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Abstract. Techniques for detecting defects in source code are fundamental to the success of any software devel- 
opment approach. A software development organization therefore needs to understand the utility of techniques 
such as reading or testing in its own environment. Controlled experiments have proven to be an effective means 
for evaluating software engineering techniques and gaining the necessary understanding about their utility. This 
paper presents a characterization scheme for controlled experiments that evaluate defect-detection techniques. 
The characterization scheme permits the comparison of results from similar experiments and establishes a con- 
text for cross-experiment analysis of those results. The characterization scheme is used to structure a detailed 
survey of four experiments that compared reading and testing techniques for detecting defects in source code. 
We encourage educators, researchers, and practitioners to use the characterization scheme in order to develop 
and conduct further instances of this class of experiments. By repeating this experiment we expect the software 
engineering community will gain quantitative insights about the utility of defect-detection techniques in different 
environments. 
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1. Introduction 

Systematic software development approaches distinguish between verification and valida- 
tion techniques. These techniques may be used to detect defects in requirements, design, 
code, test, or other artifacts. According to the IEEE definitions, verification techniques 
“evaluate a system or component to determine whether the products of a given development 
phase satisfy the conditions imposed at the start of that phase,” and validation techniques 
“evaluate a system or component during or at the end of the development process to deter- 
mine whether it satisfies specified requirements” (IEEE, 1983). Verification techniques are 
primarily applied by personnel in an off-line manner. Examples of these techniques include 
formal proofs based on Hoare or Mills semantics (Hoare, 1969; Gannon et al., 1987), semi- 
formal techniques such as reading by stepwise abstraction for design and code documents 
(Linger et al., 1979) active design reviews (Parnas and Weiss, 1985), and scenario-based 
reading for requirements documents (Porter et al., 1995). Validation techniques are applied 
on-line by running a software system with a set of test cases as inputs. Examples of these 
techniques include functional testing, in which the specification is primarily used to develop 
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test cases (Howden, 1980; Myers, 1978), and structural testing, in which the source code 
is primarily used to develop test cases (Howden, 1978; Marick, 1994). 

The primary argument for using both off-line verification techniques and on-line validation 
techniques is the need to capture defects in requirements, design, and code artifacts as early 
as possible. Unless code is reused extensively, or formal notations for requirements and 
design documents are used, testing can first be applied only late in the development process. 
Therefore requirements and design defects that are not detected until testing begins will 
be extremely expensive to repair. To address this problem, developers must use both 
verification and validation techniques. 

Experience has shown that project pressure will cause developers to abandon off-line, 
human-based techniques such as reading by stepwise abstraction unless they are convinced 
of the utility of those techniques. Therefore, an effective approach for convincing pro- 
fessional developers and university students of the utility of off-line techniques is needed. 
We recommend using the same principle underlying Watts Humphrey’s Personal Software 
Process (Humphrey, 1995), namely asking developers to apply and measure the techniques 
themselves. This type of experience may be gained by conducting low-risk projects (the ap- 
proach advocated by the Personal Software Process) or by taking part in repeatable software 
engineering experiments (the approach advocated in this paper). 

An experimenter may repeat portions of a previously defined software engineering experi- 
ment, or may faithfully replicate all aspects of that experiment. In doing so, the experimenter 
may (or may not) be able to reproduce previous results. We see strong parallels to physics, 
where students repeat classic experiments such as measuring the charge on the electron, 
although they do not necessarily reproduce the expected results. By repeating experiments, 
physics students learn about working in the laboratory and improve their understanding of 
fundamental concepts. The learning benefits that accrue to the participants in a software 
engineering experiment are similar to those in physics. However, there is only one well- 
accepted value for the charge on the electron, so success for replicated physics experiments 
means reproducing previous results. We believe that success for a software engineering 
experiment should not be defined solely in terms of reproducing earlier results, but rather 
in terms of measuring and understanding the variation factors that affect how human beings 
perform in different environments. Therefore, we believe that the software engineering 
community can benefit greatly from a set of repeatable experiments that can be used in soft- 
ware engineering education as well as technology transfer programs. The work presented 
here is a first step in this direction. 

This paper discusses experiments that compare the utility of verification (reading) and 
validation (testing) techniques for detecting defects in source code. The focus is on un- 
derstanding variation factors and educating the participants, not on reproducing the results 
obtained by others. A characterization scheme for the many dimensions to be considered in 
these experiments is presented in Section 2. Section 3 surveys four similar experiments that 
compared defect-detection techniques and gives their results. These example experiments 
offer concrete, reusable goals, plans, and procedures. Special emphasis is placed on an 
experiment that we conducted at the University of Kaiserslautern. Finally, Section 4 draws 
some conclusions and identifies future work. 
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2. A Characterization Scheme for Experiments 

Many have called for an infrastructure for experimental software engineering (Curtis, 1980; 
Basili et al., 1986; Fenton et al., 1994). The characterization scheme of this section is a 
contribution towards achieving that goal for experiments that evaluate source-code verifica- 
tion and validation techniques. The characterization scheme draws on work that appeared 
in Preece and Rombach (1994) and is summarized in Table 1. The characterization scheme 
permits the comparison of results from similar experiments and establishes a context for 
cross-experiment analyses. The scheme is divided into four major parts, namely the goals 
and hypotheses that motivate an experiment, the plan for conducting the experiment, the 
procedures used during the experiment, and finally the results. 

2.1. Goals, Hypotheses, and Theories 

A statement of goals determines what an experiment should accomplish, and thereby assists 
in designing and conducting the experiment (Basili et al., 1986). This section discusses the 
definition of experimental goals, addresses the derivation of testable hypotheses from goals, 
introduces a goal template for developing concrete goals suited to this class of experiments, 
and discusses the development of a theory that will explain the results. 

2.1.1. Dejning Experimental Goals 

Many techniques are candidates for performing a specific software engineering task. Choos- 
ing one requires the practitioner to answer the question “which technique is best suited for 
achieving a specific task in my own environment ?” The question may be alternately stated 
as “is technique ‘A’ better suited to the project’s needs than technique ‘B?’ ” If the subjective 
terms “best” and “better” can be defined quantitatively and objectively for a specific con- 
text, we can define concrete goals for experiments that will yield the information needed to 
answer these questions. An objective definition of a term such as “better” may be “detects 
30% more defects” (i.e., is more effective) or “costs 10% less as measured in staff-hours” 
(i.e., is more efficient). 

A statement of goals is vital for planning and conducting an experiment, although only 
part of the planning phase. For example, defect-detection techniques may be compared 
based on the time required to develop test cases or on the number of failures revealed. The 
choice of an aspect to be evaluated (e.g., effectiveness or efficiency of a defect-detection 
technique) will further dictate what data must be collected, and determines in part how that 
data can be analyzed. 

We suggest using the GQM Paradigm to support the processes of stating goals, refining 
goals in an operational way into metrics, and interpreting the resulting data. The GQM 
Paradigm supports the definition of goals and their refinement into concrete metrics (Basili 
and Rombach, 1988; Basili et al., 1994; Differding et al., 1996). The idea behind the GQM 
Paradigm is that measurement should be based on goals. By stating goals explicitly, all 
data collection and interpretation activities are based on a clearly documented rationale. 
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Table 1. Characterization scheme for experiments that compare defect-detection techniques. 

II. 

Goals, Hypotheses, and Theories 

A. Aspects o fagoa l  

1. Object of study (e.g., code reading, functional testing . . . .  ) 
2. Purpose of study (e.g., compare, analyze . . . .  ) 
3. Quality focus of study (e.g., effectiveness, efficiency,... ) 
4. Point of view (e.g., practitioner, experimenter . . . .  ) 
5. Context (e.g., subjects, objects, environment . . . .  ) 

B. Hypotheses 

1. Type (e.g., direct observations, context factors . . . .  ) 
2. Expected result (i.e., null and alternative hypotheses) 

C. Theories: 

1. Mechanisms that predict and/or explain results 
2. Derived from beliefs or related work 

Experiment Plan 

A. Experimental design 

1. Independent variables (e.g., techniques, objects, order, . . .  ) 
2. Dependent variables (e.g., defects found, time required . . . .  ) 
3. Randomization (e.g., match of subject, object, and technique) 
4. Repeated measures (e.g., within-subject designs) 
5. Manipulation of independent variables (e.g., full-factorial, partial-factorial . . . .  ) 
6. Null hypotheses (e.g., technique A has no effect o n . . .  ) 

B. Defect-detection techniques for source code 

1. Type (e.g., reading, functional testing, structural testing . . . .  ) 
2. Other aspects (e.g., test-case development, termination criteria . . . .  ) 

C. Objects 

1. Source-code modules (e.g., length, complexity, . . .  ) 
2. Faults (e.g., number, types, interactions . . . .  ) 

D. Subjects 

1. Selection criteria (e.g., participants in a course) 
2. Experience, training, and background (e.g., students, professionals . . . .  ) 
3. Ethical issues (e.g., right to withdraw, anonymity . . . .  ) 
4. How many are required (assess power of analysis procedure) 

E. Data collection and validation procedures 

1. On-line and off-line collection procedures (e.g., forms, videotape, counts of runs . . . .  ) 
2. Validation approaches (e.g., independent sources, interviews . . . .  ) 

F. Data analysis procedures 

1. Significance level for inferential statistics (e.g., p < 0.05) 
2. Parametric techniques 
3. Non-parametric techniques 
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Table 1. Continued. 

III. Experiment Procedures 

A. Training activities (e.g., independent work, controlled setting, . . . ) 
B. Conducting the experiment (e.g., time periods, data validity, . . . ) 
C. Giving feedback to subjects (e.g., comparing expectations with results, . ) 

IV. Results 

A. Data (i.e., the raw data collected during the study) 
B. Interpretations (i.e., statements about the hypotheses) 

Goal template. We can derive a series of goals for this class of experiments using the 
following goal template borrowed from the GQM Paradigm: 

Analyze (n) techniques for detecting software defects 
for the purpose of (understanding, comparison, . . . ) 
with respect to their (effectiveness, cost, efficiency, . . . ) 
from the point of view of the (researcher, practitioner, . . . ) 
in the context of (a specific context). 

The first facet (“object of study”) states that some number of defect-detection techniques 
will be analyzed or compared. The second facet (“purpose”) states whether the experiment 
will characterize, compare, etc. the techniques under study. The third facet (“quality focus 
of study”) is the primary effect that is the focus of the experiment. The fourth facet (“point 
of view”) states the perspective from which the experiment will be viewed (i.e., for whom 
the results should be useful). 

The fifth facet (“context”) briefly states what personnel (i.e., subjects: and code artifacts 
(i.e., objects) will be used, and any other relevant information. A specific project may have 
a highly specific context that dictates how the experiment should be planned and conducted. 
Example context factors may be “experience of subjects,” “application domain,” or “im- 
plementation language.” Therefore, the derivation of testable hypotheses must account for 
the context, possibly by stating expectations about the effect of various context factors on 
the results. For example, poor results might be expected if subjects are confronted with a 
technique that differs sharply from their experience. 

2.1.2. Deriving Testable Hypotheses 

Based on the goals, hypotheses must be derived that will be tested by the experiment. State- 
ments about the expected results that can be tested using the experiment are called testable 
hypotheses. For example, the statement “technique A is good for task T” is not testable, 
whereas the statement “technique A requires less time than technique B to accomplish 
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task T” is testable. To support testing such statements using inferential statistical methods, 
these statements are eventually formulated as n&Z hypotheses, and the original statement is 
called the alternative hypothesis (Judd et al., 1991). A null hypothesis simply states that 
no difference exists between some set of data. In the previous example, the corresponding 
null hypothesis would be “technique A requires the same amount of time as technique B 
for accomplishing task T.” These null hypotheses will be tested by applying an inferential 
statistical analysis procedure to the data collected during an experiment (Box et al., 1978). 
That analysis will yield a probability value for the possibility that the results are due to 
chance (i.e., whether the null hypothesis must be rejected or accepted). The discussion of 
null hypotheses is continued in Section 2.2.2. 

2.1.3. Theories to Explain the Results 

Empirical work must lead to a deep understanding of phenomena, not stop at a demonstra- 
tion of statistically significant differences. When constructing the hypotheses to be tested 
empirically, the researcher ordinarily relies on a theory that he or she believes will predict 
and explain the results. This theory (sometimes called a mechanism) must be testable (fal- 
sifiable). It further guides the selection of what to measure in the experiment. For example, 
if a researcher believes that the experience of subjects dwarfs the results of using different 
defect-detection techniques, then the researcher must find some way to measure subject 
experience. If validated, these theories represent the sorely needed understanding about 
software engineering techniques. 

If the researcher has no theory, and no comparable work exists that might suggest a theory, 
then it may be premature to conduct an experiment that focuses on a quantitative evaluation. 
Instead, the researcher might want to consider conducting qualitative research that would 
assist with developing a theory as well as with identifying the constructs and variables 
pertaining to that theory. 

2.2. Experiment PIan 

This section discusses planning an experiment that will evaluate defect-detection techniques. 
The foundations of controlled experiments are discussed first. Then the issues of exper- 
imental design, defect-detection techniques, objects, subjects, data collection procedures, 
and data analysis procedures are presented. 

2.2.1. Foundations 

The foundations of controlled experiments include establishing credibility of the work; 
distinguishing between correlation and causality; addressing issues of construct validity, 
internal validity, external validity, and validity tradeoffs; and deciding upon the scope of 
the experiment. All are discussed next. 
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Credibility. Credibility is the cornerstone of empirical studies in any field. Genuine 
credibility stems from an experimenter’s painstaking efforts in building up a collection of 
supporting evidence for his or her claims. This evidence should include a clear statement of 
goals and hypotheses, a falsifiable theory to explain the results, a convincing demonstration 
of the results, and a thorough discussion of the reasoning used to obtain the results. 

Correlation versus causality. A correlation between two events merely states that the 
two events have been known to occur together. However, event A is said to cause event B 
only if a certain set of conditions holds (Votta and Porter, 1995). First, there must be some 
nonspurious association between the two events. Second, event A must happen before event 
B (temporal precedence). Third and finally, the experimenter must propose a theory (i.e., 
a mechanism) that explains why event A causes event B, and that further can be tested in 
the experiment. Both correlation and causality can be tested, but the value of a controlled 
experiment is its power in establishing causality. 

Construct validity. Construct validity refers to the degree to which a given measure 
accurately characterizes some construct under study (Judd et al., 1991). For example, a 
count of computer science courses may be a poor measure of a subject’s experience with 
a language (has poor construct validity), while an estimate of the number of lines of code 
that subject has written in that language is a better measure of experience (has acceptable 
construct validity). The experimentalist must never forget that all measures are imperfect, 
and must apply sound reasoning when choosing measures. 

Internal validity. Internal validity refers to the extent to which causality is established 
as a credible explanation for the relationship between the presumed causes and measured 
responses (Judd et al., 1991). Campbell and Stanley identify eight threats to internal validity 
(Campbell and Stanley, 1966, pp. 5-6). One of the most important threats in software 
engineering experiments is called a selection effect. An example selection effect is a 
subject who has a natural ability for the experimental task due to many years of experience. 
Selection effects can be measured in part by using within-subject designs (i.e., measuring 
the same subject on multiple tasks). Selection effects can be addressed highly effectively if 
the subjects are known extremely well, an approach sometimes used in research on human- 
computer interface design. Another aspect of a selection effect can be mitigated by allowing 
subjects to withdraw from an experiment at any time. This freedom should ensure that the 
internal validity of the experiment is not threatened by stresses on the subjects that are 
invisible to the researchers. 

External validity. External validity refers to the confidence with which the results can 
be generalized beyond the experiment (Judd et al., 1991). External validity is affected not 
only by the design but also by choices made for the objects chosen and the subjects who 
participate. For example, external validity of an experiment that evaluates defect-detection 
techniques can be increased by using experienced software engineers who are experts with 
the techniques to be evaluated. External validity in software engineering experiments may 
also be achieved, at high cost, by repeating an experiment many times, varying the subjects 
and objects each time. 

Validity tradeoffs. The issues of construct, internal, and external validity are related. 
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Table 2. Scope of empirical studies (Basili et al., 1986). 

Number of projects 
Number of teams One More than one 

One Single Multi-project 
project variation 

More than one Replicated Blocked 
project subject-project 

�9 1986 IEEE. Used by permission. 

Choices that result in high internal validity may damage external validity, and vice versa. 
For example, a tightly controlled experiment may use very small pieces of code and un- 
dergraduate students to attain high internal validity. However, using toy code modules and 
inexperienced subjects sacrifices external validity, because the results will not necessarily 
hold in an environment where professionals test large software systems (Brooks, 1980). 
These tradeoffs demonstrate the value and importance of developing an explicit statement 
of experiment goals. 

Scope of an experiment. Choosing the scope of an experiment depends on the desired 
external validity of the results (i.e., the context for which the results should be useful). For 
example, specialized case studies (narrow scope) may offer results that, although limited 
to a specific context, are extremely useful for that context (Lee, 1989; Glass, 1995). Basili 
et al. (1986) classified the scope of empirical studies using repeatability and organizational 
context as criteria, as reprinted in Table 2. The upper-left box in the table ("single project") 
might also be called a case study; one team (or even a single subject) participates in a 
single project (exercise). For example, one person may apply a single defect-detection 
technique to a single program, or a team may apply design inspections in the course of a 
development project. For maximum internal and external validity, a controlled experiment 
(as characterized by the lower right-hand corner of Table 2) will be required. 2 

2.2.2. Experimental Designs 

We use the term "experiment" to mean a controlled investigation in which some random 
assignment of subjects to levels of independent variables has been done (Spector, 1981). The 
experimental design explains how this assignment is done, and thereby controls factors that 
will permit causality to be inferred (Campbell and Stanley, 1966). The design is fundamental 
to internal validity, and determines in large part the external validity of the results as well. 
This section discusses independent variables, dependent variables, randomization, repeated 
measurements, manipulation strategies, and null hypotheses. 

Independent variables. An independent variable is a factor believed to influence the re- 
sults of the experiment (i.e., a causal factor). The experimenter manipulates the values 
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assumed by an independent variable to study the effects of those different values on the 
results. The independent variables that primarily determine the external validity of this 
class of experiments are the defect-detection technique, the types and sizes of the programs 
(objects) to which the techniques are applied, and the types and number of faults in the pro- 
grams. Given a within-subjects design, the independent variables that primarily determine 
the internal validity of this class of experiment are the order in which subjects apply the 
techniques, and the order in which subjects see the programs. Independent variables are said 
to be confounded if their values do not vary independently of each other. For example, if all 
subjects were to test the same program with the same technique, the variables 'technique' 
and 'program' would be said to be confounded. 

Uncontrolled independent variables (also called subject variables) are those factors which 
may influence the results but which the experimenter cannot manipulate, or chooses not 
to manipulate. Examples of these variables include a subject's experience and motiva- 
tion. However, the experimenter may attempt to measure these factors to test whether any 
correlation is seen with the results. 

Dependent variables. The dependent variables measure the effects of manipulating the 
independent variables. For example, dependent variables may be defined to measure the 
responses of the subjects when they use a defect-detection technique. In this class of 
experiments, possible dependent variables include elapsed time, counts of failures revealed, 
counts of failures recorded, counts of faults isolated, etc. 

Randomization. Randomization refers to the random assignment of subjects to different 
levels of the independent variables. In experiments that evaluate defect-detection tech- 
niques, subjects are randomly assigned the combination of a defect-detection technique 
and a code object. Randomization is also an important prerequisite for the use of certain 
statistical analysis procedures (see Section 2.2.7). 

Repeated measurements. An important issue in designs that observe each subject mul- 
tiple times (within-subject designs) is repeated measurements. Repeated measurements 
permit subjects to be compared with themselves, helping quantify selection effects. The 
experimenter also gains badly needed data points without recruiting and training a new set 
of subjects. However, having a subject perform several related tasks within a short time 
interval may cause nonnegligible learning effects. 

Manipulation strategy. A design's manipulation strategy explains what combinations of 
causes (i.e., independent variables) are examined. An independent variable is commonly 
called a factor in the terminology of experimental design, and the values that each factor 
can assume are called levels. Factors (actually the levels) are commonly manipulated in an 
experiment by crossing them (Pfleeger, 1995a). A complete crossing of some number of 
factors is called a full factorial design. A full-factorial design tests all possible combinations 
of factors. This seemingly ideal situation permits the experimenter to measure interaction 
effects between the various independent variables. For example, the factors T (technique) 
and P (program) are crossed if all levels of factor T are matched with all levels of factor 
P, and would be expressed as "T • P." The number of trials required for a full-factorial 
design is the product of the number of levels of each factor. Assuming three techniques 
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(three levels for factor T) and three programs (three levels for factor P), a minimum of 
3 x 3 = 9 trials would be required. 

Due to the extreme variability in skill among human subjects, software engineering ex- 
perimentalists would ideally like to use repeated measurements as well as full-factorial 
designs in their experiments. Thus ideally an experimenter would like to have the same 
subject test the same program with many different defect-detection techniques. However, 
learning effects make it ridiculous for subject to apply a second, different technique to a 
program in which she or he already detected defects once. A compromise is needed. 

Software engineering experiments commonly use a partial-factorial design to permit 
repeated measurements. A partial-factorial design omits some combinations of factors 
for various reasons. Because learning effects prevent an experimenter from testing all 
combinations of subject, technique, and object, realistic designs for this class of experiments 
must omit the combinations in which a subject sees the same object (program) more than 
once. There are further tradeoffs between a full-factorial and an efficient experimental 
design. For further information, see for example (Pfleeger, 1995b). 

Null hypotheses. The design determines a minimum set of null hypotheses regarding ex- 
ternal and internal validity of the experiment. The hypotheses concerning external validity 
correspond directly to the testable hypotheses derived from the goals; the rest check for 
threats to internal validity, All of the null hypotheses derived from the design are com- 
monly tested using inferential statistical analysis procedures. These tests are discussed in 
Section 2.2.1. 

In the class of experiments discussed here, the primary null hypothesis for external validity 
states that the different techniques (i.e., the various levels for factor “technique”) have no 
effect on the values of the dependent variables. Additionally, null hypotheses concerning 
internal validity issues help the experimenter quantify threats such as selection or learning 
effects. For example, a null hypothesis may state that the different objects or subjects used 
in the experiment have no effect on the values of the dependent variables. 

Two errors are possible when an experimenter considers whether to accept or reject a null 
hypothesis (Judd et al., 1991, pp. 396 ff.) The first error (called a “Type I error”) consists of 
rejecting the null hypothesis although it was in fact true. For example, an experimenter may 
erroneously state that a technique helps subjects detect defects more rapidly, although it in 
fact did not. The second error (called a “Type II error”) consists of failing to reject the null 
hypothesis although it was in fact false. For example, an experimenter may erroneously 
state that two techniques helped subjects detect the same percentage of defects, although in 
fact they differed. 

2.2.3. Defect-Detection Techniques 

The defect-detection techniques are the primary target of study in this class of experiments. 
We prefer to avoid the term treatments as used by some researchers (see e.g., Votta and 
Porter, 1995) because in psychological and medical experiments, the experimenters apply 
some treatment such as medication to subjects and measure the subject’s responses (see e.g., 
Aronson et al., 1985). In contrast, the class of experiments discussed here requires subjects 
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to apply some techniques to some objects, and then to measure the responses themselves. 
Thus the subject’s ability to apply the technique may obscure the technique’s power. For 
example, a subject may succeed in revealing a failure, but then fail to notice the revealed 
failure. In that case, the technique was successful, but the subject measured the response 
poorly. 

Because the subject applies the technique, the process to be followed must be well- 
defined and documented. Issues of process conformance, motivation, and bias can then 
be addressed. The issue of process conformance asks whether the subject’s application of 
the technique deviates from the prescribed process (Sorumgkd, 1996). Motivation is an 
issue in all experiments, and especially so because the subject’s creativity and insight is 
critical when developing test cases. A less than motivated subject may exert little effort 
in applying the technique and consequently detect few defects, a poor result that cannot 
entirely be blamed on the technique. Finally, if the subject is biased for (or against) the 
language or defect-detection technique, the subject may perform better (or worse) as a 
result. It is difficult to find a measure of motivation or bias that exhibits high construct 
validity. Still, even using an imperfect measure it may be possible to mitigate the effects of 
biased and motivated subjects by spreading subjects of different motivation and bias levels 
equally over all combinations. This can be done by defining groups (blocks) based on some 
assessment of bias and motivation, and then randomly assigning members of each block to 
the combinations of technique and object. 

The classes of defect-detection techniques considered in this class of experiments are 
inspections and other reading (verification) techniques, functional testing, and structural 
testing. Each is discussed next. 

Reading techniques. These verification techniques are used to detect defects in code 
without using the computer. Software practitioners use many different off-line reading 
techniques. Notable differences among the techniques include the use of individuals versus 
teams, the availability of tool support, and the use of meetings (Porter et al., 1995a). 
Example verification approaches include walk-throughs (subjects “walk through” the code, 
“executing” it on paper), structured inspections (subjects detect defects on their own and 
hold meetings to collect the defects) (Fagan, 1976; Porter et al., 1995), and code reading 
by stepwise abstraction (subjects write their own specification of the code and compare it 
with the official specification) (Linger et al., 1979). The code reading approach used in 
several experiments surveyed in this paper may be considerably more rigorous than either 
a walk-through or code inspection. 

Functional testing. Also known as “black box” testing, this validation technique is char- 
acterized by using primarily the specification to develop test cases. Approaches such as 
equivalence-class partitioning and boundary-value analysis may be used to choose test data; 
these approaches serve as termination criteria. In general, subjects use the specification to 
develop test cases, run the test cases to reveal failures, and use the specification to identity 
failures. 

Structural testing. Also known as “clear box” or “white box” testing, this validation 
technique is characterized by using primarily the source code to develop test cases. The 
termination criteria for structural testing are defined in terms of coverage criteria; i.e., some 
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statement is made about what percentage of the code or percentage of paths through the 
code must be exercised by the set of test cases. Many different coverage criteria may be 
selected; one example is 100% statement coverage, meaning that each statement is executed 
at least once (Myers, 1979). In general, subjects use the source code to develop test cases, 
run the test cases to obtain the desired coverage and reveal failures, and use the specification 
to identify the failures. 

2.2.4. Objects 

The objects (sometimes called instruments or artifacts) are the pieces of faulty code to which 
the subjects apply the chosen defect-detection techniques during training and experimental 
exercises. 

Code modules. The use of objects of a nontrivial size is important for external validity. 
However, the maximum amount of effort that subjects can expend may be sharply limited, 
forcing the use of small pieces of code. The minimal requirements for the code modules used 
in this class of experiments are that the implementation language is known to the subjects and 
that the size is appropriate for completing in the time allotted. Optimal requirements for the 
objects will satisfy the needs of the researcher and the context (i.e., consider the viewpoint 
and context of the experiment as stated in the goal). For example, from the viewpoint of 
a researcher who is primarily interested in internal validity, optimal objects are generally 
small, stand-alone programs that can be analyzed relatively quickly. In contrast, from the 
viewpoint of a practitioner or development manager who is interested in external validity, 
optimal objects would be those taken from a current project. 

Faults. The experimenter needs code modules that exhibit some number and type of faults 
that manifest themselves as failures at run-time. Ideally, code modules with naturally 
occurring faults can be used; otherwise, the experimenter must seed faults into some code 
modules. A balance must be found between an extremely low number of faults in the source 
code (subjects may not find any) and an unrealistically high number of faults (subjects may 
become disgusted with the task). Further, the experimenter will want to balance the choice 
of faults of various types. We classify faults using two orthogonal facets as discussed in 
Basili and Selby (1987). Facet one (omission, commission) describes whether the fault 
was due to the absence of necessary code or the presence of incorrect code. Facet two 
(initialization, computation, control, interface, data, cosmetic) describes the nature of the 
fault in more detail; i.e., what code construct was written incorrectly. One caveat is that 
the classification of faults is a subjective process. Finally, the experimenter must make a 
tradeoff between internal and external validity with respect to faults and their interactions. 
For example, internal validity is improved at the expense of external validity if all faults 
cause observable failures and interact as little as possible. 

2.2.5. Subjects 

This section discusses the selection of subjects, their experience, ethical issues, and the 
number of subjects needed. 
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Selection. Ideally, the subjects would be a random sample of the population of computer 
science professionals. However, attaining a random sample is difficult. Instead, subject 
groups are commonly an accidental sample of this population (Judd et al., 1991), mean- 
ing that they are selected based on their participation in university or industrial courses. 
However, it is important not to ask for volunteers to avoid the problems of self-selection. 
Instead, all course participants should be used. 

Experience. Both university students and professional developers have been used as sub- 
jects in this class of experiments. In the software engineering domain, these two types of 
experimental subjects have been classified as performing experiments in vitro (i.e., with 
students) versus in viva (i.e., with professionals) (Votta and Porter, 1995). The argument 
is that experiments should be piloted in universities to detect problems in the design and 
procedures at a relatively low cost. A more costly study involving professionals can then be 
performed with the knowledge that all experimental materials have been rigorously tested. 
These two groups have different levels of experience, which determines how seriously the 
threat of learning effects must be taken. A subject’s knowledge of the application domain, 
the test environment, the operating system, and the support tools all influence learning 
effects. If subjects lack this experience, learning effects are likely to dominate the results. 
An optimal subject would have a detailed knowledge of the implementation language as 
well as all of the defect-detection techniques that will be analyzed. 

Ethical issues. Many ethical issues that arise in psychological experiments using human 
beings are happily absent from this class of experiments. These include involving people 
without their consent, deceiving subjects, invading the privacy of subjects, or withholding 
benefits from control groups (Judd et al., 1991, Chapter 20). However, student subjects 
are commonly required to participate in experiments as a condition of passing a course, a 
practice that is considered acceptable provided that no undue coercion is present, and that 
the procedures provide an educational benefit to the subject (see Judd et al., 1991, pp. 491- 
492) for a detailed discussion). Further, it is important that quantitative results are not used 
when determining course grades, just the fact that the student did or did not participate. In 
the context of an experiment run in industry, job pressures to participate in an experiment 
are also undesirable. 

Another part of experimental ethics, and a way of reassuring the subjects that their per- 
formance will not be evaluated and used against them, involves preserving their anonymity. 
Preserving anonymity is especially difficult when an educator wants to ensure that all mem- 
bers of a course have participated in an experiment. Still, some semblance of anonymity 
can be preserved by assigning subjects an identifier, and using strictly that identifier on all 
data collection forms. The correspondence between identifiers and true identities need not 
ever be recorded. 

How many? The question “how many subjects should be used” can be answered by 
examining first the design and second the power of the statistical analysis technique that 
will be used. The number of independent variables and the number of levels that each 
variable can assume sets an absolute minimum, because the experimenter wants at least 
one observation of each combination. Based on an experimenter’s choice of statistical 
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analysis technique and significance level, the power of the technique must be examined. 
The power of an analysis technique refers to its sensitivity and is defined as the probability 
of making an error of Type II; i.e., incorrectly accepting the null hypothesis. The power 
of a technique is commonly expressed in a power table. For a given analysis technique, a 
power table relates the four factors sensitivity (power level), effect size, significance level, 
and number of observations (i.e., subjects). These tables can be found in references such 
as Cohen (1988). Larger samples lead to greater powers for a given analysis technique. An 
especially difficult part of power analysis is estimating the effect size that is expected in 
the experiment. See also Miller et al. (1995) for a discussion of power analysis in software 
engineering experiments. 

2.2.6. Data Collection and Valiabtion Procedures 

The subjects will collect most of the values for the dependent variables during the experi- 
ment using data-collection forms. Answering the following questions about the dependent 
variables (metrics) will help plan the content and number of forms that are required for the 
study. 

l What data is collected once? 

l What data is collected periodically? 

l What collection can be automated? 

We recommend testing the forms before conducting the experiment; a training phase may 
serve this purpose if there is sufficient time between the end of the training phase and the 
start of the experiment to repair any problems found. 

After the subjects have completed the exercises, we recommend performing detailed 
interviews of subjects to validate their data (see also (Basili and Weiss, 1984) for a discussion 
of the dangers of not conducting interviews). These interviews let the experimenter inquire 
whether the subjects applied the techniques as prescribed (process conformance), determine 
whether the subjects understood how to supply the data that were demanded of them (data 
validity), and check other issues that might cause misleading results. 

2.2.7. Data Analysis Procedures 

An inferential statistical analysis procedure is commonly used to test the null hypotheses 
that the experimenter derived from the design. These procedures offer a judgement as 
to the probability that the results were due to chance. Selecting an appropriate analysis 
procedure to evaluate the results of an experiment can be a challenging task. In the case 
of software engineering experiments, small data sets and significant restrictions on those 
already limited data are common (Zweben et al., 1995). The data analysis procedure should 
ideally be selected when the experiment is planned, because the choice of data analysis 
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procedures is dependent on the experimental design as well as the collected data. We discuss 
briefly significance level, power analysis, parametric analysis procedures, nonparametric 
analysis procedures, and other pattern-recognition approaches. See Briand et al. (1996) 
for a comprehensive discussion of data analysis procedures in the software engineering 
domain. 

Signifkancelevel. An important issue is the choice of significance level. Common practice 
dictates rejecting the null hypothesis when the significance level is 5 0.05 (Box et al., 
1978, p. 109). If multiple hypotheses will be tested simultaneously, a lower value must be 
used. On the other hand, research in the social sciences will sometimes use a value of 0.10, 
depending on the design. Regardless of the value, it should be chosen before the experiment 
is conducted. 

Power of analysis technique. An important selection criteria is the power of an analysis 
technique, as discussed in Section 2.2.5, meaning the variation that a technique can detect 
given the available observations and the desired significance level. 

Parametric analyses. Parametric analysis procedures infer whether the differences among 
sets of data are significant by testing whether the variance among sets of data is larger than 
the variance within those sets. These procedures assume that the distribution for the data 
can be adequately described with a number of parameters. A common assumption is that 
the data exhibit a normal distribution. A simple test for normality in a data set involves 
exploratory data analyses such as graphing the data to check for outliers and deviations from 
the expected bell curve of data. For example, parametric techniques such as ANOVA are 
commonly used when randomization has been performed and assumptions of normality can 
be justified. Some good news for experimenters is that parametric techniques are robust to 
nonnormality under certain conditions, most importantly randomization (Box et al., 1978, 
pp. 46ff. and p. 104). Even if the assumptions are violated, analysis procedures such as the 
t test become more conservative; i.e., they will not make a type I error, but may lead the 
experimenter to make a type II error (Briand et al., 1996). 

Nonparametric analyses. If the data lie on an ordinal scale, randomization was not part 
of the experiment, or a normal distribution for the population is badly violated due to 
many outliers, then a nonparametric analysis procedure is an appropriate choice. These 
procedures assume nothing about the distribution of the data. They function by ranking the 
data points within a data set and then analyzing only the rank information. Although these 
analysis methods offer a low risk of making a Type I error, they may lead the experimenter 
to make a Type II error because of their reduced power when compared to the parametric 
analysis procedures. 

Other approaches. A number of pattern-recognition approaches have been applied to 
software engineering data sets. These include classification trees (Selby and Porter, 1988) 
and optimized set reduction (Briand et al., 1993). These approaches make no demands or 
assumptions about the distribution of the data sets, but generally require a large number of 
data points before they are helpful. Because of those requirements, they are not usually 
suitable for analysis of the relatively small data sets obtained from case studies or controlled 
experiments. 
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2.3. Experiment Procedures 

This section discusses the procedures involved in conducting an experiment to compare 
defect-detection techniques. Experimental procedures describe precisely how the exper- 
iment will be performed, including how subjects will apply the chosen techniques to the 
chosen objects, as well as what aspects of monitoring, computer lab space, etc. must be 
considered. Procedures are essentially the implementation of the design, plus some ex- 
tra details that are not independent variables but can nonetheless be the downfall of an 
experiment. 

2.3.1. Phase 1: Training 

If the techniques to be applied are unknown to the subjects, or if the subjects are known 
to have different levels of expertise with the techniques, then a training phase is highly 
recommended. The purpose of a training phase is to reduce the differences in the primary 
uncontrolled independent variables, namely the experience and capabilities of the subjects. 
Training reduces, but cannot eliminate, learning effects, and thereby can improve the internal 
validity of an experiment. A training session also familiarizes subjects with the techniques 
and experimental procedures such as data collection forms. Further, a training session can 
serve as a dry run of the experiment; i.e., it offers the experimenter a chance to debug the 
experimental procedures and data collection forms. 

Ideally the training phase and the experiment will be performed with as little time sepa- 
rating them as possible. We suggest performing the training activities within a week’s time, 
and running the experiment the following week. 

2.3.2. Phase 2: Experiment 

In the experiment, the subjects apply the techniques to the experimental objects. We recom- 
mend that the experimenters monitor the rooms in which subjects work. The experimenters 
can answer questions from subjects, assist subjects in filling out the forms used to capture 
data, and prevent any undue influences that might result from subjects helping each other. 
Depending on the nature of the experiment and the granularity of data that the experimenters 
require, other data collection methods may also be used. For example, experiments that in- 
vestigate human-computer interaction issues such as the usability of a test-support tool may 
require the subjects to be videotaped during their exercises to permit additional analyses 
(F’reece and Rombach, 1994). 

2.3.3. Phase 3: Analysis, Interpretation, and Feedback 

To improve the value of the experiment as a educational exercise, an interpretation session 
should be scheduled for reporting the results to the subjects as soon as possible following 
the experiment. The results can be discussed as soon as the researchers have performed 
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preliminary statistical analyses. This provides the subjects with feedback that may confirm 
or refute the subject’s expectations. Feedback also adds objective, empirical data to the 
subject’s beliefs about the utility of the techniques used in the experiment. 

2.4. Results 

The final aspects of any experiment are the raw data, the results of any inferential statistical 
analyses performed on the raw data, and interpretations of the statistical analyses. The 
power of the statistical analysis technique must be considered and reported with the results. 
If application of the statistical analysis technique yields results that indicate no significant 
differences, this should be interpreted to mean that the differences were less than the varia- 
tion that can be detected by the analysis technique (i.e., its power). For example, if a power 
table reports that the combination of technique, significance value, and number of observa- 
tions yields a power of 90%, then the technique will not detect significant differences that 
are less than 1 - 0.9 = 10%. Section 3 surveys results from four comparable experiments. 

Failures to reproduce earlier results. The results of a replicated experiment sometimes do 
not agree with the original results. To help understand failures to reproduce other’s results, 
researchers must supply as much information as possible to permit an analysis of possible 
differences between the experiments. The characterization scheme of Table 1 is a guide to 
the information that should be reported. Special attention should be paid to the design, the 
subject profiles (education, experience, training), measurement procedures (bias, reliability, 
questionnaires), and materials (code, documents, instructions) used in the experiment. This 
information may assist others in identifying confounding variables or cultural differences 
that the researcher did not or could not control. 

3. Survey of Comparable Experiments 

This section uses the schema from Table 1 to survey four comparable experiments that 
compared reading and testing techniques. Special emphasis is placed on an experiment that 
we conducted at the University of Kaiserslautern. As in previous work (see, e.g., Basili and 
Weiss, 1985), this section demonstrates the difficulty of comparing experiments in software 
engineering and drawing meaningful conclusions from the results. 

3.1. Hetzel(1976) 

Hetzel performed a controlled experiment that compared three defect-detection techniques 
(Hetzel, 1976). 
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Table 3. Hetzel’s experimental design (Hetzel, 1976). 

Subject 
Group A Group B Group C 

s. 1 s. 2 s. 3 s. 1 s. 2 s. 3 s. 1 s. 2 s. 3 

1 DRI MT3 ST2 DR2 MT1 ST3 ST1 MT2 DR3 
2 DRl MT3 ST2 DR2 MT1 ST3 MT2 DR3 ST1 

12 DRl ST2 MT3 DR2 ST3 MT1 ST1 DR3 MT2 
13 ST2 DRl MT3 MT1 ST3 DR2 DR3 ST1 MT2 

01976 W. Hetzel. Used by permission. 

Goal. The template presented in Section 2.1.1 was used to construct a goal for this experi- 
ment. 

Analyze three defect-detection techniques 
for the purpose of comparison 
with respect to their effectiveness at revealing failures 
from the point of view of the researcher 
in the context of a controlled experiment. 

Experimental design. Table 3 summarizes Hetzel’s experimental design. Subjects were 
randomly divided into groups A, B, and C to match the technique with the program. Then 
the order in which they saw the programs and applied the defect-detection techniques was 
randomized. For example, subject 2 from group A applied disciplined reading (DR) to 
program 1 during session 1, applied mixed testing (MT) to program 3 during session 2, and 
applied specification testing (ST) to program 2 during session 3. 

Defect-Detection Techniques. The following three techniques were compared. 

DR (disciplined code reading): A specification was developed by characterizing the 
lowest-level code structures (“paragraphs”) first, then computing the effects of the total 
program by combining the effects of the paragraphs. This specification was compared 
with the official specification to detect defects (inconsistencies). 

ST (specification testing): In this functional test technique, only the specification was used 
to derive test cases. No other criteria for developing test cases were specified. Defects 
were detected by evaluating the output with the specification. 

MT (mixed testing): In this mix of functional and structural testing (also called selective 
testing in the original source), subjects could use the specification to develop test cases, 
but were also given a goal of achieving 100% statement coverage. Defects were detected 
by evaluating the output with the specification. 



COMPARINGDEFECT-DETECTIONTECHNIQUES 259 

Objects. Three highly structured PL/I programs of 64, 164, and 170 statements were 
used. The programs contained faults that caused 9, 15, and 2.5 different types of failures, 
respectively. 

Subjects. The 39 subjects were selected based on their experience with PL/I. The subjects 
averaged over 3 years of programming experience and were a mix of graduate students and 
professionals. Selection and motivation were driven by a significant monetary reward that 
varied with performance (minimum US $75, maximum US $200 in 1976 dollars). 

Data collection procedures. Data collection forms were used to collect data about the 
subject’s background, the subject’s attitudes towards the techniques, and the faults and 
failures detected while applying the techniques. 

Data analysis procedures. Parametric statistical procedures (ANOVA) were used to ana- 
lyze the data. 

Experimental procedure. The training session and experimental sessions were performed 
during a span of 6 days (Monday through Saturday). The training session consisted of 
an introduction to the techniques, a presentation of the specifications, and an overview of 
the structure of the three programs that would be used during the experiment. Thus in 
contrast to some experiments, the subjects were partially acquainted with the object before 
beginning the exercises, but they had not practiced the testing tasks. 

Batch processing of jobs was used; turnaround time averaged 15 minutes. Monitors 
submitted jobs and fetched output. Six sessions were held to reduce the load on the machine 
(odd-numbered subjects participated in three of the sessions, and even-numbered subjects 
participated in the other three). 

A time limit was enforced (3.5 and 4.5 hours maximum, depending on the program). Any 
breaks or pauses that the subjects took were not charged against the time limit. Only limited 
data were collected about the actual time required. 

Results. No significant difference in effectiveness was detected among the two testing 
techniques. However, the data showed that the subjects who applied the reading technique 
performed less effectively than those who applied the testing techniques (significance level 
-C 0.01). The differences attributable to the programs were even larger than the differences 
attributable to the techniques, suggesting a strong selection effect. Measures of the indi- 
vidual’s effectiveness correlated well (some significance levels < 0.01) with the number of 
computer science courses they had taken. Hetzel also noted that the subjects observed only 
about 50% of the revealed failures, and that the separation of best and worst performers 
was a factor between 2 and 3. 

3.2. Myers (1978) 

Myers performed a study that compared three defect-detection techniques (Myers, 1978). 

Goal. The template presented in Section 2.1.1 was used to construct a goal for this experi- 
ment. 
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Table 4. Myers’ experimental design (Myers, 1978). 

Group A: 
Functional test 

Group B: 
Structural test 

Group C: 
Walkhnspec. 

PLJI rating: 1.5 PUI rating: 2.1 PL/I rating: 2.4 
W/I rating: 0.2 wn rating: 0.3 W/I rating: 0.6 

Analyze three defect-detection techniques 
for the purpose of comparison 
with respect to their effectiveness and efficiency at revealing failures 
from the point of view of the researcher 
in the context of an industrial course. 

Experimental design. Table 4 summarizes Myers’ experimental design. Each subject was 
observed once; no randomization was performed. To reduce bias, subjects were divided into 
three groups based on their experience with PL/l and walkthroughlinspection techniques, 
as shown in the table. Each subject’s PL/I rating was computed using an ordinal scale (1 = 
no understanding, 2 = rudimentary understanding, and 3 = advanced understanding of the 
language), and the walk-through/inspection rating was computed using a different ordinal 
scale (0 = no experience, 1 = some experience with these techniques). The values in Table 4 
are group means.3 However, an insufficient number of subjects were experienced with PL/I 
and walk-throughs/inspections to permit balancing the groups based on these experience 
ratings. The result was that subjects applied the technique with which they had the most 
experience (average over the group, not true for all individuals). Groups A and B had 16 
subjects each; group C had 9 teams of 3 people each. 

Defect-Detection Techniques. The following three techniques were applied by the sub- 
jects. 

FT (functional testing): Subjects in Group A only had access to the program’s specification 
and an executable version. No method for deriving test cases was specified. 

ST (structural testing): Subjects in Group B had access to the program’s specification and 
its source code. No method for deriving test cases was specified, nor were any coverage 
criteria required. 

W/I (walk-through/inspection method): Subjects in Group C were divided into teams of 3 
and then asked to “test” the program using an ad hoc, manual walkthrough/inspection 
method. Individuals prepared separately, then met to collect defects. 

Object. A single PLA program of 63 statements that formats input text on a line-by-line 
basis was used. This program contained 15 faults. 

Subjects. The subjects were 59 software developers who participated in a course held for 
IBM employees. 
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Data collection procedures. Data was collected via data-collection forms. 

Data analysis procedures. Myers used nonparametric methods (specifically Kruskal-Wal- 
lis) and correlation tests to analyze the data. 

Experimental procedure. Subjects were pretested to assess their experience with PL/I 
and with the walkthrough/inspection technique. The results of the pretests were used to 
form groups of similar abilities (see discussion of design).4 No training phase is described, 
although lectures were held on program testing during the course. 

During the experiment, the subjects who performed testing were instructed to test until 
they believed they had found all of the failures (no time limit). The amount of time that they 
required was recorded. The subjects who performed the walkthrough/inspection method 
took the materials with them, prepared on their own, and reported their time. The subsequent 
collection session was limited to 90 minutes. 

Results. The data showed no significant differences in effectiveness among the three tech- 
niques. However, differences in time per fault were judged to be highly significant (no 
level reported), the walkthrougNinspection method required the most time, functional test- 
ing somewhat less, and structural testing the least amount of time. Based on the large 
variability observed among individuals, correlations of the results with uncontrolled inde- 
pendent variables such as testing experience and performance on the pretest were checked, 
but no large, significant correlations were found. Even ignoring significance issues, Myers 
reported that the results were somewhat disappointing: these experienced subjects largely 
ignored unconventional input cases in favor of conventional ones, overlooked many revealed 
failures, and isolated on average only one-third of the known faults. 

3.3. Basili & Selby (1987) 

Basili & Selby developed a controlled experiment that compared three defect-detection 
techniques (Selby, 1985; Basili and Selby, 1987). They conducted their experiment three 
times. The first two repetitions used a total of 42 advanced students, but those results are 
not presented here. The discussion below focuses on the last of the three repetitions, when 
professionals were used. 

Goal. The template presented in Section 2.1.1 was used to construct a goal for this experi- 
ment. 

Analyze three defect-detection techniques 
for the purpose of comparison 
with respect to their effectiveness and efficiency at revealing failures 
from the point of view of the researcher 
in the context of an industrial development group. 

Experimental design. Table 5 summarizes Basili & Selby’s experimental design. The 
subject’s experience was considered an independent variable and was characterized in terms 
of years of professional experience and academic background. A random match of subjects, 
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Table 5. Basili & Selby’s experimental design (Basili and 
Selby, 1987). 

Subjects 
Code Functional structural 

reading testing testing 

Advanced Sl P4 
s2 P3 

S8 PI 

P3 
Pl 

P4 

Pl 
P4 

P3 

Intermed. S9 P3 
SlO P4 

Pl 
P3 

P4 
Pl 

s19 Pl P4 P3 

Junior s20 P3 
s21 PI 

S32 P4 

PI 
P4 

P3 

P4 
P3 

Pl 

01987 IEEE. Used by permission. 

techniques, programs, and experience levels was made. Subjects worked with the programs 
in a fixed order; i.e., all subjects first worked with program Pl on day 1, then with P3 on 
day 2, and finally with P4 on day 3. (There was a program P2, but it was not used in the 
third repetition.) Given this ordering, the table shows the randomization of the order in 
which the techniques were applied. For example, advanced subject S2 applied functional 
testing to Pl on day 1, applied code reading to P3 on day 2, and applied structural testing 
to P4 on day 3. 

Defect-Detection Techniques. The following three defect-detection techniques were com- 
pared. 

CR (code reading): Individuals use the source code and the technique of “code reading 
by stepwise abstraction” to write a specification for the program. Using this technique, 
individuals identify prime subprograms (basic blocks) in the source, write a specification 
for that subprogram, and repeatedly combine specifications into larger ones until they 
have captured the behavior of the program. The subjects compare their specifications 
with the official specification to detect inconsistencies. 

FT (functional testing): Subjects analyze the specification to identify equivalence classes 
in the input data. They then choose test cases based on that analysis by focusing on 
equivalence-class boundaries, run the test cases, and compare the actual output with 
the expected output to detect failures. 

ST (structural testing): Subjects use a source-code listing to construct test cases that will 
lead to 100% statement coverage. After running the tests, individuals compare the 
actual output with the expected output to detect failures. 
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Objects. Three FORTRAN programs of 169, 147, and 365 source lines were used. These 
programs had 9, 6, and 12 faults, respectively. One of the programs (P4) was rewritten in 
FORTRAN and reused from the Hetzel study, and one program (Pl) was rewritten in FORTRAN 
and reused from the Myers study. The objects are available (see appendix). Faults were 
classified into different types and classes to enable checking whether the techniques differed 
in the detection of failures caused by different kinds of faults. 

Subjects. The 32 subjects who participated in the third repetition were professional pro- 
grammers. These subjects had anywhere from 1.5 to 20 years of professional experience. 

Data collection procedures. Data-collection forms were used, and some assistance was 
gained from the computer. 

Data analysis procedures. A parametric analysis procedure was used, specifically ANOVA. 

Experimental procedure. The training session consisted of a 4-hour tutorial on the tech- 
niques to be applied; the subjects had previously used only functional testing. Subjects 
applied the techniques in three separate sessions. Following the three sessions, a follow-up 
“debriefing” session was held to discuss the experiment. 

Results. Analysis of the data showed that the code readers detected the largest percentage 
of inconsistencies (comparable with failures in the testing techniques, significance level 
< O.Ol), and that the functional testers detected more failures than the structural testers 
(significance < 0.01). However, the subjects spent a similar amount of time applying all 
three techniques (no significant differences were found), resulting in code reading being 
the most efficient at revealing failures (significance level < 0.01). 

As in the Hetzel study, a disappointing result was that on average only 50% of possible 
failures were revealed and recorded. Basili & Selby noted that code readers have revealed 
inconsistencies (comparable with failures) and done much work towards isolating the faults, 
whereas the testers have only revealed failures. This was the motivation for the extension 
done in the Kamsties & Lott experiment. 

3.4. Kamsties & Lott (1995) 

Kamsties & Lott extended the design and techniques originally used by Basili & Selby 
(1987) and conducted the resulting experiment twice (Kamsties and Lott, 1995). The 
extension consisted of a step of fault isolation following failure detection. Next we present 
an overview of the Kamsties & Lott experiment according to the characterization scheme 
of Table 1. First the goals from that experiment are presented. Then the experiment plan is 
presented, including the design, techniques, objects, subjects, data-collection procedures, 
and data-analysis procedures. Finally the procedures are stated, and results are given. 
Guidelines for reusing all of these aspects are also presented. 

3.4.1. Goals and Testable Hypotheses 

We present a detailed discussion of the goals and hypotheses from the Kamsties & Lott 
experiment so that the interpretation and explanation of the results can be substantiated with 
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this qualitative information. The following four concrete goals also demonstrate the use of 
the goal template from Section 2.1.1. 

Goal 1: Effectiveness at revealing failures. The goal is stated as follows: 

Analyze code reading, functional testing, and structural testing 
for the purpose of comparison 
with respect to their effectiveness at revealing failures/inconsistencies 
from the point of view of the researcher 
in the context of a university lab course using small C programs. 

The effectiveness of revealing failures5 is defined as the percentage of the total possible 
failure classes that were revealed. Provided that faults do not interact, one failure class 
is defined for each fault. Only failures that were both revealed by the subject’s detection 
efforts and were recorded by the subject are counted to compute this percentage. Therefore 
meeting goal 1 requires answering the following questions: 

Q1.l: What percentage of total possible failures (i.e., total possible failure classes) did 
each subject reveal and record? 

Q1.2: What effect did the subject’s experience with the language or motivation for the 
experiment have on the percentage of total possible failures revealed and recorded? 

These questions may be answered by collecting data for the following metrics: 

M1.l: The number of different, possible failure classes. 
A count of total possible failure classes is derived from the count of total faults. If faults 
do not interact, then each fault produces only one failure class. 

M1.2: The subject’s experience with the language, estimated on a scale from O-5. 

M1.3: The subject’s experience with the language, measured in years of working with it. 

M1.4: The subject’s motivation for the experiment, estimated on a scale from O-5. 

Ml.5 The subject’s mastery of the technique, estimated on a scale from O-5. 

M1.6: The number of times a test case caused the program’s behavior to deviate from the 
specified behavior (i.e., revealed some failure class). 

M1.7: The number of revealed deviations (i.e., unique failure classes) that the subject 
recorded. 

Testable hypotheses are derived from the statement of goal 1, the questions, and the metrics 
as follows: 

H1.1: Subjects using the three defect-detection techniques reveal and record a different 
percentage of total possible failures. Rewritten as a null hypothesis: Subjects record 
the same percentage of total possible failures. 
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H1.2: A subject’s experience and motivation affect the percentage of total possible failures 
s/he reveals and records. Rewritten as a null hypothesis: Measures of experience and 
motivation have no correlation with the data for percentage of failures. 

Goal 2: Efficiency at revealing failures. Goal 2 differs from goal 1 only in that we replace 
the word “effectiveness” with “efficiency.” It is stated as follows: 

Analyze code reading, functional testing, and structural testing 
for the purpose of comparison 
with respect to their efficiency at revealing failures 
from the point of view of the researcher 
in the context of a university lab course using small C programs. 

We define efficiency at revealing failures as the percentage of total possible failures divided 
by the time required. Again failures must have been revealed by a subject’s test case as 
well as recorded by the subject to be counted. Therefore meeting goal 2 will require us to 
answer the following questions: 

Q2.1: How many unique failure classes did the subject reveal and record per hour? 

Q2.2: What effect did the subject’s experience with the language or motivation for the 
experiment have on the number of unique failure classes revealed and recorded per 
hour? 

The question may be answered by reusing much of the data that was collected for the metrics 
of goal 1, plus one more: 

M2.1: The amount of time the subject required to reveal and record the failures. 

Testable hypotheses are derived from the statement of goal 2, the questions, and the metrics 
as follows: 

H2.1: Subjects using the three defect-detection techniques reveal and record a different 
percentage of total possible failures per hour. Rewritten as a null hypothesis: Subjects 
record the same percentage of failures per hour. 

H2.2: A subject’s experience and motivation affect the number of failures s/he reveals 
and records per hour. Rewritten as a null hypothesis: Measures of experience and 
motivation have no correlation with the data for failure-detection rate. 

Goal 3: Effectiveness at isolating faults. Previous goals addressed failures (inconsisten- 
cies for the code readers), and in a group dedicated to testing, work stops there. However, a 
development group may also be interested in the next step, namely isolating faults (i.e., the 
aspect of the source code that may cause a failure at runtime). In other words, after applying 
a given defect-detection technique, how difficult is fault isolation? This goal addresses that 
follow-on activity (the extension to the Basili & Selby experiment) and is stated as follows: 
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Analyze code reading, functional testing, and structural testing 
for the purpose of comparison 
with respect to their effectiveness at isolating faults 
from the point of view of the researcher 
in the context of a university lab course using small C programs. 

Of course the defect-detection technique does not isolate a fault, but rather a person 
isolates a fault. We define fault-isolation effectiveness as the percentage of known faults 
that were isolated by the subject after having applied a technique. An important caveat for 
counting isolated faults was requiring that a failure corresponding to the isolated fault had 
been revealed. Without this requirement, the subject could have isolated the fault purely 
by chance, not based on the use of a defect-detection technique. Therefore meeting goal 3 
will require us to answer the following questions: 

43.1: What percentage of total faults (that manifested themselves in failures) did each 
subject isolate? 

Q3.2: What effect did the subject’s experience with the language or motivation for the 
experiment have on the percentage of total faults isolated? 

These questions may be answered by collecting data for the following metrics: 

M3.1: The number of faults present in the program (known in advance because faults are 
seeded). 

M3.2: The number of faults that manifested themselves in failures. 

M3.3: For all faults that manifested themselves in failures, the number of those faults that 
were isolated. 

Testable hypotheses are derived from the statement of goal 3, the questions, and the metrics 
as follows: 

H3.1: Using the information resulting from applying one of the three defect-detection 
techniques, subjects then isolate a different percentage of total faults. Rewritten as a 
null hypothesis: subjects isolate the same percentage of faults. 

H3.2: A subject’s experience and motivation affect the percentage of total faults s/he 
isolates. Rewritten as a null hypothesis: Measures of experience and motivation have 
no correlation with the data for percentage of faults. 

Goal 4: Efficiency at isolating faults. Parallel to goals 2 and 1, Goal 4 differs from goal 3 
only in that we replace the word “effectiveness” with “efficiency.” It is stated as follows: 

Analyze code reading, functional Wting, and structural testing 
for the purpose of comparison 
with respect to their efficiency at isolating faults 
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from the point of view of the researcher 
in the context of a university lab course using small C programs. 

We define efficiency at isolating faults as the number of faults isolated, divided by the 
time required to do so. All caveats from goal 3 also apply here. Therefore, meeting goal 4 
will require us to answer the following questions: 

44.1: How many faults did the subject isolate per hour? 

44.2: What effect did the subject’s experience with the language or motivation for the 
experiment have on the number of faults isolated per hour? 

These questions may be answered by reusing the data that was collected for the metrics of 
goal 3, plus one more: 

M4.1: The amount of time the subject required to isolate faults. 

Testable hypotheses are derived from the statement of goal 4, the questions, and the metrics 
as follows: 

H4.1: Using the information resulting from applying one of the three defect-detection 
techniques, subjects isolate a different number of faults per hour. Rewritten as a null 
hypothesis: subjects isolate the same number of faults per hour. 

H4.2: A subject’s experience and motivation affect the number of faults s/he isolates per 
hour. Rewritten as a null hypothesis: measures of experience and motivation have no 
correlation with the data for fault-isolation rate. 

Reuse guidelines. The goals presented in the previous section may be reused verbatim 
or be tailored to the specific needs of an experiment. To assist with the tailoring activity, 
Table 6 captures the traceability between the goals and the questions presented in the pre- 
vious section, and Table 7 presents the traceability between the questions and the metrics. 
If the previously defined goals are reused verbatim, the supporting questions and metrics 
can also be reused verbatim. If the goals cannot be reused verbatim as stated, they may be 
tailored in many different ways. For example, if a different quality focus (one other than 
effectiveness or efficiency) is introduced, then all questions and supporting metrics pertain- 
ing to the quality focus must be revised. If the previously developed models (definitions of 
effectiveness or efficiency) are not suitable, then the existing goals must be tailored for the 
revised models. 

3.4.2. Plan 

This section discusses the design, techniques, objects, subjects, data-collection procedures, 
and data-analysis procedures from the Kamsties & Lott experiment. 

Experimental design. We used a within-subjects design in both replications. The design 
as used in the second repetition6 appears in Table 8. The four factors (i.e., independent 
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Table 6. Traceability among example goals and questions 

Questions 
Goal 1: Goal 2: Goal 3: Goal 4: 

Effec. fail. Effic. fail. Effec. faults Effic. faults 

Ql . 1, percentage of failures J 
Q 1.2, exp./mot. and failures J 

42.1, failures per hour J 

42.2, exp./mot. and fail./hr. J 

Q3.1, percentage of faults 

43.2, exp./mot. and faults J 

Q4.1, faults per hour J 

44.2, exp./mot. and faults/hr. J 

Table 7. Traceability among example questions and metrics 

Metrics Q1.l 41.2 42.1 42.2 43.1 43.2 44.1 44.2 

M 1.1, total failure classes J J 

Ml .2, experience (rel.) J J J J 

Ml .3, experience (abs.) J J J 4 

M 1.4, motivation J -I J J 

M1.5, mastery of technique J J 2/ J 

M 1.6, failures revealed 2/ J J J 

Ml .7, failures recorded J J J J 

M2.1, time to reveal failures J J 

M3.1, total faults J J 

M3.2, faults that caused failures J J J J 

M3.3, faults isolated J J J d 

M4.1, time to isolate faults J J 

variables) are the techniques, programs, subjects, and order of applying the techniques. 
Random matches of techniques, programs, subjects, and order of applying the techniques 
were performed. Subjects were divided into six groups to manipulate the order in which 
each subject applied the techniques. However, the order in which subjects saw the three 
programs used in the experiment was fixed, not randomized. This prevented the subjects 
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Table 8. Kamsties & Lott’s experimental design (Kamsties and 
Lott, 1995). 

Program 
and day 

Code Read- Functional structural 
ing (CR) testing (FT) testing (ST) 

Pgm. 1 (day 1) groups 1.2 groups 3.4 groups 5.6 

Pgm. 2 (day 2) groups 3.5 groups 1,6 groups 2,4 

Pgm. 3 (day 3) groups 4.6 groups 2,5 groups 1.3 

from discussing the programs among themselves outside the experiment and thereby influ- 
encing the results. In the jargon of controlled experiments, the factors “program” and “day” 
are confounded with each other. For example, subjects in group 1 applied code reading to 
program 1 on day 1, applied functional testing to program 2 on day 2, and applied structural 
testing to program 3 on day 3. 

This design permits the derivation of five null hypotheses that incorporate the hypotheses 
from Section 3.4.1. The following null hypotheses can be tested by applying an appropriate 
statistical analysis procedure: 

D.l: The technique has no effect on the results (i.e., the techniques do not differ in their 
effectiveness and efficiency); this incorporates hypotheses Hl. 1, H2.1, H3.1, and H4.1. 

D.2: The program and day have no effect on the results; i.e., no selection effects. 

D.3: The order in which subjects apply the techniques has no effect on the results; i.e., no 
learning effects. 

D.4: The subjects have no effect on the results; i.e., all subjects perform similarly (no 
selection effects). 

D.5: Measures of the subject’s experience and motivation have no correlation with their 
performance (incorporates hypotheses H1.2, H2.2, H3.2, and H4.2). 

Reuse guidelines. This design strives for high internal validity and a high educational value 
for the subjects. Both of these issues lead toward a repeated-measures design, a design that 
demands considerable time from the participants. Also, if the experimenter can be confident 
that the subjects will not discuss the objects outside the experiment, the design can easily 
be reworked to separate the confounded factors ‘program’ and ‘day.’ 

Defect-detection techniques. The following defect-detection techniques were compared. 

Functional testing (FT). In step 1, subjects receive the specification but do not see the 
source code. They identify equivalence classes in the input data and construct test cases 
using the equivalence classes, paying special attention to boundary values. In step 2, the 
subjects execute their test cases on the computer. They are instructed not to generate 
additional test cases during step 2, but we can neither prevent nor measure this. Step 2 
concludes when the subjects print out their results and log off the computer. In step 3, the 
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subjects use the specification to observe failures that were revealed in their output. After 
recording the failures, the subjects hand in a copy of their printed output, receive the printed 
source code in exchange, and begin step 4. In step 4, the extension to the Basili & Selby 
experiment, the subjects use the source code to isolate the faults that caused the observed 
failures. No special technique is specified for the fault-isolation activity. Step 4 concludes 
when the subjects hand in a list of observed failures and isolated faults. 

Structural testing (ST). In step 1, subjects receive printed source code but do not see 
the specification. They try to construct test cases that will achieve 100% coverage of all 
branches, multiple conditions, loops, and relational operators as measured by the Generic 
Coverage Tool (Marick, 1994). For example, 100% coverage of a multiple condition using 
a single “logical and” operator means that all four combinations of true and false must be 
tested, and 100% coverage of a loop means that it must be executed zero, one, and many 
time(s). In step 2, the subjects use an instrumented version of the program to execute their 
test cases and view reports of attained coverage values. The subjects develop additional test 
cases until they reach 100% coverage, or believe that they cannot achieve better coverage 
due to various pathological cases. After executing the test cases, the subjects log off 
the computer, hand in a copy of their printed output, receive a copy of the specification in 
exchange, and begin step 3. In step 3, the subjects use the specification to observe failures in 
their output. The extension to the Basili & Selby experiment is step 4, in which the subjects 
isolate the faults that caused the observed failures. No special technique is specified for 
the fault-isolation activity. Step 4 concludes when the subjects hand in a list of observed 
failures and isolated faults. 

Code reading (CR). In step 1, subjects receive printed source code but do not see the 
specification. They read the source code and write their own specification of the code 
based on the technique of reading by stepwise abstraction (Linger et al., 1979). Subjects 
identify prime subprograms, write a specification for the subprogram as formally as possible, 
group subprograms and their specifications together, and repeat the process until they have 
abstracted all of the source code. After writing their own specifications in this manner, 
the subjects allow their specifications to be photocopied, receive the official specification 
in exchange, and begin step 3. (To simplify comparisons with the other defect-detection 
techniques, code reading has no step 2.) In step 3, subjects compare the official specification 
with their own to observe inconsistencies between specified and expected program behavior 
(analog to failures in the other defect-detection techniques). The extension to the Basili & 
Selby experiment is step 4, when the subjects isolate the faults that led to the inconsistencies. 
No special technique is specified for the fault-isolation activity. Step 4 concludes when the 
subjects hand in a list of identified inconsistencies and isoIated faults. 

Reuse guidelines. The techniques as compared in this experiment are strict; e.g., the 
structural testers do not see the specification until after they have finished their test runs. 
This strictness may be unrealistic for an industrial software organization. In an industrial 
setting, the defect-detection techniques should be tailored to meet the specific needs of 
the organization or replaced with techniques that are practiced locally. Because dramatic 
changes in the defect-detection techniques may invalidate some of the assumptions and 
models behind the data collection procedures, the data collection forms must be rechecked 
if the techniques are changed. 
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Objects. Three C programs of 260, 279, and 282 source lines were used. Differences 
among the objects in terms of length and fault density were minimized. The programs had 
a total of 11, 14, and 11 faults, respectively, in the second repetition. 

Reuse guidelines. Objects from the Kamsties & Lott experiment are coded in C and are 
available (see appendix). If the implementation language is not a match with the subject’s 
experience, then code reuse may be neglected in favor of reusing only the specification. 

However, the reuse of objects from any experiment depends highly on the goals behind the 
new experiment. Objects that are reused unchanged will result in results that can be easily 
compared with other repetitions of the original experiment. However, to attain maximum 
external validity with respect to other projects within a given organizational context, the 
experimenter should use code selected from systems developed within that context. The 
experimenter would also be well advised to consider the nature of the faults encountered in 
that context, and to select faults that are most similar to the organization’s characteristic fault 
profile. See Laitenberger (1995) for an experimental design that addresses these issues. 

Subjects. Some 27 university students participated in the first run of the experiment, and 23 
students participated in the second. The two runs are examples of “in vitro” experiments. 

Data collection and validation procedures. Subjects used data collection forms to record 
information about the time they required. The researchers analyzed the documents turned 
in by the subjects to collect additional data about visible failures. The computer counted 
the number of test runs. 

Reuse guidelines. All data collection forms used in the Kamsties & Lott experiment are 
available (see appendix). These forms are highly specific to the goals, techniques, quality 
focuses, and the implementation language. Tailoring the goals and metrics to be collected 
will therefore always require tailoring the forms. For example, if assessing efficiency is not 
a goal, then no collection of time data is required. 

Data analysis procedures. Based on the randomized approach for matching subjects, 
objects, and techniques, primarily parametric statistics (ANOVA) were used to test the null 
hypotheses. The ANOVA procedure was chosen because the design included randomization 
(thus satisfying a fundamental assumption), and all analyses involved more than two groups 
of data. A nonparametric correlation test was used to evaluate the correlations of subject 
factors with the results. 

Reuse guidelines. If the design is reused unchanged, the analyses can proceed identically to 
those documented in Kamsties and Lott (1995). Dramatic changes to the design, especially if 
the randomization step cannot be performed, may prevent the use of ANOVA; nonparametric 
statistics such as the Kruskal-Wallis test can then be used. 

3.4.3. Procedures 

The Kamsties & Lott experiment consisted of three phases, namely training, experiment, 
and feedback. 
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Phase I: Training. The training phase consisted of a lecture portion and a practical 
portion. Subjects first listened to several lectures explaining the techniques in the context 
of a software engineering lecture course. A training phase was then performed within a 
single week using three short C programs (44, 89, and 127 source lines). Each subject 
gained experience with all three defect-detection techniques by applying one technique to 
one of the short C programs. Subjects worked independently and chose their own times 
to perform the training exercises. The training period also allowed the subjects to become 
familiar with the working environment, the data-collection forms, etc. 

Phase 2: Experiment. The experiment was run at fixed times on three separate days over 
the course of a week. Subjects who applied code reading worked in a conference room. 
Subjects who applied the two testing techniques worked in computer labs, separated as 
much as possible. All rooms were monitored. 

A token prize was offered to the subjects who were the most effective and efficient with 
a given technique, thus a total of three prizes were available. No other incentives were 
offered. 

Phase 3: Feedback. A feedback session was held about two weeks following the last 
experiment session. At that time, the prizes were awarded, the results of the preliminary 
analyses were presented, and the subjects had a chance to ask questions and give the 
experimenters their own feedback. 

Reuse guidelines. The training activities as described above may need to be extended de- 
pending on the subjects. For maximum benefit, we recommend that the training exercises be 
structured similarly to the experiment so as to force all subjects to gain relevant experience. 
Also, if the work is not handed in or checked, students are likely to ignore it. If the design 
is not changed, procedures for the experiment should be reusable verbatim. The amount of 
time spent on preliminary analyses and on running feedback sessions will depend on the 
context. Professionals may be especially interested in the results of the experiment and so 
will demand more information from the experimenter than a student subject. 

The experiment also makes nontrivial demands on a subject’s time, which for students 
was possible. The total time commitment is about 2-3 hours per training exercise and 3-4 
hours per experiment exercise, for a total of 15-21 hours. The time commitment could 
be reduced for experienced subjects by reducing or omitting the training phase. If the 
experimenter is only interested in how subjects reveal and record failures, the required time 
can be shortened by omitting the final fault-isolation step for each technique. 

3.4.4. Results 

This section gives an overview of the results from the second repetition of the Kamsties & 
Lott experiment. All analyses and interpretations are presented in detail in Kamsties and 
Lott (1995b). 

No significant differences were observed among the techniques with respect to the per- 
centage of failures observed (i.e., hypothesis D.l could not be rejected with respect to 
effectiveness of observing failures). The code readers and the functional testers isolated ap- 
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proximately the same percentage of faults, with the structural testers performing less well. 
Stated differently, hypothesis D.l was rejected with respect to effectiveness of isolating 
faults at significance level 0.02. The functional testers required the least amount of total 
time to reveal failures and isolate faults, with no significant differences among the code 
readers and structural testers. In other words, hypothesis D.l was rejected with respect to 
efficiency of the functional testers at significance level 0.01. Combining these results, the 
functional testers observed failures most efficiently (significance level 0.00) and isolated 
faults most efficiently (significance level 0.01). 

No significant differences among the programs were observed (hypothesis D.2 must be 
accepted). Some significant differences among the subjects and order were seen, suggesting 
the presence of both selection and learning effects (i.e., hypotheses D.3 and D.4 had to 
be rejected for some aspects). Finally, no significant correlations between measures of 
experience and the results were found (i.e., hypothesis D.5 must be accepted). 

To summarize, the techniques did not differ significantly with respect to effectiveness in 
the hands of our subjects. However, the functional testers observed failures most rapidly, 
required much additional time to isolate faults, and yet were still overall most efficient at 
isolating faults. Code readers required much time to identify inconsistencies, but were then 
able to isolate faults in extremely little additional time. Similar to previous studies, large 
individual differences were observed, and only 50% of known defects were detected on 
average. 

4. Conclusions and Future Work 

This paper presented a characterization scheme for experiments that evaluate techniques 
for detecting all types of defects in source code. This scheme is intended to reduce the 
effort required to develop and conduct further instances of this class of experiment as 
well as ease the comparison of results from similar experiments. To ease the task of 
conducting an experiment further, a laboratory package has been made available with all 
materials necessary for repeating the experiment that was conducted at the University of 
Kaiserslautern (see appendix). We note that experiments for other technologies have been 
similarly packaged; see for example, the comparisons of different inspection techniques 
(Vander Wiel and Votta, 1993; Laitenberger, 1995; Porter, Votta, and Basili, 1995). Future 
directions include performing more repetitions in order to analyze different variation factors 
and to strengthen the credibility of the existing results. 

Conducting experiments in software engineering has benefits for students, profession- 
als, and the community. Students can experience first-hand the relative strengths and 
weaknesses of the techniques that are introduced in their courses. Professionals can gain 
confidence in new techniques before they apply the techniques in a revenue-producing 
project. The software engineering community can accumulate a body of knowledge re- 
garding the utility of various techniques under varying project characteristics. We therefore 
recommend that repeatable experiments be adopted as a standard part of both software 
engineering education and technology transfer programs. 

We strongly believe that researchers and practitioners need to view software engineering 
as an experimental discipline (Rombach et al., 1992). Techniques such as defect-detection 



274 LOTT AND ROMBACH 

techniques that are fundamental to software development need to be understood thoroughly, 
and such an understanding can only be gained viaexperimentation. Other fundamental tech- 
niques that need to be thoroughly understood include various design methodologies and 
different styles of documentation. Many of the experiments necessary to build a body of 
knowledge about these techniques are too large for any single organization; they must be 
repeated in different contexts. The International Software Engineering Research Network 
(ISERN) has facilitated the repetition of experiments in different contexts. Researchers 
and practitioners from the following organizations are members of ISERN and take part 
in repeating experiments: University of Maryland at College Park, University of Kaisers- 
lautern, VTT Electronics, University of New South Wales, Nara Institute of Science and 
Technology, University of Rome at Tor Vergata, University of Bari, Macquarie University, 
AT&T Bell Laboratories, Daimler-Benz Research Center, and Computer Research Institute 
of Montreal. Organizations interested in joining ISERN may contact any ISERN member 
or send electronic mail to isern@informatik.uni-klde. 

Appendix: Laboratory Package 

The materials needed to repeat the experiment as performed at the University of Kaisers- 
lautern are available on the World-Wide Web. Please access these URLs: 
ftp://ftp.wkap.com/pub/emse/ 
http://www.cs.umd.edu/users/cml/ 
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Notes 

1. This work was conducted while the author was with the Department of Computer Science, University of 
Kaiserslautem, 67653 Kaiserslautern, Germany. 

2. The term “blocked” has a highly specific meaning in experimental design, and differs from the usage in Table 2. 

3. Strictly speaking, a mean cannot be computed using data from an ordinal scale. The values reported by Myers 
should only be understood to give a rough characterization of the group’s experience. 

4. See Campbell and Stanley (1966, p. 15) for a discussion of artifacts due to regression to the mean and other 
problems that arise when trying to correct for differences in ability by grouping subjects based on extreme 
values on pretests. 

5. In the code reading technique, failures are not revealed; instead, inconsistencies between the user’s specification 
and the official specification are identified. These inconsistencies are analogous to failures in the validation 
techniques. We use “failure” to keep the discussion brief. 
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6. This design differs from that used in the first repetition in that it controls for all 6 orders of applying the 
techniques. We did not consider order to be important when we first planned the experiment, so the first 
repetition only used groups 1,4, and 5 as shown in Table 8. 
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