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Abstract  

While edge detection is an important first step for many vision systems, the linked lists of edge points pro- 
duced by most existing edge detectors lack the higher level of curve description needed for many visual 
tasks. For example, they do not specify the tangent direction or curvature of an edge or the locations of 
tangent discontinuities. In this paper, a method is presented for describing linked edge points at a range 
of scales by selecting intervals of the curve and scales of smoothing that are most likely to represent the 
underlying structure of the scene. This multiscale analysis of curves is complementary to any multiscale 
detection of the original edge points. A solution is presented for the problem of shrinkage of curves during 
Gaussian smoothing, which has been a significant impediment to the use of smoothing for practical 
curve description. The curve segmentation method is based on a measure of smoothness minimizing the 
third derivative of Gaussian convolution. The smoothness measure is used to identify discontinuities of 
curve tangents simultaneously with selecting the appropriate scale of smoothing. The averaging of point 
locations during smoothing provides for accurate subpixel curve localization. This curve-description 
method can be implemented efficiently and should prove practical for a wide range of applications in- 
cluding correspondence matching, perceptual grouping, and model-based recognition. 

I. Introduct ion 

Edge detection plays an important role in many 
computer vision systems (and apparently in 
biological vision) by identifying points of  intensi- 
ty discontinuity in an image. The locations of 
these intensity discontinuities usually reflect un- 
derlying discontinuities in the geometry or sur- 
face reflectance of a scene and thereby discount 
the effects of varying illumination and imaging 
parameters. For this reason, edges have proved to 
be one of the most reliable low-level features for 
bridging the gap between image intensities and 
scene properties. 

Unfortunately, most existing edge detectors 
treat edges as essentially point properties. The 
edge points can be linked together on the basis of 
the image connectivity, but it is immediately ap- 
parent upon examining these linked sets that they 
do not correspond to geometric properties of the 
scene. When edges from objects that are widely 
separated in depth happen to intersect in the 

image, they are just as likely to belong to the same 
edge list as two edges of the same object. The solu- 
tion to this problem lies in the area of perceptual 
organization [7, 8, 20], in which higher-level 
groupings are created according to the likelihood 
that they arise from underlying properties of the 
scene rather than accidental properties of view- 
point or imaging. In the case of curve description, 
the most important property on which to base 
perceptual organization is smoothness or con- 
tinuation. This is because the edges of most ob- 
jects exhibit smooth continuation at some scales, 
whereas it is very unlikely that two objects sep- 
arated in depth will happen to have edges align- 
ing smoothly by accident. In addition, it is useful 
for many higher levels of analysis, such as further 
perceptual organization, correspondence match- 
ing or model-based recognition, to identify the 
larger-scale smooth structures in the edge data 
and thereby to obtain stable measurements of 
local orientation and curvature. 

Unfortunately, smoothness is not encoded 
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directly in the original edge data, and any attempt 
at a simple definition must face the effects of 
noise and local scatter in the positions of  edge 
points. The major approach to this problem in the 
past has been to fit straight line segments [2, 9, 16, 
18] and circular or elliptic curves [4, 17, 19] to por- 
tions of the linked edge data, and to look for 
regions that satisfy various measures of goodness 
of fit. While this approach works well for certain 
industrial scenes that contain objects with only 
straight or circular edges, they force the introduc- 
tion of arbitrary discontinuities in the description 
when faced with the more general classes of 
image curves found in most common scenes. 

Another approach taken to curve segmentation 
is to look for the tangent discontinuities directly 
with local operators (often known as comer de- 
tectors). The problem with this approach is that 
comer detection in the presence of noise is con- 
tingent upon scale selection and is no longer a 
local problem. Figure 1 illustrates this with two 
curves, only one of  which should be assigned a 
tangent discontinuity at its center. Yet both of 
these curves are identical over most of their 
length, and in particular in the region surround- 
ing this potential tangent discontinuity. There- 
fore, corner detection requires that a description 
be chosen on the basis of global properties of  the 
curve rather than simply a local neighborhood. 

Local tangent direction and curvature of a sam- 
pled curve are defined only with respect to some 
scale of smoothing. Due to the variable effects of 
noise (which leads to edge-point scatter that is 
typically inversely proportional to intensity gra- 
dient), it is quite likely that different scales will be 
appropriate for different edges in the same image. 
The need for different scales of analysis is even 
more important when dealing with natural im- 
ages which may contain small variations in the 
scene edges themselves (e.g., the bark of a tree 
trunk). For the sake of higher-level analysis and 
stability, we would like to be able to derive the 
larger-scale structure of curves even when the ac- 
tual scene edge is not perfectly smooth. 

Therefore, we need a technique for smoothing 
arbitrary curves at multiple scales. The most 
promising candidate would seem to be smooth- 
ing with a low-pass Gaussian filter, as has been 

(a/ 
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Fig. 1. Two noisy curves are shown in (a). The first curve 
would most naturally be described as a single circular arc, 
while the second would be described as two lines with a 
tangent  discontinuity in the center. However, as is shown 
when the two curves are super imposed (b), they are identical 
over most  o f  their length and in particular in the region sur- 
rounding the potential  discontinuity. This suggests that comer  
detection can best  be performed through a global search for 
smooth curve segments rather than  as a local operation in the 
ne ighborhood o f  each potential  comer.  

proposed in many other areas of image analysis, 
since it allows for precise control in the frequen- 
cies that are filtered from the original data. Mack- 
worth and Mokhtarian I10, 11, 14] have extensive- 
ly studied the properties of smoothing two- 
dimensional parametric curves with Gaussians, 
and we will build upon their work in this paper. 
Similar approaches have been taken by Mari- 
mont [12] and Witkin [21]. In related method sug- 
gested by Asada and Brady [1], the parametric 
orientation function is smoothed rather than the 
coordinate functions. However, this method 
seems to be more suited to calculating discon- 
tinuities of curvature rather than recovering the 
underlying smoothed point coordinates. 

One significant problem with Gaussian filter- 
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ing of the coordinate functions is that it results in 
a shrinking of the size of closed curves. The larger 
the curvature or the degree of smoothing, the 
greater is this amount of shrinkage. Horn and 
Weldon [6] rejected the use of a Cartesian 
parametric curve representation because of this 
problem, and instead suggested that curves be 
represented in a form they term the "extended cir- 
cular image." However, section 3 of this paper 
shows that this shrinkage effect can be compen- 
sated for in an efficient and effective manner 
using the standard parametric representation 
for curves. 

Once the method of smoothing has been per- 
fected, it can be applied at multiple scales and 
used to select smooth segments of the original 
curve. In section 4 we show that a measure of 
smoothness that maximizes the length of each 
curve segment while maintaining a low rate of 
change of curvature can be used for segmentation 
and selection of the scale of smoothing. This can 
be implemented in an efficient manner, and 
results are demonstrated for natural images. 

A final issue is the relationship between 
smoothing of curves and smoothing of the 
original image. We believe that both forms of 
analysis must take place. It is quite possible that 
edge points or other feature tokens that can only 
be extracted from a fine-scale analysis of the 
original image will themselves have important 
larger-scale curve structure. Furthermore, it is 
likely that the multi-scale analysis of curves can 
be used to determine which scales of smoothing 
of the original image are most significant. We do 
not have a solution to the longstanding problem 
of combining different scales of image smooth- 
ing, but this paper does address this problem in 
the domain of image curves by providing a way to 
select from among multiple scales of smoothing 
for curve intervals. A biologically plausible 
implementation of these curve-smoothing tech- 
niques would be the use of a nonlinear operator to 
select and "mark" points of intensity discontinui- 
ty in an image. These marked points would then 
be low-pass filtered in a second stage and the 
resulting rate of change of curvature measured to 
select appropriate scales of analysis and the 
locations of tangent discontinuities. 

2. Curve Smoothing 

This section will briefly present the basic 
methods and terminology for filtering a curve by 
Gaussian convolution. The reader is referred to 
Mackworth and Mokhtarian [11] for a more 
detailed development and the proof of a number 
of important properties of smoothed curves. 

The curve to be smoothed is represented as two 
coordinate functions of a path parameter t: 

x = x ( t )  and y = y ( t )  

In order to filter out high frequencies in this 
curve, we convolve these functions with a one- 
dimensional Gaussian Go(t) of standard devia- 
tion c: 

1 
Go(t)  - e-t2/2e~2 

We will also make use of convolutions with the 
higher derivatives of this kernel: 

--t c-t2/2a 2 
c 3 v / ~  

G ' , ( t )  - 

and 

1 t 2 ) e_t2/22 

Define X(O as the convolution Go(t) ® x( t )  for 
some selected value of ~. Since differentiation 
commutes with convolufion, X' = G'o ® x andX" 
= G"o ® x, which provides a simple, numerically 
stable method for computing the derivatives. 

The curvature +¢(t) of a Gaussian filtered curve 
can then be computed in terms of these deriva- 
tives ofXand Y(note that K is equal to l/r, where r 
is the local radius of curvature): 

X ' Y "  - Y ' X "  
K = 

(X,2 + y,2)3/2 

Although it is true that X '2 + y,2 = 1 for a path- 
length parameterized curve, it should be noted 
that even if the original curve is parameterized by 
path length, the smoothed curve will not be in 
general. Therefore, it is not possible to drop the 
denominator in the above expression. 
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3.  S m o o t h i n g  W i t h o u t  S h r i n k a g e  

The major difficulty with the above methods for 
curve smoothing is that they will systematically 
shrink the size of a curve toward the center of cur- 
vature. The source of this shrinkage arises from 
the fact that each point on a curve is being 
averaged with its neighbors, which in both direc- 
tions curve toward the local center of curvature. 
Therefore, even if the curve is entirely smooth to 
begin with, convolution with any averaging filter 
will cause each point to migrate toward the center 
as a monotonic function of curvature and degree 
of smoothing. For any application in which it is 
important to know the location of a curve in the 
image, which includes most aspects of higher- 
level vision, this variable migration would be a 
critical defect. 

However, since this shrinkage is due to the 
amount of smoothing and the local curvature, we 
can use the known value of o and the measured 
curvature of the smoothed curve to compensate 
for the degree of shrinkage that must have oc- 
curred. In fact the same argument can be applied 
to each coordinate function independently, as the 
shrinkage is a result of the underlying filtering 
process applied separately to x(t) and y(t). 

Our goal then will be to predict the degree of 
shrinkage for each point of the smoothed curve 
X(t) as a function of degree of smoothing o and 
local curvature measure X"(t). Consider a circle of 
radius r passing through the origin and centered 
at the point (r, 0). The coordinate function x(t) for 
this curve, for a path length parameter t, will 
be 

x(t) = r 1 - c o s  

N o w  consider the convolution of this function 
with Go(t) 

X ( t )  = Go(t) ®x( t )  

= f "  1 [ - ( t _ -  u )2_ ] r (1 -  cosU)du 
oo ov/2"nn exp 2o 2 r /  

We would like to compute the value of this con- 
volution at the point t = 0. Since the original 
curve passes through the origin at this point, the 
value of the convolution represents the amount of 

shrinkage as a function o f t  and r. The following 
solution was obtained with the aid of the Mac- 
syma system for symbolic algebra: 

X( t )  = r (1 - e-cZ/Zr2), at t = 0 (1) 

However, we do not actually know the value of 
the original curve radius r, but rather must make 
use of the measured second derivative of the 
smoothed curve X": 

X"( t )  = G'~(t) ® x ( t )  

o~ 1 

X e x p [ - - ( 2 ~ 2 u ) 2 ] r ( 1 -  cosU)du 

e-°2/2r2 
- , a t  t = 0 (2 )  

r 

This last result shows that r ~ 1/X", as expected, 
for small values of c. In fact, this approximation 
can be used to correct for most of the shrinkage 
error for typical values of a, since it is correct to 
within 13% for o < r/2. However, in practice the 
shrinkage correction will be implemented by 
table lookup and interpolation, so we can afford 
to solve (2) numerically for r. 

This method has been implemented and tested 
on a wide range of examples, with results that in- 
dicate elimination of the shrinkage effect. A table 
is built giving the shrinkage error values (1) as a 
function of the second derivative of convolution 
X". Then, for each point coordinate of the 
smoothed curve, we interpolate the appropriate 
error value and subtract it from the original 
smoothed value. 

The results of applying this method to a noisy 
circle are shown in figure 2. This circle was 
generated by adding uniformly distributed ran- 
dom noise in the radial direction to points lying 
on a circle. Following smoothing by a Gaussian 
with o = 8, we recover the smooth circle shown in 
figure 2(a), but it has shrunk significantly in size. 
However, following the method for shrinkage 
correction given above, we instead get the results 
shown in figure 2(b). Here the smoothed circle 
maintains the same radius as the original 
curve.  

An example of the application of this tech- 
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Fig. 2. A noisy circle can be smoothed with a Gaussian to 
recover the original smooth circle, but the radius of the circle 
will shrink as shown in (a). By applying the shrinkage correc- 
tion technique described in this paper, see (b), it is possible to 
remove noise with any desired scale of smoothing while also 
retaining the original radius. 

/ "  

Fig. 3. A map of Africa is shown with Gaussian smoothing at 
a = 8 using the standard method (a) and with the shrinkage 
correction technique (b). It can be seen that the corrected 
curve tracks the original edge points much more closely than 
does the noncorrected curve. The two curves are shown su- 
perimposed in (c), with the shrinkage-corrected curve drawn 
with a darker line. 

(continued) 
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Fig. 3 (continued) 

nique to a more complex curve is shown in figures 
3. In figure 3(a) a map of Africa is smoothed with 
a Gaussian filter with c = 8. The shrinkage is ap- 
parent in that the smooth curve is systematically 
displaced toward the inside of each curved 
region. The result of shrinkage correction is 
shown in 3(b). Figure 3(c) shows the smoothed 
curves before and after correction overlaid upon 
one another. This illustrates the fact that the cor- 
rected curve has zeros of curvature at the same 
locations as the uncorrected curve. However, ad- 
ditional inflection points may occasionally be in- 
troduced when the original curve has local 
minima of curvature that are positive or maxima 
that are negative. 

4. Identifying Smooth Curve Segments 

Given the ability to smooth a curve at different 
scales, it is necessary to develop some way to 
determine which intervals of the curve and which 
scales of smoothing are most likely to reflect the 
underlying structure of the scene. As described 
earlier, when two independent objects project to 

the same region of an image, their edges are un- 
likely to align smoothly; therefore, any list of edge 
points containing two independent object edges 
will likely contain a tangent discontinuity where 
the edges meet. This might lead one to believe that 
we should look for points of low curvature along 
an edge, as these are likely to be between the 
tangent discontinuities, which in theory have in- 
finitely high curvature. However, the underlying 
image data is noisy and must be smoothed to 
recover a curvature estimate. Once this is done, a 
tangent discontinuity in the scene will often have 
a lower curvature than some genuinely curved 
edge in the image. Given that any curved object 
edge can project to arbitrarily high image curva- 
ture by simply becoming more distant from the 
camera, we can expect many instances of high 
image curvature in any natural scene. 

Therefore, we have found that the third deriva- 
tive, or rate of change of curvature, is a more use- 
ful measure of the underlying degree of smooth- 
ness of an edge. Edges that have a high curvature 
that is changing only slowly will still be con- 
sidered smooth. Perhaps the reason that the rate 
of change of curvature has not been given more 
consideration in earlier work on segmentation is 
that it is often assumed that higher derivatives are 
very sensitive to noise. An underlying reason for 
the noise sensitivity is that higher derivatives tend 
to amplify high frequencies, which is where local 
forms of noise have their major impact. However, 
in the case of a Gaussian filtered curve, the high 
frequencies have all been removed and therefore 
do not influence the result of higher derivatives. 
Simple inspection of the shape of the third- 
derivative kernel will show that it is only slightly 
more responsive to higher frequencies than the 
first derivative. Interestingly, Binford [3] has 
argued for the importance of detecting discon- 
tinuities of curvature for high-level segmentation, 
which would naturally be detected by a third- 
derivative operator. 

There are two criteria that must be balanced in 
selecting the smoothest segments to represent a 
curve. One is to minimize the rate of change of 
curvature, and the second is to maximize the 
lengths of the curve intervals that are described by 
a single segment. Surprisingly, perhaps, we found 
that tlie second criterion tends to override the 
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first. Even if some interval at some scale has a 
very low rate of change of curvature, it will tend to 
introduce a false discontinuity if we select this in- 
terval over an interval at another scale that covers 
a longer portion of the curve. We can see the 
reason behind this if we consider that the goal of 
segmentation is to uncover true tangent discon- 
tinuities such as occur at the intersection between 
two object edges, but to otherwise find some scale 
that will represent the underlying smooth struc- 
ture of an edge. Although we have experimented 
with many much more complex criteria, the best 
method appeared to be one that simply sets a 
threshold on the size of the rate of curvature 
change that is sufficient to eliminate most tangent 
discontinuities, and to search across multiple 
scales of smoothing for intervals that cover the 
maximum length of the curve. Once one interval 
is selected, that portion of the curve is removed 
from consideration and the same method is ap- 
plied to the remaining portions. 

One other issue that must be addressed is the 
smoothing of curves out to the termination of the 
underlying list of edge points. The convolution 
kernels are defined over an infinite range, but can 
be safely truncated at a distance of 3c from their 
center. Nevertheless, without some special 
method for handling termination, this would 
leave an undefined region of 3c at the end of each 
curve, which would be a serious loss of data for 
most practical applications. There appears to be 
no ideal solution to this problem, but good results 
were achieved by estimating the endpoint tangent 
by extrapolating from the measured tangent and 
curvature of the closest curve point for which a 
reliable estimate is available. The curve is reflec- 
ted about an axis normal to this extrapolated 
tangent to provide data for smoothing up to the 
endpoint. This method of extrapolating from 
local tangent and curvature measurements is 
similar to that used to define co-circularity by 
Parent and Zucker [15]. 

5 Implementation and Results 

All of the methods described above have been im- 
plemented in Sun/Lucid Common Lisp. Edges 
are first detected by the Canny [5] edge finder and 

are linked on the basis of image connectivity to 
yield lists containing edge points that are one 
pixel apart. While this does not produce exact 
path-length parameterization, it is close enough 
that any deviation will only have a minor effect 
on the local scale of smoothing. These lists are 
then used as input to the following sequence of 
operations: 

Initial Smoothing. Each edge is smoothed by 
Gaussians at a range of scales with c increasing 
by a factor of~,/~-from one scale to the next. In the 
examples to be presented, 7 scales of smoothing 
were used with c ranging in value from X/~ pixels 
to 8X/~pixels. The first and second derivatives are 
also calculated at each point by convolution with 
the appropriate kernels, and the shrinkage com- 
pensation is applied. Curvature K' is computed by 
using the finite difference of points that are c 
units apart. Curvature is scaled by a factor of c 
and change of curvature by a factor o fo  2 to make 
them scale invariant, so that a single threshold 
can be used across all scales. 

Interval Formation. The linked lists of edge points 
at each scale are broken into intervals in which all 
points in an interval have change of curvature 
below some scale invariant threshold. For the 
following examples we chose a threshold value of 
c 2 ~c' < 0.2. Reducing this threshold forces curves 
to be smoother, at the cost of introducing more 
discontinuities into the description. There is also 
a minimum-length threshold of 2c required for 
each interval, which prevents zero-crossings of K' 
near corners from being considered as short 
smooth intervals. 

Interval Selection. We consider all of the intervals 
at all scales for a given edge, and select the inter- 
val that covers the greatest length of the original 
edge list. This interval is extended at each end 
using the method for handling terminations de- 
scribed above. Then the portions of all other in- 
tervals that overlap this selected interval are 
removed from consideration, and the selection 
process is repeated. This results in the final set of 
selected intervals covering as much of the original 
curve as possible. The output curves are repre- 
sented as a sequence of linked points that are 
spaced at a separation proportional to the 



126 LOWE 

measured local radius of curvature (this is a user- 
defined parameter that trades off the degree of 
data reduction with the maximum angular sep- 
aration of adjacent points). The specification of 
each output point includes the smoothed location 
of subpixel accuracy, the tangent direction, the 
curvature, and the scale of smoothing. 

The output of this smoothing and segmenta- 
tion process for some realistic examples are 
shown in figures 4 and 5. The image shown in 
figure 4 is of a totem pole digitized from a grainy 
photograph originally taken in 1896. The Canny 
edge finder was used to produce the linked edge 
points shown in figure 4(b). The results of apply- 
ing the smoothing and segmentation methods 
described above are shown in 4(c). The displayed 
width of each smoothed output curve is propor- 
tional to the o of smoothing used for that curve. In 
general, the method has been successful at select- 
ing scales of smoothing that remove large 

( 4  , 

' 7 t / '  tl 
m l! i7 
Co) 

(a) 

Fig. 4. (a) A noisy image of a totem pole digitized from an 1896 
nitrate negative (reproduced by permission of the B.C. Provin- 
cial Museum), (b) Edges detected by the Canny edge finder, (c) 
The final curve segments output by the multiscale smoothing 
and segmentation algorithm• The thickness of each curve is 
proportional to the scale of smooching selected for that 
c u r v e .  

(c) 

< 
r) 
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Fig. 5. Similar results as for figure 4, but  for a higher  quali ty 
image of an industrial- type scene. 

amounts of noise and yet correctly identify 
locations of tangent discontinuity. The noisy 
totem pole image illustrates the capability for 
recovering the underlying scene curvatures from 
degraded edges without a high degree of initial 
image blurring that would otherwise merge edges 
and lead to a loss of data. Figure 5 contains an ex- 
ample of the results for an image of the type found 

in current robotics applications. In most cases, 
the tangents and curvatures of these smoothed 
edges seem to provide good estimates for the pro- 
jected values of the underlying scene curves. The 
accuracy of the curve smoothing can be judged 
from the greatly enlarged examples of figure 6, 
showing the smoothed curves superimposed on 
the original linked edge points. 

The current implementation of this system is in 
Common Lisp and was not designed with a great 
concern for efficiency. Running time is about 2 
minutes on a Sun 3/60 for these examples. 
However, there is every reason to believe that it 
can be implemented as efficiently as any other 
curve segmentation method. In the current Com- 
mon Lisp implementation, each scale of Gaus- 
sian smoothing is calculated independently, yet 
much greater efficiency could be achieved by an 
incremental method that bases the results at 
larger scales of smoothing on the results of each 
previous scale. 

6 Conclusions and Future Research 

The ability to combine smoothing and segmenta- 
tion at multiple scales is an important capability 
for many applications of computer vision. In 
most cases, the final output of the method de- 
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Fig. 6. (a) An enlarged view of the linked edge points from error. (b) The smoothed curves superimposed on these edges, 
around the eye of figure 4, showing the pixel quantization demonstrating the accuracy of interpolation. 
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scribed in this paper can be expected to reflect the 
underlying structure of the scene in terms of 
segmentation, scale, tangent direction, and curva- 
ture. This means that these descriptions will tend 
to remain stable across changes in viewpoint and 
imaging conditions, and therefore could play an 
important role in correspondence matching in 
stereo or motion. The increased measurement ac- 
curacy in the locations of edges, resulting from 
the local averaging, should also be of value in 
stereo or motion interpretation. The specific ap- 
plication that we intend to develop is in model- 
based vision, in which smooth curve segments 
can be matched to models with arbitrarily curved 
surfaces and markings. The stability of tangent 
and curvature measurements should allow these 
measurements to play an important role in 
model-based matching. 

Possibly an even more important application 
will be in the area of perceptual organization. The 
smoothing and segmentation process is itself an 
aspect of perceptual organization, as it involves 
identifying higher-level structures in the linked 
edge data on the basis that such smooth curves 
are unlikely to arise by accident from independ- 
ent scene edges. But these smooth curves can 
also play an important role in later stages of 
grouping, which are based upon curvilinearity, 
parallelism, proximity of terminations, and other 
relationships [8]. Since these forms of grouping 
require local tangent and curvature estimates as 
well as segmentation at tangent discontinuities, 
they could not be applied to the original linked 
edges without this higher level of smoothing. 

There are a number of areas in which the 
methods described in this paper could be im- 
proved. One straightforward improvement would 
be to use an edge finder that interpolates the posi- 
tion of edge points to subpixel accuracy. This 
should provide a substantial improvement to the 
segmentation results at the finest scales of 
smoothing, as these are currently being domi- 
nated by pixel quantization effects. Another use- 
ful improvement would be to allow for retention 
of multiple scales of description for a single curve 
segment when they are qualitatively different. 
While this would tend to clutter and detract from 
the appearance of output to a human observer, 
these multiple scales of description could prove 

useful for many higher-level matching and 
organization processes. There is also clearly a 
need for further study of the underlying theory of 
optimal detection of tangent discontinuities in 
the presence of varying noise and curvature. 

An important problem for further research is in 
combining these techniques for curve description 
with multiscale methods for the underlying edge 
detection. The use of a curve smoothness criterion 
allows a second dimension of analysis to be used 
to select among multiple scales of description, in 
addition to the scale-space behavior of edge 
points as suggested by Marr and Hildreth [3[ and 
Witkin [21]. While it is true that an edge will tend 
to have a stable position across a range of scales, 
our own empirical examination of images shows 
that many nonedges appear to also have this 
behavior. Thus we hypothesize that the use of 
smoothness criteria along the length of an edge 
will prove necessary for selecting among multiple 
scales of image smoothing. Some recent work by 
Zucker et al. [22] provides a biologically plausible 
model that combines early vision with the in- 
ference of curve properties. 

Availability 

In order to facilitate the further development and 
use of these methods, the original Common Lisp 
code is being made available to any researcher 
who would like to experiment with these tech- 
niques. This code can be requested through elec- 
tronic mail to "lowe@vision.ubc.ca." 
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Museum. Digitization was done in the UBC 
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