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Abstract 
A method is described of visually tracking a known three-dimensional object as it moves with six degrees of freedom. 
The method uses the predicted position of known features on the object to find the features in images from one 
or more cameras, measures the position of the features in the images, and uses these measurements to update 
the estimates of position, orientation, linear velocity, and angular velocity of the object model. The features usual- 
ly used are brightness edges that correspond to markings or the edges of solid objects, although point features 
can be used. The solution for object position and orientation is a weighted least-squares adjustment that includes 
filtering over time, which reduces the effects of errors, allows extrapolation over times of missing data, and allows 
the use of stereo information from multiple-camera images that are not coincident in time. The filtering action 
is derived so as to be optimum if the acceleration is random. (Alternatively, random torque can be assumed for 
rotation.) The filter is equivalent to a Kalman filter, but for efficiency it is formulated differently in order to take 
advantage of the dimensionality of the observations and the state vector which occur in this problem. The method 
can track accurately with arbitrarily large angular velocities, as long as the angular acceleration (or torque) is 
small. Results are presented showing the successful tracking of partially obscured objects with clutter. 

1 Introduction 

A robot for performing assembly work may often have 
to grasp a moving rigid object. Such tasks may occur 
in future activities in space, both for assembly of struc- 
tures in orbit and for retrieval of satellites. It will be 
necessary to determine the pose (position and orienta- 
tion) and velocities (linear velocity and angular veloc- 
ity) of the object accurately as it moves in three- 
dimensional space, so that it can be grasped in a proper 
manner. In many such tasks, the object being handled 
is known, and an accurate model of it can be prepared 
beforehand. This model enables known features on the 
object to be searched for in images of the scene, and 
thus facilitates tracking the object and grasping it using 
grasp points that are built into the model. 

The tracking task can be conveniently divided into 
two portions: acquisition and tracking proper. In the 
acquisition portion, which is similar in some respects 
to recognition, the object must be located in the scene, 

and its approximate pose and velocities must be deter- 
mined. Then this information can be used to initiate 
the tracking-proper phase, in which the object pose and 
velocities are refined for greater accuracy and are 
rapidly updated, by robust techniques especially suited 
to this task. We have done some work on the acquisi- 
tion problem, and a preliminary report has been made 
elsewhere [Gennery 1986]. 

This article deals only with the tracking-proper task, 
and is the third in a series of reports that deal with this 
problem. (For the examples herein, acquisition was per- 
formed manually with the aid of a visual display, start- 
ing from an approximately known position and orien- 
tation when the object is stationary or moving slowly.) 

Originally, a fairly simple method was developed 
[Saund et al. 1981] that compared the measured posi- 
tions of features in images to their predicted positions 
in order to update the state of the object. It used only 
a simple object; it used only the corners of the object 
as features in the adjustment; it represented orienta- 
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tion by means of Euler angles, which limited the rota- 
tion because of the singularities contained in that 
representation; and it filtered, independently in each 
coordinate, the results of separate least-squares ad- 
justments for each time. 

Then a much more elaborate method was developed 
and briefly described [Gennery 1982]. That method, 
which is subsumed by the method of this article, also 
compared the measured and predicted feature positions 
in order to update the object state. However, it used 
polyhedral object models; looked for edge elements all 
along the predicted object edges; represented orienta- 
tion by means of quaternions in order to avoid singu- 
larities; used infinitesimal rotation vectors to adjust 
orientation, in order to simplify the computations; com- 
bined filtering optimally in the adjustment, enabling 
stereo depth information to be extracted when more 
than one camera is used, even if the different cameras 
take their pictures at different times; used an alternative 
to the usual Kalman fitler, saving computation time in 
the type of situaton encountered in tracking complicated 
rigid objects; and used an accurate error propagation 
through rotation, allowing optimal filtering even when 
the object rotates by an arbitrarily large amount between 
successive frames. 

Since then, several improvements to that tracking 
method have been implemented. This article is an up- 
dated, more detailed description of the method, in- 
cluding those improvements and others that have been 
devised for possible future use. The improvements in- 
clude the following: a more general object model in- 
cluding reflectivity of faces, which allows coplanar 
faces, different weights for different edges according 
to their expected contrast, and the use of edge polar- 
ity; a correction for raster scan delay; the computation 
of performance indicators; the use of the moment of 
inertia tensor so that prediction can be based on angular 
momentum instead of angular velocity, if appropriate; 
more robust detection of features, which uses variable 
weights depending on the measured properties of the 
detected features; and the inclusion of lens distortion. 
Also, better examples of the performance of the method 
are presented. 

The object models now used consist of planar sur- 
faces, which can be specified for any particular 
polyhedral object with possible polygonal markings. 
The features searched for in the images usually are the 
edges formed by the intersections of the planar faces 
or by the boundaries between coplanar surfaces of dif- 
fering reflectivity. Alternatively, point features, corre- 
sponding to lights on the object, can be used. 

Before 1981, the work that had been done on the 
visual tracking of objects did not have much in com- 
mon with the work described here. It mostly had been 
two-dimensional tracking [Nagel 1978; Martin & Ag- 
garwal 1978; Gilbert et al. 1980] or had dealt with 
restricted domains in which only partial spatial infor- 
mation is extracted [Roach & Aggarwal 1979]. Here we 
are concerned with determining the three-dimensional 
position and orientation of a solid object as it moves 
in an arbitrary way. Also, some work had dealt with 
objects that are labeled with obvious features that unam- 
biguously determine the desired information [Pinkney 
1978], whereas here the features can be those occurring 
naturally on the object, such as differences in illumina- 
tion across boundaries of planar faces. Such features 
often can be missed because of the conditions of il- 
lumination, and extaneous features may be detected. 
Therefore, the algorithm must be able to handle such 
imperfections. 

Since our earlier tracker report [Gennery 1982], 
some other work has appeared that is similar in some 
ways, but that work does not contain all of the features 
described in the 1982 report. Broida and Chellappa 
[1986] deal with only two dimensions and use only 
(simulated) points (not edge features). Young and 
Chellappa [1990] use only points, and they assume that 
the three-dimensional position of each point has been 
previously obtained independently (instead of having 
the tracking program find the features itself in the two- 
dimensional images). Verghese and Dyer [1988] do not 
use a filter with velocities for prediction, and thus more 
searching would be required to find the features if large 
velocities were to occur. Dickmanns and Graefe 
[1988a,b] deal with several different problems with dif- 
ferent types of motion, none of which has the full three- 
dimensional rotation of the problem here. W/insche 
[1986] considers rotation only in a plane, but includes 
a way of selecting those features that contribute the most 
to the solution. Wu et al. [1989] use only points; and 
they represent rotation by means of roll, pitch, and yaw 
(similar to Euler angles), which contain singularities, 
instead of quaternions. Furthermore, apparently none 
of these other methods use the alternative to the usual 
Kalman filter, infinitesimal rotation vectors, or the ac- 
curate error propagation through three-dimensional 
rotation. (Also, these other methods do not include 
most of the improvements described here.) 

The tracker described herein can use any number 
of cameras. If only one camera is used, the distance 
to the object will be obtained as part of the solution 
because of the known size of the object. If more than 
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one camera is used, stereo triangulation will produce 
more accurate distance information, especially if the 
angle between the cameras as seen from the object is 
large. (This wide-angle stereo condition is feasible 
because correlation between pictures is not done; in- 
stead, each feature is searched for at its expected posi- 
tion in each picture independently.) Triangulation to in- 
dividual features is not done. Instead, the information 
from each camera is entered independently into an 
overall solution. Even if some features are seen by one 
camera and different features are seen by another 
camera, they still produce stereo depth information (not 
only for object distance but also for relative distance 
to different portions of the object to aid in the deter- 
mination of orientation), because of the known spatial 
relationships between features in the object model. In 
fact, the different pictures do not have to be coincident 
in time for this stereo information to be useful. The 
constraints of the filtering included in the adjustment 
allow the information obtained at different times to be 
combined optimally. The tracker of the earlier report 
[Gennery 1982] included this noncoincident stereo 
ability, although it was artificially limited to one or two 
cameras. This ability is also inherent in the methods 
of some of the other authors [Dickmanns & Graefe 
1988a,b; Wu et al. 1989], although they did not utilize 
it, since they used only one camera. 

The mathematics used here involve least-squares ad- 
justments, covariance matrixes, error propagation, and 
matrix algebra. A good text on these subjects is pro- 
vided by Mikhail [1976]. Quaternions also are used; 
their relevant properties are described in appendix A. 

In order to aid in keeping track of the different types 
of mathematical entities, the following system of sym- 
bols will be used: scalars will be denoted by lower-case 
letters; quaternions will be denoted by capital letters; 
physical vectors in three-dimensional space will be 
denoted by boldfaced lower-case letters, and they will 
be considered to be equivalent to 3-by-1 matrixes; and 
other matrixes (including 6-vectors) will be denoted by 
boldfaced capital letters. Where needed, a quaternion 
will be expressed in terms of its scalar part s and its 
vector part v by the notation (s, v). The transpose of 
a matrix A will be denoted by A T and its inverse by 
A -1. The vector product (cross-product) of two vec- 
tors a and b will be denoted by a x b, and their scalar 
product (dot product, or inner product) will be denoted 
by a • b (equivalent to aTb). 

2 Representation of Orientation 

Ideally, one would like to represent the orientation of 
the object by means of a set of parameters having the 
following properties: the number of parameters is three, 
since there are only three degrees of freedom to a rota- 
tion in three-dimensional space; the representation con- 
tains no singularities, so that the partial derivatives of 
the parameters with respect to any small rotation angle 
are always finite; and the parameters are continuous 
(that is, a continuous motion of the object never pro- 
duces a discontinuity in the parameters). (In two- 
dimensional space, where there is only one rotational 
degree of freedom, the rotation angle meets these 
criteria, although it is multivalued.) Unfortunately, such 
a set of parameters for three-dimensional space does 
not exist. 

The Euler angles are often used to represent orien- 
tation, but they contain a singularity. For example, if 
the Euler angles are defined such that the first and third 
rotations are about the same (rotated) axis [Goldstein 
1980], a zero value for the second angle causes the first 
and third angles to become indeterminate. An object 
motion which passes arbitrarily close to this condition 
can produce arbitrarily large derivatives of these angles. 
This is usually not a problem in analytical studies, but 
in numerical adjustments it can cause the solution to 
fail. 

Since by Euler's theorem any rotation in three- 
dimensional space can be considered to be a rotation 
about a single fixed axis, one possibility is to repre- 
sent the orientation by means of a "vector" whose 
direction is this axis of rotation and whose magnitude 
is the angle of rotation. However, if the angle is a multi- 
ple of 27r radians, the direction of the vector is indeter- 
minate, and thus so are its components (except when 
the angle is zero, when the components are zero also). 
Thus singularities are still present, unless the angle is 
restricted to the range from -Tr to 7r, in which case 
a discontinuity has been introduced. In addition, this 
entity is not a physical vector (see Goldstein [1980]). 
The practical consequences of this latter fact seem to 
be that the partial derivatives of interesting quantities 
with respect to the three components are complicated 
to compute analytically (see Ayache & Faugeras [1988]). 
However, if the magnitude of the rotation is infini- 
tesimal, this representation actually is a physical vec- 
tor, as explained by Goldstein [1980], and partial 
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derivatives with respect to this vector are extremely 
simple, as we shall see in section 5. Of course, an in- 
finitesimal vector cannot represent the current orien- 
tation, which may require a large rotation from the 
reference orientation, but it can be used for small 
corrections. 

If the requirement that the number of parameters 
be three is removed, there are many possibilities that 
meet the other criteria. One of these is the rotation 
matrix, which has nine components. It is especially 
convenient for rotating vectors and for the associated 
error propagation. Another possibility is a quaternion 
with unit norm, which has four components. Not only 
are there fewer parameters to deal with, but the nor- 
malization problem is easier when a quaternion rather 
than a matrix is used as the primary representation of 
orientation. Through a long sequence of corrections ap- 
plied directly to a matrix or quaternion, numerical er- 
rors will cause the matrix to depart from orthonormality 
or the quaternion to depart from unity norm. A quater- 
nion is normalized simply by dividing by the square 
root of the sum of the squares of its components. It is 
also very easy to update a quaternion when extra- 
polating to a predicted orientation based on an estimated 
angular velocity, as will be shown in section 4. 

Because of the above conflicting requirements, the 
implemented tracker uses a combination of represen- 
tations for orientation. A unit quaternion is used to 
represent the current estimate of object orientation. 
However, the parameters used in the adjustment are the 
three components of an infinitesimal rotation vector 
which represents the correction needed to the current 
estimate of orientation. Of course, the actual correc- 
tion needed in the adjustment is finite. However, the 
adjustment is based on a linearization of the actual prob- 
lem anyway (which is accurate as long as the needed 
corrections are small), and assuming that the orienta- 
tion corrections are infinitesimal is equivalent to assum- 
ing that their effects on the measurable quantities are 
linear. The fact that only three rotation parameters are 
used in the adjustment keeps the computation time 
small and avoids the complication of adding a constraint 
to the adjustment because of an excess of parameters 
over the true degrees of freedom. The solution for the 
infinitesimal correction rotation vector is used to cor- 
rect the quaternion (by a simple process described in 
section 7), and an extrapolation to a new time is done 
by a quaternion product (as described in section 4), so 
that a new orientation estimate expressed in a fixed 
coordinate system is produced. (The correction in the 

adjustment must be small for linearity, but the ex- 
trapolation can be arbitrarily large.) A rotation matrix 
computed from the rotation (unit) quaternion is used 
for rotating vectors, for efficiency. 

3 Overview of Tracker 

Within the tracking program, the current estimate of 
the state of the object consists of the vector p, which 
represents the position of the origin of the object-fixed 
coordinate system; the quaternion R, which represents 
the orientation of the object; the vector v, which 
represents the linear velocity of the object (derivative 
of p with respect to time for the true, unknown values); 
and the vector ~0, which represents the angular velocity 
of the object. (If the moment of inertia tensor of the 
object were used in the extrapolation of orientation, 
angular momentum X would be used instead of ~0.) All 
of these are expressed in a fixed-reference coordinate 
system. The uncertainty in these quantities is 
represented by the 12 ×12 covariance matrix S, in which 
the fourth, fifth, and sixth rows and columns refer to 
an infinitesimal rotation correction vector ~ instead of 
to R, as explained in section 2. The S matrix is parti- 
tioned as needed into 6 x 6 covariance matrixes and 3 x 3 
covariance matrixes as follows: 

FSpp Sp~ Spy Spt~ l 
r s,P s,v] /s 0 s00 s0, s0o / 

S--- kSi~ v S w J  = |Sprv S~v Svv Sv,0| (1) 
L sTo sgo 

where the lower-case subscripts refer to the vectors 
described above, P denotes the pose (position and 
orientation), and V denotes the linear and angular 

^ 

velocities. With a circumflex ( ) over it, any of these 
symbols refers to predicted values rather than adjusted 
values. (For a covariance matrix, logically the cir- 
cumflexes should be on the subscripts instead of on 
the S, since it represents the covariance matrix of 
predicted values and not a predicted covariance matrix 
of adjusted values. However, for simplicity, the cir- 
cumflex is put over the S.) 

The tracker operates in a loop with the following 
major steps: Prediction, Projection, Measurement, and 
Adjustment, as shown in figure 1. These steps are 
described briefly in the following paragraphs and in 
detail in sections 4-7. 

Prediction receives the values of p, R, v, ~0, and 
S (and the time for which these are valid) produced 
by a previous adjustment when tracking or available 
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Fig. 1. Block diagram of the tracker. Sohd arrows denote program 
flow and data; dashed arrows denote data only. Mathematical sym- 
bols are defined in the text. 

as initial conditions when starting. The time at which 
a new image is obtained is noted, and the object state 
is extrapolated to this time to produce the predicted 
values 1), R, 3, ~, and their uncertainties as represented 
by the covariance matrix S. (It is not necessary for the 
new image to be available yet; only its lime is needed 
at this point. The image is used only in Measurement. 
However, because of the hardware, the current tracker 
freezes the image in an image buffer, notes the time, 
and then performs Prediction, Projection, and Measure- 
ment while the image is waiting.) 

Projection uses this predicted information, the given 
object model, and the given camera model to compute 
the visibility of the object vertexes and edges, and, for 
vertexes on edges predicted to be visible, to transform 
the vertex positions from object coordinates to fixed 
coordinates. These predicted vertex (or other point- 
feature) positions are then projected into the image 
plane to produce their image coordinates x, and Yi and 
the partial derivative matrices B, of these image coor- 
dinates relative to the object pose. 

Measurement uses the projected vertex information 
and the edge-vertex connectivity information in the ob- 
ject model to search the new image for brightness edges 
near the predicted positions of object edges. (The 
vertexes themselves or other point features could be 
used here instead of or in addition to the edges. The 
implemented version currently provides a choice be- 
tween edges or lights.) The discrepancies between the 

predicted and measured positions, along with the par- 
tial derivatives, are used to compute the 6x6 matrix 
N and the 6 ×1 matrix C, which consist respectively 
of the coefficients and the "constants" in the (partially 
reduced) normal equations [Mikhail 1976] which would 
produce a linearized least-squares adjustment of object 
pose P based on information obtained at this time only. 
(The corrections would be N-1C, with covariance 
matrix N -~. However, in general N might be singular, 
so that there would not be a solution for this time only; 
but the actual computations in Adjustment use whatever 
information N and C contain, combined with the in- 
formation from other times in the filtering action.) 

Adjustment combines the information from 
Measurement and Prediction to produce new values of 
p, R, v, ,.,, and S valid for the time of the image just 
used in Measurement. Giving the predicted values ap- 
propriate weight in this adjustment (according to their 
covariance matrix) produces the filtering action. The 
new adjusted values are used as output and as input to 
Prediction to repeat the process. 

If more than one camera is used, the pictures from 
the different cameras could be taken simultaneously. 
In this case, each time through the above loop, Projec- 
tion would project the predicted data into all of the im- 
age planes and Measurement would process each im- 
age and collect the results into one N matrix and one 
C matrix. These matrixes would contain the stereo in- 
formation resulting from the use of multiple cameras. 
However, if the different cameras take their pictures 
at different times, then on different times through the 
loop different cameras would be used, with the ap- 
propriate camera model being used in Projection and 
the appropriate image being used in Measurement each 
time. In this case, the N and C matrixes on each time 
through the loop would contain information from only 
one camera. However, because of the memory of old 
information caused by the inclusion of the predicted 
data in the adjustment, stereo depth information would 
still be produced. (This fact is discussed further in sec- 
tion 9). 

4 Prediction 

4.1 Extrapolation Based on Angular Velocity 

When a new picture is taken during tracking, the 
predicted object pose for the time of the picture must 
be computed from the previous data (from the previous 
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adjustment or from input initialization data). In the cur- 
rent tracker, this extrapolation (over a time interval ~') 
is based on the assumption that the linear acceleration 
and angular acceleration are random (that is, they con- 
sist of white noise). (This random signal driving the 
filter is often called "excitation" or "plant noise") 
Specifically, they are assumed to have constant power 
spectra denoted by a and c~, respectively, in each dimen- 
sion. These denote mean squared value per unit fre- 
quency band, considering both positive and negative 
frequencies. (If only positive frequencies are con- 
sidered, the power spectra are 2a and 2o~.) This 
assumption cannot be literally true, since a constant 
power spectrum implies an infinite variance. However, 
all that is required for reasonable accuracy is that the 
power spectrum be constant to a frequency considerably 
higher than the rate at which the pictures are taken. 
An assumption more closely aligned with reality could 
be devised for most actual situations, but it would be 
quite different for different situations. (For example, 
if there tended to be extended periods of fairly high 
acceleration, it would be better to assume random third 
derivatives of pose with respect to time, instead of sec- 
ond derivatives. The accelerations would then have to 
be included in the object state, and S would be an 18×18 
matrix instead of 12x12.) The assumption used here 
at least leads to simple results. (The filtering action that 
it produces is discussed in section 9). 

Since acceleration is random, its expected value at 
all times is zero. Thus the extrapolation of pose itself 
(ignoring for a moment its accuracy) uses the previous 
estimates of the velocities as constants over the time 
~- elapsed since the previous picture. Therefore, the 
predicted values of position, velocity, and angular 
velocity are obtained from the old adjusted values as 
follows: 

= p + rv (2) 

= v (3) 

= to (4) 

The orientation is extrapolated by first computing 
a quaternion H corresponding to the rotation during the 
elapsed time ~- as follows (from equation (A3)): 

~C LOT LO~ H = os -~-, u sin (5) 

where c0 is the magnitude of the vector ~o, and u is the 
unit vector in the direction of to. Then the predicted 

orientation is obtained by the following quaternion 
product: 

= HR (6) 

Now we consider the accuracy of the above predicted 
quantities, as represented by their covariance matrix 
S. This can be extrapolated from S by considering three 
effects: the effect on pose of the uncertainty in the 
velocities used to do the extrapolation in (2)-(6), the 
effect of the rotation (represented by H) that occurs dur- 
ing the extrapolation interval, and the effect of the ran- 
dom acceleration that occurs during the extrapolation 
interval. The first two of these effects can be summar- 
ized by a 12×12 transition matrix J that shows how the 
extrapolated values of the object state (pose and 
velocities) depend on the previous state. (By the usual 
rule of covariance propagation, the covariance matrix 
resulting from this transition then would be J S f . )  J 
is as follows: 

I 
I 0 rI 0 ] 

j =  O H  0 rG 
0 0 I 0 (7) 
0 0 0 l 

where I is the identity matrix (here 3 x3), 0 is the zero 
matrix (here 3 ×3), H is the rotation matrix correspond- 
ing to the quaternion H (computed according to equa- 
tion (A5) or (A6)), and G will be defined below. The 
off-diagonal terms in this expression for J take care of 
the first effect mentioned above, and the presence of 
the H and G matrixes instead of identity matrixes takes 
care of the second effect. In the case of H, this simply 
rotates any orientation error vector into the new orien- 
tation. However, the effect of an error in the angular- 
velocity vector on the new orientation, as given by rG, 

is more complicated and will now be discussed. 
An error in angular velocity at any time during the 

extrapolation interval ~- produces an error in orienta- 
tion at that time, which is then rotated (assuming it is 
an infinitesimal orientation error) by the amount of rota- 
tion occurring in the remainder of the extrapolation in- 
terval, in order to produce the effect on the final orien- 
tation. Therefore, the total effect on the final orienta- 
tion of a constant angular velocity error over the en- 
tire interval is produced by the matrix product of G 
and the angular velocity error vector, times r, where 
G is the average value (over the extrapolation interval) 
of the rotation matrix that represents the rotation over 
a portion of the interval. That is, 
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1 £ 7  
G = r H(r), dt (8) 

where H(r) represents the value of H computed accord- 
ing to equation (5) for any particular value of r, and 
the integration is over the actual extrapolation interval 
r. Since the extrapolation process assumes that o~ is con- 
stant over this interval, the integral in (8) can be 
evaluated in a straightforward manner (by using (A6)) 
to produce the following: 

G =  
I (1 - c)u~ + c (1 - c)ulu2 - su3 (1 - c)ulu 3 + su2q (9) 

I 
(1 - c)ulu  2 + su 3 (1 - c)u2 2 q- c (1 - c)u2u 3 - SUll 

! 
(1 - c)u~u~- su2 (1 - c)u2u3 + su~ (1 - c)u~ + c ] 

where 

s = 2 sin2 __c°r 
~r  2 

2 wr c0r 
e = - -  sin cos - -  

c0r T 2 

and where Ul, u2, and u3 are the components of u (the 
unit vector in the direction of ¢0). Note that by taking 
limits, when wr = 0, G = I. 

Now the third effect mentioned above (the effect of 
the random acceleration that occurs during the ex- 
trapolation interval) will be discussed. At first, con- 
sider only scalar position x, velocity ./, and accelera- 
tion 5/, where x and :/represent only the changes from 
the beginning of the extrapolation interval, for an ar- 
bitrary variable x. Thus the values at the end of the ex- 
trapolation interval r are 

£r 
Y: = 2 dt  (10) 

forx x =  dt 

fo = Jcr - tJidt  

= J id t  - tJi dt 

fo = (r - 02  dt (11) 

From the above two equations the covariance matrix 
of position and velocity can be derived as the expected 
products of these values, since their expected values 
are zero. In this process we use the fact that the expected 
squared value of 5i dt is a dt  (because the expected 
squared value of the mean of 5/over any interval At is 

a/At ,  since a is assumed to be the constant power spec- 
tral density of 2). Thus, 

o= o~ (r  - 0 1 a dt 

[1/3ar3 1/2ar2] (12) 
= L1/2a-r 2 ar  d 

Generalizing this to three dimensions means using a 
3×3 matrix instead of a. However, in the present 
tracker it is assumed that the different components of 
the random acceleration vector are uncorrelated and 
tend to be equally large. Therefore, the above com- 
ponents of the covariance matrix are just multiplied by 
the identity matrix to produce the 3x3 terms to be 
added to the covariance matrix of p and v. Similarly, 
the same is done for orientation ~ and angular velocity 
¢0, except that a (the power spectrum of angular ac- 
celeration) is used instead of a. Strictly speaking, the 
effect of the rotation during the interval r should be 
included in the orientation and orientation-angular- 
velocity correlation. However, the main additive terms 
driving the filtering action are the terms affecting 
velocities, which then affect pose through the off- 
diagonal terms of J on subsequent iterations, and the 
other additive terms usually have only a minor effect. 
Also, usually the rotation during the interval is small, 
and thus its effect through these terms is doubly small. 
Therefore, this effect is neglected for simplicity. (Such 
other additive terms are usually omitted altogether in 
Kalman filter applications. The effect of leaving them 
out is discussed elsewhere [Gennery 1990].) 

Therefore, combining all three effects on the 
eovariance matrix of the predicted quantities produces 
the following result: 

= JSJ T + 

1 ar3i 

0 

ar2I 

0 

1 0 ~ ar2I 0 

~ oer3I 0 1 c~r2I (13) 

0 arI 0 

~ o~r2I 0 otrI 

However, because ,1 is so sparse, the above matrix pro- 
duct is expanded in terms of 3 x3 matrixes, according 
to the definitions of g in (1) and J in (7), to produce 
the following: 

1 3 Spp = Spp q- 7(Spv -[- S~v ) -[- T2Svv + ~ a r  I (•4) 

Sp¢= Spc, H T + rSp,~G T + r(HS~v) T 
+ r2SwG T (15) 
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So, = H S , , H  v + r[HS,,oG r + (HS,,oG+) +] 

+ r2GS,o,oG+ + 1 ~r3i (16) 
3 

Spy = Spy + rSw + la r2I  (17) 
2 

S~v = HS~v + r(SwGT) T (18) 

g. = + a a  (19) 

Sp,o = Sp,o + rSv,~ (20) 

l c~r2i (21) SO~, = HSo,0 + rGSo, o, + 

Sv~ = Sv,~ (22) 

S ~  = S ~  + ~rI (23) 

These equations are used in the actual numerical com- 
putations, for efficiency. 

4.2 Changes for Extrapolation Based on Angular 
Momentum 

If it is assumed that torque instead of angular accelera- 
tion is random, the following changes are needed. 
(These have not yet been implemented in the tracker.) 
Angular momentum ), would be used instead of angular 
velocity ~0 in equation (4), in equation (69) in section 
7, and in the subscripts of S (and similarly for the 
predicted quantities). The meaning of a would be the 
power spectrum of torque instead of the power spec- 
trum of angular acceleration. The origin of the object 
coordinate system should be at the object center of mass 
in this case. To do the extrapolation of orientation, the 
computations in section 4.1 need to be changed, as 
described below. 

The relationship between angular momentum and 
angular velocity is 

X = Mo~ (24) 

and thus 

to = M-iX (25) 

where M is the moment of inertia matrix of the object 
(a tensor of the second rank), expressed in the fixed 
coordinate system. In the object coordinate system, the 
moment of inertia matrix M'  is constant and is assumed 
to be known. From it, M can be computed as follows, 
by using the rotation matrix R corresponding to the 
quaternion R: 

M = R M ' R  v (26) 

and thus 

M-1 = R(M, ) - IR  v 

since R -1 = R T. 

(27) 

One way of proceeding is to integrate Euler's equa- 
tions (see Goldstein [19801). However, if the rotation 
that occurs in the interval r is small, a numerical in- 
tegration with a step size of r can be done with 
reasonable accuracy, and things simplify considerably. 
(Even though the angular velocity would then be 
assumed to be constant over extrapolation interval r, 
the filtering action usually extends over a considerably 
longer interval, as explained in section 9, and the 
angular velocity will vary over this interval because of 
the effects of a changing R acting through (27) and 
(25).) All that needs to be done is to use ~0 from (25) 
in (5), and to use GM -1 instead of G in (7) and (14)- 
(23). This substitution for G does the error propaga- 
tion correctly from the angular momentum, since from 
(25) M -1 is the transformation matrix from angular 
momentum to angular velocity. In order to achieve 
greater accuracy with this method, the interval r could 
be broken into smaller intervals, with the above pro- 
cess repeating (producing a more accurate numerical 
integration). A compromise might be to do this (or to 
use Euler's equations) only for the computation of 
and ~, and to use the one-step (or an inter2mediate-step) 
error propagation as above to compute S, in order to 
save time. In this case, better accuracy in the error prop- 
agation could be achieved by using the average of to 
and g0 instead of o~ in (5). 

The use of random torque instead of random ac- 
celeration would be appropriate for a satellite freely 
tumbling in space. The torque on it would be very 
small, and thus ot could be made very small, with this 
formulation. (Perhaps it even could be zero, although 
some allowance probably should made for inaccuracies 
in M '  and for the effect of nonlinearities on a possibly 
large error in initial conditions.) Even though the 
angular momentum of the satellite would be nearly con- 
stant, the angular velocity would not be, unless the 
satellite were rotating about one of its principal axes. 

5 P r o j e c t i o n  

The predicted object pose, the object model, and the 
camera model are used to compute which features are 
expected to be visible from the camera position. At 
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present, for the purpose of the visibility computation 
only, the tracking program assumes that the object is 
convex. Therefore, this computation simply notes which 
faces are turned toward the camera; and all vertexes, 
other point features, and edges associated with these 
faces are assumed to be visible (except for faces that 
are seen nearly edge on, which are considered ques- 
tionable and thus are not used). However, in the future 
we may implement a process for determining visibil- 
ity of features, which will work in the general case in- 
cluding concave objects. This probably will be derived 
from Hedgley's hidden-line algorithm [Hedgley 1982], 
but with some improvements to take advantage of t h e  

fact that not everything needs to be computed every time 
while tracking. For example, since the object is rigid, 
only certain faces can hide certain other faces, and the 
corresponding information can be precomputed as part 
of the object model. Also, while the object is moving, 
not much changes from one image to the next with a 
given camera, and thus some things would not have to 
be recomputed. When the features used are edges, for 
any edge which is partially visible the corresponding 
vertexes will be used below. 

The position of vertex (or other point feature) i in 
object coordinates Oi' is given as part of the object 
model. By using the predicted data, this is rotated to 
produce the vector from the object origin to the vertex 
in fixed coordinates o,, and is translated to produce the 
vertex position in fixed coordinates ri, as follows: 

^ 

Pi : Rp,' (28) 

ri = P + JOe (29) 

where R is the rotation matrix corresponding to the 
quaternion R. 

Then each vertex is projected into the image plane 
to produce its image coordinates x, and Yi, as follows 
in the currently implemented tracker: 

(r ,  - C o ) ' C h  
xi = (30) 

% - co) • C a 

(ri -- %) " C v y, = (31) 
(r ,  - co) • ca  

where Cc, ca, %, and c v constitute the camera model 
as defined by Yakimovsky and Cunningham [1978], and 
are assumed to be known from a previous calibration, 
as described by Gennery et al. [1987]. (This camera 
model includes the central projection and a general af- 
fine transformation in the image plane.) Here Cc is the 

camera position, C a is a unit vector perpendicular to 
the image plane (towards the scene), and the c h and c v 
vectors combine information that specifies the direc- 
tions in the image plane, the scales, and the zero off- 
sets of the x (horizontal) and y (vertical) axes, respec- 
tively. Additional terms for lens distortion can be in- 
cluded in (30) and (31), and we now can include them 
in our camera calibration [Gennery 1991]. But, since 
their effect is small for reasonable lenses, these lens 
distortion terms can be omitted from the partial 
derivatives below with no appreciable loss of accuracy. 

In order to do the adjustment, the partial derivatives 
of the image coordinates with respect to the object pose 
will be needed. The partial derivatives with respect to 
the position of the point in space can be obtained by 
differentiating (30) and (31), to produce the following: 

OXi_ ~_ eli_ ~_ fiCa ] Y (32) 
Or i ~(ri  -- Cc) • c a 

Oyi_ ~_ C v _ y + c  a ~ r  (33) 
Ori ~-( ~ - c-~ : ca 

where the transpose is indicated because the derivative 
of a scalar with respect to a vector is conventionally 
considered to be a row matrix. The derivatives with 
respect to object position p are identical to these, 
because of (29). The derivatives with respect to orien- 
tation can be found by considering the effect of an in- 
finitesimal object rotation 0. It will cause a point on 
the object to move by the vector 0 × Pi. The dot pro- 
duct of this with (32) produces the effect of 0 on xi, 

Ax, = 0 × p, " L_ 0r,_2 = p' × (._ 0r i.) " 0 (34) 

and similarly for Yi, where we have used the fact that 
the vectors in the scalar triple product may be cycliely 
permuted. The expression dotted with 0 then consists 
of the partial derivatives of x~ with respect to 0. These 
results can now be combined to produce the 1×6 
matrixes of partial derivatives of xi and Yi with respect 
to position p and orientation increment 0 (together 
denoted P), which can be assembled into a 2×6 matrix 
Bi, as follows: 

[0x 1 
"[:y'//= 1 [ari L_ar~2 
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If the images are obtained from a television camera 
that is raster scanned in real time with continuous ex- 
posure, the different parts of the changing image will 
be sampled at different times. (It is assumed here that 
noninterlaced scanning is used.) Since the normal scan 
is from top to bottom, the first line of the picture cor- 
responds to a time almost one frame time (except for 
the vertical blanking time) earlier than that of the last 
line. (The image also is blurred over the exposure time 
of approximately one frame time. The time referred to 
here is the center of this exposure time.) If the time 
between sampled images (r) is much larger than the 
frame time, this time shift probably is not important. 
However, if r is small and the object is moving rapidly, 
it could cause significant error. An approximate cor- 
rection for this effect can be done by incrementing the 
xi and Yi values from (30) and (31) according to their 
projected velocities times the amount of the time off- 
set. This can be done by using the matrix of partial 
derivatives B~ defined above, to produce the following 
corrections to be added to xl and y,: 

= Bi 6t 

LOyd 
(36) 

where 6t is the time offset from the nominal time for 
the frame (preferably the center of the integration time 
of the center line, which is approximately the time of 
the previous vertical sync pulse) to the time of this scan 
line as predicted by y~ from equation (31). Doing only 
this ignores the nonlinear effects of the propagation 
from 3D pose to 2D position, the fact that the 
discrepancies computed in section 6 are now a func- 
tion of the velocity vectors in addition to the object 
pose, and the fact that the corrected Yi instead of the 
uncorrected y~ should be used in computing 6t. 

However, if the corrections were so large that these ef- 
fects became important, the image probably would be 
blurred so much that the feature detectors wouldn't 
work anyway. The corrections from (36) are used in 
the current tracker, although there is a provision to omit 
them. (The corrections would be omitted if the camera 
is shuttered or the scene is illuminated by strobe lights, 
so that the exposure is effectively instantaneous. The 
nominal time for the frame then would be the time of 
the open shutter or strobe flash, which should occur 
during the previous vertical blanking interval.) 

6 Measurement 

61 Point Features 

If the features to be used consist of points (such as 
vertexes or lights), then their predicted positions x, and 
y, and their partial derivatives, as computed in Projec- 
tion, are used in a straightforward way, as in a stan- 
dard linearized weighted least-squares adjustment 
[Mikhail 1976], to produce the 6×6 matrix N (coeffi- 
cients of the normal equations) and the 6×1 matrix C 
(constants in the normal equations), as follows: 

N = EB, T W, B, (37) 

C = ZBvw,  IXy-Xl]y, (38) 

where x and y are the measured position of the feature 
which has been found near the predicted position (for 
lights, currently obtained by thresholding and com- 
puting the centroid), W, is a 2×2 weight matrix 
(which should be the inverse of the covariance matrix 
of the measured feature position), and the summations 
are over all of the features. 

6 2  Preliminary Computations for  Edges 

The tracker usually uses information all along the 
predicted edges of the object, derived from brightness 
edges detected in the image. Thus N and C need to be 
computed in a different manner from the above. (It 
would of course be possible to use both point and edge 
information, in which case, N and C would be com- 
puted as the sum of the values from equations (37) and 
(38) above and (60) and (61) below.) 

First, the predicted edge must be computed. The pair 
of predicted vertex positions xi and Yi that are at the 
opposite ends of each object edge (according to the ob- 
ject model) will be indicated here by replacing the 
subscript i with the subscripts 1 and 2. Thus the length 
of the predicted edge and its direction cosines are 

l = ~(xz - xl) 2 + (Y2 - Yl) 2 (39) 

X 2 - -  X 1 
c x - (40) 

l 

Y2 - Yl (41) 
cy - l 
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Next, a coordinate system is defined aligned with 
the predicted edge, such that g is the distance parallel 
to the edge from point 1 and h is the perpendicular 
distance from the edge. Thus, for any point x, y: 

g = Cx(X - x l )  + Cy(y - Yt) (42) 

h = Cx(Y - Yl) - cy(x - x l )  (43) 

Note that g and h form a rectangular coordinate system 
in pixel space, and not in the physical space of the ac- 
tual image plane, since x and y are measured in pixels, 
which may not be square. But that is ordinarily what 
is wanted, since the edge detector is defined in terms 
of the sampled data, and thus its x and y measurements 
in pixel space will tend to be equally accurate and to 
have uncorrelated errors. 

The partial derivatives of h with respect to the 
parameters (object pose) will be needed. At the ends 
of the edge, the negative of these will be denoted by 
Al and A2, which can be obtained by differentiating 
(43) to produce (since at end l, x - x~ ~- 0 and y - 
Yl = 0, and thus the derivatives of Cx and c r can be 
ignored, and similarly at end 2) 

Ox---2~ (44) As = cxOY# - Cy op  

A 2 = c OY2 0x2 (45 )  
x o P -- Cy ~ p  

where the derivatives with respect to P are obtained 
from Bi (see (35)). (The reason for changing the sign 
is that h represents an observed value minus an adjusted 
value, and the partial derivatives in the usual least- 
squares adjustment formulation are of the adjusted 
value.) If needed, the derivatives of h at any point along 
the line could be obtained by a linear interpolation of 
the values at the end points, as follows: 

Oh 

OP 
l - / A2 (46) ~- gA1 - 

If lens distortion is included in the camera model, 
long object edges should be broken into segments short 
enough to project accurately as straight lines, for use 
in computing h from (43). However, the other quan- 
tities, including the partial derivatives, do not need high 
accuracy, and thus for speed they can be computed 
without considering this segmentation, unless the 
distortion is very large. 

6.3 Simple Edge Measurement  

The edge information can be measured and collected 
in a variety of ways, differing in their sophistication 
in the use of the available information and in the amount 
of computation required. In the currently implemented 
tracker, brightness edges in the image are detected by 
using a hardware edge detector called IMFEX [Esken- 
azi & Wilf 1979], which is similar to the Sobel operator 
with thresholding and thinning and which runs at the 
usual video rate. The tracker uses this edge informa- 
tion in the following very simple manner. 

The portions of the predicted line within about five 
pixels from the end points (vertexes) are ignored, in 
order to avoid areas where the edge detector will be 
less accurate because of conflicting edge information. 
For the remaining portion, points spaced at about three- 
pixel intervals are selected, since the edge operator is 
three pixels wide. For each of these points, a search 
out to five pixels away is made for the nearest detected 
edge element, with the search being done either in the 
x or in the y direction, whichever is more nearly 
perpendicular to the predicted edge. If an edge element 
is detected on a particular search, its x and y image 
coordinates are converted to g and h by (42) and (43). 
The values needed below in (57) and (58) for measure- 
ment u and weight w are 

u = h  (47) 

(48) Wa 
W -- 

O -2 

where ~ is the assumed accuracy of the measured edge 
positions, and where wa is the a priori weight for this 
edge. Each a priori weight can have a value from 0 to 
1. Currently, for edges that form the boundary between 
the object and the background as seen from the camera, 
the a priori weight is an input constant, and for each 
interior edge the a priori weight is computed as the 
maximum of a color weight and a shape weight. The 
color weight varies from 0 to 1 linearly over a specified 
range of difference in reflectance of the two faces as 
specified in the object model. The shape weight varies 
from 0 to 1 linearly over a specified range of the 
negative of the cosine of the angle between the two faces 
as specified in the object model. (Therefore, more 
weight is given to edges that should be easier to detect 
because of different reflectances or orientations of the 
faces that meet at them.) 
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6.4 Advanced Edge Measurement 

One obvious improvement would be to use the edge 
direction information from the edge detector, in addi- 
tion to the edge strength information. If the measured 
direction differs too much from the predicted direction, 
the edge element should not be used. (If the edge arises 
from a reflectivity difference between coplanar non- 
specular faces in the object model, it would be desirable 
to require also that the polarity of the edge be correct.) 
Instead of an all-or-nothing choice here, the edge ele- 
ment could be given a variable weight according to how 
closely the directions agreed. Similarly, the edge 
strength could influence a variable weight, instead of 
simply being thresholded. A search accurately approx- 
imating (to the nearest pixel) the perpendicular to the 
predicted edge could be used. Also, the portion rejected 
at the end points could be made variable, according to 
the angle at which predicted edges meet at the vertex. 

Some further possible improvements concern the ef- 
fect of the distance of the detected edge element from 
the predicted position (h) and of the number of edge 
elements that might be found on a given search (along 
a perpendicular from a particular point on the predicted 
line). (The present program uses only the nearest one 
and gives it constant weight unless it is too far away, 
in which case it is ignored completely, as previously 
stated.) One way of including this extra information that 
is in some sense optimum will now be described. 

First, the variance of h, considering both the 
measurement errors (whose standard deviation is or) and 
the prediction errors (due to the uncertainty in object 
pose, whose covariance matrix is Spp), is 

Oh ^ O~j~p~ v = a 2 + ~-~ Spp (49) 

By using (46), this can be rewritten as follows: 

0 2 = 0 -2 + A l S p p A  x 

+ 2(AlgFpA ~ - A m gppA~) 

^ r g2 
+ (AlSppA1 r -- 2AlSppA ~ + AzSppA2) Tf  (50) 

which is a second-degree polynomial in g/l, whose 
three coefficients can be precomputed before the ob- 
ject edge is examined. 

Then, for each edge element detected at a distance 
h from the predicted edge, the relative weight/3, which 

is equivalent to a probability density function assum- 
ing that the errors have the normal (Gaussian) distribu- 
tion, can be computed as follows: 

/ 3 -  "YWa exp - (51) 
2,ff~-r oh 

where 3' is a factor to take care of the effects of edge 
direction and magnitude previously discussed (= 1 for 
a strong edge in exactly the right direction), and where 
Wa is the a priori weight defined in section 6.3. (The 
Gaussian function in (51) could be approximated by a 
table lookup, for speed.) These values would be used 
to compute the following weighted moments: 

m0 = P43 (52) 

ml = P43h (53) 

m 2 = ESh 2 (54) 

where the summations are over all edge elements found 
in a particular search (along a perpendicular to the 
predicted edge). The search would extend sufficiently 
far to make/3 negligibly small (perhaps 4ff h in each 
direction). 

Finally, these moments would be used to compute 
the combined measurement and its absolute weight, as 
follows: 

ml 
u - (55) 

m0 

m0 w = (56) 
( f  + mo) I02 + m2 2 - u 

mo 

wheref is  a given quantity that represents the a priori 
probability density of false edge elements being detected 
(due to extraneous markings or shadows on the object 
or noise in the image). The justification of (55) and 
(56) is as follows. The expression for u is just the 
weighted average of the detected edge-element posi- 
tions, and thus produces a reasonable value to use for 
the combined measurement. In the expression for w, 
the second expression in parentheses in the denominator 
denotes the accuracy (variance) of the measurement. 
This consists of two parts: the a priori variance 02, and 
the variance about the mean of the detected edge 
elements m2/m o - u 2. (This latter effect is included 
because, if several elements have been detected spread 
over a wide area, it becomes very uncertain where the 
true edge is.) The reciprocal of this total variance is 
then the appropriate weight to use in a least-squares 
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adjustment. However, the factor mo/(f + mo) is in- 
cluded so that, if the only elements detected are so far 
away from the predicted position that it is more likely 
that they are extraneous features rather than the desired 
object edge, the weight is reduced accordingly. (For 
example, i f f  = 0.01, which means that an extraneous 
edge would be expected about once every 100 pixels 
on a one-dimensional scan, the Gaussian function is 
equal to f a t  h = 2.72(r h. Thus, anything beyond this 
point would not get much weight; but if an edge ele- 
ment were detected well inside this point, it would get 
nearly full weight, since it likely would be the true 
edge.) 

This improved method of collecting the edge infor- 
mation (according to (51)-(56)) would slow down the 
tracker somewhat if done in the same computer. 
However, a parallel or pipelined image-processor device 
such as PIFEX [Gennery & Wilcox 1985] would be able 
to implement, at high speed, improved edge detectors 
and an approximation to the above improved edge- 
collection technique. Implementing these changes in 
such a device would make the tracker more robust and 
also slightly faster, since the search in effect would be 
done in this device also. 

65 Combining Measurements from All Edges 

The measurements u and weights w obtained by one 
of the methods in sections 6.3 and 6.4 must be collected 
into an overall solution. One way to do this would be 
to use them directly in the usual equations for N and 
C, considering u to be the observations and Oh/aP to 
be the partial derivatives of the observed quantities with 
respect to the parameters. However, this would require 
computing the 6x6 components of N and the 6xl  com- 
ponents of C for every u, which currently is every third 
pixel along the predicted object edges, and summing 
over all of these values. A much faster way is to col- 
lect the information from each predicted edge, which 
requires summing only a 2x2 matrix and a 2xl  matrix, 
and then combining this information into the overall 
solution by computing the larger matrixes only for each 
complete predicted object edge and summing over 
them. In effect, what is done is to fit a straight line 
to the measurements along each predicted object edge, 
and then to combine all of these line fits into an overall 
solution. Under the linear approximation, which is valid 
if the fitted line is close to the predicted line, these 

methods are mathematically equivalent. The two in- 
termediate parameters to be adjusted are the values of 
h at the two end points, that is, by how much the fitted 
line misses the predicted vertex at each end. The 
weighted least-squares fit for these is 

g g (57) w = ~  w 1 - - [  7 g 
7 

U = 2 wu (58) 
g 

7 

Iht I = (59) W- 1U 
h2 

where the summations are over all the points along the 
predicted edge for which u and w were computed. W 
is the weight matrix (inverse of the covariance matrix) 
of the resulting h i and h 2 values. 

These results can now be used in the overall solu- 
tion, by using the facts that A1 and A2 as defined in 
equations (44) and (45) represent the partial deriva- 
tives of h 1 and h 2 with respect to the parameters, and 
W[h~ h2] r = U. Thus, in the usual normal equations 
of a weighted least-squares adjustment ND = C, where 
D represents the corrections needed to the parameters 
(without filtering), N (6x6) and C (6xl) are as follows: 

E'I N = E[AI A~IW (60) 
A2 

C = 2 [A~ A~]U (61) 

where the summations are over all of the predicted 
edges. Notice that hi and h2 themselves are not used 
in (61), but only their weighted values U. Therefore, 
even if only one point is found along an entire predicted 
edge, W and U still contain useful information, 
although W is singular and thus hi and h2 are unde- 
fined in this case. It is not necessary to compute (59), 
unless it is desired to check hi and h 2 for reasonable 
values. (The present tracker makes a crude check of 
this sort, but doing so is not very important, since most 
wildly erroneous measurements are prevented by not 



256 Gennery 

using edge elements far from the predicted edge. 
However, h 1 and h2 are used in computing one of the 
diagnostic quantities described in section 8.) 

Some comments about efficiency in computing equa- 
tions (57), (58), (60), and (61) can be made. Since small 
matrixes are involved here, efficiency can be gained 
without too much effort by multiplying out the matrix 
products and dealing with scalar quantities. Further sav- 
ings can be made by using the fact that W and N are 
symmetrical matrixes. For example, in the summation 
in (60), only the 21 unique elements of N need to be 
accumulated. After the summations are complete, the 
15 elements on one side of the main diagonal can be 
copied to the other side to complete the 36 elements 
of the matrix. 

7 Adjustment  

The N matrix computed in Measurement represents the 
combined weights of adjusted values of pose, and C 
represents the weighted adjusted values. That is, if no 
filtering were desired, the weighted least-squares solu- 
tion for the six parameters, ignoring the predicted 
values except as initial approximations to be corrected, 
would apply the correction N-1C to the predicted 
values, and the accuracy of the results would be 
represented by the covariance matrix N -J. 

The velocities are included in the adjustment by con- 
sidering there to be twelve adjusted parameters, con- 
sisting of the column marixes P and V, where P is com- 
posed of the three components of position and the three 
components of incremental orientation, and V is com- 
posed of the three components of linear velocity and 
the three components of angular velocity. The 
measurements which produce N and C above contribute 
no information directly to V. However, the predicted 
values P and f / c a n  be considered to be additional 
measurements directly on P and V with covariance 
matrix S, and thus weight matrix ~-1. Therefore, by 
computing the vector mean [Mikhail 1976] (least- 
squares with measurements directly on the parameters) 
of the corrections to [~ and ~¢, the adjustment including 
the information contained in the predicted values in 
principle could be obtained as follows: 

s II: °0t +'t  (62) 

(63) 

However, using (62) and (63) is inefficient and may 
present numerical problems, since the two matrixes are 
to be inverted are 12x12 and may be nearly singular. 
If S and S are partitioned into 6 x6 matrixes according 
to (1), a mathematically equivalent form can be pro- 
duced by using the following equation (an identity if 
N and Svp are square and the same size): 

(I + SppN)-lSpp CI + SppN)-lSpv ] 
[(I + SppN)-ISpv] T S w  - S~vN(I + SppN)-lSpv 

(64) 

which is proved in appendix B. 
Substituting (64) into (62) and (63), using the defini- 

tions in (1), and replacing P and V with their compo- 
nent vectors produces 

Spe = (I + SppN)-tSpp (65) 

Svv = (I + SvvN)-ISpv (66) 

S w  = S w  - S~,vN(I + SvvN)-lSpv (67) 

E l:Eil+  vc 
where d and 4~ are the corrections needed to the pre- 
dicted position and orientation to produce the adjusted 
values. (These are shown in this manner because orien- 
tation must be handled differently from the others, as 
shown below.) Not only is this form more efficient com- 
putationally, but the matrix to be inverted (I + SppN) 
is guaranteed to be nonsingular (unless Spp or N is in- 
finite), because both Spp and N are nonnegative 
definite. Discussion of the relative efficiencies of these 
two forms and the usual form of Kalman filters is pro- 
vided in section 9. 

Since Spp and S w  are symmetrical matrixes, a 
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small amount of time could be saved by utilizing this 
fact in the above computations. Even if this is not done, 
because of numerical error these matrixes must still be 
forced to be symmetrical, perhaps by averaging each 
matrix and its transpose as produced by (65) and (67). 
(These statements would apply to the whole S matrix 
if (62) were used.) The reason this is necessary is that 
otherwise numerical error would gradually accumulate 
over many iterations, causing the matrixes to depart 
from symmetry and producing large errors. (Analytic- 
ally, if S starts symmetrical, it will always remain sym- 
metrical through the computations in the tracking loop. 
But with finite precision, this does not happen.) 

The adjusted velocities were obtained above in (69). 
The adjusted position is 

p = ~ + d (70) 

The orientation correction vector 0 must be used to 
produce the adjusted orientation quaternion R from the 
predicted orientation quaternion/~. Since O is con- 
sidered to represent an infinitesimal rotation, the quater- 
nion corresponding to it can be derived from equation 
(A3) by using the small-angle approximations for the 
trigonometric functions, to produce 

= (1, ~0) (71) F 

Then the quaternion product F/~ gives the adjusted 
orientation, except for normalization. The normaliza- 
tion is needed both to correct for the fact that F is not 
exactly normalized (because of the small-angle approx- 
imation) and to correct numerical error that otherwise 
would accumulate over many iterations. Thus, 

Fk 
R - ( 7 2 )  

~/norm (FR) 

(The denominator in (72) is simply the square root of 
the sum of the squares of the four components of the 
numerator.) 

The results of the adjustment are p from (70), R from 
(72), v and ~0 from (69), and S from (65)-(67) accord- 
ing to (1). These (along with the time associated with 
the image from which they were derived) are used as 
output from the program, and they are used as input 
to Prediction for another iteration. 

8 Performance Indicators 

The tracker computes a few quantities that indicate 
how closely things are conforming to expectations. 
Currently, these quantities are used only as output for 

diagnostic purposes. However, in the future they may 
be used to change some of the parameters within the 
tracker so that it can adapt to changing conditions. 

One such indication is how well the detected edge 
elements can be fit by straight lines corresponding to 
individual object edges, according to (59) in section 
6. The measure of goodness of fit in a weighted least- 
squares adjustment is the quadratic form of the residuals 
and weight matrix, which is the quantity being mini- 
mized and which has an expected value equal to the 
number of observations minus the number of parame- 
ters being adjusted (the degrees of freedom of the adust- 
ment), if the weight matrix is the inverse of the covari- 
ance matrix of observation errors. However, this is 
equal to the quadratic form of the observations (or 
discrepancies in a nonlinear adjustment) and weight 
matrix minus the inner product of the adjusted param- 
eters (or corrections in a nonlinear adjustment) and the 
vector of "constants" in the normal equations [Mikhail 
1976]. This latter form does not require computing the 
residuals. 

Therefore, the quadratic form that indicates the 
goodness of fit to an object edge is 

q' = ~ wu 2 - hxu 1 - h2u 2 (73) 

where the summation is over all points used along this 
object edge, and where u 1 and u2 are the elements of 
U (provided that there are at least two points along the 
edge so that h~ and h 2 a r e  determined). The number 
of degrees of freedom b' associated with this is the 
number of points minus two if the simple method of 
(47) and (48) is used. However, if the more elaborate 
method of (50)-(56) is used, this should be corrected 
by multiplying by the average of the probability mo/( f 
+ m0) that each detected feature is genuine. Thus, 

b ' =  ~ 1 - ~ 1  r~ m° (74) 
f +  m0 

instead of k - 2, where k is the number of points 
summed along the edge. Then q' and b' are summed 
over all edges in the object to obtain the total effective 
quadratic form q and the total effective degrees of 
freedom b (not necessarily an integer, as a true number 
of degrees of freedom would be), q and b are smoothed 
over time with a first-order recursive filter to obtain 
0 and/~, and the ratio of the quadratic form to degrees 
of freedom (for both unsmoothed and smoothed values) 
is computed. The expected value of this ratio is unity. 
If it is considerably larger than unity, it indicates that 
perhaps the data is noisier than expected. _Therefore, 
it might be possible to use the value of gl/b to adjust 
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the value of a. (At present, q, b, q/b, and ~//~ are used 
as output.) 

Another type of indication is whether the correc- 
tions needed to object pose at each time are about what 
would be expected from the assumed nature of the 
measurement noise and the object acceleration. (If the 
corrections are unexpectedly large, this might indicate 
that the accelerations are higher than expected, if the 
noise level has been verified by the above method.) This 
information can be obtained by comparing the correc- 
tion vectors d and ~ obtained from (68) in section 7 
to their total covariance matrix, which represents the 
entire range of values and not just their uncertainty. This 
covariance matrix can be obtained as follows. 

First, we can consider (68) to be obtained from an 
equivalent least-squares adjustment in which the 
measurements are Po (the pose that would be obtained 
by fitting the object model to points obtained at this 
time only) with weight N (and thus covariance matrix 
N-l). In this equivalent adjustment, the discrepancies 
are Po - P, since the predicted values P are the ini- 
tial approximation for this adjustment. Therefore, in 
(68) we can replace C with N(P o - P), so that the 
vector of corrections is SepN(Po - P). Then, doing 
covariance propagation in the usual way produces the 
following for the total covariance matrix of the correc- 
tions, since N -1 is the covariance matrix of Po, SPP is 
the covariance matrix of P, and it is assumed that the 
current measurements (leading to Po) are uncorrelated 
with anything previous (leading to P): 

E = SppN(N -1 + Spp)(SppN) r 

= SppN(N -1 + Spp)NSpp 

= SppN(I + SppN)Spp 

= SppN~ + SppN)(|  + SppN)-lSpp 

= SppNSpp (75) 

where in the second line we have used the fact that Spp 

and N are symmetrical, and in the fourth line we have 
substituted an expression for Spp from (65). 

A suitable indicator might be the quadratic form 
[d r qIT]E-l[d v 4~r] r, whose expected value is 6; or 
separate quadratic forms for the position and orienta- 
tion parts (each with expected value 3) might be desired 
so that the effects of linear acceleration and angular ac- 
celeration can be seen separately. However, to save 
computation time, the program currently uses only the 
main diagonal elements of E and computes the follow- 
ing two quantities: 

d~ + d 2 + d~ 
G O = (76) 

ell  + e22 + e33 

~ = 02 + ~b~ + 02 (77) 
e44 + e55 a t- e66 

where the numerical subscripts refer to individual 
elements of the matrix and vectors. The expected values 
of ~p and ~ are unity. They are smoothed by a first- 
order recursive filter and used as output. In the future, 
it might be possible to use them to adjust the values 
of the acceleration parameters a and c~. 

9 Discussion of Filtering 

The filtering action in the tracker represents an applica- 
tion of Kalman fitlering. However, in the usual formula- 
tion of the Kalman filter, the general equations cor- 
responding to (62) and (63) are transformed by means 
of the "matrix inversion lemma" [Maybeck 1979] into 
mathematically equivalent but computationally different 
form in which the size of the matrix to be inverted is 
equal to the number of new observations instead of the 
number of parameters in the state vector, although 
several matrix multiplications also are then needed. In- 
deed, Kalman originally derived the filter in this latter 
form (but somewhat more general), directly from first 
principles [Kalman 1960]. Since the number of new 
observations usually is considerably less than the size 
of the state vector, the latter form usually is more effi- 
cient. However, here that is not the case, except for very 
simple objects. 

In order to make a simple quantitative comparison 
of the efficiency of the various approaches, the number 
of multiplications and divisions, called "operations" 
below, will be used. This will be taken to be n 3 for in- 
verting an nxn matrix, and lmn for multiplying an Ixm 
matrix by an mxn matrix. (Including additions and sub- 
tractions would not change the relative performance of 
the different approaches by much). 

Since (62) involves two inversions of 12z12 
matrixes, it requires 3456 operations, and (63) requires 
72 (not counting multiplying by the zeros), for a total 
of 3528 for this approach derived directly from the 
usual least-squares formulation. 

The amount of computation when using the Kalman 
formulation in the usual way directly on the measured 
quantities depends on the number of features. For ex- 
ample, consider a cube (a fairly simple object). Typic- 
ally nine edges are visible, and even the efficient tech- 
nique described in section 6 of collecting all of the 
elements along each edge into two observations would 
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produce 18 observations, which is greater than the size 
of the state vector (12 here, as far as the adjustment is 
concerned, even though the actual state contains 13 
quantities because of the redundancy contained in the 
quaternion used to represent orientation). The usual 
Kalman formulation (see [Maybeck 1979] or Appen- 
dix B) then would require about 16,000 operations (not 
counting multiplying by the zero derivatives with 
respect to the velocities). Running the Kalman filter 
over the edges in sequence (which is equivalent to 
recursive estimation [Mikhail 1976]) would also be in- 
efficient (since of the nine solutions produced at each 
time point, only the last would be of any use). It would 
required about 5000 operations (not counting multiply- 
ing by zero). (These approaches would be efficient with 
only one or two features.) 

However, by using the results of Measurement here, 
we can consider the observations to be direct 
measurements of the 6 incremental pose parameters. 
Therefore, the observations would be N-1C, with 
covariance matrix N -~. With only 6 observations, the 
usual Kalman equations ((B5)-(B7) for the case here), 
including the computation of the inverse of N, would 
require 3096 operations (independently of the complex- 
ity of the object). Furthermore, as discussed in appen- 
dix B, in this case the measurement matrix would con- 
sist entirely of ones and zeros. Eliminating the 
multiplications involving it would reduce the number 
of operations to 1800 (by using equations (B8), (B9), 
and (B7)). This is more efficient than using (62) and 
(63) (requiring 3528 operations), but it is not as good 
as using (65)-(69), as we shall see. (Since the different 
forms are mathematically equivalent, it is of course 
possible to transform algebraically the Kalman equa- 
tions into (65)-(69), as discussed in appendix B.) 

Now consider the formulation actually used here, 
in which (62) was transformed into (65)-(67). The lat- 
ter involve one 6 ×6 inversion and five multiplications 
of 6×6 matrixes, requiring 1296 operations, and (68) 
and (69) require 72 operations, for a total of 1368. This 
is only 39 % as much as using (62) and (63) (and 76 % 
as much as the fastest Kalman formulation described 
above). This saving is possible because of the 
sparseness of the matrix containing N in (62), which 
in turn is caused by the fact that, although velocity is 
included in the state vector, the observations are in- 
dependent of velocity. This efficiency and the numerical 
considerations mentioned in section 7 are the reasons 
for using this formulation. 

The fact that in the adjustment corrections are ap- 
plied to the predicted values in order to obtain the ad- 
justed values causes the solution to converge to the op- 
timum solution just as it would in a standard linear- 
ized least-squares adjustment. Since the prediction is 
usually close to the actual pose of the object, the 
nonlinearities usually are small, and thus the con- 
vergence is very rapid here, if a and a are large. 
Therefore, in the absence of noise and high accelera- 
tions (since the prediction uses velocity), the tracker 
very closely tracks the actual movement of the object, 
and separate iterations at each time point are not 
needed. However, the fact that the predicted values are 
given some weight in the adjustment produces the falter- 
ing action, because of the memory of previous meas- 
urements contained in the predicted data. This filter- 
ing action determines the way that the tracker responds 
to noise and to acceleration, and it allows the use of 
stereo with noncoincident pictures. These two effects 
now will be discussed. 

As in any Kalman filter, the amount of smoothing 
depends on the amount of plant noise that is assumed, 
here represented by the acceleration parameters a and 
c~, and the weight given to the measurements, here 
represented by N. If the acceleration parameters are 
small (or N is small), old information is given relatively 
high weight in the adjustment, and as a result there is 
a large amount of smoothing. If the acceleration 
parameters are large (or N is large), the effect of old 
information rapidly decays, and as a result there is not 
much smoothing. However, the precise nature of the 
smoothing depends on the particular prediction model 
used here. 

In order to obtain a simple quantitative analysis of 
the filter, some approximations must be made. In par- 
ticular, let us assume that the filter is linear and sta- 
tionary. The linearity assumption has been made 
already in the design of the filter and is accurate when 
the deviation between the predicted values and actual 
values are small. Stationarity requires that the same in- 
put points with the same accuracy and same geometry 
are present at every time point, the time interval be- 
tween these is constant, and sufficient time has elapsed 
for these conditions to cause the covariance matrix S 
to become constant. This assumption is accurate only 
when the angular velocity is so small that the object 
does not rotate appreciably during the time constant 
of the filter and when the set of detected edge points 
does not change appreciably from one time to the next. 
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When an edge comes into view or disappears from 
view, the assumption of stationarity can be grossly 
violated (both because of the differing data and because 
of the fact that the time interval may change con- 
siderably because of the differing amount of computing 
needed), and noncoincident stereo violates it in a way 
discussed below. 

In general, the weights as stated by N are different 
in different dimensions. Thus the amount of smoothing 
will be different in different dimensions, with the direc- 
tions of Sower accuracy being smoothed more, as they 
should be. The directions for which different smoothing 
is produced in general are not aligned with the coor- 
dinate axes, but are aligned with the eigenvectors of 
N, provided that the different dimensions are scaled 
so that a and a are numerically the same in all six 
dimensions. (We have previously assumed that a is the 
same in all three spatial dimensions, and similarly for 
ce. If the distance unit is chosen so that a and c¢ are 
numerically equal, the stated condition is achieved, so 
that the only thing that causes different amounts of 
smoothing is N.) When things are scaled in this way, 
the eigenvalues of N control the amount of smoothing 
along each eigenvector, as if separate one-dimensional 
filters were being used in each of these six directions 
(as long as the linearity and stationarity assumptions 
are accurate). (This same condition holds in the more 
general case of arbitrary acceleration parameters, ex- 
cept that it is not just N that determines these 
directions.) 

When the filtering action is analyzed quantitatively 
[Gennery 1990] for a linear, stationary, one- 
dimensional, second-order recursive filter of the type 
used here, one result is that the time constant of the 
filter is 

4(~_~n 1 1/4 ct ,~ (78) 

where n is the eigenvalue of N for this direction, and 
where a represents either a or c~. This approximation 
is reasonably accurate when a is sufficiently small so 
that c~ >- r. The time constant c t is the time required 
for the amplitude of oscillation of the filter output 
to decay by a factor of 1/e or for the phase of the 
oscillation to change by one radian, after an initial in- 
put disturbance. (Within the accuracy of the approx- 
imation, these two are equal for this filter.) The time 
constant thus gives a rough indication of the amount 
of smoothing. 

When only one camera is used, the depth informa- 
tion comes only from the known size of the object and 
is not very accurate, since the object usually subtends 
a small angle at the camera. Therefore, the covariance 
matrix Sup represents a long thin ellipsoid aligned with 
the camera-object line. (Similar remarks apply to the 
other portions of S.) If two or more cameras were used 
in an ordinary least-squares adjustment, the resulting 
Sop matrix would be the inverse of the sum of the in- 
verses of the Spy'S that would result from each camera 
alone. If the ellipsoids from each camera intersect at 
an appreciable angle, the amount of uncertainty in the 
depth direction is greatly reduced, and the resulting 
ellipsoid is not so elongated. (This is just ordinary 
stereo action.) If the multiple cameras are used at dif- 
ferent times, the error ellipsoid will grow between the 
times of successive pictures. If the acceleration 
parameters are small, it will not grow very much, and 
thus the result is nearly the same as in the ordinary 
stereo case and the approximation in (78) above is ac- 
curate, provided that for N and r the average of their 
values over all of the cameras is used. However, if the 
acceleration parameters are large, the error ellipsoid 
will grow by a large amount between pictures, and thus 
combining two of them may not reduce the depth uncer- 
tainty much. This is reasonable, since, if the object 
could randomly accelerate that much, its position could 
change unpredictably so much from one picture to the 
next that the two pictures could not be combined to pro- 
duce reliable stereo information. In this case, the filter 
is not stationary. 

The choice between the two ways of using multiple 
cameras (simultaneous or sequential) depends on the 
available hardware and timing considerations. If only 
one image can be stored at a time, then the sequential 
method (one camera on each time through the loop) 
must be used. If the object model is complicated and 
there are many features to find in the picture, Projec- 
tion and Measurement will occupy most of the com- 
puting time, and thus it makes sense to use the infor- 
mation from each of the cameras immediately in Ad- 
justment, to produce updated results reasonably rapidly. 
Thus the sequential method would be recommended. 
On the other hand, if the object is very simple and has 
few features to find, Projection and Measurement won't 
require much time. Therefore, they might as well be 
done for all images at once (if these can be stored), 
so that more complete results will be available from 
the adjustment, without the prediction uncertainty that 
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would enter if a wait until the next iteration (through 
another prediction and adjustment) were introduced. 
Such a simple case might seldom occur. However, the 
same situation exists if the hardware is sufficiently fast 
that the computations can be completed in one frame 
time of the television cameras. (The present version of 
the tracker uses only the sequential method.) 

10 Results 

The tracker has been tested extensively in the JPL 
Robotics Lab. A few examples are shown here. Our 
old setup [Gennery 1982] had two cameras 0.56 meter 
apart, each with 240 lines by 188 pixels per line. The 
tracker program ran on a General Automation 
SPC-16/85 computer. 

Using this setup, the tracker was tested by using a 
Unimation Puma arm under manual control to move 
an object in an arbitrary way as the program tried to 
track it. The tracker was tested using both one camera 
and two cameras, under various lighting conditions, 
with various background clutter, and with the object 
translating, rotating, and both. With only one camera, 
the program was fairly sensitive to clutter and lighting, 
but with two cameras the presence of the redundant in- 
formation and of the accurate depth information from 
stereo caused much more robust operation. 

The object used in most of these early experiments 
is a hexagonal prism 0.203 meter tall with side faces 
0.128 meter wide, painted flat white. A rod protrudes 
from the center of one of the hexagonal faces for the 
purpose of grasping the object, but this rod is not in- 
cluded in the object model. In the test described below, 
this object was about 1.7 meters from the cameras. Pic- 
tures from the two cameras were taken alternately, and 
typically about 0.4 second of processing was required 
for each picture. In addition, in this case there was a 
deliberate delay of 0.1 second to prolong the display 
of the results (so that the total time through the main 
loop shown in figure 1 was around 0.5 second). The 
values used for the acceleration parameters were a = 
1 mm2/sec 3 and ~ = 0.0001 radian2/sec 3. The 
assumed standard deviation ~ of the edge measurements 
was one pixel. 

Figure 2 shows the results from six successive 
frames (of those used by the program), alternating be- 
tween views from the left camera and the right camera. 
In the figure, the brightness edges found by the IMFEX 
edge detector are indicated by faint lines, the predicted 

visible object edges are indicated by brighter lines, and 
the edge elements used by the tracker are shown as yet 
brighter dots. (Detected edges from the object, some 
background clutter, the Puma arm, and some shadows 
can be seen in the figure.) In this figure, the object is 
rotating approximately at 0.27 radian/sec about an axis 
that is horizontal and perpendicular to the line of sight 
from the cameras (not one of the body axes). (It reached 
this velocity from zero in about 14 seconds, while the 
program was tracking it.) In the process of rotating the 
object, the Puma arm passed partly in front of the ob- 
ject, as can be seen in the figure. Nevertheless, the pro- 
gram continued to track the object, as can be seen from 
the fact that the bright lines (predicted object) are close 
to the faint lines (detected edges) produced by the ob- 
ject. (If a predicted edge lies exactly on a detected edge, 
hopefully the bright dots can be seen on the bright line 
in the figure, indicating that the detected edge is there.) 
The adjusted data probably would be even closer to the 
detected data, but were not displayed by the old ver- 
sion of the program. 

Essentially this same test was repeated many times. 
When two cameras were used, it almost always was suc- 
cessful. When only one camera was used, the program 
often lost track, no matter which camera was used, 
although it always tracked through at least part of the 
run. The computed accuracy (combined standard devia- 
tion in three dimensions, equal to the square root of 
the sum of the three diagonal elements of the ap- 
propriate covariance matrix) of the adjusted data in tests 
such as this (with two cameras) typically was about 2 
mm in position, 0.01 radian in orientation, 2 mm/sec 
in velocity, and 0.02 radian/sec in angular velocity. The 
filter time constants ranged approximately from one to 
two seconds. 

The new setup has three cameras, with two cameras 
at the same elevation 2.8 meters apart and another 
camera 1.3 meters above their midpoint, for the ex- 
amples below. The camera focal length is 12.5 mm, 
each camera has 240 lines by 320 pixels per line (of 
which only 238 by 245 are useful from IMFEX), and 
the image size is 6.6 mm by 8.8 ram, resulting in 
0.0275-mm square pixels. (Two other cameras, with 25 
mm focal length, are mounted on an arm for closeup 
views and can be seen in figure 4, but they were not 
used in the examples presented here.) The cameras were 
calibrated as described by Gennery et al. [1987]. The 
tracker program runs on a Digital Equipment Corpora- 
tion MicroVAX II. 
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The new version of the program displays the ad- 
justed position of the object superimposed on the raw 
digitized image from one of the cameras, in a separate 
image buffer from that used for the input edge data, 
so that the correctness of track can easily be seen. 
Usually only the visible vertexes and corners in the ob- 
ject model are shown (as white dots at the nearest pix- 
el), instead of the edges, for speed. Figure 3 shows such 
results from tracking the same object (in the 
foreground) used in the example above, when it was 
about three meters from the cameras. (In this case, the 
program was able to process about six frames per 
second.) 

Fig. 3. New sample track with vertexes overlaid on raw digitized 

picture. 

Most of the new experiments used an imitation satel- 
lite, shown in figure 4 (and faintly in the background 
of the digitized image in figure 3). It has the approx- 
imate shape of a hexagonal prism 1.22 meters tall with 
side faces 0.76 meter wide. Each of the six side faces 
consists of a panel surrounded by an aluminum frame. 
The frame was covered with thermal protective foil (as 
shown in figure 4) for the later experiments. Five of 
the panels are real solar panels; the sixth is an 
aluminum panel containing a smaller white panel and 
a fluid coupling. The top of the object is open for 
suspension but is lined with black cloth to appear solid. 
The aluminum surfaces are partially specular; the foil 
is highly specular but somewhat crinkled. Two handles 
are attached to the white panel, and two grappling fix- 
tures are attached to the frame beside the aluminum, 

Fig. 4. Imitation satellite (held by arms). 

panel. The object model used for the experiments in- 
cludes the outline of the hexagonal prism, the six panels 
on the six faces, and the white panel. Each of the sur- 
faces so defined was modeled as a planar region of con- 
stant reflectivity, with the shapes being hexagons for 
the top and bottom, rectangles with rectangular holes 
for the flame and the aluminum panel, and rectangles 
for the other panels. The wire-frame representation of 
the model is shown in figure 5. The coupling, handles, 

I 

Fig. 5. Perspective view of object model of imitation satellite, show- 

mg all edges. 

Fig. 2. Consecutive sample results from old version of program, for (a) left camera at t ime t a, (b) right camera at t a + 0.52 sec, (c) left camera 

at t a + 0.97 sec, (d) right camera at t a + 1.42 sec, (e) left camera at t a + 1.80 sec, (f) r ight camera at t a + 2.23 sec. 
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and other minor features are not included in the model. 
The grappling fixtures are included in the model for 
grappling purposes, but are not used by the vision 
system. The object was suspended from the ceiling so 
that it could move with six degrees of freedom, in- 
cluding unlimited rotation about the vertical axis. Its 
center was about four meters from the cameras; there- 
fore, each pixel represents about nine millimeters on 
the object. 

Figure 6 shows typical digitized pictures of the sta- 
tionary imitation satellite without the foil, from the 
three cameras. Figure 7 shows the corresponding edge 
maps produced by IMFEX, with the portions not proc- 
essed by IMFEX (roughly equal on the left and right) 
deleted. Figure 8 shows one frame of the results pro- 
jected into the right picture, while tracking the mov- 
ing object under these conditions. White dots, as before, 
show the computed vertex positions projected into the 
right picture. The object was rotating at 1.02 radian/sec 
about the vertical axis at the time of this frame. (It 
reached this velocity from zero in about 45 seconds, 
while the program was tracking it.) About 0.5 seconds 
was required for each frame (so that about 1.5 seconds 
was required to loop through the three cameras). For 
this test, a = 10 mm2/sec 3, ot = 0.0001 radian2/sec 3, 
and a = 1 pixel. At the time of figure 8, the resulting 
filter time constants were around one second, and the 
computed total standard deviations of the adjusted data 
were 4.7 mm in position, 7.6 mradian in orientation, 
5.7 mm/sec in velocity, and 14.0 mradian/sec in angular 
velocity. From the closeness of the white dots to the 
vertexes in the picture, it can be seen that the program 
was accurately tracking, in spite of the poor quality of 
the edge maps. 

Similarly, figure 9 shows digitized pictures of the 
imitation satellite with the thermal protective foil (and 
with a different background and different arm posi- 
tions), and figure 10 shows the corresponding edge 
maps produced by IMFEX. Figure 11 shows one frame 
of the results projected into the top picture, while track- 
ing the object as it was rotating at 0.24 radian/sec about 
the vertical axis. 

A test of absolute accuracy was done by having the 
program track an 8V2 ×ll-inch sheet of paper taped to 
the calibration fixture in one of its calibration positions 
(3.5 meters from the plane of the cameras). The dif- 
ference between the three-dimensional positions com- 
puted by the tracker and accurately measured by hand 
was 6.5 mm (roughly in the direction from the fixture 
to the cameras, as one would expect). Some of this error 

i , r  . 

(a) 

~ ~;"~t,? o., , 

(b) 

(c) 

_4 ~ 

i i  



Visual Tracking of Known Three-Dimensional Objects 265 

i 

"1 

r,7:, • 

., J 

. . ~1".. " 

17!  

"E - " ' -  

Fig. Z Edge pictures corresponding to figure 6. 

Fig. 8. Sample track of object in figure 6. 

probably is due to miscalibration of the cameras, caused 
by the fact that lens distortion was not included in the 
camera model and possibly by errors in the multiple 
positions of the calibration fixture. 

The tracker has been used in successful laboratory 
grappling experiments [Wilcox et al. 1989]. Figure 4 
shows a typical position of the two Puma arms and the 
imitation satellite after the arms have grabbed it under 
autonomous control of the tracker and brought it to rest. 
Typical angular velocities in these experiments have 
been about 0.2 radian/sec, and typical position errors 
in the points of contact of  the arms relative to the ob- 
ject have been around one centimeter. 

It would be possible to model the arms, so that the 
tracker will know not to look for features in portions 
of the scene where an arm obscures the tracked ob- 
ject. However, at present this is not done. Therefore, 
edges detected on the arms act as spurious data to the 
tracker. 

I I  C o n c l u s i o n s  

The method described here can track (in six degrees 
of freedom) a rapidly translating and rotating rigid 
three-dimensional object for which an object model is 
known, after being started approximately on track. (Ex- 
amples were shown with rotations up to about 30 ° per 
frame.) With the aid of a hardware feature detector, 

Fig. 6. Digitized pictures of irmtation satellite (without foil) from the (a) left, (b) top, and (c) right cameras• 
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computational speeds of around two to six frames per 
second were achieved on fairly slow computers, when 
tracking objects of moderate complexity. Currently 
available hardware should allow the computations to 
be done at the usual video-frame rate for such objects. 

The method is able to tolerate a considerable amount 
of missing and spurious features, especially when stereo 
is used. This is because it looks for features (usually 
edge elements) only near their expected positions, 
because the typical abundance of features produces con- 
siderable overdetermination in the adjustment, and 
because of the smoothing produced by the filtering. 
Because of the spatial coherence produced by the ob- 
ject model and the temporal coherence produced by the 
prediction model used in the filter, finding the features 
by looking near their predicted positions in each im- 
age is more robust than tracking individual features in 
a sequence of noisy images. 

Appendix A: Quaternions 

The properties of quaternions will be briefly reviewed. 
Proofs and further information can be found in the 
references [Brand 1947; Corben & Stehle 1960; Golds- 
tein 1980]. 

A quaternion Q can be defined to be a quadruple 
of real quantities qo, ql, q2, and q3- A quaternion also 
can be considered to be the combination of a scalar 
(corresponding to qo) and a vector (whose components 
are ql, q2, and q3). The notation used here for this 
representation is Q -- (s, v), for a quaternion Q with 
scalar part s and vector part v. (Another way of look- 
ing at quaternions, as a generalization of complex 
numbers, with one real part and three imaginary parts, 
will not be used here.) 

The product R = PQ of two quaternions is defined 
as follows: 

ro = Poqo - P l q l  - Pzq2 - P3q3 

rl  = Poq l  + P l q o  + P2q3 - P3q2 

r2 = Poq2 + P2qo + P3q~ - P lq3  

r3 = Poq3 + P3qo + P l q 2  - P2ql  (A1) 

The equivalent definition using the scalar-vector nota- 
tion is 

(a,u)(b,v) = ( a b - u ' v ,  a v  + b u  + u  × v) (A2) 

Note that this is not commutative. However, quaternion 
multiplication is associative. 
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Fig. 10. Edge pictures corresponding to figure 9. 

Fig. 11. Sample track of object in figure 9. 

The conjugate of a quaternion Q (denoted by Q*) 
is obtained by changing the sign of the vector portion 
(that is, the signs of ql, q2, and q3). The conjugate of 
a product can be changed to a product of conjugates 
by reversing the order of multiplication (that is, (PQ)* 
= Q'P*). The norm of a quaternion is the sum of the 
squares of its four components. 

Any rotation in three-space can be represented by 
a quaternion whose norm is unity (known as a unit 
quaternion). By Euler's theorem, any such rotation can 
be represented by a single rotation angle 0 about some 
unit vector u. The quaternion R representing this rota- 
tion is 

ic0 R = os 2 '  u sin (A3) 

In this case the four components of R are known as the 
Euler parameters. Successive rotations can be combined 
by multiplying the corresponding quaternions from 
right to left. Note that R and - R  represent rotations 
differing by one revolution, and thus represent the same 
orientation. (The quaternion representing the negative 
of the rotation represented by R is R*.) 

A vector can be represented by a quaternion by set- 
ting the scalar part to zero and setting the vector part 
to the vector. A vector represented by the quaternion 
Vcan be rotated by a rotation represented by the quater- 
nion R as follows: 

V' = RVR* (A4) 

Fig. 9. Digitized pictures of  imitation satellite (with foil covering frame) from the (a) left, (b) top, and (c) right cameras. 



268 Gennery 

where the quaternion conjugate and quaternion product 
have been used. However, if there are several vectors 
all to be rotated the same, it is more efficient to com- 
pute the rotation matrix and to compute the matrix pro- 
duct of this matrix times each vector in the usual way 
(v' = Rv). The rotation matrix R corresponding to a 
unit quateruion R is 

I ~  + 8 - ~ - ~ 2(r, r2 - r0r3) 

R = 2(rlr2 + r°r3 ) ~ + ~ _ ~ _ 

2(rlr 3 - ror2) 2(r2r3 + r0rl) 

2(rlr3 + r°rg-) 1 

2(r2r 3 -- rorl) J (A5) 

Since ~ + ~ + ~ + ~ = 1 for a unit quatermon, 
(A5) is equivalent to the following alternative form: 

2(~ + ~) - 1 2(rlr 2 - r0r3) 

R = 2(rlr 2 + r0r3) 2(~ + ~) - 1 

2(rlr 3 - ror2) 2(r2r3 + rorO 

2(rlr 3 + r0r2) 

2(r2r 3 - rorl) (A6) 

2(~ + ~) - 1 

Appendix B: Proof of Equation (64) 

The equation 

+ I'PP ' vl 11= 

I 1 
[(I + SppN)-lgpv] T SW - S~,vN(I + gppN)-lSlwJ 

030 

can be derived by applying the usual formulas for in- 
verting a matrix by partitioning [Mikhail 1976] to the 
two indicated inverses. However, a simpler proof of 031) 
can be obtained by manipulating it according to the 
rules of matrix algebra until an obvious identity is ob- 
tained. First, by the definition of the matrix inverse, 
031) is equivalent to 

I 
(I + SppN)-lSpe (I + SppN)-lSpv 

[(I + SpeN)-lgpv] r Svv - S~,vN(I + SppN)-lSpv 

where the identity matrix is written in terms of 6x6 
matrixes for uniformity. Premultiplying both sides of 
(82) by S (expressed in terms of 6x6 matrixes accord- 
ing to (1)) produces 

+ Seen 

[_gpv r (I+f~Sl, e) -1 g w - ~ l ,  vN(I+~eeN)-lgevJ 

= (83/ 

Expanding the product on the left side of 033) produces 

[ SPP 'PV 1 
g~,vN(I + SppN)-lSpp + g~,V(I + NSpp) -1 SwJ 
ISPP Spv 1 

= (84) 

gvv 
Finally, some matrix manipulation (bringing Spp into 
(I + SppN) -1 from the right and factoring it out to the 
left, factoring (I + SppN) -1 out to the right from the 
entire expression, and canceling I + SppN and its in- 
verse) shows that the lower-left element of the left side 
of 034) reduces to S~'v. Thus 034) reduces to an iden- 
tity, and, since all of the steps performed above are 
reversible (if S and SPI, are nonsingular), this verifies 
(B1). 

Another way of proving (Bl) is to derive it (actu- 
ally, (65)-(67) derived from it and (62)) from the usual 
Kalman filter equations. If we consider N-1C to be the 
measurements (relative to the predicted values), with 
covariance matrix N -1, as mentioned in section 9 as 
one possibility, then the matrix of partial derivatives 
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of the observations relative to the state vector is [I 0] 
(in terms of the 6 x6 identity and zero matrixes), since 
the observations are direct measurements of P (pose) 
but are independent of V (velocities). Therefore, the 
Kalman update equations [Maybeck 1979] in this case 
become the following: 

K = S[I 0]v([I 0]S[I 01T + N-l) -1 (B5) 
S = S -  K[I 0]S (B6) 

(K is the Kalman gain matrix.) Partitioning g into 6x6 
matrixes according to (1) and expanding the matrix pro- 
ducts involving [I 0] simplifies 035) and (B6) in terms 
of the amount of computing involved, since it eliminates 
multiplying by ones and zeros, to produce 

I ~PP ] N-l)-, K = (Spe + (B8) 
Lg vJ 

I SPPSTV SvvjSpv1 =ISPP~spv SvvJ ~PV1 -K[Spp Spv] (B9) 

with (B7) unchanged. Then, a considerable amount of 
matrix manipulation can simplify (B8), (B9), and (B7) 
further into (65)-(69). 
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