
Automated Software Engineering, 3, 77-108 (1996)
�9 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Pattern Matching for Clone and Concept Detection *

K. A. KONTOGIANNIS, R. DEMORI, E. MERLO, M. GALLER, M. BERNSTEIN

kostas@cs.mcgill.ca

McGill University School of Computer Science 3480 University St., Room 318, Montrdal, Canada H3A 2A7

Abstract.
A legacy system is an operational, large-scale software system that is maintained beyond its first generation

of programmers. It typically represents a massive economic investment and is critical to the mission of the
organization it serves. As such systems age, they become increasingly complex and brittle, and hence harder to
maintain. They also become even more critical to the survival of their organization because the business rules
encoded within the system are seldom documented elsewhere.

Our research is concerned with developing a suite of tools to aid the maintainers of legacy systems in recovering
the knowledge embodied within the system. The activities, known collectively as "program understanding", are
essential preludes for several key processes, including maintenance and design recovery for reengineering.

In this paper we present three pattern-matching techniques: source code metrics, a dynamic programming
algorithm for finding the best alignment between two code fragments, and a statistical matching algorithm between
abstract code descriptions represented in an abstract language and actual source code. The methods are applied to
detect instances of code cloning in several moderately-sized production systems including tcsh, bash, and CLIPS.

The programmer's skill and experience are essential elements of our approach. Selection of particular tools and
analysis methods depends on the needs of the particular task to be accomplished. Integration of the tools provides
opportunities for synergy, allowing the programmer to select the most appropriate tool for a given task.

Keywords: reverse engineering, pattern matching, program understanding, software metrics, dynamic program-
ming

1. Introduct ion

Large-sca le product ion sof tware systems are expens ive to build and, over their useful l ife-

t imes, are even more expensive to maintain. Successful large-scale systems are often cal led

" legacy sys tems" because (a) they tend to have been in service for many years, (b) the

or iginal developers , in the normal course of events, m o v e on to other projects , leaving the

sys tem to be mainta ined by success ive generat ions of main tenance p rogrammers , and (c)

the sys tems themselves represent enormous corporate assets that cannot be easi ly replaced.

Legacy systems are intr insical ly difficult to maintain because o f their sheer bulk and

because o f the loss of historical information: des ign documenta t ion is se ldom main ta ined

as the sys tem evolves. In many cases, the source code becomes the sole reposi tory for

evo lv ing corporate business rules.

* This work is in part supported by IBM Canada Ltd., Institute for Robotics and Intelligent Systems, a Canadian
Network of Centers of Excellence and, the Natural Sciences and Engineering Research Council of Canada.
Based on "Pattern Matching for Design Concept Localization" by K.AKontogiannis, R.DeMori, M.Bernstein,
M.Galler, E.Merlo, which first appeared in Proceedings of the Second Working Conference on Reverse Enginering,
pp.96-103, July, 1995, (?~) IEEE, 1995

'78 KONTOGIANNIS ET AL.

During system maintenance, it is often necessary to move from low, implementation-
oriented levels of abstraction back to the design and even the requirements levels. The
process is generally known as "reverse engineering". 1 In (Chikofsky, 1990) there are def-
initions for a variety of subtasks, including "reengineering","restructuring", and "redocu-
mentation".

In particular, it has been estimated that 50 to 90 percent of the maintenance programmer's
effort is devoted to simply understanding relationships within the program. The average
Fortune 100 company maintains 35 million lines of source code (MLOC) with a growth rate
of 10 percent per year just in enhancements, updates, and normal maintenance. Facilitating
the program understanding process can yield significant economic savings.

We believe that maintaining a large legacy software system is an inherently human activity
that requires knowledge, experience, taste, judgement and creativity. For the foreseeable
future, no single tool or technique will replace the maintenance programmer nor even
satisfy all of the programmer's needs. Evolving real-world systems requires pragmatism
and flexibility.

Our approach is to provide a suite of complementary tools from which the programmer
can select the most appropriate one for the specific task at hand. An integration framework
enables exploitation of synergy by allowing communication among the tools.

Our research is part of a larger joint project with researchers from IBM Centre for Ad-
vanced Studies, University of Toronto, and University of Victoria (Buss et al., 1994)

Over the past three years, the team has been developing a toolset, called RevEngE (Reverse
Engineering Environment), based on an open architecture for integrating heterogeneous
tools. The toolset is integrated through a common repository specifically designed to
support program understanding (Mylopoulos, 1990). Individual tools in the kit include
Ariadne (Konto, 1994), ART (Johnson, 1993), and Rigi (Tilley, 1994). ART (Analysis of
Redundancy in Text) is a prototype textual redundancy analysis system. Ariadne is a
set of pattern matching and design recovery programs implemented using a commercial
tool called The Software Refinery 2. Currently we are working on another version of the
Ariadne environment implemented in C++. Rigi is a programmable environment for pro-
gram visualization. The tools communicate through a flexible object server and single
global schema implemented using the Telos information modeling language and repository
(Mylopoulos, 1990).

In this paper we describe two types of pattern-matching techniques and discuss why
pattern matching is an essential tool for program understanding. The first type is based on
numerical comparison of selected metric values that characterize and classify source code
fragments.

The second type is based on Dynamic Programming techniques that allow for statement-
level comparison of feature vectors that characterize source code program statements. Con-
sequently, we apply these techniques to address two types of relevant program understanding
problems.

The first one is a comparison between two different program segments to see if one is
a clone of the other, that is if the two segments are implementations of the same algo-
rithm. The problem is in theory undecidable, but in practice it is very useful to provide
software maintainers with a tool that detects similarities between code segments. Similar

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 79

segments are proposed to the software engineer who will make the final decision about their
modification or other use.

The second problem is the recognition of program segments that implement a given
programming concept. We address this problem by defining a concept description language
called ACL and by applying statement-level comparison between feature vectors of the
language and feature vectors of source code program statements.

1.1. The Code Cloning Problem

Source code cloning occurs when a developer reuses existing code in a new context by
making a copy that is altered to provide new functionality. The practice is widespread
among developers and occurs for several reasons: making a modified copy may be simpler
than trying to exploit commonality by writing a more general, parameterized function;
scheduling pressures may not allow the time required to generalize the code; and efficiency
constraints may not admit the extra overhead (real or perceived) of a generalized routine.

In the long run, code cloning can be a costly practice. Firstly, it results in a program that is
larger than necessary, increasing the complexity that must be managed by the maintenance
programmer and increasing the size of the executable program, requiring larger computers.
Secondly, when a modification is required (for example, due to bug fixes, enhancements,
or changes in business rules), the change must be propagated to all instances of the clone.
Thirdly, often-cloned functionality is a prime candidate for repackaging and generaliza-
tion for a repository of reusable components which can yield tremendous leverage during
development of new applications.

This paper introduces new techniques for detecting instances of source code cloning.
Program features based on software metrics are proposed. These features apply to basic
program segments like individual statements, b e g i n - e n d blocks and functions. Distances
between program segments can be computed based on feature differences. This paper
proposes two methods for addressing the code cloning detection problem.

The first is based on direct comparison of metric values that classify a given code fragment.
The granularity for selecting and comparing code fragments is at the level of b e g i n - e n d
blocks. This method returns clusters of b e g i n - e n d blocks that may be products of cut-
and-paste operations.

The second is based on a new Dynamic Programming (DP) technique that is used to
calculate the best alignment between two code fragments in terms of deletions, insertions
and, substitutions. The granularity for selecting code fragments for comparison is again
at the level of b e g i n - e n d blocks. Once two b e g i n - e n d blocks have been selected, they
are compared at the statement level. This method returns clusters of b e g i n - e n d blocks
that may be products of cut-and-paste operations. The DP approach provides in general,
more accurate results (i.e. less false positives) than the one based on direct comparison of
metric values at the b e g i n - e n d block level. The reason is that comparison occurs at the
statement level and informal information is taken into account (i.e. variable names, literal
strings and numbers).

80 KONTOGIANNIS ET AL.

1.2. The Concept Recognition Problem

Programming concepts are described by a concept language. A concept to be recognized
is a phrase of the concept language. Concept descriptions and source code are parsed. The
concept recognition problem becomes the problem of establishing correspondences, as in
machine translation, between a parse tree of the concept description language and the parse
tree of the code.

A new formalism is proposed to see the problem as a stochastic syntax-directed translation.
Translation rules are pairs of rewriting rules and have associated a probability that can be
set initially to uniform values for all the possible alternatives.

Matching of concept representations and source code representations involves alignment
that is again performed using a dynamic programming algorithm that compares feature
vectors of concept descriptions, and source code.

The proposed concept description language, models insertions as wild characters
(AbstractStatement* and AbstraetStatement +) and does not allow any deletions from
the pattern. The comparison and selection granularity is at the statement level. Comparison
of a concept description language statement with a source code statement is achieved by
comparing feature vectors (i.e. metrics, variables used, variables defined and keywords).

Given a concept description .44 = A1; A2; ..Am, a code fragment 79 = $1; $2; ..Sk is
selected for comparison if: a) the first concept description statement A1 matches with $1,
and b) the sequence of statements Sz; ...Sk, belong to the innermost b e g i n - e n d block
containing $1.

The use of a statistical formalism allows a score (a probability) to be assigned to every
match that is attempted. Incomplete or imperfect matching is also possible leaving to the
software engineer the final decision on the similar candidates proposed by the matcher.

A way of dynamically updating matching probabilities as new data are observed is also
suggested in this paper. Concept-to-code matching is under testing and optimization. It
has been implemented using the REFINE environment and supports plan localization in C
programs.

1.3. Related Work

A number of research teams have developed tools and techniques for localizing specific
code patterns.

The UNZX operating system provides numerous tools based on regular expressions both
for matching and code replacement. Widely-used tools include grep, awk, ed and v2.
These tools are very efficient in localizing patterns but do not provide any way for partial
and hierarchical matching. Moreover, they do not provide any similarity measure between
the pattern and the input string.

Other tools have been developed to browse source code and query software repositories
based on structure, permanent relations between code fragments, keywords, and control or
dataflow relationships. Such tools include CIA, Microscope, Rigi, SCAN, and REFINE.
These tools are efficient on representing and storing in local repositories relationships
between program components. Moreover, they provide effective mechanisms for querying

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 81

and updating their local repositories. However, they do not provide any other mechanism
to localize code fragments except the stored relations. Moreover no partial matching and
no similarity measures between a query and a source code entity can be calculated.

Code duplication systems use a variety of methods to localize a code fragment given a
model or apattern. One category of such tools uses structure graphs to identify the"fingerprint"
of a program (Jankowitz, 1988). Other tools use metrics to detect code patterns (McCabe,
1990),(Halstead, 1977), common dataflow (Horwitz, 1990), approximate fingerprints from
program text files (Johnson, 1993), text comparison enhanced with heuristics for approxi-
mate and partial matching (Baker, 1995), and text comparison tools such as u n i x d i f f .

The closest tool to the approach discussed in this paper, is SCRUPLE (Paul, 1994).
The major improvement of the solution proposed here is a) the possibility of performing
partial matching with feature vectors, providing similarity measures between a pattern and
a matched code fragment, and b) the ability to perform hierarchical recognition. In this
approach, explicit concepts such as I t e r a t i v e - S t a t e m e n t can be used allowing for
multiple matches with awh i l e , a For or, a Do statement in the code. Moreover, recognized
patterns can be classified, and stored so that they can be used inside other more complex
composite patterns. An expansion process is used for unwrapping the composite pattern
into its components.

2. Code to Code Matching

In this section we discuss pattern-matching algorithms applied to the problem of clone
detection. Determining whether two arbitrary program functions have identical behavior
is known to be undecidable in the general case. Our approach to clone detection exploits
the observation that clone instances, by their nature, should have a high degree of structural
similarity. We look for identifiable characteristics or features that can be used as a signature
to categorize arbitrary pieces of code.

The work presented here uses feature vectors to establish similarity measures. Features
examined include metric values and specific data- and control-flow properties. The analysis
framework uses two approaches:

1. direct comparison of metric values between b e g i n - e n d blocks, and

2. dynamic programming techniques for comparing b e g i n - e n d blocks at a statement-
by-statement basis.

Metric-value similarity analysis is based on the assumption that two code fragments G'l
and C2 have metric values M(CJ and M(U2) for some source code metric M. If the two
fragments are similar under the set of features measured by M, then the values of M(C1)
and M(C2) should be proximate.

Program features relevant for clone detection focus on data and control flow program
properties. Modifications of five widely used metrics (Adamov, 1987), (Buss et al., 1994)
for which their components exhibit low correlation (based on the Spearman-Pierson corre-
lation test) were selected for our analyses:

1. The number of functions called (fanout);

82 KONTOGIANNIS ET AL.

2. The ratio of input/output variables to the fanout;

3. McCabe cyclomatic complexity;

4. Modified Albrecht's function point metric;

5. Modified Henry-Kafura's information flow quality metric.

Detailed descriptions and references for metrics will be given later on in this section.
Similarity of two code fragments is measured using the resulting 5-dimensional vector.
Two methods of comparing metric values were used. The first, naive approach, is to make
O(n 2) pairwise comparisons between code fragments, evaluating the Euclidean distance
of each pair. A second, more sophisticated analytical approach was to form clusters by
comparing values on one or more axes in the metric space.

The selection of the blocks to be compared is based on the proximity of their metric value
similarity in a selected metric axis. Specifically, when the source code is parsed an Abstract
Syntax Tree (AST) Tc is created, five different metrics are calculated compositionally for
every statement, block, function, and file of the program and are stored as annotations in
the corresponding nodes of the AST. Once metrics have been calculated and annotations
have been added, a reference table is created that contains source code entities sorted by
their corresponding metric values. This table is used for selecting the source code entities
to be matched based on their metric proximity. The comparison granularity is at the level
of a b e g i n - e n d block of length more than n lines long, where n is a parameter provided
by the user.

In addition to the direct metric comparison techniques, we use dynamic programming
techniques to calculate the best alignment between two code fragments based on insertion,
deletion and comparison operations. Rather than working directly with textual representa-
tions, source code statements, as opposed to b e g i n - e n d blocks, are abstracted into feature
sets that classify the given statement. The features per statement used in the Dynamic
Programming approach are:

�9 Uses of variables, definitions of variables, numerical literals, and strings;

�9 Uses and definitions of data types;

�9 The five metrics as discussed previously.

Dynamic programming (DP) techniques detect the best alignment between two code
fragments based on insertion, deletion and comparison operations. Two statements match
if they define and use the same variables, strings, and numerical literals. Variations in these
features provide a dissimilarity value used to calculate a global dissimilarity measure of
more complex and composite constructs such as b e g i n - e n d blocks and functions. The
comparison function used to calculate dissimilarity measures is discussed in detail in Section
2.3. Heuristics have been incorporated in the matching process to facilitate variations that
may have occurred in cut and paste operations. In particular, the following heuristics are
currently considered:

�9 Adjustments between variable names by considering lexicographical distances;

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 83

Filtering out short and trivial variable names such as i and j which are typically used
for temporary storage of intermediate values, and as loop index values. In the current
implementation, only variable names of more than three characters long are considered.

Dynamic programming is a more accurate method than the direct metric comparison
based analysis (Fig. 2) because the comparison of the feature vector is performed at
the statement level. Code fragments are selected for Dynamic Programming comparison
by preseIecting potential clone candidates using the direct metric comparison analysis.
Within this framework only the b e g i n - e n d blocks that have a dissimilarity measure less
than a given threshold are considered for DP comparison. This preselection reduces the
comparison space for the more computationally expensive DP match.

The following sections further discuss these approaches and present experimental results
from analyzing medium scale (< 100kLOC) software systems.

2.1. Program Representation and the Development of the Ariadne Environment

The foundation of the Ariadne system is a program representation scheme that allows for
the calculation of the feature vectors for every statement, block or function of the source
code. We use an object-oriented annotated abstract syntax tree (AST). Nodes of the AST
are represented as objects in a LISP-based development environment a.

Creating the annotated AST is a three-step process. First, a grammar and object (domain)
model must be written for the programming language of the subject system. The tool
vendor has parsers available for such common languages as C and COBOL. Parsers for
other languages may be easily constructed or obtained through the user community. The
domain model defines object-oriented hierarchies for the AST nodes in which, for example,
an If-Statement and a While-Statement are defined to be subclasses of the Statement class.

The second step is to use the parser on the subject system to construct the AST repre-
sentation of the source code. Some tree annotations, such as linkage information and the
call graph are created automatically by the parser. Once the AST is created, further steps
operate in an essentially language-independent fashion.

The final step is to add additional annotations into the tree for information on data types,
dataflow (dataflow graphs), the results of external analysis, and links to informal informa-
tion. Such information is typically obtained using dataflow analysis algorithms similar to
the ones used within compilers.

For example, consider the following code fragment from an IBM-proprietary PL/1-1ike
language. The corresponding AST representation for the i f statement is shown in Fig. 1.
The tree is annotated with the fan-out attribute which has been determined during an analysis
phase following the initial parse.

MAIN: PROCEDURE(OPTION);

DCL OPTION FIXED(31);

IF (OPTION>0) THEN

CALL SHOW_MENU(OPTION);

ELSE

84 KONTOGIANNIS ET AL.

CALL SHOW_ERROR("Invalid option number" ;

END MAIN;

coadil~ln thea.clau~ e l ~ d a ~ e

�9 Legend

= AST node

J = Link from parent
attr~le nan to child via a

r named attribute,

fadout = Fanout attribute
corltaining integer
value V.

Figure 1. The AST for an 1F Statement With Fanout Attributes.

2.2. Metrics Based Similarity Analysis

Metrics based similarity analysis uses five source-code metrics that are sensitive to several
different control and data flow program features. Metric values are computed for each
statement, block, and function. Empirical analysis 4 (Buss et al., 1994) shows the metrics
components have low correlation, so each metric adds useful information.

The features examined for metric computation include:

�9 Global and local variables defined or used;

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 8 5

�9 Functions called;

�9 Files accessed;

�9 I/O operations (read, write operations);

�9 Defined/used parameters passed by reference and by value;

�9 Control flow graph.

Partial matching may occur because the metrics are not sensitive to variable names, source
code white space, and minor modifications such as replacement of whs with f o r loops
and insertion of statements that do not alter the basic data and control flow of the original
code structure.

A description of the metrics used is given below but a more detailed description can be
found in (Adamov, 1987), (Fenton, 1991), (Moiler93).

Let s be a code fragment. The description of the five modified metrics used is given
below. Note that these metrics are computed composit ionally from statements, to b e g i n -

e n d blocks, functions, and files.

1. S_COMPLEXITY(s) = FAN_OUT(s) 2
where

�9 FAN_OUT(s) is the number of individual function calls made within s.

2. D_COMPLEXITY(s) = GLOBALS(s)/(FAN_OUT(s) + 1)
where

�9 GLOBALS(s) is the number of individual declarations of global variables used or updated
within s. A global variable is a variable which is not declared in the code fragment s.

3. MCCABE(s) = e - n + 2
where

�9 e is the number of edges in the control flow graph

�9 n is the number of nodes in the graph.

Alternatively McCabe metric can be calculated using

�9 MCCABE(s) = 1 + d, where d is the number of control decision predicates in s.

4.

{ Pl * VARS_USED..AND_SET(s)+
ALBRECHT(s) = P2 * GLOBAL_VARS_SET(s)+

p3 * USER_INPUT(s)+
p4 * FILE_INPUT(s)

where,

86 KONTOGIANNIS ET AL.

�9 VARS_USED_AND_SET(8) is the number of data elements set and used in the state-
ment s,

�9 GLOBAL_VARS_SET(s) is the number of global data elements set in the statement s,

�9 USER_INPUT(s) is the number of read operations in statement s,

�9 FILE_INPUT(8) is the number of files accessed for reading in s.

�9 The factors Pl p4, are weight factors. In (Adamov, 1987) possible values for these factors
are given. In the current implementation the values chosen are pl = 5, pz = 4, P3 = 4 and,
p4 = 7. The selection of values for the p~s' # 0 does not affect the matching process.

5. KAFURA(s) = { (KAFURA_IN(s) * KAFURA_OUT(s)) 2 where,

�9 KAFURA_IN(s) is the sum of local and global incoming datafiow to the the code fragment
S.

�9 KAFURA_OUT(s) is the sum of local and global outgoing dataflow from the the code
fragment s.

Once the five metrics M1 to M5 are computed for every statement, block and function
node, the pattern matching process is fast and efficient. It is simply the comparison of
numeric values.

We have experimented with two techniques for calculating similar code fragments in a
software system.

The first one is based on pairwise Euclidean distance comparison of all b e g i n - e n d
blocks that are of length more than n lines long, where n is a parameter given by the user.
In a large software system though there are many b e g i n - e n d blocks and such a pairwise
comparison is not possible because of time and space limitations. Instead, we limit the
pairwise comparison between only these B e g i n - e n d blocks that for a selected metric axis
A-4i their metric values differ in less than a given threshold d~. In such a way every block
is compared only with its close metric neighbors.

The second technique is more efficient and is using clustering per metric axis. The
technique starts by creating clusters of potential clones for every metric axis 34 i (i = 1 ..
5). Once the clusters for every axis are created, then intersections of clusters in different
axes are calculated forming intermediate results. For example every cluster in the axis A4~
contains potential clones under the criteria implied by this metric. Consequently, every
cluster that has been calculated by intersecting clusters in 3A~ and .Mj contains potential
clones under the criteria implied by both metrics. The process ends when all metric axis
have been considered. The user may specify at the beginning the order of comparison, and
the clustering thresholds for every metric axis. The clone detection algorithm that is using
clustering can be summarized as:

1. Select all source code b e g i n - e n d blocks/3 from the AST that are more than n lines
long. The parameter n can be changed by the user.

2. For every metric axis .Mi (i = 1 .. 5) create clusters C<j that contain b e g i n - e n d blocks
with distance less than a given threshold di that is selected by the user. Each cluster

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 87

then contains potential code clone fragments under the metric criterion 3di. Set the
current axis Adc~rr = 3di, where i = 1. Mark Adi as used

3. For every cluster ~,curr,m in the current metric axis Mc~r~, intersect with all clusters
Cj,k in one of the non used metric axis Adj, j E {l .. 5}. The clusters in the resulting
set contain potential code clone fragments under the criteria .Adeurr and .Adj, and form
a composite metric axis Adc~rr| Mark 2t4j as used and set the current axis Adc~rr
= Mcurr|

4. If all metric axes have been considered the stop; else go to Step 3.

The pattern matching engine uses either the computed Euclidean distance or clustering
in one or more metric dimensions combined, as a similarity measure between program
constructs.

As a refinement, the user may restrict the search to code fragments having minimum size
or complexity.

The metric-based clone detection analysis has been applied to a several medium-sized
production C programs.

In tcMa, a 45 kLOC Unix shell program, our analysis has discovered 39 clusters or groups
of similar functions of average size 3 functions per cluster resulting in a total of 17.7 percent
of potential system duplication at the function level.

In bash, a 40KLOC Unix shell program, the analysis has discovered 25 clusters, of
average size 5.84 functions per cluster, resulting to a total of 23 percent of potential code
duplication at the function level.

In CLIPS, a 34 kLOC expert system shell, we detected 35 clusters of similar functions of
average size 4.28 functions per cluster, resulting in a total of 20 percent of potential system
duplication at the function level.

Manual inspection of the above results combined with more detailed Dynamic Program-
ming re-calculation of distances gave some statistical data regarding false positives. These
results are given in Table 1. Different programs give different distribution of false alarms,
but generally the closest the distance is to 0.0 the more accurate the result is.

The following section, discusses in detail the other code to code matching technique we
developed, that is based on Dynamic Programming.

2.3. Dynamic Programming Based Similarity Analysis

The Dynamic Programming pattern matcher is used (Konto, 1994), (Kontogiannis, 1995)
to find the best alignment between two code fragments. The distance between the two code
fragments is given as a summation of comparison values as well as of insertion and deletion
costs corresponding to insertions and deletions that have to be applied in order to achieve
the best alignment between these two code fragments.

A program feature vector is used for the comparison of two statements. The features are
stored as attribute values in a frame-based structure representing expressions and statements
in the AST. The cumulative similarity measure D between two code fragments P, M, is
calculated using the function

~ KONTOGIANNIS ET AL.

D : Feature_ Vector X Feature_ Vector ~ Real

where:

A (p , j - 1,7),.hA)+
D(s163 - 1, jr4))

I (p - 1,j,7), AJ) + (1)
D(8(1,p , 7)),C(1,j,.h/I)) = M i n D (g (1 , p - 1 ,P) , s AA))

C (p - 1 , j - 1,7), .M)+
D (s 1, 7)), $(1 , j - 1,.M))

and,

�9 .M is the model code fragment

�9 7) is the input code fragment to be compared with the model A/[

�9 s j , Q) is a program feature vector from position i to positionj in code fragment Q

�9 D(l ;x, Vy) is the the distance between two feature vectors 12=, Vy

�9 A (i, j , P, .hA) is the cost of deleting the j th statement of.M, at position i of the fragment
7)

�9 I(i , j, 7), A/l) the cost of inserting the ith statement of 7) at position j of the model A4
and

�9 C(i, j, 7), .M) is the cost of comparing the ith statement of the code fragment 7) with
the jth fragment of the model A/[. The comparison cost is calculated by comparing the
corresponding feature vectors. Currently, we compare ratios of variables set, used per
statement, data types used or set, and comparisons based on metric values

Note that insertion, and deletion costs are used by the Dynamic Programming algorithm
to calculate the best fit between two code fragments. An intuitive interpretation of the best
fit using insertions and deletions is "if we insert statement i of the input at position j of the
model then the model and the input have the smallest feature vector difference:'

The quality and the accuracy of the comparison cost is based on the program features se-
lected and the formula used to compare these features. For simplicity in the implementation
we have attached constant real values as insertion and deletion costs.

Table 1 summarizes statistical data regarding false alarms when Dynamic Programming
comparison was applied to functions that under direct metric comparison have given distance
0.0. The column labeled Distance Range gives the value range of distances between
functions using the Dynamic Programming approach. The column labeled False Alarms
contains the percentage of functions that are not clones but they have been identified as such.
The column labeled Partial Clones contains the percentage of functions which correspond

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 89

Table 1. False alarms for the Clips program

Dis tanc e R a n g e False A l a r m s Par t ia l C lones Pos i t ive C lones

0.0 0.0 % 10.0% 90.0%

0.01 - 0.99 6.0 % 16.0 % 78.0%

1.0 - 1.49 8.0% 3.0 % 89.0%

1.5 - 1.99 30.0% 37.0 % 33.0%

2.0 - 2.99 36.0% 32.0 % 32.0%

3.0 - 3.99 56.0% 13.0 % 31.0%

4.0 - 5.99 82.0% 10.0 % 8.0%

6.0 - 15.0 100.0% 0.0 % 0.0%

only in parts to cut and paste operations. Finally, the column labeled as Positive Clones
contains the percentage of functions clearly identified as cut and paste operations.

The matching process between two code fragments JM and 79 is discussed with an example

later in this section and is illustrated in Fig.3
The comparison cost function C(i , j , Ad, 79) is the key factor in producing the final

distance result when DP-based matching is used. There are many program features that can
be considered to characterize a code fragment (indentation, keywords, metrics, uses and
definitions of variables). Within the experimentation of this approach we used the following

three different categories of features

1. definitions and uses of variables as well as, literal values within a statement:

(A) Feature1 : S ta tement --+ Str ing denotes the set of variables used in within a

statement,

(B) Feature2 : S ta tement --+ Str ing denotes the set of variables defined within a

statement

(C) Feature3 : S ta tement --+ Str ing denotes the set of literal values (i.e numbers,
strings) within a statement (i.e. in a prinlfstatement).

2. definitions and uses of data types :

(A) Feature1 : S ta tement --+ Str ing denotes the set of data type names used in
within a statement,

(B) Feature2 : S ta tement -~ S tr ing denotes the set of data type names defined
within a statement

The comparison cost of the ith statement in the input 79 and the jth statement of the
model A,4 for the first two categories is calculated as :

9 0 KONTOGIANNIS ET AL.

= card(InputFeaturem(79i) U ModeIFeaturemYtdj)) 'U ~ l
(2)

.

where v is the size of the feature vector, or in other words how many features are used,

five metric values which are calculated compositionally from the statement level to
function and file level :

The comparison cost of the ith statement in the input 79 and the jth statement of the
model A4 when the five metrics are used is calculated as :

5

e(79 ,Mj)= }- '(Mk(79d - M k (M j)) 2
k=l

(3)

Within this framework new metrics and features can be used to make the comparison
process more sensitive and accurate.

The following points on insertion and deletion costs need to be discussed.

The insertion and deletion costs reflect the tolerance of the user towards partial matching
(i.e. how much noise in terms of insertions and deletions is allowed before the matcher
fails). Higher insertion and deletion costs indicate smaller tolerance, especially if cut-
off thresholds are used (i.e. terminate matching if a certain threshold is exceeded),
while smaller values indicate higher tolerance.

The values for insertion and deletion should be higher than the threshold value by which
two statements can be considered "similar", otherwise an insertion or a deletion could
be chosen instead of a match.

A lower insertion cost than the corresponding deletion cost indicates the preference of
the user to accept a code fragment 7 9 that is written by inserting new statements to the
model Ad. The opposite holds when the deletion cost is lower than the corresponding
insertion cost. A lower deletion cost indicates the preference of the u~er to accept a
code fragment 79 that is written by deleting statements from the model 3,4. Insertion
and deletion costs are constant values throughout the comparison process and can be
set empirically.

When different comparison criteria are used different distances are obtained. In Fig.2
(Clips) distances calculated using Dynamic Programming are shown for 138 pairs of func-
tions (X - axis) that have been already identified as clones (i.e. zero distance) using the
direct per function metric comparison. The dashed line shows distance results when def-
initions and uses of variables are used as features in the dynamic programming approach,
while the solid line shows the distance results obtained when the five metrics are used as
features. Note that in the Dynamic Programming based approach the metrics are used at

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 91

2[

1E

14

i2

~fc
c:

Distances between Function pairs {Clips) Distances between Function Pairs (Bash)
i i I

- - - - Distances on definitions and uses of variables I

_ _ Distances on data and control flow measurements.

10

_ _ l IJ _ /

i , / - H ~ i i

Function Pairs

. . . . Distances on definitions and uses of va~ables

_ _ Distances on data and control flow measurements :t
r

o'"I
.... �84

50 1130 150 B00
Function Pairs

20 40 60 80 100 120 140 250

Figure 2. Distances between function pairs of possible function clones using DP-based matching.

tile statement level, instead of the beg in-end block level when metrics direct comparison
is performed.

As an example consider the following statements A4 and 79:

ptr : head;

while(ptr 1= NULL && !found)

{

if(ptr->item :: searchItem)

found = 1

else

ptr = ptr->next;

}

while(ptr !: NULL && !found)

{

if(ptr->item == searchItem)

92 K O N T O G I A N N I S ET AL,

M M I

. . . . T I - -
I L

- - ~ 1 I.. i f O . .

~'=-I " 1 - - ' ~ %
I

whilel),,.

.... I 1
l L

.... i;e, while()...

---Z---IF-'
pc: : no,a I ; tr ,:..~ ~ I I

SY l i . / " . p , . , - p

/ # * / p t r I : . , i l l) . .

, /
/

M 1ti / / / M

/ /
/ /

. . . . - ~ - ~ / - 1 - - - -~/~ 1 t I

_ Y _ _ _ 2 . , < _ 4 ' ' $ H -
i-->,/I_',- ' ' th.o-.~ L_ /___ u~._<.._ F__ --_ -_ [. I I_ .

elso pa~ P pzintf() .. found = 1 ptr-)itglu == ,, thBn-pazt

Figure 3. The matching process between two code fragments. Insertions are represented as horizontal lines,
deletions as vertical lines and, matches as diagonal lines.

{
Drintf("ELEMENT FOUND : %s\n", searchItem);

found = I;

}

else

ptr = ptr->next;

The Dynamic Programming matching based on definitions and uses of variables is illus-
trated in Fig. 3.

In the first grid the two code fragments are initially considered. At position (0, 0) of
the first grid a deletion is considered as it gives the best cumulative distance to this point
(assuming there will be a match at position (0, 1). The comparison of the two composite
while statements in the first grid at position (0, 1), initiates a nested match (second grid).
In the second grid the comparison of the composite i 9 - t h e n - e l s e statements at position
(1, 1) initiates a new nested match. In the third grid, the comparison of the composite t h e -
p a r t of the i f - t h e n - e l s e statements initiates the final fourth nested match. Finally,
in the fourth grid at position (0, 0), an insertion has been detected, as it gives the best
cumulative distance to this point (assuming a potential match in (1, 0).

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 93

When a nested match process finishes it passes its result back to the position from which
it was originally invoked and the matching continues from this point on.

3. Concept To Code Matching

The concept assignment (Biggerstaff, 1994) problem consists of assigning concepts de-
scribed in a concept language to program fragments. Concept assignment can also be seen
as a matching problem.

In our approach, concepts are represented as abstract-descriptions using a concept lan-
guage called ACL. The intuitive idea is that a concept description may match with a number
of different implementations. The probability that such a description matches with a code
fragment is used to calculate a similarity measure between the description and the implemen-
tation. An abstract-description is parsed and a corresponding AST Ta is created. Similarly,
source code is represented as an annotated AST To. Both Ta and Tc are transformed into
a sequence of abstract and source code statements respectively using transformation rules.
We use REFINE to build and transform both ASTs. The reason for this transformation is
to reduce the complexity of the matching algorithm as Ta and Tc may have a very complex
and different to each other structure. In this approach feature vectors of statements are
matched instead of Abstract Syntax Trees. Moreover, the implementation of the Dynamic
Programming algorithm is cleaner and faster once structural details of the ASTs have been
abstracted and represented as sequences of entities.

The associated problems with matching concepts to code include :

�9 The choice of the conceptual language,

�9 The measure of similarity,

�9 The selection of a fragment in the code to be compared with the conceptual represen-
tation.

These problems are addressed in the following sections.

3.1. Language for Abstract Representation

A number of research teams have investigated and addressed the problem of code and plan
localization. Current successful approaches include the use of graph grammars (Wills,
1992), (Rich, 1990), query pattern languages (Paul, 1994), (Muller, 1992), (Church, 1993),
(Biggerstaff, 1994), sets of constraints between components to be retrieved (Ning, 1994),
and summary relations between modules and data (Canfora, 1992).

In our approach a stochastic pattern matcher that allows for partial and approximate
matching is used. A concept language specifies in an abstract way sequences of design
concepts.

The concept language contains:

94 KONTOGIANNIS ET AL.

Abstract expressions C that correspond to source code expression. The correspondence
between an abstract expression and the source code expression that it may generate is
given at Table 3

Abstract feature descriptions .~ that contain the feature vector data used for matching
purposes. Currently the features that characterize an abstract statement and an abstract
expression are:

1. Uses of variables : variables that are used in a statement or expression

2. Definitions of variables: ariables that are defined in a statement or expression

3. Keywords: strings, numbers, characters that may used in the text of a code statement

4. Metrics : a vector of five different complexity, data and control flow metrics.

Typed Variables 2(

Typed variables are used as a placeholders for feature vector values, when no actual
values for the feature vector can be provided. An example is when we are looking
for a Traversal of a list plan but we do not know the name of the pointer variable that
exists in the code. A type variable can generate (match) with any actual variable in the
source code provided that they belong to the same data type category. For example a
List type abstract variable can be matched with an Array or a Linked List node source
code pointer variable.

Currently the following abstract types are used :

I. Numeral : Representing Int, andfloat types

2. Character : Representing char types

3. List : Representing array types

4. Structure : Representing struct types

5. Named : matching the actual data type name in the source code

Operators 0

Operators are used to compose abstract statements in sequences. Currently the following
operators have been defined in the language but only sequencing is implemented for
the matching process :

1. Sequencing (;) : To indicate one statement follows another

2. Choice (@) : To indicate choice (one or the other abstract statement will be used
in the matching process

3. Inter Leaving ([I) : to indicate that two statements can be interleaved during the
matching process

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 95

Table 2. Generation (Allowable Matching) of source code statements from ACL statements

ACL Statement Generated Code Statement

While Statement
Abstract Iterative Statement For Statement

Do Statement

Abstract While Statement While Statement

Abstract For Statement For Statement

Abstract Do Statement Do Statement

Abstract Conditional Statement I f Statement
Switch Statement

Abstract f f Statement I f Statement

Abstract Switch Statement Switch Statement

Abstract Return Statement Return Statement

Abstract GoTo Statement GoTo Statement

Abstract Continue Statement Continue Statement

Abstract Break Statement Break Statement

Abstract Labeled Statement Labeled Statement

A b s t r a c t S t a t e m e n t * Zero or more sequential source code statements

A b s t r a c t S t a t e m e n t + One or m o r e sequential source code statements

96 KONTOGIANNIS ET AL.

Table 3. Generation (Allowable Matching) of source code expressions from ACL expressions

A C L Express ion Generated Code Expression

Abstract Function Call Function Call

Abstract Equality Equality (= =)

Abstract Inequality Inequality (! =)

Abstract Logical And Logical And (&&)

Abstract Logical Or Logical Or ([I)

Abstract Logical Not Logical Not (!)

�9 Macros l d

Macros are used to facilitate hierarchical plan recognition (Hartman, 1992), (Chikof-
sky, 19890). Macros are entities that refer to plans that are included at parse time.
For example if a plan has been identified and is stored in the plan base, then special
preprocessor statements can be used to include this plan to compose more complex
patterns. Included plans are incorporated in the current pattern's AST at parse time. In
this way they are similar to inline functions in C++.

Special macro definition statements in the Abstract Language are used to include the
necessary macros.

Currently there are two types of macro related statements

1. include definitions: These are special statements in ACL that specify the name of
the plan to be included and the file it is defined.

As an example consider the statement

include plan l.acl traversal-linked-list

that imports the plan traversal-linked-list defined in file planl.acl.

2. inline uses : These are statements that direct the parser to inline the particular plan
and include its AST in the original pattern's AST. As an example consider the
inlining

plan: traversal-tinked-list

that is used to include an instance of the traversal-linked-list plan at a particular
point of the pattern. In a pattern more than one occurrence of an included plan may
appear.

A typical example of a design concept in our concept language is given below. This
pattern expresses an iterative statement (e.g. while ,for, do loop that has in its condition an
inequality expression that uses variable ?x that is a pointer to the abstract type l i s t (e.g.
array, linked list) and the conditional expression contains the keyword "NULL". The body of
Iterative-Statement contains a sequence of one or more statements (+ - s t a t e m e n t)

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 97

that uses at least variable ?y (which matches to the variable obj) in the code below and
contains the keyword member, and an A s s i g n m e n t - S t a t e m e n t that uses at least variable
?• defines variable ?x which in this example matches to variable f i e l d , and contains the
keyword nex t .

{
Iterative-Statement(Inequality-Expression

abstract-description

uses : [?x : *list],

keywords : ["NULL"])

{

+-Statement

abstract-description

uses : [?y : string, ..]

keywords : ["member"];

Assignment-Statement

abstract-description

uses : [?x, ..],

defines : [?x],

keywords : ["next"]

}

A code fi'agment that matches the pattern is:

while

{

if

(field != NULL)

([strcmp(obj,origObj) tl
(!strcmp(field->AvalueType,"member") &&

notInOrig))

if (strcmp(field->Avalue,"method") != 0)

INSERT THE FACT(o->ATTLIST[num].Aname,origOb3,

field->Avalue);

field = field->nextValue;

}

3.2. Concept-to-Code Distance Calculation

In this section we discuss the mechanism that is used to match an abstract pattern given in
ACL with source code.

98 KONTOGIANNIS ET AL.

In general the matching process contains the following steps :

1. Source code ($1; ...Sk) is parsed and an AST Tc is created.

2. The ACL pattern (A1; ...An) is parsed and an AST Ta is created.

3. A transformation program generates from To a Markov Model called Abstract Pattern
Model (APM).

. A Static Model called SCM provides the legal entities of the source language. The
underlying finite-state automaton for the mapping between a APM state and an SCM
state basically implements the Tables 2, 3.

5. Candidate source code sequences are selected.

6. A Viterbi (Viterbi, 1967) algorithm is used to find the best fit between the Dynamic
Model and a code sequence selected from the candidate list.

A Markov model is a source of symbols characterized by states and transitions. A
model can be in a state with certain probability. From a state, a transition to another
state can be taken with a given probability. A transition is associated with the generation
(recognition) of a symbol with a specific probability. The intuitive idea of using Markov
models to drive the matching process is that an abstract pattern given in ACL may have many
possible alternative ways to generate (match) a code fragment. A Markov model provides
an appropriate mechanism to represent these alternative options and label the transitions
with corresponding generation probabilities. Moreover, the Vitrebi algorithm provides an
efficient way to find the path that maximizes the overall generation (matching) probability
among all the possible alternatives.

The selection of a code fragment to be matched with an abstract description is based on
the following criteria : a) the first source code statement $1 matches with the first pattern
statement A1 and, b) $2; $3; ..Sk belong to the innermost block containing $1

The process starts by selecting all program blocks that match the criteria above. Once a
candidate list of code fragments has been chosen the actual pattern matching takes place
between the chosen statement and the outgoing transitions from the current active APM's
state. If the type of the abstract statement the transition points to and the source code
statement are compatible (compatibility is computed by examining the Static Model) then
feature comparison takes place. This feature comparison is based on Dynamic Programming
as described in section 2.3. A similarity measure is established by this comparison between
the features of the abstract statement and the features of the source code statement. If
composite statements are to be compared, an expansion function "flattens" the structure by
decomposing the statement into a sequence of its components. For example an i f statement
will be decomposed as a sequence of an e x p r e s s i o n (for its condition), its t h en part and
its e l se part. Composite statements generate nested matching sessions as in the DP-based
code-to-code matching.

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 99

3.3. ACL Markov Model Generation

Let Tc be the AST of the code fragment and T~ be the AST of the abstract representation.
A measure of similarity between T~ and T~ is the following probability

P r (T r = P r (T c l , , . . . T c i , . . . T c l I r a l , . . . r a l , . . . T a L)

where,

(rc1 , . . .rci , . . .rcI) (5)

is the sequence of the grammar rules used for generating Tc and

(4)

(ral, (6)
is the sequence of rules used for generating T~. The probability in (1) cannot be computed

in practice, because of complexity issues related to possible variations in T~ generating To.
An approximation of (4) is thus introduced.

Let $1, ..Sk be a sequence of program statements During the parsing that generates Ta,
a sequence of abstract descriptions is produced. Each of these descriptions is considered
as a Markov source whose transitions are labeled by symbols Aj which in turn generate
(match) source code.

The sequence of abstract descriptions Aj forms a pattern A in Abstract Code Language
(ACL) and is used to build dynamically a Markov model called Abstract Pattern Model
(APM). An example of which is given in Fig.4.

The Abstract Pattern Model is generated an ACL pattern is parsed. Nodes in the APM
represent Abstract ACL Statements and arcs represent transitions that determine what is
expected to be matched from the source code via a link to a static, permanently available
Markov model called a Source Code Model (SCM).

The Source Code Model is an alternative way to represent the syntax of a language entity
and the correspondence of Abstract Statements in ACL with source code statements.

For example a transition in APM labeled as (pointing to) an Abstract While State-

ment is linked with the While node of the static model. In its turn a While node in the

SCM describes in terms of states and transitions the syntax of a legal Whi 1 e statement in c.
The best alignment between a sequence of statements S = S1; $2; Sk and a pattern

.4 = A1; A2; Aj is computed by the Viterbi (Viterbi, 1967) dynamic programming
algorithm using the SCM and a feature vector comparison function for evaluating the
following type of probabilities:

P~(Sl, $2, ...S~lAf(~)) (7)
wheref(i) indicates which abstract description is allowed to be considered at step i. This

is determined by examining the reachable APM transitions at the ith step. For the matching
to succeed the constraint Pr(S1]A1) = 1.0 must be satisfied and Af(k) corresponds to a
final APM state.

This corresponds to approximating (4) as follows (Brown, 1992):

APt (~c[Ta) ~ ADr(Sl~ . .SklA1 ; . .An) =

1 0 0 KONTOGIANNIS ET AL.

k

1-I max(Pr(S1; S2..Si_llA1; Au; ..As(i_i)) * P,(SilAf(i))) (s)
i=1

This is similar to the code-to-code matching. The difference is that instead of matching
source code features, we allow matching abstract description features with source code
features. The dynamic model (APM) guarantees that only the allowable sequences of
comparisons are considered at every step.

The way to calculate similarities between individual abstract statements and code frag-
ments is given in terms of probabilities of the form P~ (SilA j) as the probability of abstract
statement Aj generating statement Si.

The probability p = Pr(SilAj) = Pscr~(S~lAj) * Pco~p(Si[Aj) is interpreted as "The
probability that code statement Si can be generated by abstract statement Aj". The mag-
nitude of the logarithm of the probability p is then taken to be the distance between Si and
&.

The value ofp is computed by multiplying the probability associated with the correspond-
ing state for Aj in SCM with the result of comparing the feature vectors of Si and Aj. The
feature vector comparison function is discussed in the following subsection.

As an example consider the APM of Fig. 4 generated by the pattern A1; A2, A 3, where
Aj is one of the legal statements in ACL. Then the following probabilities are computed
for a selected candidate code fragment $1, $2, Sa:

Figure 4. A dynamic model for the pattern A1; A2*; A3*

Pr(SIIA1) = 1.0 (delineation criterion) (9)

Pr(S1, $2[A2) = Pr(SI[A1)" Pr(S2IA2) (10)

P~(S1, S21Az) = P~(SIIAI)" P~(S2]Az) (11)

f P (s1, S21A2) . P~(S3IA3)
P~(S1, $2,831A3) = Max

[S lA3). P (S3LA)
(12)

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION I01

Pr(St, $2, $3[A2) = P~(S1, SilAi). Pr(S31Ai) (13)

Note that when the first two program statements $1, $2 have already been matched,
(equations 12 and 13) two transitions have been consumed and the reachable active states
currently are A2 or A3.

Moreover at every step the probabilities of the previous steps are stored and there is no
need to be reevaluated. For example P~(S1, Si[Ai) is computed in terms of P~(SllA1)
which is available from the previous step.

With each transition we can associate a list of probabilities based on the type of expression
likely to be found in the code for the plan that we consider.

For example, in the T r a v e r s a l of a l i n k e d l i s t plan the w h i l e loop condition,
which is an expression, most probably generates an i n e q u a l i t y of the form (list-node-ptr
!= NULL) which contains an identifier reference and the keyword NULL.

An example of a static model for the p a t t e r n - e x p r e s s i o n is given in Fig. 5. Here
we assume for simplicity that only four C expressions can be generated by a P a t t e r n -
Expression.

The initial probabilities in the static model are provided by the user who either may
give a uniform distribution in all outgoing transitions from a given state or provide some
subjectively estimated values. These values may come from the knowledge that a given plan
is implemented in a specific way. In the above mentioned example of the T r a v e r s a l of
a linked list plan the Iterative-Statement pattern usually is implemented with
a w h i l e loop. In such a scenario the I t e r a t i v e abstract statement can be considered
to generate a wh i l e statement with higher probability than a f o r statement. Similarly,
the expression in the while loop is more likely to be an inequality (Fig. 5). The preferred
probabilities can be specified by the user while he or she is formulating the query using the
ACL primitives. Once the system is used and results are evaluated these probabilities can
be adjusted to improve the performance.

Probabilities can be dynamically adapted to a specific software system using a cache
memory method originally proposed (for a different application) in (Kuhn, 1990).

A cache is used to maintain the counts for most frequently recurring statement patterns in
the code being examined. Static probabilities can be weighted with dynamically estimated
ones as follows :

Psc~(S{IAj) : A. Pc~h~(S{IAj) + (1 - A). Ps~.~(S{IAy) (14)

In this formula Peache (SilAj) represents the frequency that Aj generates Si in the code
examined at run time while Pst~tic(SdAj) represents the a-priori probability of Aj gen-
erating S~ given in the static model. A is a weighting factor. The choice of the weighting
factor A indicates user's preference on what weight he or she wants to give to the feature
vector comparison. Higher A values indicate a stronger preference to depend on feature
vector comparison. Lower A values indicate preference to match on the type of statement
and not on the feature vector.

The value of A can be computed by deleted-interpolation as suggested in (Kuhn, 1990).
It can also be empirically set to be proportional to the amount of data stored in the cache.

102 KONTOGIANNIS ET AL.

f ~"~l ~J expression k - / expression k /
0.25 / ~ ~

/
is-an-inequality

(E : ; : : :~on) is-an-equality

0.25 \

kYcn-Uall] id-ref k] ~,~ ~ /

expression

Figure 5. The static model for the expression-pattern. Different transition probability values may be set by the
user for different plans. For example the traversal of linked-list plan may have higher probability attached to the
is-an-inequality transition as the programmer expects a pattern of the form (field != NULL)

As proposed in (Kuhn, 1990), different cache memories can be introduced, one for each
Aj. Specific values of A can also be used for each cache.

3.4. Feature Vector Comparison

In this section we discuss the mechanism used for calculating the similarity between two
feature vectors. Note that S i ' s and Aj 's feature vectors are represented as annotations in
the corresponding ASTs.

The feature vector comparison of Si, A j returns a value p = Pr(S~IAj).
The features used for comparing two entities (source and abstract) are:

1. Variables defined D : Source-Entity --~ {String}

2. Variables used/7 : Source-Entity --~ {String}

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 103

3. Keywords/C : Source-Entity --+ {String}

4. Metrics

�9 Fan out Adl : Source-Entity ~ Number

�9 D-Complexity A,42 : Source-Entity ---+ Number

�9 McCabe A//3 : Source-Entity ~ Number

�9 Albrecht A,44 : Source-Entity ---+ Number

�9 Kafura Jtda : Source-Entity --+ Number

These features are AST annotations and are implemented as mappings from an AST node
to a set of AST nodes, set of Strings or set of Numbers.

Let S,i be a source code statement or expression in program C and Aj an abstract statement
or expression in pattern ,A. Let the feature vector associated with Si be])i and the feature
vector associated with ,43- be])j. Within this framework we experimented with the following
similarity considered in the computation as a probability:

1__. @ card(AVst actFeatu ej, n CoacF atu ei,.)
Pr (15)

v A.., card(AbstractFeaturej n U CodeFeaturei,n)
r~=l

where v is the size of the feature vector, or in other words how many features are used,
CodeFeaturei,~ is the nth feature of source statement Si and, AbstractFeaturej,~ is the
nth feature of the ACL statement Aj.

As in the code to code dynamic programming matching, lexicographical distances be-
tween variable names (i.e. next, next value) and numerical distances between metrics are
used when no exact matching is the objective. Within this context two strings are considered
similar if their lexicographical distance is less than a selected threshold, and the comparison
of an abstract entity with a code entity is valid if their corresponding metric values are less
than a given threshold.

These themes show that ACL is viewed more as a vehicle where new features and new
requirements can be added and be considered for the matching process. For example a new
feature may be a link or invocation to another pattern marcher (i.e. SCRUPLE) so that the
abstract pattern in ACL succeeds to match a source code entity if the additional pattern
matcher succeeds and the rest of the feature vectors match.

4. System Architecture

The concept-to-code pattern matcher of the Ariadne system is composed of four modules.
The first module consists of an abstract code language (ACL) and its corresponding parser.

Such a parser builds at run time, an AST for the ACL pattern provided by the user. The
ACL AST is built using Refine and its corresponding domain model maps to entities of the
C language domain model. For example, an Abstract-Iterative-Statement corresponds to
an Iterative-Statement in the C domain model.

I04 KONTOGIANNIS ET AL.

A static explicit mapping between the ACL's domain model and C's domain model is
given by the SCM (Source Code Model), Ariadne's second module. SCM consists of states
and transitions. States represent Abstract Statements and are nodes of the ACL's AST.
Incoming transitions represent the nodes of the C language AST that can be matched by
this Abstract Statement. Transitions have initially attached probability values which follow
a uniform distribution. A subpart of the SCM is illustrated in Fig. 5 where it is assumed
for simplicity that an Abstract Pattern Expression can be matched by a C i n e q u a l i t y ,
equality, identifier reference, and a function call.

The third module builds the Abstract Pattern Model at run time for every pattern provided
by the user. APM consists of states and transitions. States represent nodes of the ACL's
AST. Transitions model the structure of the pattern given, and provide the pattern statements
to be considered for the next matching step. This model directly reflects tile structure of
the pattern provided by the user. Formally APM is an automaton <Q, E, 6, q0, F> where

�9 Q, is the set of states, taken from the domain of ACL's AST nodes

�9 E, is the input alphabet which consists of nodes of the C language AST

�9 6, is a transition function implementing statement expansion (in the case of composite
abstract or C statements) and the matching process

�9 q0, is the Initial state. The set of outgoing transitions must match the first statement in
the code segment considered.

�9 F, is a set of final states. The matching process stops when one of the final states have
been reached and no more statements from the source code can be matched.

Finally, the fourth module is the matching engine. The algorithm starts by selecting
candidate code fragments 7 9 = $1; $2; ..Sk, given a model .hi = A1; Ai; ..An.

The Viterbi algorithm is used to evaluate the best path from the start to the final state of
the APM.

An example of a match between two simple expresssions (a function call and an Abstract-
Expression is given below :

INSERT THE FACT(o->ATTLIST[num].Aname,origObj,

field->Avalue);

is matched with the abstract pattern

Expression(abstract-description

uses : ["ATTLIST", "Aname","Avalue"]

Keywords : ["INSERT", "FACT"])

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION]05

In this scenario both abstract and code statements are simple and do not need expansion.
E x p r e s s i o n and INSERT_THE_FACT(...) are type compatible statements because an
expression can generate a function call (Fig. 5) so the matching can proceed. The next step
is to compare features, and lexicographical distances between variable names in the abstract
and source statement. The finalvalue is obtained by multiplying the value obtained from
the feature vectors comparison and the probability that Expression generates a Function
Call.As the pattern statement does not specify what type of expression is to be matched the
static model (SCM) provides an estimate. In the SCM given in Fig, 5 the likelihood that
the Expression generates a function call is 0.25. The user may provide such a value if
a plan favours a particular type instead of another. For example in the T r a v e r s a l o f a
1 i nk e d 1 i s t plan the loop statement is most likely to be a whi 1 e loop. Once a final value
is set then a record < abstract_pattern, matched_code, distance_value > is created and
is associated with the relevant transition of the APM. The process ends when a final state
of the APM has been reached and no more statements match the pattern.

With this approach the matching process does not fail when imperfect matching between
the pattern and the code occurs. Instead, partial and inexact matching can be computed.
This is very important as the programmer may not know how to specify in detail the code
fragment that is sought.

To reduce complexity when variables in the pattern statement occur, Ariadne maintains a
global binding table and it checks if the given pattern variable is bound to one of the legal
values from previous instanfiations. These legal values are provided by the binding table
and are initialized every time a new pattern is tried and a new APM is created.

5. Conclusion

Pattern matching plays an important role for plan recognition and design recovery. In this
paper we have presented a number of pattern matching techniques that are used for code-
to-code and concept-to-code matching. The main objective of this research was to devise
methods and algorithms that are time efficient, allow for partial and inexact matching, and
tolerate a measure of dissimilarity between two code fragments. For code representation
schemes the program's Abstract Syntax Tree was used because it maintains all necessary
information without creating subjective views of the source code (control or data flow biased
views).

Code-to-code matching is used for clone detection and for computing similarity distances
between two code fragments. It is based on a) a dynamic programming pattern matcher that
computes the best alignment between two code fragments and b) metric values obtained
for every expression, statement, and block of the AST. Metrics are calculated by taking
into account a number of control and data program properties. The dynamic programming
pattern matcher produces more accurate results but the metrics approach is cheaper and can
be used to limit the search space when code fragments are selected for comparison using
the dynamic programming approach.

We have experimented with different code features for comparing code statements and
are able to detect clones in large software systems > 300 KLOC. Moreover, clone detection
is used to identify "conceptually" related operations in the source code. The performance

106 KONTOGIANNIS ET AL,

is limited by the fact we are using a LISP environment (frequent garbage collection calls)
and the fact that metrics have to be calculated first. When the algorithm using metric values
for comparing program code fragments was rewritten in C it performed very well. For
30KLOCS of the CLIPS system and for selecting candidate clones from approximately
500,000 pairs of functions the C version of the clone detection system run in less than
10 seconds on a Sparc 10, as opposed to a Lisp implementation that took 1.5 minutes to
complete. The corresponding DP-based algorithm implemented in Lisp took 3.9 minutes
to complete.

Currently the system is used for system clustering, redocumentation and program un-
derstanding. Clone detection analysis reveals clusters of functions with similar behaviour
suggesting thus a possible system decomposition. This analysis is combined with other
data flow analysis tools (Konto, 1994) to obtain a multiple system decomposition view. For
the visualization and clustering aspect the Rigi tool developed at the University of Victoria
is used. Integration between the Ariadne tool and the Rigi tool is achieved via the global
software repository developed at the University of Toronto.

The false alarms using only the metric comparison was on average for the three systems
39% of the total matches reported. When the DP approach was used,this ratio dropped to
approximately 10% in average (when zero distance is reported). Even if the noise presents
a significant percentage of the result, it can be filtered in almost all cases by adding new
metrics (i.e. line numbers, Halstead's metric, statement count). The significant gain though
in this approach is that we can limit the search space to a few hundreds (or less than a
hundred, when DP is considered) of code fragment pairs from a pool of half a million
possible pairs that could have been considered in total. Moreover, the method is fully
automatic, does not require any knowledge of the system and is computationally acceptable
O(n * m) for DP, where m is the size of the model and n the size of the input.

Concept-to-code matching uses an abstract language (ACL) to represent code operations
at an abstract level. Markov models and the Viterbi algorithm are used to compute similarity
measures between an abstract statement and a code statement in terms of the probability
that an abstract statement generates the particular code statement.

The ACL can be viewed not only as a regular expression-like language but also as a vehicle
to gather query features and an engine to perform matching between two artifacts. New
features, or invocations and results from other pattern matching tools, can be added to the
features of the language as requirements for the matching process. A problem we foresee
arises when binding variables exist in the pattern. If the pattern is vague then complexity
issues slow down the matching process. The way we have currently overcome this problem
is for every new binding to check only if it is a legal one in a set of possible ones instead of
forcing different alternatives when the matching occurs.

Our current research efforts are focusing on the development of a generic pattern matcher
which given a set of features, an abstract pattern language, and an input code fragment can
provide a similarity measure between an abstract pattern and the input stream.

Such a pattern matcher can be used a) for retrieving plans and other algorithmic struc-
tures from a variety of large software systems (aiding software maintenance and program
understanding), b) querying digital databases that may contain partial descriptions of data
and c) recognizing concepts and other formalisms in plain or structured text (e.g.,HTML)

PATTERN MATCHING FOR CLONE AND CONCEPT DETECTION 107

A n o t h e r area o f r e sea rch is the use o f met r ics for f ind ing a m e a s u r e o f the c h a n g e s

i n t r o d u c e d f r o m one to ano the r ve r s ion in an evo lv ing so f tware sys tem. Moreove r , we

inves t iga te the use o f the c lon ing de tec t ion t e c h n i q u e to iden t i fy s imi la r ope ra t ions on

specif ic da ta types so tha t gener i c c lasses and c o r r e s p o n d i n g m e m b e r func t ions can be

c rea ted w h e n m i g r a t i n g a p rocedura l sys t em to an ob jec t o r ien ted sys tem.

Notes

1. In this paper, "reverse engineering" and related terms refer to legitimate maintenance activities based on source-
language programs. The terms do not refer to illegal or unethical activities such as the reverse compilation of
object code to produce a competing product.

2. "The Software Refinery" and REFINE are trademarks of Reasoning Systems, Inc.

3. We are using a commercial tool called REFINE (a trademark of Reasoning Systems Corp.).

4. The Spearman-Pearson rank correlation test was used.

References

Adamov, R. "Literature review on software metrics", Zurich: Institutfur InJbrmatik der Universitat Zurich, 1987.
Baker S. B, "On Finding Duplication and Near-Duplication in Large Software Systems" In Proceedings of the

Working Conference on Reverse Engineering 1995, Toronto ON. July 1995
Biggerstaff, T., Mitbander, B., Webster, D., "Program Understanding and the Concept Assignment Problem",

Communications of the ACM, May 1994, Vol. 37, No.5, pp. 73-83.
P. Brown et. al. "Class-Based n-gram Models of natural Language", Journal of Computational Linguistics, Vol.

18, NoA, December 1992, pp.467-479.
Buss, E., et. al. "Investigating Reverse Engineering Technologies for the CAS Program Understanding Project",

1BM Systems Journal, Vol. 33, No. 3, 1994, pp. 477-500.
G. Canfora., A. Cimitile., U. Carlini., "A Logic-Based Approach to Reverse Engineering Tools Production"

Transactions of Software Engineering, Vol.18, No. 12, December 1992, pp. 1053-1063.
Chikofsky, E.L and Cross, J.H. II, "Reverse Engineering and Design Recovery: A Taxonomy," IEEE So,ware,

Jan. 1990, pp. 13 - 17.
Church, K., Helfman, I., "Dotplot: a program for exploring self-similarity in millions of lines of text and code",

J. Computational and Graphical Statistics 2,2, June 1993, pp. 153-174.
C-Language Integrated Production System User's Manual NASA Software Technology Division, Johnson Space

Center, Houston, TX.
Fenton, E. "Software metrics: a rigorous approach", Chapman and Hall, 1991.
Halstead, M., H., "Elements of Software Science", New York: Elsevier North-Holland, 1977.
J. Hartman., "Technical Introduction to the First Workshop on Artificial Intelligence and Automated Program

Understanding" First Workshop on A1 and Automated Program Understanding, AAAI'92, San-Jose, CA.
Horwitz S., "Identifying the semantic and textual differences between two versions of a program. In Proc. ACM

SIGPLAN Conference on Programming Language Design and Implementation, June 1990, pp. 234-245.
Jankowitz, H., T., "Detecting plagiarism in student PASCAL programs", Computer Journal, 31.1, 1988, pp. 1-8.
Johnson, H., "Identifying Redundancy in Source Code Using Fingerprints" In Proceedings of CASCON '93, IBM

Centre for Advanced Studies, October 24 - 28, Toronto, Vol.1, pp. 171 - 183.
Kuhn, R., DeMori, R., "A Cache-Based Natural Language Model for Speech Recognition", IEEE Transactions

on Pattern Analysis andMachine Intelligence, Vol. 12, No.6, June 1990, pp. 570-583.
Kontogiannis, K., DeMori, R., Bernstein, M., Merlo, E., "Localization of Design Concepts in Legacy Systems",

In Proceedings of International Conference on Software Maintenance 1994, September 1994, Victoria, BC.
Canada, pp. 414-423.

108 KONTOGIANNIS ET AL.

Kontogiannis, K., DeMori, R., Bernstein, M., Galler, M., Merlo, E., "Pattern matching for Design Concept
Localization", In Proceedings of the Second Working Conference on Reverse Engineering, July 1995, Toronto,
ON. Canada, pp. 96-103.

"McCabe T., J. "Reverse Engineering, reusability, redundancy : the connection", American Programmer 3, 10,
October 1990, pp, 8-13.

Moiler, K., Software metrics: a practitioner's guide to improved product development"
Muller, H., Corrie, B., Tilley, S., Spatial and Visual Representations of Software Structures, Tech. Rep. TR-74.

086, IBM Canada Ltd. April 1992.
Mylopoulos, J., "Telos : A Language for Representing Knowledge About Information Systems" University of

Toronto, Dept. of Computer Science TechnicaI Report KRR-TR-89-1, August 1990, Toronto.
J. Nlng., A. Engberts., W. Kozaczynski., "Automated Support for Legacy Code Understanding", Communications

of the ACM, May 1994, Vol.37, No.5, pp.50-57.
Paul, S., Prakash, A., "A Framework for Source Code Search Using Program Patterns", IEEE Transactions on

Software Engineering, June 1994, Vol. 20, No.6, pp. 463-475.
Rich, C. and Wills, L.M., "Recognizing a Program's Design: A Graph-Parsing Approach," IEEE Software, Jan

1990, pp. 82 - 89.
Tilley, S., Muller, H., Whitney, M., Wong, K., "Domain-retargetable Reverse EngineeringlI: Personalized User

Interfaces", In CSM'94 : Proceedings of the 1994 Conference on Software Maintenance, September 1994, pp.
336 - 342.

Viterbi, A.J, "Error Bounds for Convolutional Codes and an Asymptotic Optimum Decoding Algorithm", 1EEE
Trans. Information Theory, 13(2) 1967.

Wills, L.M.,"Automated Program Recognition by Graph Parsing", MITTechnical Report, AI Lab No. 1358, 1992

