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Abstract. The free convection boundary-layer flow near a stagnation point driven by catalytic surface heating is
considered. The case without fuel consumption is treated first, and it is shown that the steady state equations admit
multiple solutions. Explicit expressions can be obtained for these solution branches and it is found that a hysteresis
point occurs when the activation energy parameter e = 1/5. The effect of fuel consumption is seen to be
characterised by the dimensionless parameter a and numerical results are obtained for a range of values of a and E,
as well as Prandtl number or and Schmidt number Sc. Multiple solutions are again observed and analytic expressions
for the bifurcation points can be found when a- = Sc. For o- # Sc these have to be determined numerically.

1. Introduction

Many chemically reacting systems involve both homogeneous and heterogeneous reactions,
with examples occurring in combustion, catalysis and biochemical systems. The interaction
between the homogeneous reactions in the bulk of the fluid and the heterogeneous reactions
occurring on some catalytic surface is generally very complex, involving the production and
consumption of reactant species at different rates both within the fluid and on the catalytic
surface as well as the feedback on these reaction rates through temperature variations within
the reacting fluid, which in turn modify the fluid motion. Thus there is a three-way coupling
between fluid flow, fluid/surface temperatures, and reactant species concentrations.

Previous studies of this problem have assumed that the whole of the reaction occurs within
a boundary-layer region on the catalytic surface and have assumed that the heat transfer is
by forced convention, with an outer flow being prescribed at the edge of the boundary layer
region, the interaction between the fluid flow and heat transfer then being achieved via the
temperature dependence of the fluid properties. Two flow configurations have been treated,
namely a stagnation point flow and flow over a flat plate. The former case was treated
originally by Chambre [1] and extended later by Law [2], Ablow et al. [3], and Trevino [4],
with detailed studies of extinction and ignition criteria being undertaken by Giovangigli and
Candel [5] and Song et al. [6]. The bifurcation behaviour of the steady states has been
treated by Song et al. [7]. This stagnation point model has been applied to strained premixed
flames by Law and Sivashinsky [8] and Libby and Williams [9]. The equivalent problem for
the boundary-layer flow over a flat plate has been discussed by Trevino and Fernandez-Pello
[10] who used the basic Blasius solution for the flow. The conditions for ignition and
extinction for this flow were considered by Linan and Trevino [11] and Fakheri and Buckius
[12]. A numerical solution of the boundary-layer equations for this problem has been
presented by Chen and Tien [13].

It is clear from the experimental work on homogeneous-heterogeneous reactions that large
temperature differences can be generated within the boundary layer on the catalytic surface,
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see, for example, Williams et al. [14]. These temperature differences can set up substantial
buoyancy-driven secondary flows within the boundary layer and thus can greatly modify the
basic forced-convection heat transfer mechanism. In some situations free convection could
be the dominant heat transfer process, and it is this aspect that we examine in the present
paper.

To this end we consider a much simplified model of this complex problem, isolating the
free convection aspect and the catalytic surface reaction. In particular, we assume that the
flow in the boundary layer is driven purely by free convection and consider only heteroge-
neous reactions, i.e., we assume that reaction takes place only on the catalytic surface. We
consider the stagnation point flow configuration and, for simplicity, we make the standard
Boussinesq approximation, taking fluid properties and fluid density to be constant (except in
the buoyancy force). The purpose of the present study is then to isolate just one part of the
full homogeneous-heterogeneous reaction problem and examine this particular aspect in
detail. The simplicity of our model enables us to determine many of the important features
analytically, but, perhaps more importantly, it enables us to identify clearly the basic
mechanisms involved. The inclusion of further effects, such as homogeneous reactions and
forced flow, can then be assessed against this basic solution. These additional features will be
treated in subsequent papers.

We start by considering the case of no fuel consumption. We find ranges of parameter
values for which there are multiple solutions of the steady state equations. We are able to
give explicit expressions for these, from which we are able to deduce that a hysteresis point
(change from multiple to single solutions) occurs at = 1/5, where E is the usual activation
energy parameter. When we allow for fuel consumption, we still find ranges of parameter
values over which there are multiple solutions. However, now the upper solution branch
corresponds to much lower surface temperatures. We are able to give explicit expressions for
hysteresis points and the limiting behaviour on the upper branch when the Schmidt number
Sc and Prandtl number o- are equal. For Sc # r we find that these values have to be
determined by numerical calculations.

2. Equations

We consider a catalytic body surrounded by a fluid at rest and at a constant temperature T.
We assume that on the surface of the catalyst, the single, first order, exothermic reaction
governed by Arrhenius kinetics

A-- B , rate = ka e - E RT

takes place where B is the product species, k is a constant, E is the activation energy and R
is the gas constant. We also assume that no further reaction takes place in bulk of the fluid
and that well away from the surface the concentration of the reactant A is uniform at a value
a0 . Heat is released by the reaction at rate QkOa e- E /R T where Q is heat of reaction. This
heat is taken from the body surface into the surrounding fluid by conduction and thus a
natural convection flow is set up.

We take the Grashof number of this convective flow to be larger enabling us to make the
usual boundary-layer simplification. We further make use of Boussinesq approximation, i.e.,
we neglect changes in density except in the body force (buoyancy) and assume that the fluid
properties remain constant.
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The governing equations for this (two-dimensional) flow are

Ou aW
au avx~ ' (la)ax ay

Ou au au a2 u
- + u x + v - = g(T - T)S(x) + v 2' (lb)

aT aT aT v a2 T
+ u + v =- 2 (Ic)

at ax Oy o aOy2

aa aa aa v a2a
a + u x + v y -2 (Id)at Ox ay SC ay2

x and y are the co-ordinates measuring distance along and normal to the body surface, with
corresponding velocity components u and v. T and a are the temperature and concentration
respectively of the reactant A within the boundary-layer. /3 is the coefficient of thermal
expansion, r is Prandtl number, v is kinematic viscosity, S is Schmidt number and
S(x) = sin 4 where is the angle between the outward normal and downward vertical
direction.

The initial and boundary conditions are

u=v=O, a=ao, T=To att=O, (2a)

u O, a-->ao, T-T o asy-*-o, (2b)

u=v=O, k,( -Qkc aeE RT D(aa)=ka eE/RT, on y = , (2c)

where kc and D are thermal conductivity and mass diffusivity respectively.
To make Eqs (1) and (2) dimensionless we use the standard (Frank-Kamenetskii)

variable for the temperature, namely T-T o =RToOIE. This gives a temperature scale
T s = RT2/E and leads to a velocity scale Us = (g3Tsl) 2 = (g/l(RTIE)) 12 and Grashof
number Gr = gTs13 /v 2 = g313RToIEv2 where is a length scale for the body.

We then introduce the further dimensionless variables as

x Y 1/4 U a 1/
x ' Y G t,~u=, v = UsGr '/4U, (3)

so that Eqs (1) take the form

-U+ dW (4a)
-- + - =20,

-7 + + -= OS(x) + -2 (4b)at ax Oy

a0 a0 a0 1 a20
-u + - -2 ' (4c)at a x ay o ay
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ad ad aa 1 a2ad
-+u -+u - - - (4d)at ax ay Sc ay2

The initial and boundary conditions (2) become

u= v =O, 0=0, =l1 att=0, (5a)

ui 0O, 0---> 0, a->l asy--->o, (5b)

... ==0Aa e
l + ° on/1+ y = 0, (5c)

where E = RToIE and the dimensionless parameters A and a are given by

EQkolao e-ERTo kCRT

G1 /'4 kCRT aOQED 

The problem defined by Eqs (4) and (5) requires the solution of the full time-dependent
boundary-layer equations. However, a simplification can be made, and clear insight into the
nature of the general problem be obtained, if we consider the flow near a forward stagnation
point.

In this case S(x) = x and we then put

6 = xf(y, t), 0 = (y, t), a = a(y, t), (6)

where ¢q is the stream function, defined in the usual way, and where we have dropped the
bars for convenience. This leads to the reduced system of equations

ay +f af2 -af )
2 + 0 = a f (7a)ay3 ay2 - \a y ayat

1 a20 ao ae
+y2 +f -y = - (7b)

1 a2 a aa aa
Sc ay2 +f -- y at (7c)

with the same initial boundary conditions as before.
As is usual in combustion problems, a necessary pre-requisite to understanding the full

time-dependent problem is a discussion of the possible steady states. This leads us to
consider the similarity system

f" + + ff _-f'2 = , (8a)

- 0" +f' = 0 (8b)

1
- a"+fa' =0, (8c)
Sc f'=0
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subject to the boundary conditions

f=f'=O, O'=-Aa e /l+ E , a'=aAae° ' l+ e ony=0, (9a)

f' , ---> 0, a-->l asy--->, (9b)

where primes denote differentiation with respect to y.
A common starting point for the discussion of combustion problems is to examine their

behaviour when the effects of reactant consumption are ignored. A discussion of this
reduced model then enables some of the basic features of the full model to be identified
more easily and also provides a framework against which to discuss the full model. This is
where we start our discussion.

3. Non fuel consumption case (a = 0)

With a = 0, a =-1 and Eqs (8) and (9) reduce to

f"' + 0 ff" _ f, 2 = 0, (10a)

1
-- "+fO' =0, (10b)

subject to

f= O, f'=O, 0'= -AeO/(l+e ° ) ony=0, (11a)

f'--->0, 0--0 asy-->. (11b)

Equations (10) and (11) were solved numerically using a standard two-point boundary-value
problem solver. To do this and to allow for the possibility of multiple solutions we specified
the value of (0) and used A as one of the parameters to be determined. The results for
typical cases, shown by plots of 0(0) against A, are given in Fig. 1 (for E = 0) and Fig. 2 (for

14
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O(0)

0.00 0.02 0.04 0.0 0.06 0.10 0.12 0.14

Fig. 1. Graph of 0(0) against A obtained from the numerical solution of Eqs (10) and (11) for = 0 and o- = 1.
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Ioge(O

X

Fig. 2. Graph of log (0) against A obtained from the numerical solution of Eqs (10) and (11) for E=0.1 and
or= 1.0.

E = 0.1). In both cases we took cr = 1.0. (Note that in order to show both turning points for
the e = 0.1 case we have plotted log 0(0) against A in Fig. 2, the behaviour of 0(0) for A small
on the lower branch is similar to that shown in Fig. 1.)

An important feature of both of these graphs is the existence of critical (or turning) points.
These represent a change in stability of the steady state (through a saddle-node bifurcation)
and limit the range of existence of solution. There is also the further possibility of the
existence of a hysteresis point at a sufficiently large value of e, E, (say), with the dependence
of 0(0) on A then being monotone for > eH. It is this aspect that we now discuss.

To calculate the critical points A as they vary with (and or), we put

A=A, -S , 0<18l .

Due to the parabolic nature of curve near Ac, we expand

f=f + 1I1 12f +... (12)

0 = 00 + 11201 + "'

The leading order equations are

0 +1 f0= I (13)
a O0+ fo = 0

with boundary conditions

fo(0) =fo(0)=; 0(0)= -A, exPl1 0 ) ony=0, (14a)

fo 0 , 00---o> as y--o. (14b)

The equations at O(16'/21) are

f+', + 01 +f o f' +fofi - 2ff, = 0 , (15a)
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- 0 + fool + A O = 0, (5b)

subject to the boundary conditions

f 1 (O) =fl(O) = 0, 0[(0) = -A c exp( S0 1 ony=O (16a)
1+e041I (1 + e0o) 2 on y = 0,

fl- 0, 01 - 0 as y---> oo. (16b)

The equations (15) together with boundary conditions (16) form a homogeneous problem
which has, in general, only a trivial solution. However, it is the existence of a non-trivial
solution (forced by taking 0(0) = 1 (say)) which gives the value of Ac.

Now suppose that problem formed by the leading order equations has a solution (0, f)
with 0o(O) = bo so that

dy° = -AC exp b) on y = 0, (17a)

However, Eqs (15) have the solution

f=K y df Oc + f ,
( dy 0V) (17b)

01 = K(y dcd 40)

for some constant K and for all values of or. (This solution also satisfies the boundary
conditions f(O0) =fl(0) = 0, f(o) = 01(c) = 0.)

The non-trivial condition (0,(0)= 1) and the boundary condition

exp( 1eb)
01(0) = -A 

(1 + Eb0)2

are satisfied provided K = 1/4b0 and, using (17a),

( cdo exp( 1 + -b o ) (18a)-y =- c (+ +ebo)2 -5K ceXp(l+bo)

(18a) gives

4b o (l + b o)
2 = 1 .

which leads to a quadratic equation for bo with solution

(2 - 5) + 2 -5e
b 0 2 = S) (18b)5e2
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Equation (18b) gives two values of b provided < 1/5 and we get a hysteresis point at
EH = 1/5 (with b = 5).

Note that as E - 0 the two solutions behave like

b, - 41/52 + *' ' (19)
b0 - 5/4 + 

We can now return to the problem of solving the leading order problem. This is given by
Eqs (13) and boundary conditions (14), except that now 00(0) is known, via

0o(o) =-Ahg(E),

where g(e) = exp(bo/(l + Ebo)) with bo as given by (18b) is known. To solve this problem we
re-scale Eqs (13) by writing

o = (g(E))4/5 0, fo = (cg(E))/Sfo, = (Ag(E))/ 5y.

This leaves Eqs (13) essentially unaltered except that now we have the boundary condition

0(0) = -1 on = 0. (20a)

This problem has a solution which depends only upon o- with 00(0) = c(a), say. Hence

00(O) = (Acg(e)) 4 /5co (Oa), (20b)

and consequently

· =(~b-o(6) I& (20c)

Thus the problem of finding the critical points Ac has been reduced to solving a standard free
convection problem given by Eqs (13) subject to boundary condition (20a). The critical
points are then calculated from (20c) using (18b).

The numerical solution of Eqs (13) subject to boundary condition (20a) for general values
of o- is straightforward and the results (0(0) plotted against or) are shown in Fig. 3. To
complete the discussion of our basic problem we obtain results valid for large and small
values of a. The behaviour of the solution of Eqs (13) and (20a) for large a- follows closely
that derived by Stewartson and Jones [151 and Roy [16] for similar problems. There is a thin
inner region of thickness of O(r-1 /5 ), in which we scale

fa-
4 o = -4/F , 0 r= 5H = "5 y, (21a)

with Eqs (13) giving, at leading order,

F"' + H = O, H" + FH' = 0, (21b)

subject to the boundary conditions

F(O) = F'(O) = , H'(0)= -1, (21c)

F"-->O0, H-->O as ---> , (21d)

(primes now denote differentiation with respect to ).
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a'

(a)

2.0-

19 -

1.8-

1.7 -

1.5-

14 -

1.2 -

1.0 1.0 20 25 3.0 3.5 4.0 4 AO M .O

(b)

Fig. 3. Graph of 60(0) = c, (or) obtained from the numerical solution of Eqs (13) subject to boundary condition
(20a) for (a) or 1, (b) o 1.

The numerical solution of this leading order problem is standard, and we find that

H(0) = 1.63657, F"(0) = 1.57011,

from which it follows that

00(0)= c(tr) - 1.63657o--5 +... aso--*. (22)

At the outer edge of the inner region F- Ao + Bo , for constants AO= 1.13156 and
Bo = 0.67296 and an outer region is required in which 00 0 and in which

fo = - 3/10( y , (23a)

giving the equation, at leading order

q,", + 4" - ,2 = o, (23b)

. . . . . . . . . .I
. I . . I I I
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subject to

b-AoY+.. asY->0, '---O asY--->. (23c)

It is readily seen that this problem has the solution

= V(1 - exp(-V§Y)) . (24)

Finally we note that (22) implies that the critical points become large, of 0((_ 4 ), as
--> . In particular

bo () 54
1/4 (25a)

Ac - 0.5402 g(-- t as o--, (25a)

with, for example for = 0, Ac- 0.2045or/4.
To obtain a solution valid for tr small we follow the discussion given by Merkin [17]. Here

there is an inner layer of thickness O(o1 '0 ), in which we put

f = O- / 0 g ,o = o -25 h y, (26a)

with, at leading order,

h = 72, (26b)

for some constant yo to be determined. Then, from Eqs (13),

g,,, + 72 + gg,, _ g,2 = 0. (26c)

The details of the solution of Eq. (26c) are not important, except to note that

g--yo 0+ o as-- , (27)

An outer region, of thickness 0(o-2/5), is then required, in which

Af = r-3 5 G , = -2/ 5 T, = 2 5 y (28a)

At leading order we obtain the problem

GG" - G'2 + T = 0, (28b)

T" + GT' = 0, (28c)

subject to

G'--->O, T as - o, (28d)

G-yo + , T-y2+ as---. (28e)

It is the numerical solution of this problem in the outer layer which determines the constant

yo. A little care is required in doing this, as is described in [17], and we find that yo = 1.2149,
from which we obtain
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0 (0) = co(a ) - 1.4760o - 2/5 + -- as o--0, (29a)

(29a) implies that the critical points decrease with decreasing o-, and, in particular,

Ac, -0.6146( = 0.6146 bg-(E) 112
4 aso,--0. (29b)

To obtain an insight into how the critical points vary with e, we took o- = 1, for which we
find that c = 1.99627, and hence

Ac =0.4214bg/4exp( 1 o+ b) e<1/5, (30a)

where b0 is given by (18b). Plots of Ac against E are shown in Fig. 4 where the upper curve
corresponds to the lower turning points and the lower curve to the upper turning point.

To complete this discussion we need to consider the behaviour of the lower and upper

turning points, Ai) and A2) respectively, as E-->0. Using (19), we find that, from (20c),

Ac) e-5/4Co(O)-r) 4 , (30b)

i(c2 5'4 e-~/%(o)-5/ 4 2 e(30c)

as E-> 0. Note that for oA = 1, A 1)-- 0.1596 (in agreement with the results shown in Fig. 1)
and that the upper turning point is at an increasingly smaller value of A (and, from (20b), at
an increasingly larger value of 0(0)) as e-> 0, suggesting that the upper branch of solutions
correspond to very large values of surface temperature.

Finally in this section, we consider the behaviour of the bifurcation diagrams for A small
(on the lower branch) and for A large (on the upper branch). For A small, a consideration of
Eqs (10) suggests that we put

f = A. 5F() , 0 = A' 5h() , 5 = A'/y, (31a)

0.30

0.25

0.20

0.15

0.10o.o

0.05

0.00

E

Fig. 4. Variation of the critical points Ac with e for o( = 1, as calculated from expressions (18b) and (30a).
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(31a) shows that the boundary layer thickness becomes large, of O(A-' 15 ), as A--->0.
Transformation (31a) leaves Eqs (10) essentially unaltered. However, boundary condition
(11a) becomes

h'(O) = -exp[A4 '5h(0)/1 + eA4 5h(0)] = -(1 + A415h(0) + .), (31b)

(31b) suggests looking for a solution by expanding in powers of A4'5. The leading order
terms satisfying Eqs (10) and, from (31b),

h'(O) = -1. (31c)

This problem has already arisen in our discussion of the critical points and need not be
considered further. We note that

0(0) - A4/ 5co(o-) as A 0, (32)

where co(o-) is as defined earlier.
For A large, transformation (31a) is still the appropriate one to make, with now boundary

condition (11a) written as

h'(0) = -exp[h(O)/eh(O) + A-4/ 5 ], (33a)

(33a) suggests looking for a solution by expanding in powers of A -4'5, the leading order
terms are still given by Eqs (10), with now, to leading order

h'(O) = -e - /I (33b)

A rescaling,

F = elS'EF, h = e415Eh, 5 = el/56, (34a)

leaves Eqs (10) unaltered, but with now

h'(0) = -1. (34b)

Again we recover our basic problem which leads to

0(0) - A4/ 5 e4/5c 0 (o) , (35)

as A ---> on the upper solution branch.

4. Fuel consumption case, ca 0

(a) Numerical solutions

Equations (8) and (9) were solved numerically for representative values of various non-
dimensional parameters. We considered first the case when the Prandtl and Schmidt numbers
were equal, taking a = S = 1. Bifurcation diagrams (plots of (0) against A) are shown in
Fig. 5 for ( = 0.0) and Fig. 6 (for e = 0.1) for increasing values of parameter a. For the case
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x

(a)

X

(b)

0. 1.0 1.5 2.0 2.5 30 3.5 4,0

X

(c)

Fig. 5. Graphs of 0(0) against A obtained from the numerical solution of Eqs (8) and (9) for o- = Sc = 1.0, = 0.0
and (a) a =0.1, (b) a =0.2, (c) a =0.3.
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o(o)

x

(a)

o(o)

(b)

o(o)

(c)

Fig. 6. Graphs of 0(0) against A obtained from the numerical solution of Eqs (8) and (9) for oa = S = 1.0, E = 0.
and (a) a =0.05, (b) a = 0.1, (c) a = 0.2.
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e = 0.0 and a = 0.1 (Fig. 5a) we can see that there are two, well-defined turning points, at
A') = 0.1840 and A2) = 0.0080, respectively, and that (0)- 1/a as A-m-- on the upper
solution branch. For a = 0.2 (Fig. 5b) there are still two turning points, but these have
become much closer together, at A ) = 0.2270 and A(2) =0.2029. Again O(0)-->1/a as A
increases on the upper branch. By a = 0.3 (Fig. 5c) the curve of 0(0) against A is monotone,
showing that there is a hysteresis point in the range 0.2 < a < 0.3 for these values of E, ro and
Sc. Again (0)---> 1/a on the upper solution branch. We tried larger values of a (not shown)
and for these values the bifurcation diagrams were all monotone, suggesting that there are
no further ranges of a over which multiple solutions are possible.

For = 0.1, there are still multiple solutions but these require smaller values of a. For
a = 0.05 (Fig. 6a) two turning points are clearly seen (at A1) = 0.2145 and A2) = 0.0996).
Whereas for a = 0.1 (Fig. 6b) these have almost merged together, here ) = 0.2391 and
A2) = 0.2247. By a = 0.2 (Fig. 6c) the bifurcation diagram is monotone. Note that, as
before, in all cases 0(0) -- 1/a on the upper solution branch. This shows that increasing the
value of reduces the range of over which multiple solutions are possible and suggests that
for sufficiently large, the possibility of multiple solutions could disappear altogether. This
point will be discussed later on.

We then considered the case when the values of Schmidt and Prandtl were different,
taking cases when Sc > o- and when Sc < r. Consider the case when r = 1.0, Sc = 2.0. These
results are shown in Fig. 7. Again we can clearly see two turning points in bifurcation
diagram when = 0.0, a = 0.2 (at 1) = 0.1996 and A2) = 0.0719), which are somewhat
more separated than the corresponding results for Sc = 1.0 (Fig. 5b). These two turning
points have almost merged at a hysteresis point by a = 0.3 (here Ac') = 0.2405 and A2) =
0.2379) with the curve being monotone for all values of a slightly higher than this. A similar
behaviour to that for equal values of o- and S was observed by increasing the value of .
Here for = 0.1 a hysteresis point is suggested between a = 0.1 and a = 0.2 (Fig. 7c, where
Al ' ) = 0.2216 and A(2 )

= 0.1581; and Fig. 7d). These results suggest that taking the ratio
Sc/O > 1, increases the range of a over which multiple solutions are possible. In all the cases
shown in Fig. 7, 0(0) approached a limiting value on the upper solution branch as A

e(o)

(a)

Fig. 7. Graphs of 0(0) against A obtained from the numerical solution of Eqs (8) and (9) for o = 1.0, Sc = 2.0, (a)
= 0.0, a = 0.2, (b) E = 0.0, a = 0.3, (c) E = 0.1, a = 0.1, (d) e = 0.1, a = 0.2.
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(b)

(c)

X

(d)

Fig. 7 (cont.).
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increased. This value appeared to be independent of E; however, there appears to be no
simple correlation between this limiting value and the parameters a, S and or in this case.

Finally we considered a case when S < a, taking a = 1.0 and Sc = 0.5. The results are
shown in Fig. 8. For E = 0, Figs 8a and 8b, a hysteresis point is suggested for a between
a = 0.1 and a = 0.2. In the former case, there are two, well-defined turning points at
A') = 0.1993 and A(2) = 0.0697, whereas in the latter case the curve is monotone. Again
increasing the value of E decreases the range of a over which multiple solutions are possible.
For E = 0.1 Figs 8c and 8d show that multiple solutions disappear between a = 0.05 and
a = 0.1, with, in the former case, critical points at A(') = 0.2214 and A(2) = 0.1570. Thus
taking the ratio Sc /a < 1 decreases the range of a over which multiple solutions are possible.
Again we note that 0(0) approaches a constant value on the upper solution branch as A is
increased. This value also appears to be independent of the value of E but appears to be
different to the values approached in the Sc/ar > 1 case discussed previously.

Two important characteristics of the bifurcation diagrams in the fuel consumption (a 0)
case have emerged, namely the limiting value of 0(0) on the upper solution branch and the
possibility of a hysteresis point. Both of these features need further investigation. We start by
considering the limiting value of 0(0).

(b) Limits on the upper branch

In the previous section we saw that 0(0) approached a limit on the upper solution branch and
that this limiting value is, in general, considerably smaller than values of 0(0) on the upper
branch in the non-fuel consumption case (a = 0). This limit had an obvious value of 1/a
when Sc = o-(=1.0). To see this, we note that in the case Sc = a-, the solution of Eq. (8c) for
a(y) can be written in terms of O(y) for all values of cr as

a(y) = 1 - aO(y) . (36a)

o(o

(a)

Fig. 8. Graphs of (0) against A obtained from the numerical solution of Eqs (8) and (9) for ro = 1.0, S = 0.5 and
(a) £ = 0.0, c = 0.1, (b) £ = 0.0, a = 0.2, (c) e = 0.1, a = 0.05, (d) E = 0.1, a = 0.1.
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Boundary condition (9a) then gives

O' =-A(1 -aO) exp(0/1 + E8) on y = 0 (36b)

and the singularity as (0)-- 1/a is clear.
To obtain the limiting value of 0(0) in the general case and to obtain a solution of Eqs (8)

and (9) valid for A large, we leave the equations unsealed and look for a solution by
expanding

f(y; A) =f(y) + A-'f(y) + -

O(y; A) = 0o(y) + A-'0 (y) + - . (37)

a(y; A) = a(y) + A-la,(y) + '

At leading order we obtain the equations

fo, + 00 + f 0of = 0, (38a)

,0g + fo = 0 , (38b)

S a" +foa = (38c)

subject to the boundary conditions

fo() = 0, fo(0) = 0, ao(0) = 0, (39a)

f---> , 00-- 0, a-->1 asy--. (39b)

The value of 00 on y = 0 is, as yet, unspecified. Hence the leading order problem contains
some indeterminacy and to complete this problem we need to consider the equations for the
O(A-') terms.

At O(A-') we obtain a system of linear equations for (fi, 01, a,) which are not important
for our present discussion, and it is the boundary conditions on y = 0 that we concentrate on,
namely that

00
O = -a, exp ) I
°- exP(1 + E0) 10 on y = 0. (40a)

ao =aa exp e

The consistency of Eqs (40a) then leads to the final boundary condition for leading order
problem, that

00(0) = - aa(0). (40b)

Boundary conditions (39) and (40b) are now sufficient for the solution of Eqs (38).
00(0) is the limiting value on the upper solution branch, as, from (37), 0(0)--->00(0) as

A--oo. As can be seen from Eqs (38), (39) and (40b), this value does not involve the
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activation energy parameter E (as was noted in the numerical solutions). Also, the
transformation

fo = a 4 o, 0 a , =a- ao = , y =-1/4- (41)

leaves Eqs (38) and boundary conditions (39) essentially unchanged (apart from derivatives
now being with respect to y rather than y). Boundary condition (40b) becomes

3O(0) = -o(0). (42)

Thus the leading order problem is rendered independent of the parameter a, as 00(0) is
dependent only on the parameters Sc and o, with then

3°(0)00(0) = O (43)

The determination of the limiting value O0(0) then requires the solution of Eqs (38) subject
to boundary conditions (39) and (42). For general values of Sc and or this has to be done
numerically, and results are shown in Fig. 9, where we give a plot of 00(0) for varying S¢ for
r= 1.0 (the case we treated in our numerical solutions). These results show that 0(0)

increases as S is increased (for a given value of ao) which is in line with our numerical
solutions. Note that for the two cases we treated

00(0) = 0.6925 for S = 0.5, 00(0) = 1.3773 for S = 2.0.

Finally, we note that when Sc = a, Eqs (38) and boundary conditions (39) give a, and 00
connected via

ao(y) = 1 - o() (44)
60(0)

This satisfies boundary condition (42) only if 0(0) = 1, and the simple result that 0(0)--- > 1/a
when S = o- noted above is recovered.

2.0

1.6

1.2

so(o)
0.

0.4

o.0

SC

Fig. 9. Graph of 00(0) plotted against Sc obtained from a numerical solution of Eqs (38), (39) and (42) for ro = 1.0.
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(c) Hysteresis point

As noted previously for the case without fuel consumption, the critical points (or turning
points) Ac on the bifurcation diagrams require the solution of the leading order problem for
(f0 , 00, ao) (as given by Eqs (8) and (9) with A = Ac) and a non-trivial solution to linear
homogeneous problem for (f, , al) obtained by making a small perturbation to this
(forced by taking 0(0) = 1, say). This leads to Eqs (15) together with the extra equation

S a +f o a'l +fia = 0. (45a)

The boundary conditions are the usual homogeneous ones together with

O = -AC[ 001+ + al] exp(0 0 /(1 + eo)) l

a00[(1 18) + lcp4lesn on y =0. (45b)
a = aAc [ 0 , 2 +al exp(00 /( l1 +e O°)) oy0

a1=aA~ (1 + e00 ) 

As before this perturbed problem has a solution in terms of the leading order solution for all
values of ro- and Sc as

fi = K(yf +fo), 01 =K(y(yO + 400 ), a1 = K(ya + 4aO - 4), (46a)

where, on taking 1(O) = 1,

K = (0) (46b)40,(0)

The substitution of (46a, b) into boundary conditions (45) then results in the single relation

4(1 + e0o)2

a 400 - (1 + e0o)2

where in (47) a and 00 refer to their respective values evaluated on y = 0.
Now we must have

0 a(0 ) - 1 . (48a)

The necessity for this condition is clear on physical grounds and also readily deduced from
Eq. (8c). In fact it is clear from this equation that a(y) must be monotone increasing on
0 < y - -o (and from (8b) that 0(y) must be monotone decreasing on 0 < y < oo).

The left hand condition in (48a) implies that 00(0) must be in the range

2-e-21- 2- + 2V1-
2 < (0) < 2 (49a)

E E

Equation (49a) shows that a necessary condition for the existence of critical points (and
a subsequent hysteresis point) is that E < 1. When E = 0, condition (49a) reduces to
0o(0)> 1/4.

The right hand inequality in (48a) implies that 0o(0) must be in the range
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2 - 5 - 21-5 2 - 5E + 21 -5
2 00(0) 2 (49b)5E2 5E2

Equation (49b) gives the necessary condition for existence of a hysteresis point that

E 1/5. (49c)

For E > 1/5, the bifurcation diagrams are all monotone. It can be shown that, when (49c) is
satisfied, condition (49b) is a more severe restriction on 00(O) than condition (49a).

To proceed further, we require another relation connecting a(O) and O0(0). This is not
readily available for general values of the parameters and requires numerical solutions of
Eqs (8). However, for the special case Sc = or, we have the result (36a), which holds for all Or.
Using this in condition (47) we can eliminate a0 and obtain a relation connecting 00, a and E
at which critical points exist, namely

(aE 20 3 + (2a - 4a - 5 2)02 + (4- 10E + a)00 - 5 = 0. (50)

Equation (50) reduces to (18b), previously obtained for the case a = 0.
For E = 0, Eq. (50) becomes

4aOo - (4 + a)o + 5 = 0, (51a)

with solutions

4 + a -+ a 2-72a + 16 (b)
00= 8a (5b)

Equation (51b) leads to condition that

a - 4(9 - 4F5) = 0.22291 (51c)

for the existence of multiple solutions. Hence, there is a hysteresis point in the bifurcation
diagram when

a = aH = 4(9- 4V5), = . (51d)

For a - aH (and E = 0) there is a range of A over which multiple solutions exist, and for
a > aH the variation of 0O(0) with A is monotone increasing. The value given by (51d) is in
line with point found in the numerical solutions.

For the general values of a and E we have to solve Eq. (50) for 00(O), subject to the
restriction 1/5 (given by (49c)) and that 00(0) 1/a (implied by (36a)). It is clear that
Eq. (50) has at least one positive root and it is also straightforward to show (by putting
00 = 1/a in (50)) that this largest root does not satisfy the condition 00 < 1/a. Thus, it is the
two smaller positive roots (when they exist) that are required, with the hysteresis points then
arising when these two roots are co-incident. Consequently, to determine these hysteresis
points we have to solve Eq. (50) simultaneously with the equation

3ae2 00 + 2(2Ea - 4a - 582)00 + (4 - 10E + a) = 0 (52)

derived from it. 00 can be eliminated from these equations giving a relation between a and E
at which hysteresis points occur. It was found very much easier to do this numerically and a
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0

o.

0.15

O-c

0

Fig. 10. Graph of hysteresis points a, plotted against e obtained from Eqs (50) and (52). For a < a, multiple
solutions and for a > aH the bifurcation diagram is monotone.

curve of hysteresis points aH(E) plotted against e is shown in Fig. 10. This curve divides the
positive quadrant of -a plane into two regions, with qualitatively different behaviour in
each region. For a < a there is a range of parameter values over which multiple solution
exist, while for a > aH the bifurcation diagram is monotone. Note that this result holds for
all values of ra.

Finally, we note how the critical point A can be calculated for values of a < a(e). We
first solve Eq. (50) to obtain a solution 00(0) = g(a, e) (say) which gives, from (36a),
a0 (O) = 1 - ag(a, E). For the case S, = o-, we can eliminate a(y) from the system of Eqs (38)
again using (36a). Thus, we have to solve Eqs (38a, b) subject to the boundary condition

Of(0) = -A(1 - ag) exp(g/1 + eg) = -AcG(a, E), (53a)

where, since g(a, e) is known, G(a, e) will also be known. As before, we rescale by writing

fo = (AcG)/Sfo, 00 = (AcG) 4 /5 o, y = (AcG)l/Sy. (53b)

This leaves Eqs (38a, b) essentially unaltered, with boundary condition (53a) becoming

(0) = -1 (53c)

Thus we are back to our basic problem, with 0(0) = c0(cr), defined earlier. The critical
points are given by

(g(a,) 5/4 1
C=(') / G(a, ) '

5. Time dependent problem

There are two additional aspects of the initial-value problem (5, 7) that need to be
considered, namely the stability of the stationary states discussed above the time evolution
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from the initial unreacted configuration. The first of these requires considerable further
discussion and this aspect will be treated in a subsequent paper. However, we can say
something briefly about the development of the solution from initial conditions (5).

The initial-value problem can be solved numerically using standard finite-difference
methods, and we illustrate the results with two representative examples. First, we took a no
fuel consumption case, a = 0 and E = 0.0. The results are shown in Fig. 11, where we plot
values of the wall temperature 00(0, t) against t for different values of A. Here A() = 0.1913
and for values of A < A(') the solution approaches the steady state values on the lower branch
(shown in Fig. 2). For A >A) the solution becomes unbounded with a local finite-time
blowup occurring. The time to reach this blowup increases as A approaches Al) as is
illustrated more clearly in Fig. lib. This is to be expected and is in line with calculations of
'time to ignition' in other (though somewhat different) combustion problems, see, for
example, Boddington et al. [18] and Gray and Merkin [19].

A similar situation arises when we allow for fuel consumption taking a $ 0. The results for

o(o,t)

t

(a)

0e(,t)

t

(b)

Fig. 11. Graphs of the wall temperature 0(0, t) obtained from a numerical solution of initial-value problem (5, 7)
for = 0.0, = 1.0, a = 0.0 for (a) A = 0.1, 0.15, 0.2 and (b) A = 0.1915, 0.192, 0.193. Here A) = 0.1913.
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10

a

e(o,t)
4

2

t

Fig. 12. Graphs of the wall temperature 0(0, t) obtained from a numerical solution of the initial-value problem (5,
7) for E =0.0, a =0.1, = 1, S = 1 and A = 0.15, 0.18, 0.185, 0.19. Here A(') = 0.1837.

e = 0, a = 0.1 (Sc = ( = 1) are shown in Fig. 12. Here A1) = 0.1837 and for value of A < A(')
the steady state values on the lower solution branch are approached for t large. However,
now there is also an upper solution branch (Fig. 5) and it is these values that are approached
for A> A('). The same behaviour was observed for other cases considered and not shown
here.

The above suggests that both the lower and upper solution branches are stable (at least
over a wide range of parameter values). We also know that the critical points correspond to a
real eigenvalue changing sign (saddle-node bifurcation) and hence we expect the middle
solution branch to be unstable, at least close to the critical points. Whether this middle
branch is always unstable or whether there are further (Hopf) bifurcations on this branch
leading to stable periodic solutions, as reported in a purely reaction-diffusion combustion
problem by McGarry and Scott [20], is yet to be determined. An approximate solution,
based on integrated forms of the boundary-layer equations can be constructed. This leads to
a system of equations similar to the Sal'nikov scheme, discussed in detail by Kay and Scott
[21, 22]. The corresponding steady states of this approximate solution have all the features of
the present problem (saddle-node bifurcations and hysteresis points) as well as supercritical
Hopf bifurcations, suggesting that these could also be a feature of the present initial-value
problem (7). This aspect is to be treated more fully in a subsequent paper.

6. Discussion

We have considered in some detail a basic combustion model in which an exothermic
reaction takes place on a catalytic surface. The heat released by this reaction sets up a free
convection boundary-layer flow on the reacting surface. This flow in turn influences both the
fluid temperature and reactant consumption setting up a three-way interaction between flow,
heat transfer and concentration. Our model is motivated by situations where there is little or
no imposed external flow but, more especially, by combustion reactions which have large
activation energies and are highly exothermic.

The assumption of large activation energy means that the dimensionless parameter E will
be small and this, together with the highly exothermic nature of the reaction, leads us to
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expect that the dimensionless parameter a will also be relatively small. However, the
parameter A can take all values (at least up to 0(1) and probably higher values). These
considerations led us to treat A as the natural bifurcation parameter and to obtain bifurcation
diagrams for representative values of and a.

The smallness of parameters a and suggests that taking a = 0 (no fuel consumption) and
E = 0 (exponential approximation) is a viable starting point. With this simplification we saw
the existence of multiple solutions branches which are a characteristic feature of the full
problem. On the lower solution branch, which corresponds to relatively low surface
temperatures and thus to relatively slow rates of reaction, the solution for = 0, a = 0 is
quantitatively similar to the solution for small, but non-zero, values of these parameters. For
example, the lower critical point kA4) changes only slowly with (Fig. 4) when a = 0, with
similar behaviour being observed when a 0 (but small). Consequently, this much
simplified model is useful in estimating the criticality of the system (i.e., the value of A at
which the behaviour undergoes a distinct qualitative change from a slow reaction state to a
highly reactive state). However, the response of the system beyond this point (on the upper
solution branch for example) is then very much dependent on the values of the parameters 
and a (as well as on the Prandtl number ar and Schmidt number S).

If we still retain the assumption that a = 0 the difference between the solutions with = 0
and 0 is in the existence of an upper solution branch in the latter case. This leads, for
small , to the relatively large surface temperatures given by expression (35), and the neglect
of reactant consumption is then inappropriate. With a 0 (though small), the qualitative
form of the bifurcation diagram is kept, with there still being upper solution branches but
these now correspond to much reduced surface temperatures. Thus the effect of the
depletion of the reactant is clearly seen to limit the overall temperature attainable. This
maximum temperature can be calculated explicitly when Sc = ao, i.e. when thermal conduc-
tivity and mass diffusivity are equal, as w = 1/a. In dimensional terms this gives a maximum
excess temperature (above ambient To) as Tmax = QDa0 /kc which is independent of the fluid
properties. When Sc $ or no such simple form for the maximum temperature was found, and
it had to be determined by a numerical solution. We found that when S > a-, i.e. mass
diffusivity is stronger than thermal conductivity, the maximum temperature was greater than
Tma x. This situation is reversed when Sc < a.
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