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ABSTRACT 

The indentation of an elastic half-space by an axisymmetric punch under a monotonically applied normal 
force is formulated as a mixed boundary value problem under the assumption of Coulomb friction with coef- 
ficient # in the region of contact. Within an inner circle the contact is adhesive, while in the surrounding an- 
nulus the surface moves inwards with increasing load. The slip boundary between the two regions depends on 
/t and the Poisson ratio v, and is found uniquely as an eigenvalue of a certain integral equation. 

For power law indentors of the form z oc r", a group property of the integral operator connecting stresses 
and displacements makes it possible to derive the contact stress distributions from those under a flat punch 
by a simple quadrature, and shows that the slip radius is the same in all such cases. 

An iterative numerical solution using a dual system of Volterra equations is described, and calculated 
distributions of surface stress presented for the cases of indentation by a fiat punch and by a sphere. 

ZUSAMMENFASSUNG 

Das Eindringen eines axial-symetrischen Stempels in einen elastischen unendlichen Halbraum, unter Ein- 
wirkung einer monotonischen senkrechten Kraft, wird dargestellt als ein gemischtes Grenzwert problem, 
wobei ein Coulombscher Reibungskoeffizient p im Kontaktvolumen angenommen wird. Innerhalb eines 
inneren Kreises der Kontakt is haftend w/ihrend in dem umgebenden Kreisring eine nach innen gerichtete 
Bewegung der Ebene stattfindet, die mit der Kraft w/ichst. Die Gleitgrenze zwischen diesen beiden Gebieten 
h/ingt von ~ und dem Poisson Verh~iltnis v ab und ist ein eindeutiger Eigenwert emes Integralgleichung. 

Fiir Stempel, deren Form z oc r" gehorcht, wird gezeigt, dass eine Gruppeneigenschaft des Integral Ooera- 
tors, welche Spannungen und Verschiebungen verkniipft, erm6glicht, die Kontaktspannungsverteilung in der 
Umgebung eines flachen Stempels durch einfache Quadratur abzuleiten und zu zeigen, dass der Gleitradius 
in allen F~illen der gleiche ist. 

Es wird eine "iterative numerische" L6sung beschrieben, die Volterra-Gleichungen benutzt. Die Berech- 
nungen der Oberfl/ichenspannungsverteilung fiir das Eindringen eines ebenen Stempels in eine Kugel wird 
gegeben. 

1. Introduction 

T h e  e l a s t i c  c o n t a c t  p r o b l e m  p r e s e n t e d  b y  t h e  i n d e n t a t i o n  o f  a h a l f  s p a c e  b y  a r i g id  

a x i s y m m e t r i c  p u n c h  h a s  u s u a l l y  b e e n  t r e a t e d  u n d e r  t h e  a s s u m p t i o n  o f  z e r o  s h e a r  s t r e s s  
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in the contact region, in which case the mathematical solution is straightforward and 
well known. Several discussions of the case of fully adhesive contact have also been 
given, especially in the Russian literature (Galin [5], Mossakovski [8], [9], Abramian, 
Aratunian & Babloian [1]). For the Boussinesq problem of indentation by a flat faced 
punch the radial displacement is zero in the contact region under adhesive conditions, 
but for a curved indentor it is more difficult to formulate a boundary value problem 
for quasi-static treatment, since the strain history must be taken into account at each 
stage of the loading. The present author [13] used similarity arguments to infer the 
form of the surface displacements, and so obtained solutions, for indentors of polynomial 
shapes, when the loading is incremental and monotonic. 

Physically a mbi-e realistic assumption than that of complete adhesion is to suppose 
a finite coefficient of friction p between the surfaces in contact. As pointed out by Bowden 
& Tabor ([3], Chapter 3) there is much experimental evidence for a "locked" inner region 
surrounded by an annulus of slip. For a flat indentor, this slip would relieve the divergent 
stresses predicted near an edge under adhesive conditions by linear elastic theory 
(whereas with perfect bonding, plastic deformation must occur in these regions). In the 
present paper, axisymmetric contact with Coulomb friction under incremental loading 
is formulated for a flat indentor in section 2.1 as a mixed boundary-value problem 
governed by a coupled pair of Volterra equations, in which there appears the new 
complication of an unknown boundary, the radius c (expressed as a fraction of the total 
contact radius) dividing the zones of adhesion and slip. For monotonic loading, c is 
uniquely determined by the material prope(ties, namely p and the Poisson ratio v. This 
is demonstrated formally in section 2.2 by reducing the mixed problem, with c supposed 
known, to a regular Fredholm equation for a quantity ~b (defined in equation 2.11) 
proportional to the excess friction in the adhesive region. There is just one solution for 
which q5 > 0, and the corresponding eigenvalue provides a unique relation between the 
three parameters c, # and V = (1 - 2v)/(2- 2v). An expansion of  the solution in powers o fv 
carried out in section 2.3 gives the simple limiting form y log {(1 + c)/(1 -c)}  = 2pcK'(c) 
for the relation. 

In section 3 the corresponding Hertz problem, generalised to incremental indentation 
by a body of power law shape z oc r", is considered. It is shown that similarity considera- 
tions of the type used in the author's earlier paper are still applicable, giving the functional 
form of the radial displacement within the adhesive region. A group property of the 
operator relating stresses to displacements then shows that the equations and boundary 
conditions can be transformed into those for a flat punch, and the dimensionless stress 
p(x) say obtained from the corresponding flat punch stress po(X) by the quadrature 

p(x) = nx"- 1 j l  1 t-"po(t)dt. 

(Th!s transformation applies a fortiori to the limiting cases of frictionless indentation 
(p = 0) and perfect adhesion (c = 1) and gives the known results, e.g. for loading by a 
sphere, very simply in those cases). The important result follows, that the eigenvalue c 
is the same function of # and v for a curved punch of any power law shape as for a flat 
punch. 

The remainder of the paper presents a numerical method, based on piecewise constant 
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approximations to the stresses, for solving the coupled integral equations by iteration, 
and results are obtained for c(#, v) and for the stresses. These are used to obtain corre- 
sponding solutions to the Hertz  problem (indentation by a rigid sphere) using the 
quadrature derived earlier. The axisymmetric case is treated in section 4, and similar 
results are obtained in section 5 for two-dimensional indentors, for which case a check 
on the accuracy of the numerical methods is available. 

2. The mixed boundary value problem 

2.1. Governin9 integral equations 
We consider an elastic half-space z > 0 indented by a rigid 1 axisymmetric punch 

exerting a normal  force P over a contact circle r < a of the surface, and suppose that 
the force is applied monotonically,  starting from a state of zero stress, at a sufficiently 
slow rate to permit a quasistatic treatment. Suppose 6 = (u~) . . . .  o is the normal  displace- 
ment on the axis at any instant, so that any one of the quantities P, 6 or the contact 
radius a (except when the latter is fixed by geometry, as in the first example below) 
is a time-like variable describing the state of the loading and all three increase together. 
Write the stresses and displacements at the surface z = 0 non-dimensionally as 

(o)(') 
,~=(r) = -  ~ a p(x), (iv;) a.~(r) = -  a q(x), (2.1) 

u~(r) = (3(P)w(x), u¢(r) = 6(P)u(x), 

where x = r/a, G is the shear modulus and v is Poisson's ratio. Then p, q, u and w are 
connected by the pair of coupled Volterra equations 

f ]  tp(t)dt x d _7 {  q(t)dt_X fo = f; tw(t)dt w*(x), (2.2a) 

ff q(t)dt fx tp(t)dt ff (tu)'dt _ u*(x), (2.2b) x 
where 7 = (1 - 2 v ) / ( 2 -  2v). (A derivation is given by Noble and Spence [11]). These can 
be written in terms of a single linear integral operator  L whose structure is that of a 
matrix as 

i The restriction to rigid punches simplifies the discussion, but is not necessary. The contact can be thought 
of as between linearly-elastic bodies of shear moduli G1, G2 and Poisson's ratios v~, v2, in which case the 
boundary conditions hold for displacements ~, = wl  4-w2, ~ = ul - u 2 ,  and the analysis goes through with 
7 replaced by the modified value 

= ( l - 2 v ,  1 - 2 v 2 ~ / { 1 - v ,  + l-_y_2 ~ 
2G~ - 2GzJ/ \  G T  G2 J'  

as noted by Spence [15]. 
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C) (w) L = . (2.3) u* 

The normal compliance of the surface, i.e. the indentation 6 per unit of applied force 
P, can be written in terms of a dimensionless compliance factor 

p ,  zt ~o 
2 xp(x)dx. (2.4) 

Then P = 4GAP*6/(1- v). Shield and Anderson [12] have shown from general energy 
considerations that, "for a given load, a rough punch penetrates less than a smooth 
punch and further than a perfectly rough punch"; accordingly, we expect P to increase 
monotonically with # from the value for a smooth punch, namely 1, to the fully adhesive 
limit (1 /2J  log {(1 +7) / (1 -7 )}  as # ~ oo, and this is borne out by the calculations sum- 
marised later (figure 4). 

For  indentors of general shape, p and q would depend on a as well as x, but for the 
particular shapes considered in the present paper the solutions do not depend explicitly 
on a. Consider first indentation by a flat punch of circular cross section, for which a iS 
constant (Figure la). In this case, at any instant, u= = constant = 6(P) over the contact 
area, so 

Frtctiolnal Indentation by rigid punch (schematic) 

(a) Flat punch 
P 

C' C [ ~  S(P) 
. / '  
sllp adhesion slip 

(b) Hertzion Inclentor 
P 

slip adhesion slip 
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w =  1 on (0,1). (2.5) 

We look for a solution in which no slip takes place over a central circle (0, c)(c < 1). 
The frictional force required to resist slip at points within the circle cannot then exceed 
the limiting value/~p, so 

u = 0 ,  # p - q > 0  on (0, c), (2.6a) 

while in the outer annulus (c, 1), as 6 is slowly increased slip takes place inward, with 
limiting friction acting outward, so that (3/O6)ur(r) is negative, i.e. 

u < O, # p - q  = 0 on (c, 1). (2.6b) 

(p must be looked on as the limiting value of the coefficient of sliding friction when the 
relative speed goes to zero. This could be lower than the coefficient of static friction, 
but if (2.6a) is satisfied when # has its sliding value, it is satisfied a fortiori if the static 
value is higher.) 

Altogether, therefore, the problem reduces to the solution for p and q on (0, 1), and 
u* on (c, 1), of the equation 

,¢)-(0;.) 
where the lower line of the right hand side denotes the values on (0, c) and on (c, 1) 
respectively, subject to the conditions 

o n  (0, c), 

on (c, 1), (2.8) #P-- q 0 

and 

u = < 0  on (c, 1), (2.9) 

where u is to be obtained from the solution as the inverse of u*, namely 

u(x) = 2 j l  x tu*(t)dt 
~ ~ .  (2.10) 

In this system, c is an eigen value depending on the physical constants # and y. Aria, 
lytically, it is more straightforward to determine a relation between p and 7 for fixed c. 
The existence and uniqueness of such a relation are shown by the formal solution of 
the next s0ection. 

2.2. The eigenvalue problem 
The equations and boundary conditions can be reduced to a sinle Fredholm equation 

for 

q(x) 
~b(x) - p ( x ) -  - -  (2 .11)  

# 

on the interval (0, c), as follows. (~b is defined on the whole interval (0, 1), but vanishes 
on (c, 1), by (2.8).) First write (2.2b) as 
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f p ( t ) d t y f f t p ( t ) d t  f f  c~(t)dt Z(X) =- x ~ # x / ~ Z  ~ - x x/-iz2~ (2.12) 

on (0, c). Since ~b >= 0 on this interval, X => 0 also; and in particular 

Z(C) = O. (2.13) 

In the limiting case in which p can be approximated by the frctionless distribution 
(1 -x2 )  -~ the last condition immediately gives a value for/~/y as a function of c, noted 
in equation (2.28) below. Inversion of the Abel equation (2.12) on the interval (0, c) gives 

42(x)- 2 d f~ Z(y)dy (2.14) 
n dx .J~ ~ "  

The integral on the right can be expressed in terms of elliptic integrals, and differentiated, 
using standard results, leading to an expression for ~b in terms o f p  on 0 < x < c" 

;o 49(x) = p(x) + 7 2 cot zrc~ l(x, t)p(t)dt (2.15) 

in which 

tan na = PV 

and 

I 
l(x, t) (2.16) 

~(t- x) 

near x = t, so that the integral is a Cauchy principal value. The precise form of l(x, t) 
is given in Appendix A. The condition (2.13) has been used in the derivation of this 
equation. 

Again, from (2.2a) with w = 1, writing y for x and operating on the equation by 

_2 f x  dy 
~o,]Yr2~ 

we find 

f/C) i k I p(y)dy-y q(y)dy = 1 

where 

(2.17) 

kl(S) = (~(2/n)K(s) (s ;~ 1), 
((2/ns)K(1/s) 

and K is the complete elliptic integral of the first kind. 
Differentiation with respect to x and replacement of q by # ( p -  ~b) gives the singular 

integral equation 

fo 0 < x < 1 : p(x) + cot na k(x, y)p(y)dy = ~b(x) (2.1 8) 
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where 

k(x, y) = dxx kl n(y ,x )  near x = y (2.19) 

An analytic solution of this equation by the Wiener-Hopf technique is possible, but 
the details are complicated. However, because of the singular behaviour of k we can 
write the solution formally in terms of a resolvent kernel h having the same singular 
behaviour, as 

;o p(x) = (sin na)z4~(x)- cos net sin net h(x, y)4)(y)dy + C•(x), (2.20) 

where 

1 
h(x, y) near y = x (2.21) 

n(y- x) 

and/~(x) is the solution of the homogeneous equation, i.e. of (2.18) with q~ = 0. This 
solution (which corresponds physically to the case of limiting friction throughout  the 
contact region) is unbounded at x = 0 and must therefore be excluded by setting 
C = 0 .  

If now we substitute p(x) from (2.20) into (2.15), andreverse  the order of integration 
by use of the Bertrand-Poincar6 lemma which shows that 

; ; o  fl;o l(x, t)dt k(t, y)ck(y)dy = -ok(x)+ ~(y)dy l(x, Ok(t, y)dt 

we obtain an equation 

(1 - y2)(T@)(x) = f~m(x, y)ck(y)dy (2.22) 

in which m, derived from k and l, is bounded at x = y, and T is written for the singular 
operator 

f i  ~b(t) dt T~b =- q~(x) + tan net - - ,  (2.23) 
t - - x  

which can be inverted on (0, c), to give the regular Fredholm equation 

- y2)dp(x) = J~n(x, y)gp(y)dy, (2.24) (1 

where n(x, y) = T-  1re(x, y) (the eigen-solution of (2.23), which is unbounded at x = 0 
and c, being excluded in the inversion), n(x, y) contains et and ~ as parameters. It follows 
that ~b is an eigenfunction and (1 _y2) the corresponding eigenvalue of the kernel n, 
i.e. that a relation 

1--y 2 = 2(et, T) (2.25) 

exists between the parameters, so that for given values of c and y, et and therefore the 
friction coefficient # is determined. 
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In the two-dimensional case it was possible to show explicitly for the analogous 
equation (Spence [14]) that n(x, y) > 0 on (0, c) 2 so from the general theory of positive 
kernels it followed that only one eigen-function ~b, that corresponding to the largest 
eigen-value of n, was such that 

~b>O on (O,c) 

as required by (2.8), and there seems no reason to doubt that the same is true in the 
present case, but the detailed calculation of n(x, y) has not been undertaken. 

2.3. Solution by successive approximations 
The physical parameter Y takes values moderately small compared with 1 for common 

materials; e.g. 7 = 2 when v = 0.3 (typical of steel), and even for the extreme case v = 0, 
7 = ½, so an expansion procedure in powers of 7 should be of some use. The first approx- 
imation, obtained by putting 7 = 0 in (2.2a), is the classical frictionless distribution 

p(°)(x) = (2/1r)(1--X2) -½. (2.26) 

Substitution of this expression in (2.2b) then gives an equation for the corresponding 
shear stress q(°)(x) say. To carry out the substitution, we calculate the function g(x) 
defined by (2.12), with p(O) in place of p, as 

04, 
~y= I 

adhesion 

0.8 

-o.,I- 

_ 0 . 8  L_  • 

I x  . q~ dt ~(k' - - )  - -  
~- p(t)dt _Y ~ t~(t)dt x P 

~cTx ¢J V, t2. x 2- 

(I.° 2 1 ( l ÷ x  ~] Ix ,,-x,j 
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Z(°)(x) = xK'(x)- ½ Log l ~ x x J ,  (2.27) 

where K'(x)= K ( ~ ) .  Z(°)(x) is the difference between two strictly monotonic 
increasing functions and therefore has just one root x = c between 0 and 1, Z ~°) being 

0 on the intervals x N c as required by the signs of ~b and u respectively. Z (°) is plotted 
for two values of #/7 in figure 2. 

Setting x = c, we have 

1 / l + c ' ~  
#7 - 2cc~ l°g l~-J/K'(c)  (2.28) 

as the limiting form of the relation between #, c and Y when Y is small. This expression 
is plotted in figure 3 along with values of # obtained from a numerical solution to the 

0 . 6  

@4 

0.2 

A x i s y m m e t r i c  punch :  I~ ve rsus  c 

~=~o(=o0 ~,-~= I/K'Ccl 

O 

/ '  
I 
I 

o / I 
/ i l  

I 
o I 

/ I / 
_ ~ o ~  NumericctL soLution I 

v = 0 / / '  j o  I 

/ / , ' I  

\ ~ o  s - "  ~ o / ~  / o /  

/O~-  ~ 
o,, o ~  - _ ~_ . . . . . . .  \ 
~, ~ , o ~  ~ ~ o . . . . . . . .  v = O' 373 
~ f  

I I I I I i I I I I 
0.2 0 .4  c 0 .6  @8  1.0 

general problem, and provides a good approximation when v is close to 12-(7 << 1) ,  
although less accurate for v = 0. From the limiting behaviour of K'(c) as c ~ 0, 1, 
we obtain the asymptotic expressions 

f 4 <  exp (-7/P) as # ~ 0 
for fixed 

c [ 1 - 2 e x p ( - n # / y )  as # ~  
V. (2.29) 

These indicate the general shape of the curve of c against #. With Z (°) given by (2.27), 
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the integral (2.14) has the value 

2 
~b(°)(x) = - (1 - x 2)-~o(x, c), (2.30) 

7~ 

where 

O(x,c) = Ao (sin -~c°-, x/-fZ~)_ 2CK,(c)[ ~ _ ( log l l _ ~ ) / ( l o g  l_:_c]]l+c)] 
C 7~X 

A0 being the Heuman function (Byrd & Friedman [4] p 35), and co = [(c 2 - x2)/(1 - x2)] ½. 
Thus the shear stress is given in this approximation by 

q(O) 

kip(0) -- 1 -- ~b. (2.31) 

For all c, 1 - ~ increases monotonically from 0 to 1 as x increases from 0 to c (and also, 
for fixed x < c, decreases monotonically as c increases), q/l~p as found from this formula 
is indistinguishable on a graph from the full numerical solution plotted in figure 5. 

A further approximation to the pressure could be obtained by inserting q(0) in (2.2a). 
Then 

p(x) = pt°)(x) + 7ptX)(x), 

where p(1) satisfies the Abel equation 

f] tp(1)(t)dt x 

(2.32) 

(t < x) (2.33) 

The solution cannot be calculated in closed terms, but could be found numerically. 
Also, without being solved in full the equation provides an expression for the normal 
compliance of the surface: 

= 2 ~ ;~xp(x)dx = 1+  7f~(1-x[f~{Z)q(°)(t)dt (2.34) p* 

suitable for numerical quadrature. 
Having found p(1) from (2.33), it would be necessary to refine the approximation to 

c by means of equation (2.13), and the labour involved in proceeding to a further approx- 
imation would be prohibitive. 

The adhesive limit. Some further light is thrown on the accuracy of this approximation 
procedure by applying it to the case of full adhesion (i.e. c = 1), for which the exac t 
solution is quoted in appendix B. 

Eliminating # from (2.31) by means of (2.28), we have 

1 +c'X 
)' p(O) log ~----c) (1 -- O)/K'(c). qt0) = 2cc 

As c ~ 1, the right hand side tends uniformly to 

2y log (1 - x  2) (2.35) 
7[ 2 X ~  "2 
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in any interval (0, 1 -  6), which is precisely the limit of the expression (B3) for q when 
y << 1. When this expression is used to evaluate (2.34) the result is 

P* = 1 + ~ 2 ,  (2.36) 

in agreement to order 72 with the exact value (1/27) log {(1 +y) / (1 -7 )} .  For  7 - ½, 
(2.36) gives 1.0833 compared with the exact value 1.0988. 

3. The Hertz ian indentor 

3.1. Self similar solutions 
Consider now the situation indicated in figure lb  of progressive indentation by a 

body whose shape is given by the power law 

z = r"/nb"- 1 

with z measured into the body, b being a typical body length; e.g. for a sphere of radius 
R the Newtonian approximation, valid provided R >> a is of the above form with n = 2 
and b = R. 

As the normal force P is progressively increased the contact radius a(P) and the 
maximum indentation 6(P) increase; a can now be treated as the time-coordinate. The 
dimensionless normal displacement is now 

w = 1-(a"/nb"-16)x" on (0, 1). (3.1) 

For  a self-similar solution of the form implied by (1.2) to exist, w must be independent 
of a, so we can write 

6 = Aa"/b"- x, (3.2) 

where A is a constant which depends only on n and on the material constants, v, p. 
Moreover, since there is to be no relative slip between the indentor and the half space 
within the circle x < c, the value of u, within this region cannot change with a, so that 

g r 
~a u,(r; a) = 0 for 0 < - < c, (3.3) 

a 

i.e. u, must be a function of r only, whereas from (3.2) and (2.1) we deduce that u r equals 
a" times a function of x = r/a. The only function u, satisfying both these requirements 
is a multiple of r", which can be expressed non-dimensionally as 

u(x) = Cx" (0 < x < c) (3.4) 

where C, like A, is a material constant to be determined. For  c < x < 1, u(x) is unknown. 
Substitution of (3.1) and (3.4) puts (3.3) in the form 

( ~ ) = (  1 - A ' x "  "] 
L \C'x" ,  u*(x)] (3.5) 

where 
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A ' = F ( 2 ) F ( ~ ) /  t / n + l '  = I F  ( n 2 3 )  F ( I +  

and, as before, the two expressions on the lower line of the right hand side are the values 
on (0, c) and (c, 1) respectively. 

We again have an eigen value problem for c, subject to the same constraints (1.8) 
on the stresses, while in place of (1.9) the condition that slip takes place inwards is 

8 
8aa ur(r, a) < 0. (3.6) 

The constants A and C have to be determined as part of the solution, with the aid of 
the further boundary condition that the stresses at the edge of the contact region must 
vanish, i.e. 

p(1) = 0 - q(1). (3.7) 

This defines the point where contact between the indentor and the half space is lost. 
/ 

It does not apply when the contact radius is determined by the geometry, as in figure la  t 
singularities in the edge stresses must then be admitted. 

3.2. Transformation to equations for a flat punch 
However, even without knowledge of A and C, the solution of (3.5) subject to the 

frictional constraint (2.8) can be expressed in terms of the solution for the fiat punch 
case. To show this, apply the differential operator 

x d 
D - 1 - - - -  

n dx 

to both sides of (1.15), obtaining 

(0;u.) 

(3.8) 

(3.9) 

Now integration by parts followed by differentiation with respect to x shows that for 
functions p and q satisfying (3.7) the operators D and L commute according to the rule 

1 
= O -  - (3.10) 

n (;) DL = L fiq , 

Therefore if we define 

Po = Dp, qo = Dq, 

the equations become 

u~ = Du*, (3.11) 

(1) 
qo 0, u* " 

These are exactly the equations (2.7) that hold for the flat punch. Once this problem 
has been solved, therefore, the stress distributions for the power law case are given by 
quadrature of (3.11) with the boundary condition (3.7) as 
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p(x) = nx"- I t-.po(t)dt, q(x) = nx"- I t-,qo(t)dt, (3.13) 

provided these distributions and the associated radial displacement u,(r, a) satisfy the 
constraints (2.8, 2.9). To confirm that they do, we note first that 

I ~ p _ q = n x . _ X ~ ( # p o _ q o ) t _ , d t { > O  on (0, e) 
0 on (c, 1) (3.14) 

since the integrand is positive and zero respectively on the two intervals by (2.5) and (2.6). 
From u* = Du* we obtain the differential equation 

D(xu)' = (XUo)' 

for u, with solution expressible in terms of the physical coordinates as 

Ar" V ~r/a , Xu°(t)dt ] 
u , ( r , a ) = b , _ f L C - n J o  t -  - _~' (3.15) 

whence 

~aU'(r 'a)=O on 0 <  < c  , = n A  u 0 ( ~ )  on C<-a  < 1  . 

Since uo(r/a ) is negative on (c, 1), by (2.9), Our/da is zero or negative as required by (3.3) 
and (3.6). We are therefore able to conclude that the slip radius c as a function of #, v 
is the same for the power law body as for the fiat indentor. 

The constants A and C can now be calculated by substitution of the stress distributions 
(3.13) into equations (3.5). In the numerical work described in later sections, this was 
straightforward, but a quadrature that gives A directly and so provides a numerical 
check is obtained by multiplying the first equation by (2/n)(1-x2) -~ and integrating 
with respect to x from 0 to 1. This gives 

1 2 O 
I tK(t)p(t)dt, (3.16) 1 nA zt do 

where K(t) is the elliptic integral. 
Substitution for p(x) from (3.13) and integration by parts shows that the normal 

compliance (2.4) is now 

P* = ( n - ~ )  P~, (3.17) 

where P* = (rt/2)S~Xpo(x)dx is the flat punch value. 
It may also be noted by setting x = 0 in (3.11) that the pressure at the centre is related 

to that at the centre of the fiat punch (provided n > 1), by 

p(0) = p0(0). (3.18) 
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Limiting cases 
This transformation has been developed with the frictional indentation problem 

in mind, but applies afor t ior i  in the limiting cases of (a) frictionless and (b) fully adhesive 
indentation. In the frictionless case, the fiat punch problem has the Boussinesq solution 
po(X) = (2/n)(1 - x 2 )  -~, whence for the Hertz problem of indentation by a sphere, from 
(3.13) with n = 2 we immediately obtain the classical result 

p(x) = (4/n)(1 - x2) ~. (3.19) 

The corresponding value of the constant A is 1. Similarly, for a conical indentor with 
semiangle close to re~2, by putting n = 1 in (3.13) we find 

p(x) = (Z/n)log [(1 + x / Y Z ~ ) / x ] .  (3.20) 

4. Numerical solution for axisymmetric fiat punch 

A numerical scheme for computing the solution of equations (2.2) was constructed by 
use of piecewise constant approximations to po(t) and t - lqo( t )  over N sub-intervals 
h i = {t : t~_ 1 < t < tg} spanning the full interval (0, 1), the resulting equations being 
satisfied at the N mid points x~ = t2-(ti_ 1 + tl). The values make up the elements of a 2N 
vector {Pi} defined by 

Po(t) = P~, t - tqo( t )  --- P i + N  for t e h i ,  i = (1, N) (4.1) 

(i = (1, N) is written throughout for i = 1, 2 , . . . ,  N), and the slip radius c is chosen 
as the M th point of subdivision, so 

c = t M, M < N. (4.2) 

The equations can be written, with t j - t  j_ 1 = Ihjl, in the partitioned form 

Zi~pi+ 7 y" (x inu-xj lh j l )Pj+ N = 1, i = (1, N), 
J J 

0 i = (1, M), (4.3) 
- 7 ~ B i J p ~ + x i ~ A i ~ P J + N =  u* i = ( M + I , N ) ,  

J J 

where all summations extend from j = 1 to N, and i is in the range indicated. The 
{Aij}, {Bij } form N x N matrices of upper and lower triangular form respectively, with 
elements 

h tdt {(t > x,), (4.4) 
Bit ~ I tZ-  x21~ (t < xi), 

(so that A~j = 0 for j < i, Bij = 0 for j > i). 
The most convenient procedure for solving the eigenvalue problem was to fix c and 

iterate to find #, given the material constant 7. Then (2.6) gives 

xjp~+ N =/~p~ j = ( M + I ,  N), (4.5) 

and the system (2.2) can be written 
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N + M  

Dup t = e k, (4.6) 
/=1 

where D u is a 2N x ( N +  M) mat r ix  whose elements  are l inear combina t ions  of  the 
A~j, B 0 conta in ing # and  7 as parameters .  Wi th  i, j running  f rom 1 to N, the elements  
of  D are 

Aij / \  t ? B ' J  xi  A,j J = (l' D i j  -= Oi+lv, j = (4.7) 

Di,~+ N = y(xiB~j-xjlhjl) ,  Di+Nj+N = x ih i j  j = (1, M), 

and  

{10 k = ( 1 ,  N), 
e, = k = (N + 1, N + M). (4.8) 

F o r  k = (1, N + M ) ,  (4.6) therefore provides  a set of  N + M  l inear equat ions  for the 
Pz, l = (1, N + M )  which were solved using a s t andard  sub-rout ine.  

The  compl iance  P* was evalua ted  f rom the solut ion as 

N p , = T r  
~ Ihjlxjp i. (4.9) 

j= l  

As a guide in selecting the mesh  size, the m e t h o d  was first appl ied  to the case of  fully h 
adhesive contact ,  in which no slip takes  place over  any  par t  of  the interval  (0, 1). Then  
c = 1, i.e. M --- N, and  # does not  enter  the calculation. Exact  expressions are der ivable  
for this case (see Appendix  B) for P* and  for the l imiting behav iou r  of  p(x) and q(x) as 
x --* 0, namely  

nx  v 2 q(x) 
P* - -- 1 + + p(x) = p(O)+O(xe), - ½xp(O)+O(xZ), (4.10) 

2 7 3 . . . .  x 

where  

1 
x = - log 

n 1- -7  
(:)(coshT) 

F o u r  mesh  sizes were tested 

(i) N = 2 5 ,  all Ih i l= .04  

(ii) N = 50, all Ih,I = .02 

.02 
(iii) N = 55, [hi[ = .01 

.02 
(iv) g = 60, Ihll = .01 

(i = 1, 45) 

(46, 55) 

(i = 1, 40) 

(41, 60) 
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the last two being refined in the outer region because of the known singularity of p and 
q at x -- 1 in the adhesive case. Results obtained for v = "0 (? = ½) were 

N 25 50 55 60 Exact 

P* 1.09652 1.09769 1.09834 1.09826 1.09861 

p(0) .80926 .80881 .80778 .80784 .80760 

For  different values ofv,  the comparison when N =  55 was 

v 0. .125 .25 .375 

P* computed 1.09834 1.06884 1.03964 1.01366 

P* exact 1.09861 1.06900 1.03972 1.01366 

On this basis, N ~ 5 5 - 6 0  was accepted as a satisfactory sub-division. This involves 
inverting a matrix of up to 120 rows, which is the effective limit for single precision 
arithmetic. Improved  accuracy might, however, have been obtained for the same N 
by use of a more  sophisticated integration technique. The present integration method, 
however, appears to give P* correct to 3 in 104 in the most  severe case v = 0, and much 
more accurately as v approaches ½. In the limit v = ½, ? = 0 and q is zero. The exact 
solution in this case is Pi = (2/n)(1-x~) -~ which was reproduced with errors only in 
the fourth figure except close to the outer boundary,  where the last three Pi were fairly 
seriously in error. In the frictional cases, however, the calculation is believed to be 
accurate even in this region, since the oscillatory behaviour due to adhesion can be shown 
analytically to be absent. 

4.1. Iteration to f ind p 
The solution gives (i) the stress ratio q/#p in the adhesive region (0, c) as 

q(xi)/pp(xl) - x iPi+s ,  i = (1, M), (4.11) 
#Pi 

(ii) the displacement u in the slip region (c, 1) as 

2 N 
= ~lBijej+N i = ( M +  1, N), (4.12) 

u(x,) J- 
where ej+N is calculated from (4.6) using the p~ already found. This equation is the 
numerical version of (4.10), since ej+ N = u*. (In the last sum ej+N is zero in (1, M) and 
B~j is zero in ( i+ 1, N).) 

Two types of curve were found for these quantities, for fixed c, ?, according to whether 
# was larger or smaller than the final #c. For  # < #c the calculated distribution of q/#p 
rises to values greater than 1 thus violating the inequality (2.5), while for # > #~ the 
distribution decreases as x ~ c, in fact representing a negative singularity at this point, 
while the distribution of u is initially positive in the slip region x ~ c, contrary to (2.6). 
It therefore appears  that the correct value # -- #~ to satisfy all the conditions is that for 
which q/#p ~ 1 as x ~ c. For  any other value there would certainly be a discontinuity 
in stress at x -- c. 
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To find #c by iteration, the val'ue of (q/P)x=c = #* say was estimated by Gaussian 
extrapolation from q/p at the mid points of the last 3 intervals. 

For  different values of p this gives a curve/2*(#) cutting the line #* = # at #c. For  a 
given mesh, the intersection was found with an accuracy of 10- 5 by use of regula falsi 
in approximately five iterations. 

In the light of the results for the fully adhesive case, all calculations in the case of finite 
friction were done with a grid in which Ihi[ = .02 except for 8 intervals on either side of 
tM, which were subdivided to Ihi[ = .01 for increased accuracy of interpolation in the 
region in which q varies rapidly, i.e. 

.02 i = (1, m - 8 ) ,  ( m + 8 ,  N) 

Ih ' [= .01 i = ( M - V , M + 8 )  

(These are modified slightly when c is close to 0 or 1.) 
The calculation was carried out for v = 0, .125, .25 and .375 for a range of values of c. 

The results are shown in figure 3 and the compliance factor P* is plotted in figure 4. 
For  the two-dimensional calculations described in section 5 which proceeds on identical 
lines, an analytic solution (Spence [14]) shows that the computed values of p as a 
function of c and v are accurate at least to 4 places, and the same is almost certainly 
true of the present values. 

I "1  - -  

p Q  

1.05 

!.(} 

Compliance factor P ' f o r  flat 

axisyrnmetric punch 

v=O 

p 

I I I I I 
0-2 0.4 0.6 0.8 1-0 

¢ 

1 

P % ~ / x  p(x)dx 
o 

4.2. The Hertz problem 
The distribution pl °), say, resulting from the final iteration of the flat punch calculation 

was used to calculate the pressure and shear stress distributions for the case Of Hertzian 
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indentation by a sphere of  radius R, using the fact proved in the section 3 that, for 
given values of p and v, c is the same in both cases. If  

p(xl ) (2) x~  ~q(xi) = ,,~2) = Pi , Vi+N (4.13) 

are written for the Hertzian stresses at the mid-point  of the ith interval, their values are 
given by (3.13) with n = 2 as 

pl 2) = 2x i t -  2p(°)(t)dt, el+n"(2) = t -  2qo(t)dt. (4.14) 
i i 

A quadratic interpolation 

p(°)(t) = aitE + b i t + c i  ( t~h i )  (4.15) 

fitting the flat punch values p(k0_) 1, ptk °) and Vk+"(°) 1 at the three nearest mid-points (i.e. 
k = 2 for i = 1, k = i for i = (2, N - l ) ,  k = N - 1  for i = N) was multiplied by t -2 
and integrated exactly in each interval, to obtain piE); a similar interpolation fitting 
P~k~N when multiplied by t -1 and integrated gave k'i+Nn(2) [For  k > M,  FR+I~'(O) _ pptkO)/Xk, 
by (2,5)]. 

The resulting distributions of shear stress and normal  pressure, together with the 
corresponding fiat punch distributions, are shown in figures 5 and 6 for the case v = 0 
and a range of values of p. 

Axisymmetric punch, v=0'. shear stress in adhesive region 

! 

0.6 
q__ 
~tp 

0.2 

-- 1~=0.2063//- I / ~  J ~ 1 " / ~ J  
c -- 0 - 2 4 ~  - -  l / t / - -  I 

_ "  / / /  ~=o.~/ / ~  / 
- / . c=o.s / . .  / 

/ / / . / 1  ~=o.~ola / 
/ / . /  / ' /  c=0.7 / 

_ I tll" / 7  / / / ,, ' ,/..."/ / 
- /  / / .  / / 

I / / / ' "  / ,.r,z,on 
I--~ / ,~ / / indentor 

,,°, 0unc  

I g - ~ " -  I I I I I I I I 
0.2 0./, 0.6 0-8 

X 

A test of accuracy is provided by the case of the fully-adhesive punch, for which as 
noted in Appendix B the pressure at the centre and its derivative can be calculated 
from the results of the author 's  earlier paper  [13]. 
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F 
1.6~ 

Axisymmetric punch normal pressure 
distributions for v=0 

i 
i 

i ~=0-~0~3 I 
c=0.7, , I 

[._ I~=0"2063 
1.2 c= 0.2/, 

p.=0.2986 
c=0.5 

flat punch 

0.8 

Hertzian 
indentor 

0"6l- fuUy odhesive 
. . . .  

o I I I I I o.~ 0.8 
X 

For  the case v = 0, we find from (B6) 

p(2)(0) = 2p(°)(0)= 1.615192, [~Z.. P~2)(x)l = - .282415,  
Lu~ A x = O  

while the quadratic fit to the computed values is 

p = 1.615725 - 0.2801x - 0.781x 2. 

This suggests that the quadrature is accurate to about  5 x 10 -4. 
The normal  compliance factor P* can be calculated either as 2 of the flat punch value, 

because of (1.28), or by direct numerical integration using (2.9). The former method 
has been seen in the table on page 19 to be accurate to about  3 in 104, whereas direct 
quadrature  of the p(2) distribution gave 2.91840 against an exact value of 2.92963, 
accurate only to 4 in 103. This might have been improved by use of a polynomial  inter- 
polation to the pl 2). 
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Evaluation of the constants A and C 
These are given in principle by insertion of the new distributions pl 2) on  the left hand 

sides of the equations (2.2). Writing 

N+M 
E DklP} 2) = e(k2) (4 .16)  

l = l  

we should have, if the equations were exactly satisfied by the piecewise constant distribu- 
tion, 

k = (1, N), e~Z+)N = ( - ~ )  xk z k = (1, M). (4.17) e(2)_-- 1-x~ /A  

In fact, quadratics could be fitted to the e(k 2) with high accuracy; typically the third 
differences, with Ih~l - -  . 02 ,  were of the order of 5 x 10 -7.  

The values of A and C were estimated by means of least squares fits to the e(k z) of the 
form a 0 - a x x  2, a2x z respectively. For  the fully adhesive case, the values of A and C 
are known from equation (4.12) of Spence (1968) as 

A = ( 1 - x 2 ~ l ( x ) )  -1, C = -]K2x/3-4v/ (1-2v) ,  (4.18) 

where x = (1/Tr)log (3 -4v )  as before, and 

7~1(x) = ( -  1)" q(2n + 1) ( ~ ( 0 )  = log 2). 
n=O 

The values obtained in the test case v = 0 were ~o = .99437, ~ = .91345, ~2 = .32167 
compared with the exact values 1, .91849, .33271, suggesting that ~ gives 1/A with an 
accuracy of approximately half a percent. A summary of the results for v = 0 and 
v = .25 is: 

c .24 .3 .5 .7 .8 1.0 (exact) 

# .2063 .2986 .4013 .4862 

v = 0 1/A .9684 .9578 .9479 .9417 .9190 (.9185) 

p .1387 .i801 .2843 

v = .25 1/A' .9827 .9794 .9728 .9635 (.9668) 

Similar calculations for the corresponding two-dimensional problem are presented 
in a University of Wisconsin Mathematics Research Centre Report (1209) by the author. 

Appendix A. Kernels in equations (2.15), (2.19) 

(i) l(x, t) is defined in the rectangle 0 < x < c, 0 < t < 1, by the expressions 

(1) t < x < c: 

l (x , t ) --  (t2 X2) I ; I c ~ _ _ t 2 ]  JrE --E ¢, , 



The Hertz  contact problem with f inite friction 317 

where ~ = sin-l(x/c) ,  E(t/x) and E(~, t/x) being the complete and incomplete elliptic 
integrals of the second kind. 

(2) x < t < c: 

( )}1 { ( l ( x , t ) -  2t [X /C2- -X2~  4x t X 2 K - -F  (a, t ; 
7~(t2--X 2) C ~ ) H -  --X E - E  ~ ' 7  - /l;x 

where q~ = sin-1 (t/c), K(x/t)  and F(~b, x/t) being the corresponding elliptic integrals 
of the first kind. 

(3) x < c < t: 

2 tan lt~ {c 2 -x2Xl ~ 
l(x, t) I I 

nyz(t z - x 2) \ t z _ c 2 ] " 

Since E(1)-E(~, 1) = 1 - s i n  ¢, the first two expressions both show that l .,~ 1 / n ( t - x )  
near x = t (t < c). In t > c, the kernel is regular since l is defined only for x < c. 

(ii) k(x, y) is defined in the interior of the unit square 0 < x, y < 1 by 

~y2 2 f x h  
K , , , ,  (x <y ) ,  

r~x y2 _ x 2 7~x \Y /  
k(x, y) = 

y2__  X 2 (X > y). 

Since E(1) = 1, both expressions give k ,~ 1~re(y-x) near the singularity at y -- x; 
On the left of this line, the next term in the kernel also has the logarithmic singularity 
of K. 

Appendix B. The adhesive solution 

The stresses in the case of adhesive indentation by a flat axisymmetric punch were 
obtained in the author's earlier paper ([13] equations 4.3 and 4.4, p. 68) in the alternative 
forms 

xpo(X)~ = _ (2  cosh ~ ) d  r' (w cos ~00) dw (B1) 
qo(X)) dx 3x \ sin x / ~ r Z ~  

r~c'~ d fx ( - w  sin 
= -- cosh ~-/dxx do \ cos x0 ~ '  (B2) 

where x = (l/n) log {(1 +7)/(1 -y)}  and O(w) = ! 2 log {(1 +w)/(1 -w)}.  These results 
were also obtained by Keer [6]. 

From the second expression by integration by parts followed by differentiation with 
respect to x we get a third form 
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P°(X)~ ( ~ )  I x /  c°s  t e l ) s i n  x dw 
q0(x)J = P°(0) do k w  (1 - w 2 ) ~  ' (B3) 

where po(0) = (x/7) cosh nx/2. The limiting expressions as x ~ 0 quoted  in equat ion 
(2.10) follow immediately from (A3) on put t ing 0 - w, while the compliance P~' defined 
by (1.27) is found f rom (A1) as 

n f f  ( ? ) f o  = --nK. (B4) P'~ = ~ Xpo(x)dx = cosh - -  cos xOdw 27 

F r o m  (B3), the pressure in the Hertz ian case is given by (1.23) with n = 2 as 

4 f j  dy ~r cos ~cO(w) dw 
p(x) = po(O)x Jo (BS) 

and examinat ion of  the behaviour  as x ~ 0 shows that  

p(x) = 2po(0)[1 - x?x + . . . ] ,  (B6) 

which gives the values quoted  in section 2.2. 
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