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ABSTRACT. A second-order probability Q(P) may be understood as the probability that 
the true probability of something has the value P. "True" may be interpreted as the value 
that would be assigned if certain information were available, including information from 
reflection, calculation, other people, or ordinary evidence. A rule for combining evidence 
from two independent sources may be derived, if each source i provides a function Q,(P). 
Belief functions of the sort proposed by Shafer (1976) also provide a formula for combining 
independent evidence, Dempster's rule, and a way of representing ignorance of the sort that 
makes us unsure about the value of P. Dempster's rule is shown to be at best a special case 
of the rule derived in connection with second-order probabilities. Belief functions thus 
represent a restriction of a full Bayesian analysis. 

1. INTRODUCTION 

When  we are asked the probabi l i ty  o f  a coin coming up heads, we do not  

hesitate to answer, " 0 . 5 " ,  or  " a b o u t  0 .5" .  In  contrast ,  when we are asked 

the probabi l i ty  o f  a Republ ican being elected president in 1996, we 

hesitate to assign a probabil i ty.  Similarly, physicians familiar  with the 

relevant statistics will willingly provide a s tatement  about  the probabi l i ty  

o f  a white male who smokes two packs a day eventually developing lung 

cancer,  but ,  faced with a part icular  white male smoker ,  m a n y  will hedge: 

" I  can tell you  only the probabi l i ty  in general; I cannot  say what  the 

probabi l i ty  is for  y o u " .  People  sometimes are uncertain about  what  their 

probabi l i ty  assignment ought  to be. 

Manipula t ion  o f  such uncertainty in experiments (Ellsberg, 1961; Ein- 

horn  and Hogar th ,  1985) indicates that  people really behave differently 

when their best guess about  a probabi l i ty  is a " f i r m "  one than  when it 

is not.  For  example, under  condit ions o f  " a m b i g u i t y " ,  people of ten 
behave as if  they had assigned high probabilities to bad outcomes,  thus 

avoiding actions that  might  lead to such ou tcome even if  these are the 

same actions that  might  lead to the best outcomes.  W h e n  different 
ou tcomes  are contingent  on  the same events, this tendency can lead to 

violations o f  the principle o f  independence,  i.e., when there is a state o f  
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the world that yields the same outcome regardless of  one's choice, the 
outcome should not affect the choice m a d e )  Ellsberg (1961) and others 

have defended such behavior despite such violations, on the ground that 

people are intuitively inclined to find it reasonable. An understanding of  
the nature of  "ambigui ty" ,  f rom both normative and descriptive views, 
could clarify the behavior of  subjects in these experiments and help to 

assess its rationality. 

Uncertainty about probabilities creates difficulties when we seek to 
carry out a formal analysis of some judgment or decision and when the 

analysis requires subjective probabilities as inputs. For example, in the 
evaluation of  risks of  nuclear power plants, there is as yet no generally 

acceptable way to take into account our feeling that the true probability 

of  accident is, in some important  sense, unknown. Similarly, in the design 

of  expert diagnostic systems, many workers have assumed that certain 
probabilities are unknowable. 

This note concerns two proposed solutions to the problem of  carrying 

out a formal analysis when judges are unwilling to state exact probabilities 

or when they feel that their probability assignments are themselves 
unreliable: a version of the idea of  second-order probabilities (similar to 
one proposed by Raiffa, 1968) and belief functions (Shafer, 1976; Shafer 

and Tversky, 1985). I shall suggest that the method of belief functions 
is at best a special case of  the method of second-order probabilities, and 
I shall comment on the translation between the two methods when it is 

possible. To make this comparison, I shall concentrate on the way in 
which two independent sources of  evidence may be combined under each 
system. 

2. S E C O N D  O R D E R  P R O B A B I L I T I E S  

Let us suppose that there is a true probability P assigned to some 
proposition. We might also imagine having a subjective second-order 
probability distribution Q(.) over the possible values of  P. Here, we shall 
make the simplifying assumption that P can take on a finite number of  
different values, for example, 0.01, 0.02 . . . . .  1.00. We treat P as an 
unknown parameter, about which we have subjective beliefs just as if it 
were any other unknown parameter such as the population of  New York 
City. 2 If  we are very uncertain about the true value of  P, Q(. ) will broadly 
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spread out. If, on the other hand, we are certain of P, Q(.) will be 

concentrated at a point: in the case of  a fair coin, Q(P) might be zero 
for all values of  P except 0.50, where Q(P) would be 1. 

There are several things that we might take " the  true probability (P)"  

to mean. For example, we might mean the probability that we would 

assign if our assignments were coherent (Lindley et al., 1979). The 
arguments to be made concerning the relation between second-order 
probabilities and belief functions do not depend on the meaning that we 

choose. 
Despite the fact that we do not need to settle on an interpretation of  

P, there is one interpretation (similar to that of  Brown, 1986) that may 

be particularly useful in thinking about the question. In particular, we 
may think of  P as the probability that we would assign i f  we had access 
to a certain body o f  information. The unknown information might 
include relevant population statistics or easily collected evidence such as 
test results. It might include the results of  examining our own mind more 

carefully, either through rehearsal and contemplation of  evidence or 
through the making of  calculations (e.g., those suggested by Lindley et 
al.). It might include the assessments of  other people, or additional data. 

One advantage of  this formulation is that it is highly general. It 

incorporates, for  example, the concept of  ambiguity: the missing evidence 
may consist of  the proportion of  white balls in an urn we are about to 

draw from, or which of  two expert probability assessments is to be 
believed. 

A second advantage is that it is clearly defined, at least compared to 

similar formulations (e.g., Gfirdenfors and Sahlin, 1983). The clearer our 
idea of  just what information is missing and how it might affect our 
beliefs, the more precisely we can specify Q(.).  In the case of  missing 

medical-test data, we can specify Q(.)  with substantial precision. 
A third advantage of  this formulation is that it might be P, rather than 

our current best guess about P,  that we are interested in, and we might 

well need to take into account the fact that certain information is lacking. 
Brown (1986) gives the example of  meeting a legal requirement that the 
probability of  a nuclear accident be below some specified number. 
Although our current best guess at P may be below the value, we may 
be able to imagine information that would push our P above the cutoff.  
In this case, we cannot guarantee that the legal requirement can be met. 
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If the information is obtainable, we may want to obtain it. This way of 

looking at second-order probabilities calls attention to their similarity to 

the idea of  assessing the value of information itself by examining its 
potential impact on our probabilities and consequent decisions (Baron, 
1985, ch. 4). 

This formulation makes the concept of  second-order probability depen- 

dent on a specification of  which evidence is lacking. In principle, we might 
subscript Q(. ) for different bodies of  evidence, although this will not be 

necessary here. This potential instability of  Q(.)  may be considered as a 

disadvantage of the present formulation, but it may also be an advantage. 
Our degree of  dissatisfaction with precise assessments of  P seems to 
change as we focus our attention on different bodies of  evidence. For 

example, we feel unease about assignment of  probabilities to past events 

(even if unknown to us) because the information is potentially available. 
Likewise, we may acquire a feeling of  ambiguity about the drawing of 
a card from a deck if we think that all but the top three cards have been 

written down on a piece of  paper, which is now face down in front of 
us on the table. Moreover, in practical decision-analysis, the missing 
information that is relevant may differ from case to case. 

Combining independent sources o f  evidence 

Let us consider how we might use the idea of  second-order probabilities 
to combine evidence from two sources concerning some proposition. We 
want to do this in order to compare the result to that from the use of  belief 
functions. We want to combine two distributions, Ql(-) and Qz(.), with 
a prior distribution over the values of P,  p( . ) ,  in order to arrive at a final 

distribution Q(.).  The prior is assumed to be identical for all parties. For 
example, the proposition may be that a certain company will go bankrupt 
in the next year, and the evidence may consist of summary statements of  
two independent, equally credible, auditors. One auditor might say, " I ' d  
give it a probability of  0.90, but I haven't  seen the last three quarterly 
reports. If  I did, I could imagine changing my probabilities to a substan- 
tial degree".  The other might say, " I ' d  give it 0.55, but I 've seen only 
the last three reports. If  I saw the others, I could imagine changing a 
little". For each piece of evidence E i, taken by itself, we have a subjective 
probability distribution Qi (P). If  we take each auditor 's  judgments to be 
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well calibrated (so that there is no systematic bias) we would expect that 
our own mean of Ql(. ) is about 0.80 and our mean of Q2(-) is about 0.55. 
The variance (or some other appropriate measure) of each distribution 
will depend on how much we think the announced probability might 
change if the auditor had the missing reports in hand. When we combine 
the two pieces of evidence, our own personal mean will be closer to the 
mean of the second, because he had more information (other things being 
equal). 

Let us assume that each distribution Qi (.) is the Bayesian posterior that 
results from combining E i with the prior distribution p(.). In particular, 
by Bayes' theorem, 

Qi (P) = P(P I Ei) = p(Ei l P) " P(P)/p(Ei). 

Similarly, 

p(E1 & E2 [ P) " P(P) 
Q(P) =p(P [ E1 &E2)= 

p(E1 & E2) 

Assuming conditional independence of E1 and Ez given each value of P, 
this implies that 

p(EI I P) " p(E2 I P) " p(P) 
Q(P) = 

E p p(E~ I P)" p(E2 t P)" P(P)" 

The summation is over all the values of P under consideration. Since 

p(Ei l P ) =p(P I Ei)p(Ei)/p(P), 

Q(P) = 

p(P [ El) -p(E1) p(P [ E2)" p(E2) 
p(P) p(P) 

�9 p ( p )  

P(P I El)" P(E1) P(P [ E2)" P(E2) 
2p p(p) p(p) "P(P) 

Canceling p(E1) and P(E2) , and replacing p(P I Ei) with Qi(P), we get 

Q I ( P )  " Q 2 ( P ) / p ( P )  
Q(P) = 

]~p QI(P) " Qz(P)/p(P)" 

If the prior p(. ) is constant over all possible values of P (as if would be 
if we have no evidence at all and if we invoke the principle of insufficient 
reason), p(P) may be canceled as well, and we get 
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Q I ( P )  " Q2(P)  
(1) Q(P) = 

Ep QI(P) " Q2(P) 

We shall assume constant p(P) when we compare the present model to 
belief functions. This amounts to the assumption that all parties start out 
with complete ignorance, so that each function Q(.) represents all the 
evidence available to each party. 

Equation 1 shows how Q(P) may be calculated for each value of P by 
combining two sources of information (and assuming constant p(P)). It 
is apparent that the detailed shapes of QI(.) and Q2(.), as well as their 
means and variances, will have an effect on the final distribution Q(.). 

It is important to note that the theory of second-order probabilities is 
fully consistent with Bayesian probability theory (at least if we interpret 
P as "the probability that would be assigned if a certain body of evidence 
were available"). Thus, this theory comes with both a justification in 
terms of necessary axioms (Savage, 1954) and some useful measurement 
procedures (Krantz et al., 1971, chs. 5, 8; Raiffa, 1968). 

3. B E L I E F  F U N C T I O N S  

Shafer's (1976) theory of belief functions also allows us to combine 
evidence in situations like the one we have been considering. This theory 
differs from probability theory in that it allows us to apportion our total 
belief among overlapping sets of propositions as well as mutually exclu- 
sive sets. For example, we may assign some belief to the set including all 
propositions under consideration and the rest of our belief to one propo- 
sition, a subset or member of that set. The assignment of belief to the 
former set is uncommitted. The amount of uncommitted belief might be 
taken to correspond to the amount of second-order uncertainty�9 

More formally, it is assumed that the total belief adds to one (as in 
probability theory). In the simplest situation in which two pieces of 
evidence are combined, no belief is committed to the falsity of the 
proposition, and both pieces of evidence support exactly the proposition 
in question (as opposed to some proposition that implies it, is implied by 
it, or is consistent with it) to some degree. 3 For each piece of evidence 
i, A i is committed to the proposition in question and 1 - A  i is uncommit- 
ted. Thus, each piece of evidence is fully characterized by Z i. We may 
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combine the two pieces of evidence to produce a resulting belief, which 
may be characterized by A. Thus, we want A as a function of A 1 and 
A 2. This is given by Dempster's rule of combination, the crux of the 
theory. Applied to the present case, this rule specifies that the resulting 
belief committed to the proposition is 

A = A  1 " A 2 + A  1 �9 ( 1 - A 2 )  + A  2 �9 ( 1 - A 1 )  

o r  

(2) ( 1 - A ) = ( 1 - A ~ ) .  (1 -A2). 

Shafer gives no particular justification of this rule, although he notes that 
it corresponds to the following situation: Each piece of evidence Ei is like 
a coded message. There are several codes that you might use to decode 
the message. You do not know which code to use, but you do know that 
all the codes are equally likely to be correct. You try all the codes and 
discover that a proportion A i of them decode the message to "The 
proposition is true" (e.g., "The company will go bankrupt"). The 
remaining codes, that is, proportion 1-Ai ,  decode to some utterly 
uninformative message, such as, "The proposition is either true or false". 
There is a different set of codes for each message. The value of A in 
equation 2 is thus the probability that either message, properly decoded, 
indicates that the proposition is true. 

4. E Q U I V A L E N C E  OF S E C O N D - O R D E R  P R O B A B I L I T I E S  AND 
B E L I E F  F U N C T I O N S  

Suppose we have a rule for translating functions Qi (.) into values of A i. 
If we combine two pieces of evidence according to equation 1 so as to 
get Q(.), under what conditions will it be true that equation 2 holds as 
well, given the translation rule? Clearly, the rule will characterize any 
particular Q(.) by a single parameter, B. (Let us use the generic form Q(. ) 
to stand for Q(.) or Qi(.).) We seek, then, a function A =g(B) such that 
equation 1 implies equation 2. It will be convenient to define 
f ( B ) = l - g ( B ) .  Thus, from equation 2, f (B)=f l (B) ' f2(B) .  (Note that 
f ( . )  cannot be unique. If f ( . )  satisfies the condition, so does [f(.)]r for 
any nonzero r.) 
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If  we can find such a function f ( . )  that applies to any distribution Q(. ), 
then the system of belief functions and the system of  second-order 
probabilities are equivalent, at least for the simple sort of case under 
consideration. Alternatively, if this requirement places some limitation on 
the function Q(.), then belief functions correspond to a special case of 
the theory of second-order probabilities (provided that there are functions 
that satisfy the limitation). In other words, B may be defined only for 
a subset of the possible distributions Q(.). Finally, it may be the case that 
no reasonable distributions Q(. ) satisfies the condition. In this case, belief 
functions cannot be represented in terms of an extremely flexible model 
of second-order probability. 

To begin, let us consider two second-order probability functions, C(. ) 
and U(.) (for certain and uncertain, respectively), which must be included 
in the set of  functions Q(.) to which the translation rule applies. 

C(.) is the function Q(. ) when the subject is certain that the proposition 
is true. C(.) must be concentrated at P = I ,  i.e., C (P )=0  for P < I ,  
C(P) --- 1 for P = 1. When A = 1, it must also be the case that P = 1, because 
any second-order uncertainty must make the mean of Q(.) less than 1. 
Similarly, when A < 1, it must be true that Q(1)< 1 (for otherwise, P 
would be 1). 

U(.) is the function Q(.) when the subject is completely uncertain and 
has absolutely no evidence, i.e., when A =0.  It ought to be true that 
U(.) =p( . ) .  Absence of evidence should leave the prior, p( .) ,  unchanged. 
It follows that if p(1) > 0 then U(1) > 0. In the cases of interest, we have 
assumed that p(P) is constant for all values of P. 

For belief functions of the sort we are considering, in which there is 
no evidence against the proposition in question, it is always possible to 
achieve certainty. All that is required is to combine our current belief with 
another belief in which A = 1. Hence, it must be the case that Q(1) > 0 for 
any Q(.). (If Qi(1)=0, it would be impossible to make Q(1)=I  by 
combining Q~(.) with C(.).) However, in second-order probabilities it 
might be reasonable that Q(1)= 0. For example, in diagnosing a disease, 
the only additional evidence available might consist of fallible tests, none 
of  which could possibly make the probability of the disease more than 
0.90. Q(1) would thus be 0, contradicting the conclusion just drawn that 
Q(1)>0. Thus, it is already apparent that the wish to translate between 
second-order probabilities and belief functions places constraints on the 
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former, constraints that would not otherwise be present in many realistic 
cases. 

It might be argued that such an upper bound on P implies that we have 
some evidence against the disease, contrary to our assumption. In reply, 
it seems that the concept of "evidence against" is stretched if it includes 
simply an assertion that certainty is impossible. 

Another argument is that the belief-function theory applies only when 
it is possible to obtain all the evidence, even, if necessary, the final 
diagnosis. If  this reply is accepted, then belief functions are limited in 
their ability to represent second-order uncertainty. In particular, they 
cannot represent cases in which the evidence is truly limited. 4 

It is possible to define a set of functions that permit translation if we 
drop the condition that U(1) > 0. In particular, let us assume that Q(1) = B  

and Q(P)  = (1 - B ) / N  for the N values of P such that P <  1. B is thus the 
parameter that characterizes Q(.). When B is 1, A (from equation 2) is 
1, and when B is 0, A is 0 because there is no evidence for the proposition. 
(Also, Q(1)=0 when B is 0.) We seek a function relating A and B that 
preserves the translation between systems. 

Note first that the denominator of equation 1, ~ p  QI(P)  �9 Q2(P), is 
B 1 . B  2 + N .  (1 -B1)"  ( 1 - B 2 ) / N  2. This follows from our definition of 
Q(.). The first term is for P = 1 and the next term is for the N points at 
which P < I .  (The second term of course simplifies to ( 1 - B I ) "  
(1 - B2) /N.  ) Hence, 

B~ -B2 
B l " B 2 + ( 1 - B I ) "  (1-B2)-N" 

B = Q(1) = 

Inverting, we get 

1/B = 1 + 

o r  

(1 -B) 
(3) 

B 

( 1 - B 1 ) .  ( 1 - B 2 ) . N  

B! -B  2 

(1-B1)" (1-B2) 
B z �9 B 2 / N  

It is apparent that the translation will work only if N = I  and" 
(1 - A )  =f(B) = [(1 - B ) / B ]  r for any nonzero r. However, if N >  1, there 
is no rule that will work. Hence, the only form of Q(.) that will satisfy 
the condition is one with all the probability concentrated at P =  1 and at 
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a single other value of  P.  ( P = 0 . 5  would make sense.) The same con- 
clusion follows if we examine Q(p) for some other value of  P less than 

1. 

Suppose now that Q(1)>0.  We now let Q(1)=B+(1-B)/N, and 

Q(p) =(1 - B ) / N  (as before) for the ( N -  1) values of  P such that P <  1. 
Using equation 1 for some value of  P less than 1, we get, 

1 - B  
1 - B  1 1 - B  E 

N N 

N [ - ; ] [ - ; ]  " 1 1 1 2 l - B 1  1-BE 
B1 + " BE+ + N N 

Inverting gives 

N 
- ( N - l )  + 

1 - B  

B 1 - B 1 ]  . 1 �9 

1 - B  1 1 - B  2 

N N 

Only if N =  1, this simplifies to 

1 [(1-B1)+B1]" [(1-BE) +BE] 1 1 

1 - B  ( 1 - B 1 ) ' ( 1 - B )  1 - B  1 I-BE" 

In this case, when N =  1, the basic idea no longer makes sense; P would 

have to have a value of  1. Hence, there is no sensible form of  Q(.)  that 
allows translation if Q(1) > 0 and if the other values of  Q(. ) are all equal. 5 

It does not seem hopeful to try to remedy the situation by permitting 
unequal values of  Q(P) for P <  1. Repeated attempts have yielded neither 
a function than meets the required conditions nor a proof  that no such 
function exists. 

It is clear that belief functions are not a necessary consequence of  the 
idea of  second-order probability. Because second-order probabilities are 
consistent with Bayesian principles and apply to the same sorts of  si- 

tuations that belief functions apply to, it would appear that the theory 
of  belief functions requires additional justification as a normative model. 
In comparison to the Bayesian system as a whole, belief functions appear 
to be restrictive in the constraints placed on the form of  Q(.).  The 
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restrictions they place on Q(.) are not even acceptable within the spirit 
of the belief-function theory itself. It is possible that there is no possible 
representation of belief functions in terms of second-order probabilities. 
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N O T E S  

1 Einhorn and Hogarth (1985) also note that extreme probabilities such as 0.001 or 0.999 
tend to be treated as closer to 0.5 when they are felt to be ambiguous. 
2 We might have third-order probabilities, R(Q(P)), and so on. However, the use of  
second-order probabilities as an analytic tool does not require - logically or pragmatically 
- the use of  higher-order probabilities. I doubt that third-order probabilities, etc., will be 
of  much utility in decision-analysis or elsewhere. 
3 We deal here only with what Shafer calls simple support-functions. Translation between 
second-order probabilities and belief functions must be possible for simple support 
functions if it is possible at all. 
4 There are other problems with this proposal that will be discussed later. 
5 If  it had been possible that N = 2 ,  we would have been able at least to represent 
second-order uncertainty in which the only evidence available was total evidence, so that 
P would either be 1 or 0 after it was obtained. We therefore see that this is no longer possible. 
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