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Abstract. 
A legacy system is an operational, large-scale software system that is maintained beyond its first generation 

of programmers. It typically represents a massive economic investment and is critical to the mission of the 
organization it serves. As such systems age, they become increasingly complex and brittle, and hence harder to 
maintain. They also become even more critical to the survival of their organization because the business rules 
encoded within the system are seldom documented elsewhere. 

Our research is concerned with developing a suite of tools to aid the maintainers of legacy systems in recovering 
the knowledge embodied within the system. The activities, known collectively as "program understanding", are 
essential preludes for several key processes, including maintenance and design recovery for reengineering. 

In this paper we present three pattern-matching techniques: source code metrics, a dynamic programming 
algorithm for finding the best alignment between two code fragments, and a statistical matching algorithm between 
abstract code descriptions represented in an abstract language and actual source code. The methods are applied to 
detect instances of code cloning in several moderately-sized production systems including tcsh, bash, and CLIPS. 

The programmer's skill and experience are essential elements of our approach. Selection of particular tools and 
analysis methods depends on the needs of the particular task to be accomplished. Integration of the tools provides 
opportunities for synergy, allowing the programmer to select the most appropriate tool for a given task. 

Keywords: reverse engineering, pattern matching, program understanding, software metrics, dynamic program- 
ming 

1. Introduct ion 

Large-sca le  product ion sof tware systems are expens ive  to build and, over  their useful  l ife- 

t imes,  are even  more  expensive  to maintain.  Successful  large-scale  systems are often cal led 

" legacy  sys tems"  because  (a) they tend to have been in service for many  years,  (b) the 

or iginal  developers ,  in the normal  course  of  events, m o v e  on to other  projects ,  leaving the 

sys tem to be  mainta ined by success ive  generat ions  of  main tenance  p rogrammers ,  and (c) 

the sys tems themselves  represent  enormous  corporate  assets that cannot  be easi ly replaced.  

Legacy  systems are intr insical ly difficult  to maintain  because  o f  their  sheer  bulk and 

because  o f  the loss of  historical  information:  des ign documenta t ion  is se ldom main ta ined  

as the sys tem evolves.  In many  cases, the source code  becomes  the sole  reposi tory  for  

evo lv ing  corporate  business rules. 

* This work is in part supported by IBM Canada Ltd., Institute for Robotics and Intelligent Systems, a Canadian 
Network of Centers of Excellence and, the Natural Sciences and Engineering Research Council of Canada. 
Based on "Pattern Matching for Design Concept Localization" by K.AKontogiannis, R.DeMori, M.Bernstein, 
M.Galler, E.Merlo, which first appeared in Proceedings of the Second Working Conference on Reverse Enginering, 
pp.96-103, July, 1995, (?~) IEEE, 1995 
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During system maintenance, it is often necessary to move from low, implementation- 
oriented levels of abstraction back to the design and even the requirements levels. The 
process is generally known as "reverse engineering". 1 In (Chikofsky, 1990) there are def- 
initions for a variety of subtasks, including "reengineering","restructuring", and "redocu- 
mentation". 

In particular, it has been estimated that 50 to 90 percent of the maintenance programmer's 
effort is devoted to simply understanding relationships within the program. The average 
Fortune 100 company maintains 35 million lines of source code (MLOC) with a growth rate 
of 10 percent per year just in enhancements, updates, and normal maintenance. Facilitating 
the program understanding process can yield significant economic savings. 

We believe that maintaining a large legacy software system is an inherently human activity 
that requires knowledge, experience, taste, judgement and creativity. For the foreseeable 
future, no single tool or technique will replace the maintenance programmer nor even 
satisfy all of the programmer's needs. Evolving real-world systems requires pragmatism 
and flexibility. 

Our approach is to provide a suite of complementary tools from which the programmer 
can select the most appropriate one for the specific task at hand. An integration framework 
enables exploitation of synergy by allowing communication among the tools. 

Our research is part of a larger joint project with researchers from IBM Centre for Ad- 
vanced Studies, University of Toronto, and University of Victoria (Buss et al., 1994) 

Over the past three years, the team has been developing a toolset, called RevEngE (Reverse 
Engineering Environment), based on an open architecture for integrating heterogeneous 
tools. The toolset is integrated through a common repository specifically designed to 
support program understanding (Mylopoulos, 1990). Individual tools in the kit include 
Ariadne (Konto, 1994), ART (Johnson, 1993), and Rigi (Tilley, 1994). ART (Analysis of 
Redundancy in Text) is a prototype textual redundancy analysis system. Ariadne is a 
set of pattern matching and design recovery programs implemented using a commercial 
tool called The Software Refinery 2. Currently we are working on another version of the 
Ariadne environment implemented in C++. Rigi is a programmable environment for pro- 
gram visualization. The tools communicate through a flexible object server and single 
global schema implemented using the Telos information modeling language and repository 
(Mylopoulos, 1990). 

In this paper we describe two types of pattern-matching techniques and discuss why 
pattern matching is an essential tool for program understanding. The first type is based on 
numerical comparison of selected metric values that characterize and classify source code 
fragments. 

The second type is based on Dynamic Programming techniques that allow for statement- 
level comparison of feature vectors that characterize source code program statements. Con- 
sequently, we apply these techniques to address two types of relevant program understanding 
problems. 

The first one is a comparison between two different program segments to see if one is 
a clone of the other, that is if the two segments are implementations of the same algo- 
rithm. The problem is in theory undecidable, but in practice it is very useful to provide 
software maintainers with a tool that detects similarities between code segments. Similar 
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segments are proposed to the software engineer who will make the final decision about their 
modification or other use. 

The second problem is the recognition of program segments that implement a given 
programming concept. We address this problem by defining a concept description language 
called ACL and by applying statement-level comparison between feature vectors of the 
language and feature vectors of source code program statements. 

1.1. The Code Cloning Problem 

Source code cloning occurs when a developer reuses existing code in a new context by 
making a copy that is altered to provide new functionality. The practice is widespread 
among developers and occurs for several reasons: making a modified copy may be simpler 
than trying to exploit commonality by writing a more general, parameterized function; 
scheduling pressures may not allow the time required to generalize the code; and efficiency 
constraints may not admit the extra overhead (real or perceived) of a generalized routine. 

In the long run, code cloning can be a costly practice. Firstly, it results in a program that is 
larger than necessary, increasing the complexity that must be managed by the maintenance 
programmer and increasing the size of the executable program, requiring larger computers. 
Secondly, when a modification is required (for example, due to bug fixes, enhancements, 
or changes in business rules), the change must be propagated to all instances of the clone. 
Thirdly, often-cloned functionality is a prime candidate for repackaging and generaliza- 
tion for a repository of reusable components which can yield tremendous leverage during 
development of new applications. 

This paper introduces new techniques for detecting instances of source code cloning. 
Program features based on software metrics are proposed. These features apply to basic 
program segments like individual statements, b e g i n - e n d  blocks and functions. Distances 
between program segments can be computed based on feature differences. This paper 
proposes two methods for addressing the code cloning detection problem. 

The first is based on direct comparison of metric values that classify a given code fragment. 
The granularity for selecting and comparing code fragments is at the level of b e g i n - e n d  
blocks. This method returns clusters of b e g i n - e n d  blocks that may be products of cut- 
and-paste operations. 

The second is based on a new Dynamic Programming (DP) technique that is used to 
calculate the best alignment between two code fragments in terms of deletions, insertions 
and, substitutions. The granularity for selecting code fragments for comparison is again 
at the level of b e g i n - e n d  blocks. Once two b e g i n - e n d  blocks have been selected, they 
are compared at the statement level. This method returns clusters of b e g i n - e n d  blocks 
that may be products of cut-and-paste operations. The DP approach provides in general, 
more accurate results (i.e. less false positives) than the one based on direct comparison of 
metric values at the b e g i n - e n d  block level. The reason is that comparison occurs at the 
statement level and informal information is taken into account (i.e. variable names, literal 
strings and numbers). 
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1.2. The Concept Recognition Problem 

Programming concepts are described by a concept language. A concept to be recognized 
is a phrase of the concept language. Concept descriptions and source code are parsed. The 
concept recognition problem becomes the problem of establishing correspondences, as in 
machine translation, between a parse tree of the concept description language and the parse 
tree of the code. 

A new formalism is proposed to see the problem as a stochastic syntax-directed translation. 
Translation rules are pairs of rewriting rules and have associated a probability that can be 
set initially to uniform values for all the possible alternatives. 

Matching of concept representations and source code representations involves alignment 
that is again performed using a dynamic programming algorithm that compares feature 
vectors of concept descriptions, and source code. 

The proposed concept description language, models insertions as wild characters 
(AbstractStatement* and AbstraetStatement +) and does not allow any deletions from 
the pattern. The comparison and selection granularity is at the statement level. Comparison 
of a concept description language statement with a source code statement is achieved by 
comparing feature vectors (i.e. metrics, variables used, variables defined and keywords). 

Given a concept description .44 = A1; A2; ..Am, a code fragment 79 = $1; $2; ..Sk is 
selected for comparison if: a) the first concept description statement A1 matches with $1, 
and b) the sequence of statements Sz; ...Sk, belong to the innermost b e g i n - e n d  block 
containing $1. 

The use of a statistical formalism allows a score (a probability) to be assigned to every 
match that is attempted. Incomplete or imperfect matching is also possible leaving to the 
software engineer the final decision on the similar candidates proposed by the matcher. 

A way of dynamically updating matching probabilities as new data are observed is also 
suggested in this paper. Concept-to-code matching is under testing and optimization. It 
has been implemented using the REFINE environment and supports plan localization in C 
programs. 

1.3. Related Work 

A number of research teams have developed tools and techniques for localizing specific 
code patterns. 

The UNZX operating system provides numerous tools based on regular expressions both 
for matching and code replacement. Widely-used tools include grep, awk, ed and v2. 
These tools are very efficient in localizing patterns but do not provide any way for partial 
and hierarchical matching. Moreover, they do not provide any similarity measure between 
the pattern and the input string. 

Other tools have been developed to browse source code and query software repositories 
based on structure, permanent relations between code fragments, keywords, and control or 
dataflow relationships. Such tools include CIA, Microscope, Rigi, SCAN, and REFINE. 
These tools are efficient on representing and storing in local repositories relationships 
between program components. Moreover, they provide effective mechanisms for querying 
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and updating their local repositories. However, they do not provide any other mechanism 
to localize code fragments except the stored relations. Moreover no partial matching and 
no similarity measures between a query and a source code entity can be calculated. 

Code duplication systems use a variety of methods to localize a code fragment given a 
model or apattern. One category of such tools uses structure graphs to identify the"fingerprint" 
of a program (Jankowitz, 1988). Other tools use metrics to detect code patterns (McCabe, 
1990),(Halstead, 1977), common dataflow (Horwitz, 1990), approximate fingerprints from 
program text files (Johnson, 1993), text comparison enhanced with heuristics for approxi- 
mate and partial matching (Baker, 1995), and text comparison tools such as u n i x  d i f f .  

The closest tool to the approach discussed in this paper, is SCRUPLE (Paul, 1994). 
The major improvement of the solution proposed here is a) the possibility of performing 
partial matching with feature vectors, providing similarity measures between a pattern and 
a matched code fragment, and b) the ability to perform hierarchical recognition. In this 
approach, explicit concepts such as I t e r a t i v e - S t a t e m e n t  can be used allowing for 
multiple matches with awh i l e ,  a For  or, a Do statement in the code. Moreover, recognized 
patterns can be classified, and stored so that they can be used inside other more complex 
composite patterns. An expansion process is used for unwrapping the composite pattern 
into its components. 

2. Code to Code Matching 

In this section we discuss pattern-matching algorithms applied to the problem of clone 
detection. Determining whether two arbitrary program functions have identical behavior 
is known to be undecidable in the general case. Our approach to clone detection exploits 
the observation that clone instances, by their nature, should have a high degree of structural 
similarity. We look for identifiable characteristics or features that can be used as a signature 
to categorize arbitrary pieces of code. 

The work presented here uses feature vectors to establish similarity measures. Features 
examined include metric values and specific data- and control-flow properties. The analysis 
framework uses two approaches: 

1. direct comparison of metric values between b e g i n - e n d  blocks, and 

2. dynamic programming techniques for comparing b e g i n - e n d  blocks at a statement- 
by-statement basis. 

Metric-value similarity analysis is based on the assumption that two code fragments G'l 
and C2 have metric values M(CJ and M(U2) for some source code metric M. If the two 
fragments are similar under the set of features measured by M, then the values of M(C1) 
and M(C2) should be proximate. 

Program features relevant for clone detection focus on data and control flow program 
properties. Modifications of five widely used metrics (Adamov, 1987), (Buss et al., 1994) 
for which their components exhibit low correlation (based on the Spearman-Pierson corre- 
lation test) were selected for our analyses: 

1. The number of functions called (fanout); 
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2. The ratio of input/output variables to the fanout; 

3. McCabe cyclomatic complexity; 

4. Modified Albrecht's function point metric; 

5. Modified Henry-Kafura's information flow quality metric. 

Detailed descriptions and references for metrics will be given later on in this section. 
Similarity of two code fragments is measured using the resulting 5-dimensional vector. 
Two methods of comparing metric values were used. The first, naive approach, is to make 
O(n 2) pairwise comparisons between code fragments, evaluating the Euclidean distance 
of each pair. A second, more sophisticated analytical approach was to form clusters by 
comparing values on one or more axes in the metric space. 

The selection of the blocks to be compared is based on the proximity of their metric value 
similarity in a selected metric axis. Specifically, when the source code is parsed an Abstract 
Syntax Tree (AST) Tc is created, five different metrics are calculated compositionally for 
every statement, block, function, and file of the program and are stored as annotations in 
the corresponding nodes of the AST. Once metrics have been calculated and annotations 
have been added, a reference table is created that contains source code entities sorted by 
their corresponding metric values. This table is used for selecting the source code entities 
to be matched based on their metric proximity. The comparison granularity is at the level 
of a b e g i n - e n d  block of length more than n lines long, where n is a parameter provided 
by the user. 

In addition to the direct metric comparison techniques, we use dynamic programming 
techniques to calculate the best alignment between two code fragments based on insertion, 
deletion and comparison operations. Rather than working directly with textual representa- 
tions, source code statements, as opposed to b e g i n - e n d  blocks, are abstracted into feature 
sets that classify the given statement. The features per statement used in the Dynamic 
Programming approach are: 

�9 Uses of variables, definitions of variables, numerical literals, and strings; 

�9 Uses and definitions of data types; 

�9 The five metrics as discussed previously. 

Dynamic programming (DP) techniques detect the best alignment between two code 
fragments based on insertion, deletion and comparison operations. Two statements match 
if they define and use the same variables, strings, and numerical literals. Variations in these 
features provide a dissimilarity value used to calculate a global dissimilarity measure of 
more complex and composite constructs such as b e g i n - e n d  blocks and functions. The 
comparison function used to calculate dissimilarity measures is discussed in detail in Section 
2.3. Heuristics have been incorporated in the matching process to facilitate variations that 
may have occurred in cut and paste operations. In particular, the following heuristics are 
currently considered: 

�9 Adjustments between variable names by considering lexicographical distances; 
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Filtering out short and trivial variable names such as i and j which are typically used 
for temporary storage of intermediate values, and as loop index values. In the current 
implementation, only variable names of more than three characters long are considered. 

Dynamic programming is a more accurate method than the direct metric comparison 
based analysis (Fig. 2) because the comparison of the feature vector is performed at 
the statement level. Code fragments are selected for Dynamic Programming comparison 
by preseIecting potential clone candidates using the direct metric comparison analysis. 
Within this framework only the b e g i n - e n d  blocks that have a dissimilarity measure less 
than a given threshold are considered for DP comparison. This preselection reduces the 
comparison space for the more computationally expensive DP match. 

The following sections further discuss these approaches and present experimental results 
from analyzing medium scale (< 100kLOC) software systems. 

2.1. Program Representation and the Development of the Ariadne Environment 

The foundation of the Ariadne system is a program representation scheme that allows for 
the calculation of the feature vectors for every statement, block or function of the source 
code. We use an object-oriented annotated abstract syntax tree (AST). Nodes of the AST 
are represented as objects in a LISP-based development environment a. 

Creating the annotated AST is a three-step process. First, a grammar and object (domain) 
model must be written for the programming language of the subject system. The tool 
vendor has parsers available for such common languages as C and COBOL. Parsers for 
other languages may be easily constructed or obtained through the user community. The 
domain model defines object-oriented hierarchies for the AST nodes in which, for example, 
an If-Statement and a While-Statement are defined to be subclasses of the Statement class. 

The second step is to use the parser on the subject system to construct the AST repre- 
sentation of the source code. Some tree annotations, such as linkage information and the 
call graph are created automatically by the parser. Once the AST is created, further steps 
operate in an essentially language-independent fashion. 

The final step is to add additional annotations into the tree for information on data types, 
dataflow (dataflow graphs), the results of external analysis, and links to informal informa- 
tion. Such information is typically obtained using dataflow analysis algorithms similar to 
the ones used within compilers. 

For example, consider the following code fragment from an IBM-proprietary PL/1-1ike 
language. The corresponding AST representation for the i f  statement is shown in Fig. 1. 
The tree is annotated with the fan-out attribute which has been determined during an analysis 
phase following the initial parse. 

MAIN: PROCEDURE(OPTION); 

DCL OPTION FIXED(31); 

IF (OPTION>0) THEN 

CALL SHOW_MENU(OPTION); 

ELSE 
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CALL SHOW_ERROR( "Invalid option number" ; 

END MAIN; 

coadil~ln thea.clau~ e l ~ d a ~ e  

�9 Legend 

= AST node 

J = Link from parent 
attr~le nan to child via a 

r named attribute, 

fadout = Fanout attribute 
corltaining integer 
value V. 

Figure 1. The AST for an 1F Statement With Fanout Attributes. 

2.2. Metrics Based Similarity Analysis 

Metrics based similarity analysis uses five source-code metrics that are sensitive to several 
different control and data flow program features. Metric values are computed for each 
statement, block, and function. Empirical analysis 4 (Buss et al., 1994) shows the metrics 
components have low correlation, so each metric adds useful information. 

The features examined for metric computation include: 

�9 Global and local variables defined or used; 
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�9 Functions called; 

�9 Files accessed; 

�9 I/O operations (read, write operations); 

�9 Defined/used parameters passed by reference and by value; 

�9 Control flow graph. 

Partial matching may occur because the metrics are not sensitive to variable names, source 
code white space, and minor modifications such as replacement of  whs with f o r  loops 
and insertion of  statements that do not alter the basic data and control flow of  the original 
code structure. 

A description of  the metrics used is given below but a more detailed description can be 
found in (Adamov, 1987), (Fenton, 1991), (Moiler93). 

Let  s be a code fragment. The description of  the five modified metrics used is given 
below. Note that these metrics are computed composit ionally from statements, to b e g i n -  

e n d  blocks, functions, and files. 

1. S_COMPLEXITY(s) = FAN_OUT(s) 2 
where 

�9 FAN_OUT(s) is the number of individual function calls made within s. 

2. D_COMPLEXITY(s) = GLOBALS(s)/(FAN_OUT(s) + 1) 
where 

�9 GLOBALS(s) is the number of individual declarations of global variables used or updated 
within s. A global variable is a variable which is not declared in the code fragment s. 

3. MCCABE(s) = e - n + 2 
where 

�9 e is the number of edges in the control flow graph 

�9 n is the number of nodes in the graph. 

Alternatively McCabe metric can be calculated using 

�9 MCCABE(s) = 1 + d, where d is the number of control decision predicates in s. 

4. 

{ Pl * VARS_USED..AND_SET(s)+ 
ALBRECHT(s) = P2 * GLOBAL_VARS_SET(s)+ 

p3 * USER_INPUT(s)+ 
p4 * FILE_INPUT(s) 

where, 
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�9 VARS_USED_AND_SET(8) is the number of data elements set and used in the state- 
ment s, 

�9 GLOBAL_VARS_SET(s) is the number of global data elements set in the statement s, 

�9 USER_INPUT(s) is the number of read operations in statement s, 

�9 FILE_INPUT(8) is the number of files accessed for reading in s. 

�9 The factors Pl .... p4, are weight factors. In (Adamov, 1987) possible values for these factors 
are given. In the current implementation the values chosen are pl = 5, pz = 4, P3 = 4 and, 
p4 = 7. The selection of values for the p~s' # 0 does not affect the matching process. 

5. KAFURA(s) = { (KAFURA_IN(s) * KAFURA_OUT(s)) 2 where, 

�9 KAFURA_IN(s) is the sum of local and global incoming datafiow to the the code fragment 
S. 

�9 KAFURA_OUT(s) is the sum of local and global outgoing dataflow from the the code 
fragment s. 

Once the five metrics M1 to M5 are computed for every statement, block and function 
node, the pattern matching process is fast and efficient. It is simply the comparison of 
numeric values. 

We have experimented with two techniques for calculating similar code fragments in a 
software system. 

The first one is based on pairwise Euclidean distance comparison of  all b e g i n - e n d  
blocks that are of  length more than n lines long, where n is a parameter given by the user. 
In a large software system though there are many b e g i n - e n d  blocks and such a pairwise 
comparison is not possible because of time and space limitations. Instead, we limit the 
pairwise comparison between only these B e g i n - e n d  blocks that for a selected metric axis 
A-4i their metric values differ in less than a given threshold d~. In such a way every block 
is compared only with its close metric neighbors. 

The second technique is more efficient and is using clustering per metric axis. The 
technique starts by creating clusters of potential clones for every metric axis 34 i  (i = 1 .. 
5). Once the clusters for every axis are created, then intersections of clusters in different 
axes are calculated forming intermediate results. For example every cluster in the axis A4~ 
contains potential clones under the criteria implied by this metric. Consequently, every 
cluster that has been calculated by intersecting clusters in 3A~ and .Mj contains potential 
clones under the criteria implied by both metrics. The process ends when all metric axis 
have been considered. The user may specify at the beginning the order of comparison, and 
the clustering thresholds for every metric axis. The clone detection algorithm that is using 
clustering can be summarized as: 

1. Select all source code b e g i n - e n d  blocks/3 from the AST that are more than n lines 
long. The parameter n can be changed by the user. 

2. For every metric axis .Mi (i = 1 .. 5) create clusters C<j that contain b e g i n - e n d  blocks 
with distance less than a given threshold di that is selected by the user. Each cluster 
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then contains potential code clone fragments under the metric criterion 3di. Set the 
current axis Adc~rr = 3di, where i = 1. Mark Adi as used 

3. For every cluster ~,curr,m in the current metric axis Mc~r~, intersect with all clusters 
Cj,k in one of the non used metric axis Adj, j E {l .. 5}. The clusters in the resulting 
set contain potential code clone fragments under the criteria .Adeurr and .Adj, and form 
a composite metric axis Adc~rr| Mark 2t4j as used and set the current axis Adc~rr 
= Mcurr| 

4. If all metric axes have been considered the stop; else go to Step 3. 

The pattern matching engine uses either the computed Euclidean distance or clustering 
in one or more metric dimensions combined, as a similarity measure between program 
constructs. 

As a refinement, the user may restrict the search to code fragments having minimum size 
or complexity. 

The metric-based clone detection analysis has been applied to a several medium-sized 
production C programs. 

In tcMa, a 45 kLOC Unix shell program, our analysis has discovered 39 clusters or groups 
of similar functions of average size 3 functions per cluster resulting in a total of 17.7 percent 
of potential system duplication at the function level. 

In bash,  a 40KLOC Unix shell program, the analysis has discovered 25 clusters, of 
average size 5.84 functions per cluster, resulting to a total of 23 percent of potential code 
duplication at the function level. 

In CLIPS, a 34 kLOC expert system shell, we detected 35 clusters of similar functions of 
average size 4.28 functions per cluster, resulting in a total of 20 percent of potential system 
duplication at the function level. 

Manual inspection of the above results combined with more detailed Dynamic Program- 
ming re-calculation of distances gave some statistical data regarding false positives. These 
results are given in Table 1. Different programs give different distribution of false alarms, 
but generally the closest the distance is to 0.0 the more accurate the result is. 

The following section, discusses in detail the other code to code matching technique we 
developed, that is based on Dynamic Programming. 

2.3. Dynamic Programming Based Similarity Analysis 

The Dynamic Programming pattern matcher is used (Konto, 1994), (Kontogiannis, 1995) 
to find the best alignment between two code fragments. The distance between the two code 
fragments is given as a summation of comparison values as well as of insertion and deletion 
costs corresponding to insertions and deletions that have to be applied in order to achieve 
the best alignment between these two code fragments. 

A program feature vector is used for the comparison of two statements. The features are 
stored as attribute values in a frame-based structure representing expressions and statements 
in the AST. The cumulative similarity measure D between two code fragments P,  M,  is 
calculated using the function 
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D : Feature_ Vector X Feature_ Vector ~ Real 

where: 

A ( p , j  - 1,7),.hA)+ 
D(s163  - 1, jr4)) 

I ( p -  1,j,7), AJ) + (1) 
D(8(1,p ,  7)),C(1,j,.h/I)) = M i n  D ( g ( 1 , p -  1 ,P ) , s  AA)) 

C ( p -  1 , j  - 1,7), .M)+ 
D ( s  1, 7)), $(1 , j  - 1,.M)) 

and, 

�9 .M is the model code fragment 

�9 7 ) is the input code fragment to be compared with the model A/[ 

�9 s j ,  Q) is a program feature vector from position i to positionj in code fragment Q 

�9 D(l ;x,  Vy) is the the distance between two feature vectors 12=, Vy 

�9 A (i, j ,  P,  .hA) is the cost of deleting the j th statement of.M, at position i of the fragment 
7) 

�9 I( i ,  j, 7), A/l) the cost of inserting the ith statement of 7) at position j of the model A4 
and 

�9 C(i, j, 7), .M) is the cost of comparing the ith statement of the code fragment 7) with 
the jth fragment of the model A/[. The comparison cost is calculated by comparing the 
corresponding feature vectors. Currently, we compare ratios of variables set, used per 
statement, data types used or set, and comparisons based on metric values 

Note that insertion, and deletion costs are used by the Dynamic Programming algorithm 
to calculate the best fit between two code fragments. An intuitive interpretation of the best 
fit using insertions and deletions is "if we insert statement i of the input at position j of the 
model then the model and the input have the smallest feature vector difference:' 

The quality and the accuracy of the comparison cost is based on the program features se- 
lected and the formula used to compare these features. For simplicity in the implementation 
we have attached constant real values as insertion and deletion costs. 

Table 1 summarizes statistical data regarding false alarms when Dynamic Programming 
comparison was applied to functions that under direct metric comparison have given distance 
0.0. The column labeled Distance Range gives the value range of distances between 
functions using the Dynamic Programming approach. The column labeled False Alarms 
contains the percentage of functions that are not clones but they have been identified as such. 
The column labeled Partial Clones contains the percentage of functions which correspond 
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Table 1. False alarms for the Clips program 

Dis tanc e  R a n g e  False  A l a r m s  Par t ia l  C lones  Pos i t ive  C lones  

0.0 0.0 % 10.0% 90.0% 

0.01 - 0.99 6.0 % 16.0 % 78.0% 

1.0 - 1.49 8.0% 3.0 % 89.0% 

1.5 - 1.99 30.0% 37.0 % 33.0% 

2.0 - 2.99 36.0% 32.0 % 32.0% 

3.0 - 3.99 56.0% 13.0 % 31.0% 

4.0 - 5.99 82.0% 10.0 % 8.0% 

6.0 - 15.0 100.0% 0.0 % 0.0% 

only in parts to cut and paste operations. Finally, the column labeled as Positive Clones 
contains the percentage of  functions clearly identified as cut and paste operations. 

The matching process between two code fragments JM and 79 is discussed with an example 

later in this section and is illustrated in Fig.3 
The comparison cost function C(i , j ,  Ad, 79) is the key factor in producing the final 

distance result when DP-based matching is used. There are many program features that can 
be considered to characterize a code fragment (indentation, keywords, metrics, uses and 
definitions of  variables). Within the experimentation of  this approach we used the following 

three different categories of  features 

1. definitions and uses of variables as well as, literal values within a statement: 

(A) Feature1 : S ta tement  --+ Str ing  denotes the set of  variables used in within a 

statement, 

(B) Feature2 : S ta tement  --+ Str ing  denotes the set of  variables defined within a 

statement 

(C) Feature3 : S ta tement  --+ Str ing denotes the set of  literal values (i.e numbers, 
strings) within a statement (i.e. in a prinlfstatement). 

2. definitions and uses of  data types : 

(A) Feature1 : S ta tement  --+ Str ing denotes the set of  data type names used in 
within a statement, 

(B) Feature2 : S ta tement  -~ S tr ing  denotes the set of  data type names defined 
within a statement 

The comparison cost of the ith statement in the input 79 and the jth statement of  the 
model  A,4 for the first two categories is calculated as : 
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= card(InputFeaturem(79i) U ModeIFeaturemYtdj))  'U ~ l  
(2) 

. 

where v is the size of the feature vector, or in other words how many features are used, 

five metric values which are calculated compositionally from the statement level to 
function and file level : 

The comparison cost of the ith statement in the input 79 and the jth statement of the 
model A4 when the five metrics are used is calculated as : 

5 

e(79 ,Mj)= }- '(Mk(79d - M k ( M j ) )  2 
k=l  

(3) 

Within this framework new metrics and features can be used to make the comparison 
process more sensitive and accurate. 

The following points on insertion and deletion costs need to be discussed. 

The insertion and deletion costs reflect the tolerance of the user towards partial matching 
(i.e. how much noise in terms of insertions and deletions is allowed before the matcher 
fails). Higher insertion and deletion costs indicate smaller tolerance, especially if cut- 
off thresholds are used (i.e. terminate matching if a certain threshold is exceeded), 
while smaller values indicate higher tolerance. 

The values for insertion and deletion should be higher than the threshold value by which 
two statements can be considered "similar", otherwise an insertion or a deletion could 
be chosen instead of a match. 

A lower insertion cost than the corresponding deletion cost indicates the preference of 
the user to accept a code fragment 7 9 that is written by inserting new statements to the 
model Ad. The opposite holds when the deletion cost is lower than the corresponding 
insertion cost. A lower deletion cost indicates the preference of the u~er to accept a 
code fragment 79 that is written by deleting statements from the model 3,4. Insertion 
and deletion costs are constant values throughout the comparison process and can be 
set empirically. 

When different comparison criteria are used different distances are obtained. In Fig.2 
(Clips) distances calculated using Dynamic Programming are shown for 138 pairs of func- 
tions (X - axis) that have been already identified as clones (i.e. zero distance) using the 
direct per function metric comparison. The dashed line shows distance results when def- 
initions and uses of variables are used as features in the dynamic programming approach, 
while the solid line shows the distance results obtained when the five metrics are used as 
features. Note that in the Dynamic Programming based approach the metrics are used at 
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Figure 2. Distances between function pairs of possible function clones using DP-based matching. 

tile statement level, instead of the begin-end  block level when metrics direct comparison 
is performed. 

As an example consider the following statements A4 and 79: 

ptr : head; 

while(ptr 1= NULL && !found) 

{ 

if(ptr->item :: searchItem) 

found = 1 

else 

ptr = ptr->next; 

} 

while(ptr !: NULL && !found) 

{ 

if(ptr->item == searchItem) 
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Figure 3. The matching process between two code fragments. Insertions are represented as horizontal lines, 
deletions as vertical lines and, matches as diagonal lines. 

{ 
Drintf("ELEMENT FOUND : %s\n", searchItem); 

found = I; 

} 

else 

ptr = ptr->next; 

The Dynamic Programming matching based on definitions and uses of variables is illus- 
trated in Fig. 3. 

In the first grid the two code fragments are initially considered. At position (0, 0) of 
the first grid a deletion is considered as it gives the best cumulative distance to this point 
(assuming there will be a match at position (0, 1). The comparison of the two composite 
while statements in the first grid at position (0, 1), initiates a nested match (second grid). 
In the second grid the comparison of the composite i 9 - t h e n - e l s e  statements at position 
(1, 1) initiates a new nested match. In the third grid, the comparison of the composite t h e -  
p a r t  of the i f - t h e n - e l s e  statements initiates the final fourth nested match. Finally, 
in the fourth grid at position (0, 0), an insertion has been detected, as it gives the best 
cumulative distance to this point (assuming a potential match in (1, 0). 
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When a nested match process finishes it passes its result back to the position from which 
it was originally invoked and the matching continues from this point on. 

3. Concept To Code Matching 

The concept assignment (Biggerstaff, 1994) problem consists of assigning concepts de- 
scribed in a concept language to program fragments. Concept assignment can also be seen 
as a matching problem. 

In our approach, concepts are represented as abstract-descriptions using a concept lan- 
guage called ACL. The intuitive idea is that a concept description may match with a number 
of different implementations. The probability that such a description matches with a code 
fragment is used to calculate a similarity measure between the description and the implemen- 
tation. An abstract-description is parsed and a corresponding AST Ta is created. Similarly, 
source code is represented as an annotated AST To. Both Ta and Tc are transformed into 
a sequence of abstract and source code statements respectively using transformation rules. 
We use REFINE to build and transform both ASTs. The reason for this transformation is 
to reduce the complexity of the matching algorithm as Ta and Tc may have a very complex 
and different to each other structure. In this approach feature vectors of statements are 
matched instead of Abstract Syntax Trees. Moreover, the implementation of the Dynamic 
Programming algorithm is cleaner and faster once structural details of the ASTs have been 
abstracted and represented as sequences of entities. 

The associated problems with matching concepts to code include : 

�9 The choice of the conceptual language, 

�9 The measure of similarity, 

�9 The selection of a fragment in the code to be compared with the conceptual represen- 
tation. 

These problems are addressed in the following sections. 

3.1. Language for Abstract Representation 

A number of research teams have investigated and addressed the problem of code and plan 
localization. Current successful approaches include the use of graph grammars (Wills, 
1992), (Rich, 1990), query pattern languages (Paul, 1994), (Muller, 1992), (Church, 1993), 
(Biggerstaff, 1994), sets of constraints between components to be retrieved (Ning, 1994), 
and summary relations between modules and data (Canfora, 1992). 

In our approach a stochastic pattern matcher that allows for partial and approximate 
matching is used. A concept language specifies in an abstract way sequences of design 
concepts. 

The concept language contains: 
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Abstract expressions C that correspond to source code expression. The correspondence 
between an abstract expression and the source code expression that it may generate is 
given at Table 3 

Abstract feature descriptions .~ that contain the feature vector data used for matching 
purposes. Currently the features that characterize an abstract statement and an abstract 
expression are: 

1. Uses of variables : variables that are used in a statement or expression 

2. Definitions of variables: ariables that are defined in a statement or expression 

3. Keywords: strings, numbers, characters that may used in the text of  a code statement 

4. Metrics : a vector of  five different complexity, data and control flow metrics. 

Typed Variables 2( 

Typed variables are used as a placeholders for feature vector values, when no actual 
values for the feature vector can be provided. An example is when we are looking 
for a Traversal of a list plan but we do not know the name of the pointer variable that 
exists in the code. A type variable can generate (match) with any actual variable in the 
source code provided that they belong to the same data type category. For example a 
List type abstract variable can be matched with an Array or a Linked List node source 
code pointer variable. 

Currently the following abstract types are used : 

I. Numeral : Representing Int, andfloat types 

2. Character : Representing char types 

3. List : Representing array types 

4. Structure : Representing struct types 

5. Named : matching the actual data type name in the source code 

Operators 0 

Operators are used to compose abstract statements in sequences. Currently the following 
operators have been defined in the language but only sequencing is implemented for 
the matching process : 

1. Sequencing (;) : To indicate one statement follows another 

2. Choice (@) : To indicate choice (one or the other abstract statement will be used 
in the matching process 

3. Inter Leaving ([I) : to indicate that two statements can be interleaved during the 
matching process 
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Table 2. Generation (Allowable Matching) of source code statements from ACL statements 

ACL Statement Generated Code Statement 

While Statement 
Abstract Iterative Statement For Statement 

Do Statement 

Abstract While Statement While Statement 

Abstract For Statement For Statement 

Abstract Do Statement Do Statement 

Abstract Conditional Statement I f  Statement 
Switch Statement 

Abstract f f  Statement I f  Statement 

Abstract Switch Statement Switch Statement 

Abstract Return Statement Return Statement 

Abstract GoTo Statement GoTo Statement 

Abstract Continue Statement Continue Statement 

Abstract Break Statement Break Statement 

Abstract Labeled Statement Labeled Statement 

A b s t r a c t S t a t e m e n t *  Zero  or  more  sequential  source  code statements  

A b s t r a c t S t a t e m e n t  + One or m o r e  sequential  source code statements  
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Table 3. Generation (Allowable Matching) of source code expressions from ACL expressions 

A C L  Express ion Generated Code Expression 

Abstract Function Call Function Call 

Abstract Equality Equality ( = = )  

Abstract Inequality Inequality (! =) 

Abstract Logical And Logical And (&&) 

Abstract Logical Or Logical Or ([I) 

Abstract Logical Not Logical Not (!) 

�9 Macros l d  

Macros are used to facilitate hierarchical plan recognition (Hartman, 1992), (Chikof- 
sky, 19890). Macros are entities that refer to plans that are included at parse time. 
For example if a plan has been identified and is stored in the plan base, then special 
preprocessor statements can be used to include this plan to compose more complex 
patterns. Included plans are incorporated in the current pattern's AST at parse time. In 
this way they are similar to inline functions in C++. 

Special macro definition statements in the Abstract Language are used to include the 
necessary macros. 

Currently there are two types of macro related statements 

1. include definitions: These are special statements in ACL that specify the name of 
the plan to be included and the file it is defined. 

As an example consider the statement 

include plan l.acl traversal-linked-list 

that imports the plan traversal-linked-list defined in file planl.acl. 

2. inline uses : These are statements that direct the parser to inline the particular plan 
and include its AST in the original pattern's AST. As an example consider the 
inlining 

plan: traversal-tinked-list 

that is used to include an instance of the traversal-linked-list plan at a particular 
point of the pattern. In a pattern more than one occurrence of an included plan may 
appear. 

A typical example of a design concept in our concept language is given below. This 
pattern expresses an iterative statement (e.g. while ,for, do loop that has in its condition an 
inequality expression that uses variable ?x that is a pointer to the abstract type l i s t  (e.g. 
array, linked list) and the conditional expression contains the keyword "NULL". The body of 
Iterative-Statement contains a sequence of one or more statements ( + - s t a t e m e n t )  
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that uses at least variable ?y (which matches to the variable obj ) in the code below and 
contains the keyword member, and an A s s i g n m e n t - S t a t e m e n t  that uses at least variable 
?• defines variable ?x which in this example matches to variable f i e l d ,  and contains the 
keyword nex t .  

{ 
Iterative-Statement(Inequality-Expression 

abstract-description 

uses : [ ?x : *list], 

keywords : [ "NULL" ]) 

{ 

+-Statement 

abstract-description 

uses : [?y : string, ..] 

keywords : [ "member" ]; 

Assignment-Statement 

abstract-description 

uses : [?x, ..], 

defines : [?x], 

keywords : [ "next" ] 

} 

A code fi'agment that matches the pattern is: 

while 

{ 

if 

(field != NULL) 

([strcmp(obj,origObj) tl  
(!strcmp(field->AvalueType,"member") && 

notInOrig ) ) 

if (strcmp(field->Avalue,"method") != 0) 

INSERT THE FACT(o->ATTLIST[num].Aname,origOb3, 

field->Avalue); 

field = field->nextValue; 

} 

3.2. Concept-to-Code Distance Calculation 

In this section we discuss the mechanism that is used to match an abstract pattern given in 
ACL with source code. 
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In general the matching process contains the following steps : 

1. Source code ($1; ...Sk) is parsed and an AST Tc is created. 

2. The ACL pattern (A1; ...An) is parsed and an AST Ta is created. 

3. A transformation program generates from To a Markov Model called Abstract Pattern 
Model (APM). 

. A Static Model called SCM provides the legal entities of the source language. The 
underlying finite-state automaton for the mapping between a APM state and an SCM 
state basically implements the Tables 2, 3. 

5. Candidate source code sequences are selected. 

6. A Viterbi (Viterbi, 1967) algorithm is used to find the best fit between the Dynamic 
Model and a code sequence selected from the candidate list. 

A Markov model is a source of symbols characterized by states and transitions. A 
model can be in a state with certain probability. From a state, a transition to another 
state can be taken with a given probability. A transition is associated with the generation 
(recognition) of a symbol with a specific probability. The intuitive idea of using Markov 
models to drive the matching process is that an abstract pattern given in ACL may have many 
possible alternative ways to generate (match) a code fragment. A Markov model provides 
an appropriate mechanism to represent these alternative options and label the transitions 
with corresponding generation probabilities. Moreover, the Vitrebi algorithm provides an 
efficient way to find the path that maximizes the overall generation (matching) probability 
among all the possible alternatives. 

The selection of a code fragment to be matched with an abstract description is based on 
the following criteria : a) the first source code statement $1 matches with the first pattern 
statement A1 and, b) $2; $3; ..Sk belong to the innermost block containing $1 

The process starts by selecting all program blocks that match the criteria above. Once a 
candidate list of code fragments has been chosen the actual pattern matching takes place 
between the chosen statement and the outgoing transitions from the current active APM's 
state. If the type of the abstract statement the transition points to and the source code 
statement are compatible (compatibility is computed by examining the Static Model) then 
feature comparison takes place. This feature comparison is based on Dynamic Programming 
as described in section 2.3. A similarity measure is established by this comparison between 
the features of the abstract statement and the features of the source code statement. If 
composite statements are to be compared, an expansion function "flattens" the structure by 
decomposing the statement into a sequence of its components. For example an i f statement 
will be decomposed as a sequence of an e x p r e s s i o n  (for its condition), its t h en  part and 
its e l  se part. Composite statements generate nested matching sessions as in the DP-based 
code-to-code matching. 
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3.3. ACL Markov Model Generation 

Let Tc be the AST of the code fragment and T~ be the AST of the abstract representation. 
A measure of similarity between T~ and T~ is the following probability 

P r ( T r  = P r ( T c l , , . . . T c i , . . . T c l I r a l , . . . r a l , . . . T a L )  

where, 

(rc1 , . . .rci , . . .rcI ) (5) 

is the sequence of the grammar rules used for generating Tc and 

(4) 

(ral, (6) 
is the sequence of rules used for generating T~. The probability in (1) cannot be computed 

in practice, because of complexity issues related to possible variations in T~ generating To. 
An approximation of (4) is thus introduced. 

Let $1, ..Sk be a sequence of program statements During the parsing that generates Ta, 
a sequence of abstract descriptions is produced. Each of these descriptions is considered 
as a Markov source whose transitions are labeled by symbols Aj which in turn generate 
(match) source code. 

The sequence of abstract descriptions Aj forms a pattern A in Abstract Code Language 
(ACL) and is used to build dynamically a Markov model called Abstract Pattern Model 
(APM). An example of which is given in Fig.4. 

The Abstract Pattern Model is generated an ACL pattern is parsed. Nodes in the APM 
represent Abstract ACL Statements and arcs represent transitions that determine what is 
expected to be matched from the source code via a link to a static, permanently available 
Markov model called a Source Code Model (SCM). 

The Source Code Model is an alternative way to represent the syntax of a language entity 
and the correspondence of Abstract Statements in ACL with source code statements. 

For example a transition in APM labeled as (pointing to) an Abstract While State- 

ment is linked with the While node of the static model. In its turn a While node in the 

SCM describes in terms of states and transitions the syntax of a legal Whi 1 e statement in c. 
The best alignment between a sequence of statements S = S1; $2; Sk and a pattern 

.4 = A1; A2; .... Aj is computed by the Viterbi (Viterbi, 1967) dynamic programming 
algorithm using the SCM and a feature vector comparison function for evaluating the 
following type of probabilities: 

P~( Sl, $2, ...S~lAf(~)) (7) 
wheref(i) indicates which abstract description is allowed to be considered at step i. This 

is determined by examining the reachable APM transitions at the ith step. For the matching 
to succeed the constraint Pr(S1]A1) = 1.0 must be satisfied and Af(k) corresponds to a 
final APM state. 

This corresponds to approximating (4) as follows (Brown, 1992): 

APt (~c[Ta)  ~ ADr(Sl~ . .SklA1 ; . .An)  = 
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k 

1-I max(Pr(S1; S2..Si_llA1; Au; ..As(i_i)) * P,(SilAf(i))) (s) 
i=1 

This is similar to the code-to-code matching. The difference is that instead of matching 
source code features, we allow matching abstract description features with source code 
features. The dynamic model (APM) guarantees that only the allowable sequences of 
comparisons are considered at every step. 

The way to calculate similarities between individual abstract statements and code frag- 
ments is given in terms of probabilities of the form P~ (SilA j) as the probability of abstract 
statement Aj generating statement Si. 

The probability p = Pr(SilAj) = Pscr~(S~lAj) * Pco~p(Si[Aj) is interpreted as "The 
probability that code statement Si can be generated by abstract statement Aj". The mag- 
nitude of the logarithm of the probability p is then taken to be the distance between Si and 
&. 

The value ofp is computed by multiplying the probability associated with the correspond- 
ing state for Aj in SCM with the result of comparing the feature vectors of Si and Aj. The 
feature vector comparison function is discussed in the following subsection. 

As an example consider the APM of Fig. 4 generated by the pattern A1; A2, A 3, where 
Aj is one of the legal statements in ACL. Then the following probabilities are computed 
for a selected candidate code fragment $1, $2, Sa: 

Figure 4. A dynamic model for the pattern A1; A2*; A3* 

Pr(SIIA1) = 1.0 (delineation criterion) (9) 

Pr(S1, $2[A2) = Pr(SI[A1)" Pr(S2IA2) (10) 

P~(S1, S21Az) = P~(SIIAI)" P~(S2]Az) (11) 

f P (s1, S21A2) . P~(S3IA3) 
P~(S1, $2,831A3) = Max 

[ S lA3). P (S3LA ) 
(12) 



PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION I01 

Pr(St, $2, $3[A2) = P~(S1, SilAi). Pr(S31Ai) (13) 

Note that when the first two program statements $1, $2 have already been matched, 
(equations 12 and 13) two transitions have been consumed and the reachable active states 
currently are A2 or A3. 

Moreover at every step the probabilities of the previous steps are stored and there is no 
need to be reevaluated. For example P~(S1, Si[Ai) is computed in terms of P~(SllA1) 
which is available from the previous step. 

With each transition we can associate a list of probabilities based on the type of expression 
likely to be found in the code for the plan that we consider. 

For example, in the T r a v e r s a l  of  a l i n k e d  l i s t  plan the w h i l e  loop condition, 
which is an expression, most probably generates an i n e q u a l  i t y  of the form (list-node-ptr 
!= NULL) which contains an identifier reference and the keyword NULL. 

An example of a static model for the p a t t e r n - e x p r e s s i o n  is given in Fig. 5. Here 
we assume for simplicity that only four C expressions can be generated by a P a t t e r n -  
Expression. 

The initial probabilities in the static model are provided by the user who either may 
give a uniform distribution in all outgoing transitions from a given state or provide some 
subjectively estimated values. These values may come from the knowledge that a given plan 
is implemented in a specific way. In the above mentioned example of the T r a v e r s a l  of  
a linked list plan the Iterative-Statement pattern usually is implemented with 
a w h i l e  loop. In such a scenario the I t e r a t i v e  abstract statement can be considered 
to generate a wh i l e  statement with higher probability than a f o r  statement. Similarly, 
the expression in the while loop is more likely to be an inequality (Fig. 5). The preferred 
probabilities can be specified by the user while he or she is formulating the query using the 
ACL primitives. Once the system is used and results are evaluated these probabilities can 
be adjusted to improve the performance. 

Probabilities can be dynamically adapted to a specific software system using a cache 
memory method originally proposed (for a different application) in (Kuhn, 1990). 

A cache is used to maintain the counts for most frequently recurring statement patterns in 
the code being examined. Static probabilities can be weighted with dynamically estimated 
ones as follows : 

Psc~(S{IAj) : A. Pc~h~(S{IAj) + (1 - A). Ps~.~(S{IAy) (14) 

In this formula Peache (SilAj) represents the frequency that Aj generates Si in the code 
examined at run time while Pst~tic(SdAj) represents the a-priori probability of Aj gen- 
erating S~ given in the static model. A is a weighting factor. The choice of the weighting 
factor A indicates user's preference on what weight he or she wants to give to the feature 
vector comparison. Higher A values indicate a stronger preference to depend on feature 
vector comparison. Lower A values indicate preference to match on the type of statement 
and not on the feature vector. 

The value of A can be computed by deleted-interpolation as suggested in (Kuhn, 1990). 
It can also be empirically set to be proportional to the amount of data stored in the cache. 
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Figure 5. The static model for the expression-pattern. Different transition probability values may be set by the 
user for different plans. For example the traversal of linked-list plan may have higher probability attached to the 
is-an-inequality transition as the programmer expects a pattern of the form (field != NULL) 

As proposed in (Kuhn, 1990), different cache memories can be introduced, one for each 
Aj.  Specific values of  A can also be used for each cache. 

3.4. Feature Vector Comparison 

In this section we discuss the mechanism used for calculating the similarity between two 
feature vectors. Note that S i ' s  and Aj 's  feature vectors are represented as annotations in 
the corresponding ASTs. 

The feature vector comparison of Si, A j  returns a value p = Pr(S~IAj). 
The features used for comparing two entities (source and abstract) are: 

1. Variables defined D : Source-Entity --~ {String} 

2. Variables used/7 : Source-Entity --~ {String} 



PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 103 

3. Keywords/C : Source-Entity --+ {String} 

4. Metrics 

�9 Fan out Adl : Source-Entity ~ Number 

�9 D-Complexity A,42 : Source-Entity ---+ Number 

�9 McCabe A//3 : Source-Entity ~ Number 

�9 Albrecht A,44 : Source-Entity ---+ Number 

�9 Kafura Jtda : Source-Entity --+ Number 

These features are AST annotations and are implemented as mappings from an AST node 
to a set of  AST nodes, set of Strings or set of  Numbers. 

Let S,i be a source code statement or expression in program C and Aj an abstract statement 
or expression in pattern ,A. Let the feature vector associated with Si be ])i and the feature 
vector associated with ,43- be ])j. Within this framework we experimented with the following 
similarity considered in the computation as a probability: 

1__. @ card( AVst actFeatu ej,  n CoacF atu ei,.) 
Pr (15) 

v A.., card(AbstractFeaturej n U CodeFeaturei,n) 
r~=l 

where v is the size of  the feature vector, or in other words how many features are used, 
CodeFeaturei,~ is the nth feature of source statement Si and, AbstractFeaturej,~ is the 
nth feature of  the ACL statement Aj.  

As in the code to code dynamic programming matching, lexicographical distances be- 
tween variable names (i.e. next, next value) and numerical distances between metrics are 
used when no exact matching is the objective. Within this context two strings are considered 
similar if their lexicographical distance is less than a selected threshold, and the comparison 
of  an abstract entity with a code entity is valid if their corresponding metric values are less 
than a given threshold. 

These themes show that ACL is viewed more as a vehicle where new features and new 
requirements can be added and be considered for the matching process. For example a new 
feature may be a link or invocation to another pattern marcher (i.e. SCRUPLE) so that the 
abstract pattern in ACL succeeds to match a source code entity if the additional pattern 
matcher succeeds and the rest of  the feature vectors match. 

4. System Architecture 

The concept-to-code pattern matcher of the Ariadne system is composed of  four modules. 
The first module consists of  an abstract code language (ACL) and its corresponding parser. 

Such a parser builds at run time, an AST for the ACL pattern provided by the user. The 
ACL AST is built using Refine and its corresponding domain model maps to entities of  the 
C language domain model. For example, an Abstract-Iterative-Statement corresponds to 
an Iterative-Statement in the C domain model. 
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A static explicit mapping between the ACL's domain model and C's domain model is 
given by the SCM (Source Code Model), Ariadne's second module. SCM consists of states 
and transitions. States represent Abstract Statements and are nodes of the ACL's AST. 
Incoming transitions represent the nodes of the C language AST that can be matched by 
this Abstract Statement. Transitions have initially attached probability values which follow 
a uniform distribution. A subpart of the SCM is illustrated in Fig. 5 where it is assumed 
for simplicity that an Abstract Pattern Expression can be matched by a C i n e q u a l i t y ,  
equality, identifier reference, and a function call. 

The third module builds the Abstract Pattern Model at run time for every pattern provided 
by the user. APM consists of states and transitions. States represent nodes of the ACL's 
AST. Transitions model the structure of the pattern given, and provide the pattern statements 
to be considered for the next matching step. This model directly reflects tile structure of 
the pattern provided by the user. Formally APM is an automaton <Q, E, 6, q0, F> where 

�9 Q, is the set of states, taken from the domain of ACL's AST nodes 

�9 E, is the input alphabet which consists of nodes of the C language AST 

�9 6, is a transition function implementing statement expansion (in the case of composite 
abstract or C statements) and the matching process 

�9 q0, is the Initial state. The set of outgoing transitions must match the first statement in 
the code segment considered. 

�9 F, is a set of final states. The matching process stops when one of the final states have 
been reached and no more statements from the source code can be matched. 

Finally, the fourth module is the matching engine. The algorithm starts by selecting 
candidate code fragments 7 9 = $1; $2; ..Sk, given a model .hi = A1; Ai; ..An. 

The Viterbi algorithm is used to evaluate the best path from the start to the final state of 
the APM. 

An example of a match between two simple expresssions (a function call and an Abstract- 
Expression is given below : 

INSERT THE FACT(o->ATTLIST[num].Aname,origObj, 

field->Avalue); 

is matched with the abstract pattern 

Expression(abstract-description 

uses : ["ATTLIST", "Aname","Avalue"] 

Keywords : ["INSERT", "FACT"] ) 
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In this scenario both abstract and code statements are simple and do not need expansion. 
E x p r e s s i o n  and INSERT_THE_FACT(...) are type compatible statements because an 
expression can generate a function call (Fig. 5) so the matching can proceed. The next step 
is to compare features, and lexicographical distances between variable names in the abstract 
and source statement. The finalvalue is obtained by multiplying the value obtained from 
the feature vectors comparison and the probability that Expression generates a Function 
Call.As the pattern statement does not specify what type of expression is to be matched the 
static model (SCM) provides an estimate. In the SCM given in Fig, 5 the likelihood that 
the Expression generates a function call is 0.25. The user may provide such a value if 
a plan favours a particular type instead of another. For example in the T r a v e r s a l  o f  a 
1 i nk e d  1 i s t plan the loop statement is most likely to be a whi 1 e loop. Once a final value 
is set then a record < abstract_pattern, matched_code, distance_value > is created and 
is associated with the relevant transition of the APM. The process ends when a final state 
of the APM has been reached and no more statements match the pattern. 

With this approach the matching process does not fail when imperfect matching between 
the pattern and the code occurs. Instead, partial and inexact matching can be computed. 
This is very important as the programmer may not know how to specify in detail the code 
fragment that is sought. 

To reduce complexity when variables in the pattern statement occur, Ariadne maintains a 
global binding table and it checks if the given pattern variable is bound to one of the legal 
values from previous instanfiations. These legal values are provided by the binding table 
and are initialized every time a new pattern is tried and a new APM is created. 

5. Conclusion 

Pattern matching plays an important role for plan recognition and design recovery. In this 
paper we have presented a number of pattern matching techniques that are used for code- 
to-code and concept-to-code matching. The main objective of this research was to devise 
methods and algorithms that are time efficient, allow for partial and inexact matching, and 
tolerate a measure of dissimilarity between two code fragments. For code representation 
schemes the program's Abstract Syntax Tree was used because it maintains all necessary 
information without creating subjective views of the source code (control or data flow biased 
views). 

Code-to-code matching is used for clone detection and for computing similarity distances 
between two code fragments. It is based on a) a dynamic programming pattern matcher that 
computes the best alignment between two code fragments and b) metric values obtained 
for every expression, statement, and block of the AST. Metrics are calculated by taking 
into account a number of control and data program properties. The dynamic programming 
pattern matcher produces more accurate results but the metrics approach is cheaper and can 
be used to limit the search space when code fragments are selected for comparison using 
the dynamic programming approach. 

We have experimented with different code features for comparing code statements and 
are able to detect clones in large software systems > 300 KLOC. Moreover, clone detection 
is used to identify "conceptually" related operations in the source code. The performance 
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is limited by the fact we are using a LISP environment (frequent garbage collection calls) 
and the fact that metrics have to be calculated first. When the algorithm using metric values 
for comparing program code fragments was rewritten in C it performed very well. For 
30KLOCS of the CLIPS system and for selecting candidate clones from approximately 
500,000 pairs of functions the C version of the clone detection system run in less than 
10 seconds on a Sparc 10, as opposed to a Lisp implementation that took 1.5 minutes to 
complete. The corresponding DP-based algorithm implemented in Lisp took 3.9 minutes 
to complete. 

Currently the system is used for system clustering, redocumentation and program un- 
derstanding. Clone detection analysis reveals clusters of functions with similar behaviour 
suggesting thus a possible system decomposition. This analysis is combined with other 
data flow analysis tools (Konto, 1994) to obtain a multiple system decomposition view. For 
the visualization and clustering aspect the Rigi tool developed at the University of Victoria 
is used. Integration between the Ariadne tool and the Rigi tool is achieved via the global 
software repository developed at the University of Toronto. 

The false alarms using only the metric comparison was on average for the three systems 
39% of the total matches reported. When the DP approach was used,this ratio dropped to 
approximately 10% in average (when zero distance is reported). Even if the noise presents 
a significant percentage of the result, it can be filtered in almost all cases by adding new 
metrics (i.e. line numbers, Halstead's metric, statement count). The significant gain though 
in this approach is that we can limit the search space to a few hundreds (or less than a 
hundred, when DP is considered) of code fragment pairs from a pool of half a million 
possible pairs that could have been considered in total. Moreover, the method is fully 
automatic, does not require any knowledge of the system and is computationally acceptable 
O(n * m) for DP, where m is the size of the model and n the size of the input. 

Concept-to-code matching uses an abstract language (ACL) to represent code operations 
at an abstract level. Markov models and the Viterbi algorithm are used to compute similarity 
measures between an abstract statement and a code statement in terms of the probability 
that an abstract statement generates the particular code statement. 

The ACL can be viewed not only as a regular expression-like language but also as a vehicle 
to gather query features and an engine to perform matching between two artifacts. New 
features, or invocations and results from other pattern matching tools, can be added to the 
features of the language as requirements for the matching process. A problem we foresee 
arises when binding variables exist in the pattern. If the pattern is vague then complexity 
issues slow down the matching process. The way we have currently overcome this problem 
is for every new binding to check only if it is a legal one in a set of possible ones instead of 
forcing different alternatives when the matching occurs. 

Our current research efforts are focusing on the development of a generic pattern matcher 
which given a set of features, an abstract pattern language, and an input code fragment can 
provide a similarity measure between an abstract pattern and the input stream. 

Such a pattern matcher can be used a) for retrieving plans and other algorithmic struc- 
tures from a variety of large software systems ( aiding software maintenance and program 
understanding ), b) querying digital databases that may contain partial descriptions of data 
and c) recognizing concepts and other formalisms in plain or structured text (e.g.,HTML) 
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A n o t h e r  area  o f  r e sea rch  is the  use  o f  met r ics  for  f ind ing  a m e a s u r e  o f  the  c h a n g e s  

i n t r o d u c e d  f r o m  one  to ano the r  ve r s ion  in an  evo lv ing  so f tware  sys tem.  Moreove r ,  we  

inves t iga te  the  use  o f  the  c lon ing  de tec t ion  t e c h n i q u e  to iden t i fy  s imi la r  ope ra t ions  on  

specif ic  da ta  types  so tha t  gener i c  c lasses  and  c o r r e s p o n d i n g  m e m b e r  func t ions  can  be  

c rea ted  w h e n  m i g r a t i n g  a p rocedura l  sys t em to an  ob jec t  o r ien ted  sys tem.  

Notes 

1. In this paper, "reverse engineering" and related terms refer to legitimate maintenance activities based on source- 
language programs. The terms do not refer to illegal or unethical activities such as the reverse compilation of 
object code to produce a competing product. 

2. "The Software Refinery" and REFINE are trademarks of Reasoning Systems, Inc. 

3. We are using a commercial tool called REFINE (a trademark of Reasoning Systems Corp.). 

4. The Spearman-Pearson rank correlation test was used. 
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