
J O S E  M A R I A  A I Z P U R U A ,  J O R G E  N IE T O ,  A N D  
J O S E  R A M O N  U R I A R T E  

C H O I C E  P R O C E D U R E  C O N S I S T E N T  W I T H  

S I M I L A R I T Y  R E L A T I O N S  

ABSTRACT. We deal with the approach, initiated by Rubinstein, which assumes that 
people, when evaluating pairs of lotteries, use similarity relations. We interpret these 
relations as a way of modelling the imperfect powers of discrimination of the human 
mind and study the relationship between preferences and similarities. The class of both 
preferences and similarities that we deal with is larger than that considered by Rubin- 
stein. The extension is made because we do not want to restrict ourselves to lottery 
spaces. Thus, under the above interpretation of a similarity, we find that some of the 
axioms imposed by Rubinstein are not justified if we want to consider other fields of 
choice theory. We show that any preference consistent with a pair of similarities is 
monotone on a subset of the choice space. We establish the implication upon the 
similarities of the requirement of making indifferent alternatives with a component 
which is zero. Furthermore, we show that Rubinstein's general results can also be 
obtained in this larger class of both preferences and similarity relations. 

Keywords: Preference relations, similarity relations. 

I. I N T R O D U C T I O N  

To our knowledge, the issue of imperfect powers of discrimination of 
the human mind was first studied in economics by Georgescu-Roegen 
(1936, 1958) and Armstrong (1939, 1948, 1950, 1951). Georgescu- 
Roegen (1958) states that in a theory of choice we must consider the 
individual not as a perfect choosing-instrument but as a stochastic one 
and, bearing this imperfection in mind he proposed, in Georgescu- 
Roegen (1936), a model of the consumer's behaviour where the 
indifference relation was not transitive. In Armstrong (1939) there are 
arguments against the transitivity of indifference and in Armstrong 
(1950, p. 122), it is pointed out that 

The nontransitiveness of indifference must be recognized and explained on any theory of 
choice and the only explanation that seems to work is based on the imperfect powers of 
discrimination of the human mind whereby inequality becomes recognizable only when 
of sufficient magnitude. 

Theory and Decision 29: 235-254, 1990. 
(,~ 1990 Kluwer Academic Publishers. Printed in the Netherlands. 
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This subject is then axiomatized by Luce (1956), who also provides 
arguments, based on empirical evidence, against the transitivity of 
indifference. The two examples provided by Luce - one about 'adja- 
cent'  weights and the other  about a cup of coffee with different, but 
similar, amounts of sugar - suggest that if indifference were transitive, 
then a subject would be unable to detect any weight or any sugar 
concentration differences, however great; something which is patently 
false. Therefore ,  to Luce the intransitivity of some indifference rela- 
tions reflects " the inability of an instrument to discriminate relatively 
to an imposed discrimination task" Luce (1956, p. 179). But Luce also 
points out an important  issue in utility theory. The theory of prefer- 
ences underlying utility theory,  which generally assumes that indiffer- 
ence is an equivalence relation, implies that utility is perfectly dis- 
criminable and therefore a rational being would be the one who would 
respond to any finite difference in utility, however small. But,  again, it 
is false that people behave in this manner; utility is not perfectly 
discriminable and Luce shows that the imperfect response sensitivity to 
small changes in utility is related to intransitivities of the indifference 
relation. 

Thus, we see that these three authors, and many others (see 
Fishburn, 1970), argue that nontransitivity of indifferences is due to 
the limited capacities of the human mind. All of them try to capture 
these limitations in a direct manner,  by introducing a new set of 
axioms to represent a person's preference pattern. Georgescu-Roegen 
and Luce make an important  distinction among the domains of dis- 
crimination tasks to be performed by an individual. They distinguish 
the physical domain from the utility domain. In both domains it can be 
assumed that there is an imperfect power of dicrimination. It is 
perhaps Georgescu-Roegen (1936, p. 572), who emphasizes this dis- 
tinction more: 

The individual's behavior appears therefore as a resultant of two different types of 
measurement: a physical one, which is supposed to tell him the exact amounts of 
commodities, and a psychological one, which is his possibility of comparing satisfactions. 
The fact that these two kinds of measurements are both involved in the present scheme 
constitutes an important point in the problem. 

Psychologists describe the difficulties of human perception by means 
of similarities. A similarity is expressed by a judgement of the type 'a 
is like b'. For Tversky (1977, p. 327). 
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Similarity plays a fundamental role in theories of knowledge and behavior. It serves as 
an organizing principle by which individuals classify objects, form concepts and make 
generalizations. Indeed, the concept of similarity is ubiquitous in psychological theory. It 
underlies the accounts of stimulus and response generalization in learning, it is employed 
to explain errors in memory and pattern recognition and it is central to the analysis of 
connotative meaning. 

To our knowledge, the first application of the similarity concept to 
economics was done by Rubinstein (1988), who defines a similarity 
relation by a set of axioms different than the one used by psychologists 
such as Tversky (1977). Rubinstein's work deals with a particular class 
of economic decision problem: choice under risk. He assumes that 
people use a decision scheme based on the use of similarities on the 
two characteristics defining risky prospects: prizes and probabilities. 
With this approach, Rubinstein shows a possible explanation to the 
Allais Paradox. The final goal of his work is the construction of a 
descriptive theory of decision under risk by looking at the decision 
procedures themselves. The same methodological attitude is adopted 
by Tversky (1977, p. 332). 

Furthermore, the axioms are proposed as (normative) principles of rational behavior, 
whereas the axioms of the present theory are intended to be descriptive rather than 
prescriptive. 

We think that the similarity approach used by Rubinstein can be 
extended to describe the bounded capacities of perception of the 
human mind when faced to any choice problems. Our work may be 
seen as an indirect way of allowing the introduction of the imperfect- 
ness of human perception into the preference relations defined over a 
set of alternatives. It should be noted that it is very likely that the set 
of axioms by which Rubinstein defines a similarity relation should need 
a modification in order to capture better that imperfectness. Neverthe- 
less, the present work accepts the definition of similarity given by 
Rubinstein and we shall learn from the results obtained the adequacy 
of the adopted definiton. 

Thus, our primitive tools are a pair of similarities and the issue that 
we focus on is one posed by Rubinstein: what preference relations are 
consistent with a given pair of similarity relations? We provide an 
answer to this question for a class of both similarities and preferences 
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larger than those considered by Rubinstein. The reasons for this 
extension are the following. 

If  two alternatives A and B are percieved to be similar in the sense 

that  all their relevant  characteristics are indistinguishable, then it 
makes  no sense to say that A is preferred to B, even when there is 
vector  dominance of the characteristics of A over  that of B. When 
monotonici ty of preferences is required,  we are, in fact, assuming that  
all the characteristics of  the objects can be perfectly discriminated. As 

Georgescu-Roegen  (1958, p. 159), points out, the most  important  
implication of the monotonici ty assumption 

is that the quantities of all commodities involved are not estimated by the consumer's 
senses alone, but determined by outside scales ( . . . ) .  This means that in the model 
under consideration the threshold in choice is completely isolated from the ordinary 
sensorial threshold, that is, from a phenomenon irrelevant to the economic behavior of 
the consumer in a world where quantities exchanged are determined with the aid of 
physical instrument. 

The  present  paper  does not consider a world where agents go 

around carrying measuring instruments to help them in everyday 
choices. Therefore ,  we shall not make  the assumption of monotonici ty 

of preferences.  But,  as a negative result, we show that the decision 
procedure  based on similarities is strong enough ( together  with the 

transitivity of the preference relation) to imply the monotonici ty 

proper ty  in a large subset of the choice space. 
In Rubinstein 's  work,  the assumption (R.4)  states that the lotteries 

(x, 0) and (0, y) are declared indifferent, for all x and y in [0, 1]. This 
assumption is not justified when we want to deal with a more  general 
class of choice problems.  Consider,  for instance, the case where the 

alternatives are financial assets. A decision maker  has to make  a 

portfolio selection taking into account two characteristics of each asset: 
the expected rate of  return (in real terms),  x, and the degree of risk 
(measured,  say, by its /3). Would it be acceptable in this case to 

require (x, 0) to be indifferent to (x', 0) for any x and x ' ?  
Our  Theorem 1 shows that  the (R.4)  is equivalent to the assumption 

that the similarity relations on the characteristics of the alternatives are 
such that no point different f rom zero is similar to it. 

Since our primitive data are the similarity relations, which describe 
the bounded  percept ion of an agent facing a decision problem,  two 
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numbers are declared similar if they are perceived as undistinguish- 
able. Therefore  in this context we do not find any justification to 
accept that zero is more distinguishable than any other number,  i.e. 
that zero and a sufficiently small e can be perfectly discriminated and 
that a and a + e cannot, for all a r 0. 

For these reasons, the present work does not impose the assumption 
(R.4) on preferences and will consider a larger family of similarity 
relations which may or may not distinguish zero from any other 
positive number less than 1. In this way, again, we open the possibility 
of applying the similarity approach to other fields of choice theory 
where zero does not receive a special treatment.  

Our Theorems 2 and 3 show that results of Rubinstein can be 
extended to the larger set of continuous complete preorders consistent 
with a pair of similarities. 

Thus, the present work should be viewed as a modest attempt to 
enlaree the domains of application of the similarity approach in which 
agents are not described a priori as perfect perceivers. 

Nevertheless, our main conclusions are negative, so that further 
work has to be done to describe the relationships between preferences 
and similarities. We find, as in Rubinstein's work, that a continuous, 
complete preorder  over the set of alternatives is 'almost' uniquely 
determined by a given pair of similarity relations, i.e., two people, 
having the same capability of perception, must have 'almost' the same 
preferences. And,  furthermore,  these preferences are monotone.  
Thus, using Georgescu-Roegen's  terminology, having introduced sen- 
sorial thresholds in the perception of the characteristics, we find that 
preferences consistent with those sensorial thresholds do not recognize 
them. 

The work is organized as follows. In Part II we present the notation 
and definitions needed. In Part III we present the results. 

II. NOTATION AND DEFINITIONS 

1. Preferences on the Set o f  Alternatives 

Let  D be the domain of alternatives. Any object in D is defined by two 
characteristics (x, y) measured by real numbers. We will normalize 
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these values, and therefore X = Y = [0, 1] will be the spaces of charac- 
teristics. Hence, the set of alternatives, which are the objects of 
choice, will be the square [0,1] x [0, 1]. Let ~ denote a binary 
relation defined on [0, 1] 2 . We will assume that ~ satisfies the 
following properties: 

(R.1) ~ is complete, reflexive and transitive. 

(R.3) ~ is continuous. 

Remark 1. In the particular case in which the alternatives are lotteries 
which x is a prize and y is the probability of having that prize, 
Rubinstein (1988) assumes that ~ furthermore satisfies: 

(R.2) Monotonicity: x I > X  2 and Yl >Y:  imply that (Yl, Yl) > 

(X2, Y2)" 

(R.4) For any (x, y) and (x', y ' )  in ([0, 11 x 0) U (0 x [0, 1]), 
(x, y ) -  (x', y ' ) .  

where > and - are the asymmetric and symmetric parts of :~, 
respectively. In this work, trying to cover a more general domain of 
choice problems, it is assumed that :~ is just a continuous and 
complete preordering. 

2. Similarity Relation 

A binary relation S of the set A = [0, 1] is a similarity relation if the 
following axioms are satisfied: 

(S.1) 

(S.2) 

(S.3) 

(S.4) 

Reflexity: for all a E A, a S a. 

Symmetry: for all a, b E A, if a S b then b S a. 

Continuity: the graph of S is closed. 

Betweenness: if a <~ b ~< c and a Sc  then a S b and b S c. 
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(S.5) Non-degeneracy: 

(1) For all 0 <  a < 1, there are b and c. c < a < b such that 
b S a and c S a. For a = 1 there is c as above. Thus the 
only element which may be not similar to any other 
element in A is zero. 

(2) Of l ' l .  

(S.6) Responsiveness: if a S b and there is an a '  < a(a' > a) such 
that a '  S b then, if b > 0 ,  there is b' < b (b' > b, if b < 1), 
such that a '  S b'. 

Remark 2. (a) Note that (S.3), (S.4)' and (S.5) imply (S.1). (b) The 
set of independent axioms which defines a similarity relation is (S.2)- 
(S.6). 

Proof. (a) For any a E (0, 1], it is easy to see that (S.4)' and (S.5) 
imply that a S a. Now, the continuity axiom, (S.3), guarantees that 
0 S 0 because e S e for any e > 0. 

(b) We shall prove it by means of examples of binary relations, R, 
defined on A = [0, 1], that satisfy only four of the above mentioned 
five axioms. 

Example 1: a R b  when 1/3<~a/b<~2. R satisfies (S.3), (S.4), (S.5), 
(S.6) but not (S.2) because, say, 1/3 R 1 but 1 /k"l /3 .  

Example 2: a R b  when 1 / 2 < a / b < 2 .  R satisfies (S.2), (S.4), (S.5), 
(S.6) but not (S.3) because, say, 0.3 R 0.6 - e for all e > 0 but 0.3 g 
0.6. 

Example 3: a R b when (i) a, b E [0, 0.1], or (ii) a, b ~ [0.9, 1], or (iii) 
[a- b[ = 0.1. R satisfies (S.2), (S.3), (S.5), (S.6) but not (S.4) be- 
cause, say 0.8 R 0.9 and 0.8 ~2" 0.85. 

Example 4. a R b when 1/2~<(a - 1)/(b - 1)~<2. R satisfies (S.2), 
(S.3), (S.4) and (S.6); for any a ~ [0, 1] the set of points related to a is 
given by [ 2 a -  1, a + 1/2] n [0, 1]. R does not satisfy (S.5) because 
there does not exist not exist c < 1 and c R 1. 
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Example 5. a R b when  (i) a,  b E [0, 0.5], or  (ii) a,  b @ [0.5, 1]. R 
satisfies (S.2) ,  (S.3) ,  (S.4) ,  (S.5)  but  not  (S.6) because ,  say 0.3 R 0.5, 

0.4 R 0.5 and  the re  is no b '  > 0 . 5  such tha t  0.4 R b ' .  

Remark 3. Rubins te in  (1988) defines (S.4) be tweenness  as follows: if 
a~b<~c<~d  and a S d then b S c .  

I t  is easy  to see tha t  (S.4)<::> (S .4) ' :  

(S.4)  ~ (8 .4) '  
If  a ~< b ~< c and a S c then  a S b because  a ~< a ~< b ~< c and 

(S.4);  b S c because  a ~< b ~< c~< c and (S.4).  

(S .4) '  ~ (S.4) 
I f  a ~ b ~< c~< d and a S d then  a S c because  a ~< c~< d and  

(S.4) '  and the re fo re  b S c because  a ~< b ~< c and (S.4) ' .  
[]  

G iven  a E A,  we def ined the set  S[a] as 

S[a]= {b~A:  b S a} 

Let  a * =  max  S[a] and a ,  = rain S[a] deno te  the m a x i m u m  e l emen t  
and the  m i n i m u m  e l emen t  of  S[a], respect ively .  Not ice  tha t  for  all a 
such tha t  a * r  1, ( a * ) ,  = a and  for  all a such tha t  a ,  r  ( a , ) *  = a. 

Example. An  example  of  a s imilari ty re la t ion  is the A-ratio similari ty,  
which is def ined by  a S b if 1/A ~< a/b <~ A. T a k e  A = 2 and a = 0.3, then  

S [ a ] = [ 0 . 1 5 , 0 . 6 ] ,  thus a * = 0 . 6 ,  a , = 0 . 1 5  and ( a * ) ,  = ( a , ) *  = 0.3. 
A n o t h e r  examp le  is the  e -d i f fe rence  similarity,  which is def ined by a S 

b if la - bl ~< e. T a k e  e = 0.2, then  S[0] = [0, 0.2]. 

We  in t roduce  now the defini t ion of  a p r o c e d u r e  for  p r e f e r ence  

de te rmina t ion ,  based  on the  use of  s imilari ty relat ions.  T h e  p r o c e d u r e  
is in fact  a descr ip t ion  of the  decision scheme  which an individual  is 
supposed  to fol low in o rde r  to d e t e r m i n e  h i s / he r  p r e f e r r ed  a l ternat ive .  
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3. Condition * * 

We say that ~ satisfies the condition ** with respect to the similarities 
S x and Sy on characteristics X and Y, respectively when for all 
(x, y ) E  [0, 112, if (x ' ,  y ' )  is such that: 

(1) y' ~y  y,  y' > y and x' Sx x but x' r 0 whenever x = O, then 
(x ' ,  y ' )  > (x, y). 

(2) y'  Sy y, but y '  r 0 whenever y = 0, and x' fix x with x'  > x, 
then (x ' ,  y ' ) >  (x, y). 

4. Definitions. The sets C, TR, T L and T)  

(? = {(Sx, Sy, :~): ~ satisfies (R.1),  (R.3) and ** relative 
to S x 

and Sy satisfying (S.1, 2, 3, 4', 5, 6)} 

T R = {(x, y) E [0, 112: x E (0, 1.], y E [0", 1)} 

T L = {(x, y) E [0, 112: x E l0* ,  1], y @(0, 1.]} 

T =  TR U T L . 

Elements of set C are triples formed by two similarities over charac- 
teristics and a continuous complete preorder 'consistent' with these 
similarities. T R and T L are subsets of the choice space allowing 
'movements to the right' and 'to the left', respectively, as will be seen 
in the results of the next section. 

III.  T H E  R E S U L T S  

The following result, which is the first connection between similarities 
and preferences, is obtained as a direct implication of ** and (R.3).  

L E M M A  1. Let  (Sx, Sy , ~ ) ~ C, then: 

(a) I f  (x, y ) E  T R then (x, y ) ~  (x*,  y*)  . 

(b) I f  (x, y) E T L then (x, y) ~ (x*,  y*) . 
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Proof.  Part (a) Case 1. y 1> 0* > 0. In this case y ,  > 0. By **, for any 
0 <  e < x, (x - e, y) < (x*, y , )  because y Sy y , ,  x* > x - e and x* fl'x 
x - e, by (S.6) and the definition of x*. By (R.3) (x, y) ~ (x*, y , ) .  
Similarly, by **, (x, y ) >  (x*, y , -  e) for any 0 <  e < y , .  Thus, by 
(R.3) (x, y):~ (x*, y , ) .  

Case 2: y = 0 " / > 0 .  In this case y ,  = 0  and by (S.5) 1 > 0 " .  
When 0* > 0 ,  by ** ( x - e ,  y ) < ( x * ,  y , )  and by (R.3),  (x, y) 

(x*, y , ) .  Similarly, by ** (x, y + e) > (x*, y ,  and by (R.3),  (x, y) :~ 
(x*, y , ) .  

When 0 * =  0, by ** (x, y + e ) >  (x*, y , )  and by (R.3),  (x, y):~ 
(x*, y , ) .  Similarly, by * *, (x, y) < (x*, y ,  + e) because y = y ,  = 0 
and by (R.3), (x, y )~  (x*, y,). 

Part (b): the same as in part (a), changing x for y. 

R e m a r k  4. Lemma 1 implies RubinStein's Lemma 2 for the particular 
case in which alternatives are the simple lotteries described before, but 
the converse is not true in general. 

Proof.  Take any x and y such that x ,  > 0 and y ,  > 0. Then x ,  E 
(0, 1,] and y ,  E (0, 1,]. Now call z to x , ,  then (z, y) C T R because 
y E (0",  1]. Thus, by Lemma 1 (z, y ) ~  (y* ,  y , ) ,  therefore (x , ,  y) 
(x, y , )  as Rubinstein's Lemma 2. 

Now take any x and y such that x ~ (0, 1"] and y ~ (0",  1], i.e. 
(x, y ) E  T R . Then 

0 < x * ~ < l  

and 

y , > 0  

Let us all z to x*. Since z ,  = (x*),  = x > 0 and y ,  > 0 we may apply 
Rubinstein's Lemma 2, i.e. 

(z, y , ) -  (z , ,  y) 

Therefore 

(x*, y , ) - - ( x ,  y ) .  
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But when x ~ (0, 1.] and y = 0% (x, y )E  T n and y .  = 0. This case is 
not considered in Rubinstein's Lemma 2. [] 

The next result presents the necessary and sufficient condition that a 
pair of similarities must satisfy in order that the set of alternatives 
([0, 1] x 0) U (0 x [0, 1]), be an indifference class for any preference 
consistent with that pair of similarities. This result also motivates the 
necessity of relaxing assumption (R.4). The theorem shows that if 
(R.4) is maintained, the similarities on both characteristics should be 
of a certain type. Therefore assumption (R.4) puts some limits on the 
admissible class of similarities. This assumption is empirically justified 
in the case treated by Rubinstein (1988) where the alternatives are 
lotteries. But in the general case, there is no reason to limit the 
acceptable type of similarity relations. 

T H E O R E M  1. Let ( S , , S y ,  >z)@~, then for all x and y in [0,1] 
(x, O) ~ (0, y) if and only if S~[0] = Sy[0] = {0}. 

The following two lemmata will be helpful in proving this theorem. 

L E M M A  2. Let (Sx, Sy, :~)@ C: (a) I f  Sy is such that Sy[0] = (0), 
then for all x@ [0, 1] and for all x' E Sx[x], (x, 0 ) -  (x ' ,  0). (b) I f  S x is 
such that S,[0] = (0), then for all y E [0, 1] and for all y ' ~  Sy[y], 
(o, (o, y'). 

Proof. (a) Let us consider in Y =  [0, 1] a sequence (~/k) defined as 
follows: ~/0=~ > 0 and ~/k+l = ( k ) , .  Notice that (7/k) goes to zero as 
k increases and that ~/~ > 0 for all k because, by assumption, Sy is such 
that 0 " =  0. By property **, for all k 

- 2 - /  
and by (R.3) it follows that (x, 0 ) ~  (x', 0). Equivalently, it must be 
true that for all k 

(XV~ T~k+l ~ 
- - / - /<  (x', 

and by (R.3) (x, 0) ~ (x ' ,  0). 
(b) Proceed as in part (a) changing x for y. 
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L E M M A  3. Let (Sx, Sy, ~:) @ C: (a) I f  Sy is such that Sy[0] = {0}, 
then for all x E [0, 1], (x, 0) ~ (1, 0). (b) I f  S, is such that Sx[0 ] = {0}, 
then for  all y E [0, 1], (0, y) - (0, 1). 

Proof. (a) Consider the sequence (x k) defined as x ~ = 1 and x k§ = 
(xk)..  Notice that X * goes to zero as k increases and that x k > 0 for all 
k when 0 fl', x for all x ~ (0, 1]. We are going to show that for any 
given k, if x >I x k, then (x, 0) - (1, 0). 

When k = 1, x >/x k implies that x S x 1 and therefore, by Lemma 2 
(x, 0) -- (1, 0). 

Now imagine that, when k = N, for an arbitrary N, it is true that 
x I> x N implies that (x, 0) ~ (1, 0). Then, for k = N + 1 i f x  k >I x >i x k+l, 
by Lemma 2, (x, 0 ) -  (x k, 0) and by (R.1) (x, 0 ) ~  (1, 0). Therefore 
we can conclude that for an arbitrary k, x >/x ~ implies that (x, 0) 
(1, 0). Since (xk)----> 0, there is a k such that x k <  X for all x > 0  and 
thus (x, 0) ~ (1, 0) for all x > 0. Hence by (R.3),  (0, 0) - (1, 0). 

(b) Proceed as in part (a) changing x for y. 

Proof  o f  Theorem 1. We must show first that: (a) For all x E [0, 1], 
(0, 0) -- (x, 0) r Sy[0] = {0}. (b) For all y E [0, 1], (0, 0) - (0, y) <=> 
sx[0] = {0}. 

We only have to prove the necessity part of both (a) and (b) because 
Lemma 3 is the sufficiency part. 

(a) Suppose that 0 ~ > 0 ,  where 0y=maXSy[0] ;  by (S.5) on S~, 
1 , ~ 0  and by ** (1, 0) > (1,  - ~7, 0") for all ~7@(0, 1,).  But ( 1 , -  
rl, 0") E TR, therefore by Lemma 1, (1,  - ~7, 0") - ((1, - ~7)*, 0). 
Transitivity of ~ implies that ((1, - ~7)*, 0) < (1, 0) which is in con- 
tradiction with the initial assumption. 

(b) Proceed as in part (a) changing x for y. 
Thus, we have that for all x E [0, 1] and for all y E [0, 1], (x, 0) 

(0, 0 ) -  (0, y), therefore by (R.1) (x, 0 ) - - ( 0 ,  y). Q.E.D.  

A priori, it would seem that, given any alternative (x', y ' ) ,  the 
indifference classes would be thick on the set Sx[x' ] x Sy[y'], because 
one cannot discriminate in Sx[x' ] and Sy[y']. Nevertheless, we show 
now that if a preference satisfies both (R.1),  (R.2)  and the ** property 
relative to the similarities Sx and S r then the preference satisfies the 
monotonicity property (R.2) restricted to a subset of alternatives. 
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LEMMA 4. Let (S x , Sy, ~ )  E C. Given any (x, y) E T = T R U T L, i f  
x'  > x and y'  > y then (x', y ' )  > (x, y); i.e., >z satisfies the monotonici- 
ty property, (R.2), when restricted to T. 

Proof. Let (x, y ) E T R ;  by Lemma 1, (x, y ) - ( x * ,  y*). Let 
(x', y ' )  E [0, 1] 2 such that x' > x and y'  > y. 

If x '<-x  *, then by ** (x', y ' ) > ( x * ,  y , ) ,  thus, by (R.1) (x', y ' ) >  
(x, y). 

If x ' >  x*, ** implies both (x', y ' ) >  (x, y ' )  and (x, y ' ) >  (x*, y , ) .  
By (R.1), (x', y ' )>-(x*,  y , ) ;  hence (x', y ' ) >  (x, y). 

When (x, y ) E  TL, we use part (b) of Lemma 1 and proceed as 
above. 

The next result establishes the 'almost' uniqueness of a preference 
relation consistency with a giver pair of similarities. It is the extension 
of Rubinstein's Proposition 2 to a general framework in which neither 
R.4 nor monotonicity of preferences are assumed. 

THEOREM 2. Let S x and Sy be a pair o f  arbitrary similarities on the 
set [0, 1]. Then there are functions u: [0, 1]---~ R 1 and v: [0, 1]--+ R I 
such that: (a) The function v(y)u(x)  represents a preference on [0, 1] 2 
satisfying (R.1), (R.2), (R.3) and ** relative to Sx and Sy. (b) I f  (S~, 
Sy, ~ ) E C, then for all (xl , y~) and (x2, Y2) satisfying v(yl)U(Xl) > 
v(y2)u(x2) , there are x~ S x x i and y~ Sy Yi, (i = 1, 2), such that (x~, 

> (x;, y;). 
Proof. (a) By Rubinstein's Proposition 1 given any t > 1 there are 

continuous and strictly increasing functions u and v which represent S~ 
and Sy, respectively; i.e. for all x, x ' E  [0, 1], x S~ x'C=~u(x)/u(x')E 
[1/t,  A]; and the same applies for v and Sy. 

Let ~ be the preference relation represented by v(y)u(x);  then 
is a continuous and complete preordering which satisfies the monoto- 
nicity property (R.2). We show now that ~ also satisfies ** relative to 
S~ and Sy. Assume that X 1 S x x 2 ,  x 2 r x I i f  x I = 0 ,  Yl )~/y Y2 and Yl > Y2" 

Then 1/1 ~ u(xl)/u(x2) ~< A and v(y l )>Av(y2) .  Therefore U(Xl) x 
v( yl)  > (1/A )u(x2)Av( y2) = u(x2)v( Y2). 

When Yl @ Y2, Yz Cy~ if Yl =0,  x I ff~ x 2 and x 1>x2, the same 
reasoning, changing u(xl) for v(Yl) and u(x2) for v(y2), leads to the 
conclusion that u(x l ) v (y l )  > u(x2)v(yz).  
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(b) Since v and u are strictly increasing, the inequality v ( y l ) x  
tt(Xl) > O(yz)U(X2) means that the inequalities y~ ~<Y2 and x l~<x 2 
cannot occur at the same time. We must have either y~ > Y2 or X 1 > X 2 
or both. In the last case we cannot conclude that (xa, y a ) >  (x2, Y2) 
since we are not assuming that ~ is monotone  and (x2, Y2) could be 
outside T. We ought to show that the ranking of (x l ,  y l )  vis-a-vis 
(x2, Y2) may be deduced from the knowledge that it satisfies (R.1),  
(R.3) and ** with respect S x and Sy. The proof  must take into account 
that e-difference similarities are also considered because ~ does not 
necessarily satisfy (R.4).  

The cases compatible with v (Y l )U(Xa)>V(y2)u(x2)  are the fol- 
lowing: 

Case I x 1 > x 2 and Ya > Y2 

Case II x t ~ X 2 and Yl > Y2 

Case III x I > X 2 and Yl ~< Y2 

Case III is equivalent to Case II; hence we shall only consider Case I 
and Case II. 

Case I. x 1 > x 2 and Yl > Y2. If either x 1 S x x 2 and Yl )fly Y2 or x I fl'x 
x 2 and Ya Sy Y2 then, by **, (x l ,  Yl) > (x2, Y2). Therefore  the cases to 
be studied are the following. 

Ia: x I Sx x 2 and ylSyy2 . 

Ib: x 1;Kxx 2 and Ylf l 'yY2.  

Case Ia. x 1 S, x 2 and Yl Sy Y2. YJ > Y2 means that (y~)* > (Y2), .  
Also ( e l )*  .$'y (Y2), because if ( y 2 ) , r  ( ( y 2 ) , ) * = y 2 < ( Y l ) * ;  if 
( y 2 ) , = 0 ,  by (S.5) l ~ ( y l ) * > 0 * ;  thus, (Yl)* ,g'y Y2 and we may 
conclude that (xa, (Yl)*) > (x2, (Yz),)- 

Case lb. x 1 .~x x2 and Yl fl'y Y2. (i) Suppose that x 2 > 0, then, by **, 

(x l ,  e l )  > (x2, Yl) and (x2, Ya) > ( x 2 ,  Y2)- By (R.1),  (x 1, e l )  > 
(x2, Y2)" 

(ii) Suppose that Y2>0 ,  then by ** ( x l , y l ) > ( x l , y 2 )  and 

(xl ,  Y2) > ( x 2 ,  Y2)- By (R.1) (Xl, Yl) > (x2, Y2). 
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(iii) Suppose  that  x 2 = Y2 = 0. In this case we canno t  apply,  as in the 
prev ious  cases,  p r o p e r t y  **. H e r e  we can distinguish two subcases:  

(iiia) S~[O]=Sy[O]={O}.  T a k e  any e in ( 0 , ( x ~ ) , ) ;  by (i),  
(x~, y l ) > ( e ,  0) and by T h e o r e m  1, (e, 0 ) - - ( 0 ,  0). Thus ,  (xa,  y l ) >  

(0, 0). 
(iiib) Sx[0] ~ {0} or Sy[0] = {0} or  both .  Le t  us consider  the case 

S~[0] ~ {0}. T a k e  e < min{ (x l )  , , 0"},  then  (x l ,  Yl) > (e, 0). 
Case H. x~ <- x 2 and Yl > Y2- We mus t  consider  the fol lowing sub- 

stances.  

I Ia:  x 1 S ~ x  2 and y l S y Y 2  

l ib :  x 1 S ~ x  2 and Yl~O'yY2 

IIc: x 1 )S'~ x 2 and Yl/~'y Y2 

IId:  Xl fi'x x2 and Yl Sy Y2 

Case  I Id  is not  compa t ib le  with the condi t ions  x~ ~< x 2, Yl > Ye and 
v ( y l ) u ( x l )  > o(Y2)U(X2), hence  we do not  need  to deal  with it. 

Case IIa: x S x x 2 and Yl Sy Ye. As shown in the  Case Ia ,  (Yl)*  ,O,y 

( Y l ) ,  and (Yl)* > (Y2) , .  Since x 1 ~< x 2 , (x l )*  S x x 2 . T h e r e f o r e  ( (x l )* ,  
(Yl )*)  > (x2, (Ye) , ) ,  as a direct  appl icat ion of  **. 

Case l ib:  x 1 S x X 1 and Yl )~Yy Y2" By  **, (xa ,  Yl) > (X2, Y2); this is 
t rue  for  x 2 # Xl/> 0. W h e n  x I = x 2 = 0, v ( y l ) u ( x l )  > v(Y2)U(X2) im- 
plies that  Sx[0] ~ {0}. H e n c e  by ** ((0)*,  Yl) > (0, Y2)" 

Case IIc: x I fl(x x2 and yl  ~"r Y2- It  mus t  be  the case tha t  x I < x 2 . 

F u r t h e r m o r e  (Xl)* < X2, X 1 < (X2) ,  , Yl > (Y2)* and ( Y l ) ,  > Y2" 
T h e  p roo f  for  this case is a modif ied  vers ion of  Rub ins te in ' s  p r o o f  

for  his Propos i t ion  2. The  modif ica t ion is needed  to cover  the  case in 

which Y2 = 0 or,  m o r e  genera l ly ,  (Y2) ,  = 0. 
Def ine  the sequence  (x~, y~) as follows: x ~ = (x~)* and y~ = Yl; then  

k k 
xl = (x~-a)  * and y~ = ( y k - ~ ) , .  Thus ,  the first e l emen t  of  the sequence ,  
(x ~ y~) has the p r o p e r t y  tha t  

0 0 o(yl)u(xl)  =  v(yl)u(xl) 
0 0 o(y lu(x ) >  o(y2lu(x2) 
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The functions v(y) and u(x) must satisfy, by Rubinstein's Proposition 
k 1, v(y~) = v(y~ ~ if y~ r  and u(x~) = Aku(x ~ if Xlkr 1. 

Let us denote by J the element of the sequence with the property 
that (Y2)* ~> Y~ > Y2. We say that J = ~ when Y2 = 0 = (Y2)*, because 
in that case no finite J will have the desired property. 

Now we claim that I < J. If J ~< I then the initial inequality, v(y~) x 
u(x~ > Av(y2)u(x2) will not be satisfied; i.e. if J ~< I 

(y2)*~y~>y2 and xJ<x2 

therefore v(y~) <~ iv(Y2) and u(x J) < u(x2). 
0 0 J J v( Yl)U(Xl) , J I would imply that v( y~ ~ <~ Since O ( Y l ) U ( X l ) =  <~ 

v(Y2) u(x2) which contradicts the above mentioned property. 
I <  J means that (x~, y{) is such that: 

I 
(x2) , < x~ < x2, i.e. X 1 S x x 2 

i 1 
Yl > (Y2)* , i.e. Yl ~7"y Y2 

Therefore,  by ** (x11, y ~ ) >  (x2, Y2). 
For 0 ~< k < I, (x~, yl ~) E TR; hence, by Lemma 1 and the transitivity 

of ~ we have that for all k~<I  

(x 0 ' y 0 ) -  (x~, y~); (Xl,i y i ) -  (Xl,0 Yl)~ 

0 and x 1 S x xt allows us to conclude that 

((xl)*, Yl) > (x2, Y2) 

as desired. 

Remark 5. Had we followed Rubinstein's [2, Proposition 2] proof, we 
could have shown an element (X*l, y11)~ (Xl, Yl) such that x11 S x x 2 and 
YZl >Y2. We could now pick (Y2), to be sure that Yl ,$'y (Y2),.  But 
when Ye = 0 ,  or, more generally, when (Y2), = 0, y~ >Y2 does not 
guarantee that y~ ~r (Y2), and ** cannot be applied to conclude that 
(x~, y~) >" (x2, (22)*)- 
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Remark  6. Part (a) of Theorem 2 shows the existence of a monotone,  
continuous and complete preorder :~ satisfying ** relative to S~ and 
Sy. We can use this preorder ~ to construct a nonmonotone prefer- 
ence ~ '  satisfying ** relative to the similarities S x and Sy. An example 
will be the following: consider the set U = {(x, y) E [0, 112: (X, y) 
(1 . ,  1)}; now let ~ '  restricted to [0,112',U be identical to ~ and 
assume that ~ ' makes the points in U indifferent. Then it is clear that 
(S~, Sy, ~ ') E C and that ;~'  is not monotone. 

The next theorem establishes a relationship between a given prefer- 
ence represented by u( . )v( . ) and the type of similarities which are 
consistent with it, when neither u(0) = 0 nor v (0 )=  0 are required. 

T H E O R E M  3. Assume  that ~ is represented by the utility function 
v ( y ) u ( x ) ,  where v and u are non-negative, continuous and strictly 
increasing functions. I f  (Sx , Sy , ~ ) E C then there is a )t > 1 such that 

1 u(x2) 

o(y2) 
Yl Sy yzCZ~ 1 ~ ~ ~,~ 

Proof. As pointed out by Rubinstein, the sets of real numbers 
Sx[ X ] = { u(xl  ) /u(x2) : x 1 S x x2, x 1 ~  x2} and Sp[ Y l = { v( y l ) /v(  y2) : 
Yl Sy Y2, Yl r are bounded because for any x 1 , x 2 with x 1 S x x 2 
(yl, y2, yl Sy y2) u(xO/u(x2) < V(Yl)/V(YO (v(yl)/v(yO < u(21)/ 
u(22)), for any pair Yl, 172 such that 172 fly 171,172 > 171(21,22,21 ~"x 22, 
21 >22) .  Let  Ax and )t r denote the suprema of Sx[X ] and Sy[Y], 
respectively. We show now that the equality Ax = Ay = A is maintained 
even in the case where v(0) r 0 or u(0) r 0. If, say, A~ > Ay, then we 
can find ~1, x2, with ~ Sx x2 and 171,372 with 171 fly 172, such that 

u(Z ) 

because v(1) /v(O)  > Ay even if v(0) > 0  (note that if v(1) /v(O) = )ty it 
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would imply that, for any e < 0 small enough, e Sy 1 - e which in turn, 
by continuity of Sy, implies that 0 Sy 1 and this violates (S.5)). 

The rest of  the proof  literally follows that of Rubinstein: proper ty  ** 

implies (s > (:71, 371) but v(371)u(s > v(371)u()'~l). 'Thus, A x = 
Ay = A. 

To show that if 1/A ~< U(Xz)/U(Xl) ~< A (1/A ~< v(y l ) /v(y2)  <~ A) then 

x 1 Sx x 2 (Yl Sy Y2), let x 2 > x l ,  x 2 fix xl and nevertheless u(x2)/ 
U(Xl)<A.  Then there exists a pair Yl, Ye such that Yl Sy Y2 and 

v(y2) /v(y l )  > u(x2)/u(xl). Thus v(y2)u(xl) > v ( y l ) u ( x 2 )  , which con- 
tradicts proper ty  **. Hence if 1/A < u(x2)/u(xl) < A then x 1 S~ x 2 . By 
the continuity of Sx, this must also be true when u(x2)/u(xl)= A. 
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