are available, 
they can be used to determine the Fourier components 
perpendicular to the illuminant; in this manner an exact 
recovery of surface shape can be achieved. 

When boundary conditions are not available (as is 
often the case), the assumption of general viewing posi- 
tion may be invoked to argue that these unseen Fourier 
components should be assumed to be zero, because if 
they were large then small variations in viewing 
geometry would produce large changes in the estimated 
surface shape. I have found that in practice these default 
boundary conditions produce good estimates of shape 
whenever the surface is complex and irregular, 
however for regular geometric forms the estimated sur- 
face shape can be substantially in error. 

3.0.2 Noise Sensitivity. The recovery process can be 
improved by use of  Weiner filtering to remove noise 
and nonlinear components of  the image intensity pat- 
tern [ 10]. If  the contaminating noise N(f, 0) is modeled 
as being proportional to II(k2 cos 0 + k3 sin 0)]l (for 
example, as a fixed fraction of the spectral power along 
each image orientation), and the surface S(f, 0) is 
modeled as a fractal Brownian function [11, 12] whose 
power spectrum is proportional to f-4 (or, equiva- 
lently, as a second-order Markov random field or as 
a "thin-plate" model) then the optimal RMSE estimate 
of  surface shape is 

F=(f, O) = O)IIH(L 0)ll 2 [llH<f, 0))l 2 

IIN0 II I 

+ 0),,1 F,(f,  0) 
IIs(f,0)ll 

= {27r sin (o)fei~/2[sd + (k2 cos 0 

+ k3 sin 0)]} -1F l ( f ,O)  (11) 

where s = Sign[cos (r - 0)] and 0.5 < d < 0.75. 
In actual practice equation (11) has been found to per- 
form much better than equation (10). 

3.1 Estimating the Illuminant Direction 

Pentland [ 13] introduced a method of estimating illumi- 
nant direction from the distribution of image derivatives 
as a function of image direction. The method works 
by assuming a statistically uniform distribution of sur- 
face orientations, and then performing a maximum- 
likelihood analysis to estimate the cosine variation in 
image gradient magnitude induced by the directional- 
ity of  the illuminant. In summary, the result is that 
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(x~,, y~) = (/3T/3)-l/3r(dl,, d12, . . . ,  din) (12) 

where (x~, y~) are the unnormalized x and y com- 
ponents of the illuminant direction,/3 is a 2 ×n matrix 
of directions (dxi, dyi) and dli is the mean magnitude 
of dl(x, y)/dx i + dI(x, y)/dy i. 

Given (x~, YD, the complete illuminant direction is 
simply 

x L = x L / k ,  YL =YL/k,  ZL = ' , / 1  - - x ~ - - y ~ ,  (13) 

where 

k = 4 E ( d P )  - E(dl) 2 (14) 

and E(dl) is the expected value of dl/dxi + dI/dy i over 
all directions i. 

This method has proven to be quite robust [2, 3, 13, 
14], however the assumption of uniformly distributed 
surface orientations is disagreeably strong. This method 
can be substantially improved by observing that the il- 
luminant produces a similar effect in each frequency 
band. Thus, if I make the much weaker assumption that 
the power in a particular spatial frequency band is 
uniformly distributed over orientation--or, more 
precisely, is not distributed in a way that is correlated 
with the illuminant effects--then I can use a similar 
method to estimate the illuminant direction, substituting 
the magnitude of the Fourier components for magnitude 
of the first derivatives. In particular, equation (12) 
becomes 

(x~, Y*D = (/3r13) -'/3r(mt, m2, . . . ,  m,) (15) 

where the m i are the magnitude of the Fourier com- 
ponents within the selected frequency band in direc- 
tion (dx, dy). 

When applied to an image region, this technique pro- 
duces an estimate of what I have called the generaliz- 
ed illuminant direction, that is, an estimate of the orien- 
tation and magnitude of illumination effects within the 
region. For the purposes of shape recovery one can use 
equation (15) to determine (XL, y~), and then set kz = 
XL, k3 = YL' The surface shape can then be estimated 
up to an overall multiplicative ambiguity. 

3. 2 A Biological Mechanism 

The ability to recover surface shape by use of equation 
(11) suggests a parallel filtering mechanism for recover- 
ing shape from shading. Such a mechanism may be 

relevant to biological vision, as it is widely accepted 
that early stages of the human visual system can be re- 
garded as being composed of filters tuned to orientation, 
spatial frequency, and phase [15, 16, 17]. Figure 2 
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Fig. 2. A shape-from-shading mechanism: A transformation T pro- 
duces localized measurements of sine and cosine phase frequency 
content; and then the inverse transformation is applied, switching 
sine and cosine phase amplitudes and scaling the filter amplitude 
in proportion to the central frequency. The output of this process is 
the recovered surface shape. 
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illustrates a mechanism based on filters with similar 
characteristics. The transformation T is a decomposi- 
tion of the image using filters that form an orthonor- 
mal basis set and which are localized in both space and 
spatial frequency. 

In order to recover surface shape from this filter set, 
the transformations indicated in equation (11) must be 
performed, as indicated in figure 2. These transforma- 
tions are: (1) phase-shift the filter responses by 7r/2, 
accomplished by switching the outputs of the sine and 
cosine phase filters; (2) scale the filter amplitude by 
l/f, wheref is  the filter's central spatial frequency; (3) 
normalize average filter responses within each orien- 
tation to remove the illumination's directional bias; and 
(4) reconstruct an elevation surface from the scaled 
amplitudes of the filter set. The final step, reconstruc- 
tion, can be accomplished by passing the signal through 
a second, identical set of filters. This produces the 
estimated surface shape within the windowed area of 
the image (the "receptive field" of the filters). For more 
detail see reference [14]. 

4 Surface Recovery Results 

I have applied equation (11) to both synthetic images 
of complex surfaces, such as is shown in figure 3a (this 
is a fractal Brownian surface with D -- 2.3; max (p, q) 

5.0), as well as to complex natural images such as 
shown in figures 4 through 7. In these examples no 
knowledge of boundary conditions was employed; in- 
stead, the assumption of general viewing position was 
used to obtain default boundary conditions as described 
above. 

4.1 Synthetic Imagery 

The use of synthetic imagery is necessary to answer 
the two important questions concerning this method: 
One, is the Taylor series approximation a good one; 
and two, is the recovery stable and accurate? Figure 
3b shows the distribution of intensity values obtained 
when the surface of figure 3a is illuminated from L 
= (1, 1, 1)/V~. Figure 3c shows the distribution of errors 

) 

(A) 

(c) L I  

~,",',., ".~ _..:%,..,.:'. ",,._~-',L, 
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Fig. 3. A fractal Brownian surface. (b) The distribution of intensities within the image of the surface in (a). (c) The distribution of differences 
between the image and our linear-term-only Taylor series approximation. (d) The surface recovered from shading (compare to (a)). (e) The 
errors in the recovery process. 



158 Pentland 

between the full imaging model and the Taylor series 
approximation using only the linear terms. As can be 
seen, the approximation is a good one, even though this 
surface is often steeply sloped (for example, max (p, q) 

5.0). 
Figure 3d shows the surface recovered by use of equa- 

tion (11). Figure 3e shows the differences between the 
original surface and the recovered surface. As can be 
seen, the recovery errors are uniformly distributed 
across the surface. These errors have a standard 
deviation that is approximately 5 % of the standard 
deviation of the original surface. It appears that these 
errors can be attributed to the linear approximation 
breaking down for steeply sloped regions of the surface. 

4.2 Natural Imagery 

The first example using natural imagery is one where 
the true reflectance function is already nearly linear, 

SO that we can expect accurate surface recovery. Figure 
4a shows an image of a plaster cast of a nickel, together 
with a range image showing the surface shape extracted 
from this image by the shape-from-shading mechanism. 
As part of the recovery process, the illuminant direc- 
tion was estimated from the Fourier transform of the 
image, as described above. 

Because most people find it difficult to interpret range 
images I have also illustrated the recovered surface 
shape in another manner, as shown in figure 4c. This 
image is generated by using standard computer graphics 
techniques to first render a shaded, perspective view 
of  the recovered surface shape, and then to project 
straight lines onto the surface. These straight lines are 
seen as bending surface contours in the resulting im- 
age. This image gives most viewers an accurate impres- 
sion of the actual recovered surface shape. 

By comparing figure 4c to a real nickel the reader 
can determine that the surface recovery is in fact quite 

Fig. 4. (a) Image of a plaster cast of a nickel and the extraced range image. (b) Image of a shiny new nickel and the extracted range image. 
(c) A shaded perspective view of the surface extracted from the plaster cast image. (d) A shaded perspective view of the surface extracted 
from the shiny nickel image. 
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accurate. The main defect is that the areas surrounding 
the head are not sufficiently fiat. 

Figure 4b shows a second example of recovering sur- 
face shape, this time using an image of the very shiny 
metal surface of a new nickel. In this case we can ex- 
pect surface recovery to be somewhat less accurate, as 
the surface's reflectance function is quite nonlinear. 
Figure 4d shows the surface recovered from figure 4b. 
As expected the surface recovery is somewhat less ac- 
curate than when a diffusely reflecting plaster nickel 
was used, however, the differences between the two ex- 
amples are surprisingly small. This example shows the 
ability of this linear shape-from-shading mechanism to 
deal with a wide range of reflectance functions, given 
only that the range of (p, q) is small or that the illumina- 
tion is sufficiently oblique. 

A third example of shape recovery is shown in figure 
5. Figure 5a shows a bas-relief sculpture from the New 
York Metropolitan Museum of Art. This example was 

chosen to illustrate the effect of variable surface albedo 
(average reflectance) on the recovery process, as there 
is significant darkening of the surface in the lower left 
and upper right corners due to surface dirt. Because 
the shape-from-shading mechanism does not have in- 
put from color or other reflectance mechanisms, it will 
misinterpret these changes in surface reflectance as 
changes in shape. Figures 5b and 5c show two shaded 
perspective views of the recovered surface. It can be 
seen that although the surface shape recovery is gen- 
erally accurate, in the lower left and upper right cor- 
ners there are bulges that are due solely to changes in 
surface albedo. 

The fourth example, shown in figure 6a, also has 
variable surface albedo. It is of a mountainous region 
outside of Phoenix, Arizona, that has been the subject 
of intensive study so that it is possible to compare our 
shape-from-shading algorithm to results obtained using 
stereopsis. In particular, the Defense Mapping Agency 

Fig. 5. (a) An image of a bas-relief sculpture of a ram's head, from the New York Metropolitan Museum of Art. (b), (c) Shaded perspective 
views of the recovered surface. 
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(A) 

(B) (C) 
Fig. 6 (a) An image of a mountainous region outside of Phoenix, Arizona. (b) A perspective view of a digital elevation map of this region, 
obtained from a stereo pair by the Defense Mapping Agency. (c) A perspective view of the elevation map recovered from shading information 
alone, by use of equation [11]. 

has created a digital elevation map of this region using 
their interactive stereo system. A perspective view of 
this stereo elevation map is shown in figure 6b. 

Figure 6c shows a perspective view of the elevation 
map recovered from the shading information in figure 
6a, by use of equation (11). The accuracy of shape 
recovery for this image can be assessed by comparing 
the perspective view of the stereo-derived surface 
(figure 6b) with that of the shading-derived surface 
(figure 6c). It can be seen that although the shading- 
derived elevation surface displays a pronounced low- 
frequency distortion (presumably due to variations in 
the surface albedo), the details of the recovered sur- 
face are still fairly accurate. 

A final example of shape recovery is shown in figure 
7. Figure 7a is a complex image widely used in image 
compression research. Figures 7b and c show two shad- 
ed perspective views of the recovered surface in the 
neighborhood of the face. The eyes, cheek, chin, lips, 
nose, and nostrils can all be clearly seen in the 
recovered surface, and are generally correct. The wavy, 
dark area in the lower right is a small portion of the 
woman's hair. 

5 Summary 

Often the true reflectance function within an image 
region can be accurately approximated by a linear func- 
tion ofp and q. In such cases there is a simple closed- 
form expression that relates surface shape to image in- 
tensity. This result may be especially useful in applica- 
tions where near-real-time performance is required. 
Further, because the technique can be implemented by 
use of linear filters similar to those thought to exist in 
biological visual systems, it may serve as a model for 
human perception. Experimental results indicate that 
the recovery process is stable and can be quite accurate. 

Special aspects of this approach are that it makes no 
assumption about surface smoothness or shape, and that 
it does not require (but can make use of) boundary 
conditions to obtain an estimate of shape. To avoid re- 
quiring known boundary conditions I have used the 
assumption of general viewing position to fill in miss- 
ing boundary conditions with default values. The use 
of these default boundary conditions seems to produce 
the most accurate shape estimates for complex, highly 
textured surfaces. When boundary conditions are 
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Fig. 7 (a) An image widely used in image compression research. (b), (c) Two shaded perspective views of the recovered surface. 

available, of course, they can be directly incorporated 
into the shape estimate as described above. 

I believe that this approach to shape-from-shading 
is ideally suited to the recovery of detailed surface shape 
within relatively small image regions, a task that is diffi- 
cult to perform using other cues such as stereo or mo- 
tion. Because there is no smoothness assumption, the 
technique can be directly applied to complex (but still 
continuous) natural surfaces such as hair, cloth, or 
mountains. One natural method of integrating coarse 
stereo (or motion) information with this shape-from- 
shading technique would be to combine their shape esti- 
mates in the frequency domain,  weighting the stereo 
information most heavily in the low frequencies and 
the shading information most heavily in the higher 
frequencies. 
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