
International Journal of Computer Vision, 7:3, 243-270 (1992)
© 1992 Ktuwer Academic Publishers, Manufactured in The Netherlands.

Visual Tracking of Known Three-Dimensional Objects

DONALD B. GENNERY
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Received June 13, 1991. Revised August 15, 1991.

Abstract
A method is described of visually tracking a known three-dimensional object as it moves with six degrees of freedom.
The method uses the predicted position of known features on the object to find the features in images from one
or more cameras, measures the position of the features in the images, and uses these measurements to update
the estimates of position, orientation, linear velocity, and angular velocity of the object model. The features usual-
ly used are brightness edges that correspond to markings or the edges of solid objects, although point features
can be used. The solution for object position and orientation is a weighted least-squares adjustment that includes
filtering over time, which reduces the effects of errors, allows extrapolation over times of missing data, and allows
the use of stereo information from multiple-camera images that are not coincident in time. The filtering action
is derived so as to be optimum if the acceleration is random. (Alternatively, random torque can be assumed for
rotation.) The filter is equivalent to a Kalman filter, but for efficiency it is formulated differently in order to take
advantage of the dimensionality of the observations and the state vector which occur in this problem. The method
can track accurately with arbitrarily large angular velocities, as long as the angular acceleration (or torque) is
small. Results are presented showing the successful tracking of partially obscured objects with clutter.

1 Introduction

A robot for performing assembly work may often have
to grasp a moving rigid object. Such tasks may occur
in future activities in space, both for assembly of struc-
tures in orbit and for retrieval of satellites. It will be
necessary to determine the pose (position and orienta-
tion) and velocities (linear velocity and angular veloc-
ity) of the object accurately as it moves in three-
dimensional space, so that it can be grasped in a proper
manner. In many such tasks, the object being handled
is known, and an accurate model of it can be prepared
beforehand. This model enables known features on the
object to be searched for in images of the scene, and
thus facilitates tracking the object and grasping it using
grasp points that are built into the model.

The tracking task can be conveniently divided into
two portions: acquisition and tracking proper. In the
acquisition portion, which is similar in some respects
to recognition, the object must be located in the scene,

and its approximate pose and velocities must be deter-
mined. Then this information can be used to initiate
the tracking-proper phase, in which the object pose and
velocities are refined for greater accuracy and are
rapidly updated, by robust techniques especially suited
to this task. We have done some work on the acquisi-
tion problem, and a preliminary report has been made
elsewhere [Gennery 1986].

This article deals only with the tracking-proper task,
and is the third in a series of reports that deal with this
problem. (For the examples herein, acquisition was per-
formed manually with the aid of a visual display, start-
ing from an approximately known position and orien-
tation when the object is stationary or moving slowly.)

Originally, a fairly simple method was developed
[Saund et al. 1981] that compared the measured posi-
tions of features in images to their predicted positions
in order to update the state of the object. It used only
a simple object; it used only the corners of the object
as features in the adjustment; it represented orienta-

244 Gennery

tion by means of Euler angles, which limited the rota-
tion because of the singularities contained in that
representation; and it filtered, independently in each
coordinate, the results of separate least-squares ad-
justments for each time.

Then a much more elaborate method was developed
and briefly described [Gennery 1982]. That method,
which is subsumed by the method of this article, also
compared the measured and predicted feature positions
in order to update the object state. However, it used
polyhedral object models; looked for edge elements all
along the predicted object edges; represented orienta-
tion by means of quaternions in order to avoid singu-
larities; used infinitesimal rotation vectors to adjust
orientation, in order to simplify the computations; com-
bined filtering optimally in the adjustment, enabling
stereo depth information to be extracted when more
than one camera is used, even if the different cameras
take their pictures at different times; used an alternative
to the usual Kalman fitler, saving computation time in
the type of situaton encountered in tracking complicated
rigid objects; and used an accurate error propagation
through rotation, allowing optimal filtering even when
the object rotates by an arbitrarily large amount between
successive frames.

Since then, several improvements to that tracking
method have been implemented. This article is an up-
dated, more detailed description of the method, in-
cluding those improvements and others that have been
devised for possible future use. The improvements in-
clude the following: a more general object model in-
cluding reflectivity of faces, which allows coplanar
faces, different weights for different edges according
to their expected contrast, and the use of edge polar-
ity; a correction for raster scan delay; the computation
of performance indicators; the use of the moment of
inertia tensor so that prediction can be based on angular
momentum instead of angular velocity, if appropriate;
more robust detection of features, which uses variable
weights depending on the measured properties of the
detected features; and the inclusion of lens distortion.
Also, better examples of the performance of the method
are presented.

The object models now used consist of planar sur-
faces, which can be specified for any particular
polyhedral object with possible polygonal markings.
The features searched for in the images usually are the
edges formed by the intersections of the planar faces
or by the boundaries between coplanar surfaces of dif-
fering reflectivity. Alternatively, point features, corre-
sponding to lights on the object, can be used.

Before 1981, the work that had been done on the
visual tracking of objects did not have much in com-
mon with the work described here. It mostly had been
two-dimensional tracking [Nagel 1978; Martin & Ag-
garwal 1978; Gilbert et al. 1980] or had dealt with
restricted domains in which only partial spatial infor-
mation is extracted [Roach & Aggarwal 1979]. Here we
are concerned with determining the three-dimensional
position and orientation of a solid object as it moves
in an arbitrary way. Also, some work had dealt with
objects that are labeled with obvious features that unam-
biguously determine the desired information [Pinkney
1978], whereas here the features can be those occurring
naturally on the object, such as differences in illumina-
tion across boundaries of planar faces. Such features
often can be missed because of the conditions of il-
lumination, and extaneous features may be detected.
Therefore, the algorithm must be able to handle such
imperfections.

Since our earlier tracker report [Gennery 1982],
some other work has appeared that is similar in some
ways, but that work does not contain all of the features
described in the 1982 report. Broida and Chellappa
[1986] deal with only two dimensions and use only
(simulated) points (not edge features). Young and
Chellappa [1990] use only points, and they assume that
the three-dimensional position of each point has been
previously obtained independently (instead of having
the tracking program find the features itself in the two-
dimensional images). Verghese and Dyer [1988] do not
use a filter with velocities for prediction, and thus more
searching would be required to find the features if large
velocities were to occur. Dickmanns and Graefe
[1988a,b] deal with several different problems with dif-
ferent types of motion, none of which has the full three-
dimensional rotation of the problem here. W/insche
[1986] considers rotation only in a plane, but includes
a way of selecting those features that contribute the most
to the solution. Wu et al. [1989] use only points; and
they represent rotation by means of roll, pitch, and yaw
(similar to Euler angles), which contain singularities,
instead of quaternions. Furthermore, apparently none
of these other methods use the alternative to the usual
Kalman filter, infinitesimal rotation vectors, or the ac-
curate error propagation through three-dimensional
rotation. (Also, these other methods do not include
most of the improvements described here.)

The tracker described herein can use any number
of cameras. If only one camera is used, the distance
to the object will be obtained as part of the solution
because of the known size of the object. If more than

Visual Tracking of Known Three-Dimensional Objects 245

one camera is used, stereo triangulation will produce
more accurate distance information, especially if the
angle between the cameras as seen from the object is
large. (This wide-angle stereo condition is feasible
because correlation between pictures is not done; in-
stead, each feature is searched for at its expected posi-
tion in each picture independently.) Triangulation to in-
dividual features is not done. Instead, the information
from each camera is entered independently into an
overall solution. Even if some features are seen by one
camera and different features are seen by another
camera, they still produce stereo depth information (not
only for object distance but also for relative distance
to different portions of the object to aid in the deter-
mination of orientation), because of the known spatial
relationships between features in the object model. In
fact, the different pictures do not have to be coincident
in time for this stereo information to be useful. The
constraints of the filtering included in the adjustment
allow the information obtained at different times to be
combined optimally. The tracker of the earlier report
[Gennery 1982] included this noncoincident stereo
ability, although it was artificially limited to one or two
cameras. This ability is also inherent in the methods
of some of the other authors [Dickmanns & Graefe
1988a,b; Wu et al. 1989], although they did not utilize
it, since they used only one camera.

The mathematics used here involve least-squares ad-
justments, covariance matrixes, error propagation, and
matrix algebra. A good text on these subjects is pro-
vided by Mikhail [1976]. Quaternions also are used;
their relevant properties are described in appendix A.

In order to aid in keeping track of the different types
of mathematical entities, the following system of sym-
bols will be used: scalars will be denoted by lower-case
letters; quaternions will be denoted by capital letters;
physical vectors in three-dimensional space will be
denoted by boldfaced lower-case letters, and they will
be considered to be equivalent to 3-by-1 matrixes; and
other matrixes (including 6-vectors) will be denoted by
boldfaced capital letters. Where needed, a quaternion
will be expressed in terms of its scalar part s and its
vector part v by the notation (s, v). The transpose of
a matrix A will be denoted by A T and its inverse by
A -1. The vector product (cross-product) of two vec-
tors a and b will be denoted by a x b, and their scalar
product (dot product, or inner product) will be denoted
by a • b (equivalent to aTb).

2 Representation of Orientation

Ideally, one would like to represent the orientation of
the object by means of a set of parameters having the
following properties: the number of parameters is three,
since there are only three degrees of freedom to a rota-
tion in three-dimensional space; the representation con-
tains no singularities, so that the partial derivatives of
the parameters with respect to any small rotation angle
are always finite; and the parameters are continuous
(that is, a continuous motion of the object never pro-
duces a discontinuity in the parameters). (In two-
dimensional space, where there is only one rotational
degree of freedom, the rotation angle meets these
criteria, although it is multivalued.) Unfortunately, such
a set of parameters for three-dimensional space does
not exist.

The Euler angles are often used to represent orien-
tation, but they contain a singularity. For example, if
the Euler angles are defined such that the first and third
rotations are about the same (rotated) axis [Goldstein
1980], a zero value for the second angle causes the first
and third angles to become indeterminate. An object
motion which passes arbitrarily close to this condition
can produce arbitrarily large derivatives of these angles.
This is usually not a problem in analytical studies, but
in numerical adjustments it can cause the solution to
fail.

Since by Euler's theorem any rotation in three-
dimensional space can be considered to be a rotation
about a single fixed axis, one possibility is to repre-
sent the orientation by means of a "vector" whose
direction is this axis of rotation and whose magnitude
is the angle of rotation. However, if the angle is a multi-
ple of 27r radians, the direction of the vector is indeter-
minate, and thus so are its components (except when
the angle is zero, when the components are zero also).
Thus singularities are still present, unless the angle is
restricted to the range from -Tr to 7r, in which case
a discontinuity has been introduced. In addition, this
entity is not a physical vector (see Goldstein [1980]).
The practical consequences of this latter fact seem to
be that the partial derivatives of interesting quantities
with respect to the three components are complicated
to compute analytically (see Ayache & Faugeras [1988]).
However, if the magnitude of the rotation is infini-
tesimal, this representation actually is a physical vec-
tor, as explained by Goldstein [1980], and partial

246 Gennery

derivatives with respect to this vector are extremely
simple, as we shall see in section 5. Of course, an in-
finitesimal vector cannot represent the current orien-
tation, which may require a large rotation from the
reference orientation, but it can be used for small
corrections.

If the requirement that the number of parameters
be three is removed, there are many possibilities that
meet the other criteria. One of these is the rotation
matrix, which has nine components. It is especially
convenient for rotating vectors and for the associated
error propagation. Another possibility is a quaternion
with unit norm, which has four components. Not only
are there fewer parameters to deal with, but the nor-
malization problem is easier when a quaternion rather
than a matrix is used as the primary representation of
orientation. Through a long sequence of corrections ap-
plied directly to a matrix or quaternion, numerical er-
rors will cause the matrix to depart from orthonormality
or the quaternion to depart from unity norm. A quater-
nion is normalized simply by dividing by the square
root of the sum of the squares of its components. It is
also very easy to update a quaternion when extra-
polating to a predicted orientation based on an estimated
angular velocity, as will be shown in section 4.

Because of the above conflicting requirements, the
implemented tracker uses a combination of represen-
tations for orientation. A unit quaternion is used to
represent the current estimate of object orientation.
However, the parameters used in the adjustment are the
three components of an infinitesimal rotation vector
which represents the correction needed to the current
estimate of orientation. Of course, the actual correc-
tion needed in the adjustment is finite. However, the
adjustment is based on a linearization of the actual prob-
lem anyway (which is accurate as long as the needed
corrections are small), and assuming that the orienta-
tion corrections are infinitesimal is equivalent to assum-
ing that their effects on the measurable quantities are
linear. The fact that only three rotation parameters are
used in the adjustment keeps the computation time
small and avoids the complication of adding a constraint
to the adjustment because of an excess of parameters
over the true degrees of freedom. The solution for the
infinitesimal correction rotation vector is used to cor-
rect the quaternion (by a simple process described in
section 7), and an extrapolation to a new time is done
by a quaternion product (as described in section 4), so
that a new orientation estimate expressed in a fixed
coordinate system is produced. (The correction in the

adjustment must be small for linearity, but the ex-
trapolation can be arbitrarily large.) A rotation matrix
computed from the rotation (unit) quaternion is used
for rotating vectors, for efficiency.

3 Overview of Tracker

Within the tracking program, the current estimate of
the state of the object consists of the vector p, which
represents the position of the origin of the object-fixed
coordinate system; the quaternion R, which represents
the orientation of the object; the vector v, which
represents the linear velocity of the object (derivative
of p with respect to time for the true, unknown values);
and the vector ~0, which represents the angular velocity
of the object. (If the moment of inertia tensor of the
object were used in the extrapolation of orientation,
angular momentum X would be used instead of ~0.) All
of these are expressed in a fixed-reference coordinate
system. The uncertainty in these quantities is
represented by the 12 ×12 covariance matrix S, in which
the fourth, fifth, and sixth rows and columns refer to
an infinitesimal rotation correction vector ~ instead of
to R, as explained in section 2. The S matrix is parti-
tioned as needed into 6 x 6 covariance matrixes and 3 x 3
covariance matrixes as follows:

FSpp Sp~ Spy Spt~ l
r s,P s,v] /s 0 s00 s0, s0o /

S--- kSi~ v S w J = |Sprv S~v Svv Sv,0| (1)
L sTo sgo

where the lower-case subscripts refer to the vectors
described above, P denotes the pose (position and
orientation), and V denotes the linear and angular

^

velocities. With a circumflex () over it, any of these
symbols refers to predicted values rather than adjusted
values. (For a covariance matrix, logically the cir-
cumflexes should be on the subscripts instead of on
the S, since it represents the covariance matrix of
predicted values and not a predicted covariance matrix
of adjusted values. However, for simplicity, the cir-
cumflex is put over the S.)

The tracker operates in a loop with the following
major steps: Prediction, Projection, Measurement, and
Adjustment, as shown in figure 1. These steps are
described briefly in the following paragraphs and in
detail in sections 4-7.

Prediction receives the values of p, R, v, ~0, and
S (and the time for which these are valid) produced
by a previous adjustment when tracking or available

Visual Tracking of Known Three-Dimensional Objects 247

Time of
mlage(s)

I
I

PREDICTION
~,~.~,~,~

Start ~p R, v, m, S

Output 4 1 '
I

/
L I

ADJUSTMENT
N,C

ObJect Camera
model model(s)

i I

~ / PROJECTION

, , y , B

EASUREMENT

I
I
I

Image(s)

Fig. 1. Block diagram of the tracker. Sohd arrows denote program
flow and data; dashed arrows denote data only. Mathematical sym-
bols are defined in the text.

as initial conditions when starting. The time at which
a new image is obtained is noted, and the object state
is extrapolated to this time to produce the predicted
values 1), R, 3, ~, and their uncertainties as represented
by the covariance matrix S. (It is not necessary for the
new image to be available yet; only its lime is needed
at this point. The image is used only in Measurement.
However, because of the hardware, the current tracker
freezes the image in an image buffer, notes the time,
and then performs Prediction, Projection, and Measure-
ment while the image is waiting.)

Projection uses this predicted information, the given
object model, and the given camera model to compute
the visibility of the object vertexes and edges, and, for
vertexes on edges predicted to be visible, to transform
the vertex positions from object coordinates to fixed
coordinates. These predicted vertex (or other point-
feature) positions are then projected into the image
plane to produce their image coordinates x, and Yi and
the partial derivative matrices B, of these image coor-
dinates relative to the object pose.

Measurement uses the projected vertex information
and the edge-vertex connectivity information in the ob-
ject model to search the new image for brightness edges
near the predicted positions of object edges. (The
vertexes themselves or other point features could be
used here instead of or in addition to the edges. The
implemented version currently provides a choice be-
tween edges or lights.) The discrepancies between the

predicted and measured positions, along with the par-
tial derivatives, are used to compute the 6x6 matrix
N and the 6 ×1 matrix C, which consist respectively
of the coefficients and the "constants" in the (partially
reduced) normal equations [Mikhail 1976] which would
produce a linearized least-squares adjustment of object
pose P based on information obtained at this time only.
(The corrections would be N-1C, with covariance
matrix N -~. However, in general N might be singular,
so that there would not be a solution for this time only;
but the actual computations in Adjustment use whatever
information N and C contain, combined with the in-
formation from other times in the filtering action.)

Adjustment combines the information from
Measurement and Prediction to produce new values of
p, R, v, ,.,, and S valid for the time of the image just
used in Measurement. Giving the predicted values ap-
propriate weight in this adjustment (according to their
covariance matrix) produces the filtering action. The
new adjusted values are used as output and as input to
Prediction to repeat the process.

If more than one camera is used, the pictures from
the different cameras could be taken simultaneously.
In this case, each time through the above loop, Projec-
tion would project the predicted data into all of the im-
age planes and Measurement would process each im-
age and collect the results into one N matrix and one
C matrix. These matrixes would contain the stereo in-
formation resulting from the use of multiple cameras.
However, if the different cameras take their pictures
at different times, then on different times through the
loop different cameras would be used, with the ap-
propriate camera model being used in Projection and
the appropriate image being used in Measurement each
time. In this case, the N and C matrixes on each time
through the loop would contain information from only
one camera. However, because of the memory of old
information caused by the inclusion of the predicted
data in the adjustment, stereo depth information would
still be produced. (This fact is discussed further in sec-
tion 9).

4 Prediction

4.1 Extrapolation Based on Angular Velocity

When a new picture is taken during tracking, the
predicted object pose for the time of the picture must
be computed from the previous data (from the previous

248 Gennery

adjustment or from input initialization data). In the cur-
rent tracker, this extrapolation (over a time interval ~')
is based on the assumption that the linear acceleration
and angular acceleration are random (that is, they con-
sist of white noise). (This random signal driving the
filter is often called "excitation" or "plant noise")
Specifically, they are assumed to have constant power
spectra denoted by a and c~, respectively, in each dimen-
sion. These denote mean squared value per unit fre-
quency band, considering both positive and negative
frequencies. (If only positive frequencies are con-
sidered, the power spectra are 2a and 2o~.) This
assumption cannot be literally true, since a constant
power spectrum implies an infinite variance. However,
all that is required for reasonable accuracy is that the
power spectrum be constant to a frequency considerably
higher than the rate at which the pictures are taken.
An assumption more closely aligned with reality could
be devised for most actual situations, but it would be
quite different for different situations. (For example,
if there tended to be extended periods of fairly high
acceleration, it would be better to assume random third
derivatives of pose with respect to time, instead of sec-
ond derivatives. The accelerations would then have to
be included in the object state, and S would be an 18×18
matrix instead of 12x12.) The assumption used here
at least leads to simple results. (The filtering action that
it produces is discussed in section 9).

Since acceleration is random, its expected value at
all times is zero. Thus the extrapolation of pose itself
(ignoring for a moment its accuracy) uses the previous
estimates of the velocities as constants over the time
~- elapsed since the previous picture. Therefore, the
predicted values of position, velocity, and angular
velocity are obtained from the old adjusted values as
follows:

= p + rv (2)

= v (3)

= to (4)

The orientation is extrapolated by first computing
a quaternion H corresponding to the rotation during the
elapsed time ~- as follows (from equation (A3)):

~C LOT LO~ H = os -~-, u sin (5)

where c0 is the magnitude of the vector ~o, and u is the
unit vector in the direction of to. Then the predicted

orientation is obtained by the following quaternion
product:

= HR (6)

Now we consider the accuracy of the above predicted
quantities, as represented by their covariance matrix
S. This can be extrapolated from S by considering three
effects: the effect on pose of the uncertainty in the
velocities used to do the extrapolation in (2)-(6), the
effect of the rotation (represented by H) that occurs dur-
ing the extrapolation interval, and the effect of the ran-
dom acceleration that occurs during the extrapolation
interval. The first two of these effects can be summar-
ized by a 12×12 transition matrix J that shows how the
extrapolated values of the object state (pose and
velocities) depend on the previous state. (By the usual
rule of covariance propagation, the covariance matrix
resulting from this transition then would be J S f .) J
is as follows:

I
I 0 rI 0]

j = O H 0 rG
0 0 I 0 (7)
0 0 0 l

where I is the identity matrix (here 3 x3), 0 is the zero
matrix (here 3 ×3), H is the rotation matrix correspond-
ing to the quaternion H (computed according to equa-
tion (A5) or (A6)), and G will be defined below. The
off-diagonal terms in this expression for J take care of
the first effect mentioned above, and the presence of
the H and G matrixes instead of identity matrixes takes
care of the second effect. In the case of H, this simply
rotates any orientation error vector into the new orien-
tation. However, the effect of an error in the angular-
velocity vector on the new orientation, as given by rG,

is more complicated and will now be discussed.
An error in angular velocity at any time during the

extrapolation interval ~- produces an error in orienta-
tion at that time, which is then rotated (assuming it is
an infinitesimal orientation error) by the amount of rota-
tion occurring in the remainder of the extrapolation in-
terval, in order to produce the effect on the final orien-
tation. Therefore, the total effect on the final orienta-
tion of a constant angular velocity error over the en-
tire interval is produced by the matrix product of G
and the angular velocity error vector, times r, where
G is the average value (over the extrapolation interval)
of the rotation matrix that represents the rotation over
a portion of the interval. That is,

Visual Tracking o f Known Three-Dimensional Objects 249

1 £ 7
G = r H(r), dt (8)

where H(r) represents the value of H computed accord-
ing to equation (5) for any particular value of r, and
the integration is over the actual extrapolation interval
r. Since the extrapolation process assumes that o~ is con-
stant over this interval, the integral in (8) can be
evaluated in a straightforward manner (by using (A6))
to produce the following:

G =
I (1 - c)u~ + c (1 - c)ulu2 - su3 (1 - c)ulu 3 + su2q (9)

I
(1 - c)ulu 2 + su 3 (1 - c)u2 2 q- c (1 - c)u2u 3 - SUll

!
(1 - c)u~u~- su2 (1 - c)u2u3 + su~ (1 - c)u~ + c]

where

s = 2 sin2 __c°r
~r 2

2 wr c0r
e = - - sin cos - -

c0r T 2

and where Ul, u2, and u3 are the components of u (the
unit vector in the direction of ¢0). Note that by taking
limits, when wr = 0, G = I.

Now the third effect mentioned above (the effect of
the random acceleration that occurs during the ex-
trapolation interval) will be discussed. At first, con-
sider only scalar position x, velocity ./, and accelera-
tion 5/, where x and :/represent only the changes from
the beginning of the extrapolation interval, for an ar-
bitrary variable x. Thus the values at the end of the ex-
trapolation interval r are

£r
Y: = 2 dt (10)

forx x = dt

fo = Jcr - tJidt

= J id t - tJi dt

fo = (r - 02 dt (11)

From the above two equations the covariance matrix
of position and velocity can be derived as the expected
products of these values, since their expected values
are zero. In this process we use the fact that the expected
squared value of 5i dt is a dt (because the expected
squared value of the mean of 5/over any interval At is

a/At , since a is assumed to be the constant power spec-
tral density of 2). Thus,

o= o~ (r - 0 1 a dt

[1/3ar3 1/2ar2] (12)
= L1/2a-r 2 ar d

Generalizing this to three dimensions means using a
3×3 matrix instead of a. However, in the present
tracker it is assumed that the different components of
the random acceleration vector are uncorrelated and
tend to be equally large. Therefore, the above com-
ponents of the covariance matrix are just multiplied by
the identity matrix to produce the 3x3 terms to be
added to the covariance matrix of p and v. Similarly,
the same is done for orientation ~ and angular velocity
¢0, except that a (the power spectrum of angular ac-
celeration) is used instead of a. Strictly speaking, the
effect of the rotation during the interval r should be
included in the orientation and orientation-angular-
velocity correlation. However, the main additive terms
driving the filtering action are the terms affecting
velocities, which then affect pose through the off-
diagonal terms of J on subsequent iterations, and the
other additive terms usually have only a minor effect.
Also, usually the rotation during the interval is small,
and thus its effect through these terms is doubly small.
Therefore, this effect is neglected for simplicity. (Such
other additive terms are usually omitted altogether in
Kalman filter applications. The effect of leaving them
out is discussed elsewhere [Gennery 1990].)

Therefore, combining all three effects on the
eovariance matrix of the predicted quantities produces
the following result:

= JSJ T +

1 ar3i

0

ar2I

0

1 0 ~ ar2I 0

~ oer3I 0 1 c~r2I (13)

0 arI 0

~ o~r2I 0 otrI

However, because ,1 is so sparse, the above matrix pro-
duct is expanded in terms of 3 x3 matrixes, according
to the definitions of g in (1) and J in (7), to produce
the following:

1 3 Spp = Spp q- 7(Spv -[- S~v) -[- T2Svv + ~ a r I (•4)

Sp¢= Spc, H T + rSp,~G T + r(HS~v) T
+ r2SwG T (15)

250 Gennery

So, = H S , , H v + r[HS,,oG r + (HS,,oG+) +]

+ r2GS,o,oG+ + 1 ~r3i (16)
3

Spy = Spy + rSw + la r2I (17)
2

S~v = HS~v + r(SwGT) T (18)

g. = + a a (19)

Sp,o = Sp,o + rSv,~ (20)

l c~r2i (21) SO~, = HSo,0 + rGSo, o, +

Sv~ = Sv,~ (22)

S ~ = S ~ + ~rI (23)

These equations are used in the actual numerical com-
putations, for efficiency.

4.2 Changes for Extrapolation Based on Angular
Momentum

If it is assumed that torque instead of angular accelera-
tion is random, the following changes are needed.
(These have not yet been implemented in the tracker.)
Angular momentum), would be used instead of angular
velocity ~0 in equation (4), in equation (69) in section
7, and in the subscripts of S (and similarly for the
predicted quantities). The meaning of a would be the
power spectrum of torque instead of the power spec-
trum of angular acceleration. The origin of the object
coordinate system should be at the object center of mass
in this case. To do the extrapolation of orientation, the
computations in section 4.1 need to be changed, as
described below.

The relationship between angular momentum and
angular velocity is

X = Mo~ (24)

and thus

to = M-iX (25)

where M is the moment of inertia matrix of the object
(a tensor of the second rank), expressed in the fixed
coordinate system. In the object coordinate system, the
moment of inertia matrix M' is constant and is assumed
to be known. From it, M can be computed as follows,
by using the rotation matrix R corresponding to the
quaternion R:

M = R M ' R v (26)

and thus

M-1 = R(M,) - IR v

since R -1 = R T.

(27)

One way of proceeding is to integrate Euler's equa-
tions (see Goldstein [19801). However, if the rotation
that occurs in the interval r is small, a numerical in-
tegration with a step size of r can be done with
reasonable accuracy, and things simplify considerably.
(Even though the angular velocity would then be
assumed to be constant over extrapolation interval r,
the filtering action usually extends over a considerably
longer interval, as explained in section 9, and the
angular velocity will vary over this interval because of
the effects of a changing R acting through (27) and
(25).) All that needs to be done is to use ~0 from (25)
in (5), and to use GM -1 instead of G in (7) and (14)-
(23). This substitution for G does the error propaga-
tion correctly from the angular momentum, since from
(25) M -1 is the transformation matrix from angular
momentum to angular velocity. In order to achieve
greater accuracy with this method, the interval r could
be broken into smaller intervals, with the above pro-
cess repeating (producing a more accurate numerical
integration). A compromise might be to do this (or to
use Euler's equations) only for the computation of
and ~, and to use the one-step (or an inter2mediate-step)
error propagation as above to compute S, in order to
save time. In this case, better accuracy in the error prop-
agation could be achieved by using the average of to
and g0 instead of o~ in (5).

The use of random torque instead of random ac-
celeration would be appropriate for a satellite freely
tumbling in space. The torque on it would be very
small, and thus ot could be made very small, with this
formulation. (Perhaps it even could be zero, although
some allowance probably should made for inaccuracies
in M ' and for the effect of nonlinearities on a possibly
large error in initial conditions.) Even though the
angular momentum of the satellite would be nearly con-
stant, the angular velocity would not be, unless the
satellite were rotating about one of its principal axes.

5 P r o j e c t i o n

The predicted object pose, the object model, and the
camera model are used to compute which features are
expected to be visible from the camera position. At

Visual Tracking of Known Three-Dimensional Objects 251

present, for the purpose of the visibility computation
only, the tracking program assumes that the object is
convex. Therefore, this computation simply notes which
faces are turned toward the camera; and all vertexes,
other point features, and edges associated with these
faces are assumed to be visible (except for faces that
are seen nearly edge on, which are considered ques-
tionable and thus are not used). However, in the future
we may implement a process for determining visibil-
ity of features, which will work in the general case in-
cluding concave objects. This probably will be derived
from Hedgley's hidden-line algorithm [Hedgley 1982],
but with some improvements to take advantage of t h e

fact that not everything needs to be computed every time
while tracking. For example, since the object is rigid,
only certain faces can hide certain other faces, and the
corresponding information can be precomputed as part
of the object model. Also, while the object is moving,
not much changes from one image to the next with a
given camera, and thus some things would not have to
be recomputed. When the features used are edges, for
any edge which is partially visible the corresponding
vertexes will be used below.

The position of vertex (or other point feature) i in
object coordinates Oi' is given as part of the object
model. By using the predicted data, this is rotated to
produce the vector from the object origin to the vertex
in fixed coordinates o,, and is translated to produce the
vertex position in fixed coordinates ri, as follows:

^

Pi : Rp,' (28)

ri = P + JOe (29)

where R is the rotation matrix corresponding to the
quaternion R.

Then each vertex is projected into the image plane
to produce its image coordinates x, and Yi, as follows
in the currently implemented tracker:

(r , - C o) ' C h
xi = (30)

% - co) • C a

(ri -- %) " C v y, = (31)
(r , - co) • ca

where Cc, ca, %, and c v constitute the camera model
as defined by Yakimovsky and Cunningham [1978], and
are assumed to be known from a previous calibration,
as described by Gennery et al. [1987]. (This camera
model includes the central projection and a general af-
fine transformation in the image plane.) Here Cc is the

camera position, C a is a unit vector perpendicular to
the image plane (towards the scene), and the c h and c v
vectors combine information that specifies the direc-
tions in the image plane, the scales, and the zero off-
sets of the x (horizontal) and y (vertical) axes, respec-
tively. Additional terms for lens distortion can be in-
cluded in (30) and (31), and we now can include them
in our camera calibration [Gennery 1991]. But, since
their effect is small for reasonable lenses, these lens
distortion terms can be omitted from the partial
derivatives below with no appreciable loss of accuracy.

In order to do the adjustment, the partial derivatives
of the image coordinates with respect to the object pose
will be needed. The partial derivatives with respect to
the position of the point in space can be obtained by
differentiating (30) and (31), to produce the following:

OXi_ ~_ eli_ ~_ fiCa] Y (32)
Or i ~(ri -- Cc) • c a

Oyi_ ~_ C v _ y + c a ~ r (33)
Ori ~-(~ - c-~ : ca

where the transpose is indicated because the derivative
of a scalar with respect to a vector is conventionally
considered to be a row matrix. The derivatives with
respect to object position p are identical to these,
because of (29). The derivatives with respect to orien-
tation can be found by considering the effect of an in-
finitesimal object rotation 0. It will cause a point on
the object to move by the vector 0 × Pi. The dot pro-
duct of this with (32) produces the effect of 0 on xi,

Ax, = 0 × p, " L_ 0r,_2 = p' × (._ 0r i.) " 0 (34)

and similarly for Yi, where we have used the fact that
the vectors in the scalar triple product may be cycliely
permuted. The expression dotted with 0 then consists
of the partial derivatives of x~ with respect to 0. These
results can now be combined to produce the 1×6
matrixes of partial derivatives of xi and Yi with respect
to position p and orientation increment 0 (together
denoted P), which can be assembled into a 2×6 matrix
Bi, as follows:

[0x 1
"[:y'//= 1 [ari L_ar~2

252 Gennery

If the images are obtained from a television camera
that is raster scanned in real time with continuous ex-
posure, the different parts of the changing image will
be sampled at different times. (It is assumed here that
noninterlaced scanning is used.) Since the normal scan
is from top to bottom, the first line of the picture cor-
responds to a time almost one frame time (except for
the vertical blanking time) earlier than that of the last
line. (The image also is blurred over the exposure time
of approximately one frame time. The time referred to
here is the center of this exposure time.) If the time
between sampled images (r) is much larger than the
frame time, this time shift probably is not important.
However, if r is small and the object is moving rapidly,
it could cause significant error. An approximate cor-
rection for this effect can be done by incrementing the
xi and Yi values from (30) and (31) according to their
projected velocities times the amount of the time off-
set. This can be done by using the matrix of partial
derivatives B~ defined above, to produce the following
corrections to be added to xl and y,:

= Bi 6t

LOyd
(36)

where 6t is the time offset from the nominal time for
the frame (preferably the center of the integration time
of the center line, which is approximately the time of
the previous vertical sync pulse) to the time of this scan
line as predicted by y~ from equation (31). Doing only
this ignores the nonlinear effects of the propagation
from 3D pose to 2D position, the fact that the
discrepancies computed in section 6 are now a func-
tion of the velocity vectors in addition to the object
pose, and the fact that the corrected Yi instead of the
uncorrected y~ should be used in computing 6t.

However, if the corrections were so large that these ef-
fects became important, the image probably would be
blurred so much that the feature detectors wouldn't
work anyway. The corrections from (36) are used in
the current tracker, although there is a provision to omit
them. (The corrections would be omitted if the camera
is shuttered or the scene is illuminated by strobe lights,
so that the exposure is effectively instantaneous. The
nominal time for the frame then would be the time of
the open shutter or strobe flash, which should occur
during the previous vertical blanking interval.)

6 Measurement

61 Point Features

If the features to be used consist of points (such as
vertexes or lights), then their predicted positions x, and
y, and their partial derivatives, as computed in Projec-
tion, are used in a straightforward way, as in a stan-
dard linearized weighted least-squares adjustment
[Mikhail 1976], to produce the 6×6 matrix N (coeffi-
cients of the normal equations) and the 6×1 matrix C
(constants in the normal equations), as follows:

N = EB, T W, B, (37)

C = ZBvw, IXy-Xl]y, (38)

where x and y are the measured position of the feature
which has been found near the predicted position (for
lights, currently obtained by thresholding and com-
puting the centroid), W, is a 2×2 weight matrix
(which should be the inverse of the covariance matrix
of the measured feature position), and the summations
are over all of the features.

6 2 Preliminary Computations for Edges

The tracker usually uses information all along the
predicted edges of the object, derived from brightness
edges detected in the image. Thus N and C need to be
computed in a different manner from the above. (It
would of course be possible to use both point and edge
information, in which case, N and C would be com-
puted as the sum of the values from equations (37) and
(38) above and (60) and (61) below.)

First, the predicted edge must be computed. The pair
of predicted vertex positions xi and Yi that are at the
opposite ends of each object edge (according to the ob-
ject model) will be indicated here by replacing the
subscript i with the subscripts 1 and 2. Thus the length
of the predicted edge and its direction cosines are

l = ~(xz - xl) 2 + (Y2 - Yl) 2 (39)

X 2 - - X 1
c x - (40)

l

Y2 - Yl (41)
cy - l

Visual Tracking o f Known Three-Dimensional Objects 253

Next, a coordinate system is defined aligned with
the predicted edge, such that g is the distance parallel
to the edge from point 1 and h is the perpendicular
distance from the edge. Thus, for any point x, y:

g = Cx(X - x l) + Cy(y - Yt) (42)

h = Cx(Y - Yl) - cy(x - x l) (43)

Note that g and h form a rectangular coordinate system
in pixel space, and not in the physical space of the ac-
tual image plane, since x and y are measured in pixels,
which may not be square. But that is ordinarily what
is wanted, since the edge detector is defined in terms
of the sampled data, and thus its x and y measurements
in pixel space will tend to be equally accurate and to
have uncorrelated errors.

The partial derivatives of h with respect to the
parameters (object pose) will be needed. At the ends
of the edge, the negative of these will be denoted by
Al and A2, which can be obtained by differentiating
(43) to produce (since at end l, x - x~ ~- 0 and y -
Yl = 0, and thus the derivatives of Cx and c r can be
ignored, and similarly at end 2)

Ox---2~ (44) As = cxOY# - Cy op

A 2 = c OY2 0x2 (45)
x o P -- Cy ~ p

where the derivatives with respect to P are obtained
from Bi (see (35)). (The reason for changing the sign
is that h represents an observed value minus an adjusted
value, and the partial derivatives in the usual least-
squares adjustment formulation are of the adjusted
value.) If needed, the derivatives of h at any point along
the line could be obtained by a linear interpolation of
the values at the end points, as follows:

Oh

OP
l - / A2 (46) ~- gA1 -

If lens distortion is included in the camera model,
long object edges should be broken into segments short
enough to project accurately as straight lines, for use
in computing h from (43). However, the other quan-
tities, including the partial derivatives, do not need high
accuracy, and thus for speed they can be computed
without considering this segmentation, unless the
distortion is very large.

6.3 Simple Edge Measurement

The edge information can be measured and collected
in a variety of ways, differing in their sophistication
in the use of the available information and in the amount
of computation required. In the currently implemented
tracker, brightness edges in the image are detected by
using a hardware edge detector called IMFEX [Esken-
azi & Wilf 1979], which is similar to the Sobel operator
with thresholding and thinning and which runs at the
usual video rate. The tracker uses this edge informa-
tion in the following very simple manner.

The portions of the predicted line within about five
pixels from the end points (vertexes) are ignored, in
order to avoid areas where the edge detector will be
less accurate because of conflicting edge information.
For the remaining portion, points spaced at about three-
pixel intervals are selected, since the edge operator is
three pixels wide. For each of these points, a search
out to five pixels away is made for the nearest detected
edge element, with the search being done either in the
x or in the y direction, whichever is more nearly
perpendicular to the predicted edge. If an edge element
is detected on a particular search, its x and y image
coordinates are converted to g and h by (42) and (43).
The values needed below in (57) and (58) for measure-
ment u and weight w are

u = h (47)

(48) Wa
W --

O -2

where ~ is the assumed accuracy of the measured edge
positions, and where wa is the a priori weight for this
edge. Each a priori weight can have a value from 0 to
1. Currently, for edges that form the boundary between
the object and the background as seen from the camera,
the a priori weight is an input constant, and for each
interior edge the a priori weight is computed as the
maximum of a color weight and a shape weight. The
color weight varies from 0 to 1 linearly over a specified
range of difference in reflectance of the two faces as
specified in the object model. The shape weight varies
from 0 to 1 linearly over a specified range of the
negative of the cosine of the angle between the two faces
as specified in the object model. (Therefore, more
weight is given to edges that should be easier to detect
because of different reflectances or orientations of the
faces that meet at them.)

254 Gennery

6.4 Advanced Edge Measurement

One obvious improvement would be to use the edge
direction information from the edge detector, in addi-
tion to the edge strength information. If the measured
direction differs too much from the predicted direction,
the edge element should not be used. (If the edge arises
from a reflectivity difference between coplanar non-
specular faces in the object model, it would be desirable
to require also that the polarity of the edge be correct.)
Instead of an all-or-nothing choice here, the edge ele-
ment could be given a variable weight according to how
closely the directions agreed. Similarly, the edge
strength could influence a variable weight, instead of
simply being thresholded. A search accurately approx-
imating (to the nearest pixel) the perpendicular to the
predicted edge could be used. Also, the portion rejected
at the end points could be made variable, according to
the angle at which predicted edges meet at the vertex.

Some further possible improvements concern the ef-
fect of the distance of the detected edge element from
the predicted position (h) and of the number of edge
elements that might be found on a given search (along
a perpendicular from a particular point on the predicted
line). (The present program uses only the nearest one
and gives it constant weight unless it is too far away,
in which case it is ignored completely, as previously
stated.) One way of including this extra information that
is in some sense optimum will now be described.

First, the variance of h, considering both the
measurement errors (whose standard deviation is or) and
the prediction errors (due to the uncertainty in object
pose, whose covariance matrix is Spp), is

Oh ^ O~j~p~ v = a 2 + ~-~ Spp (49)

By using (46), this can be rewritten as follows:

0 2 = 0 -2 + A l S p p A x

+ 2(AlgFpA ~ - A m gppA~)

^ r g2
+ (AlSppA1 r -- 2AlSppA ~ + AzSppA2) Tf (50)

which is a second-degree polynomial in g/l, whose
three coefficients can be precomputed before the ob-
ject edge is examined.

Then, for each edge element detected at a distance
h from the predicted edge, the relative weight/3, which

is equivalent to a probability density function assum-
ing that the errors have the normal (Gaussian) distribu-
tion, can be computed as follows:

/ 3 - "YWa exp - (51)
2,ff~-r oh

where 3' is a factor to take care of the effects of edge
direction and magnitude previously discussed (= 1 for
a strong edge in exactly the right direction), and where
Wa is the a priori weight defined in section 6.3. (The
Gaussian function in (51) could be approximated by a
table lookup, for speed.) These values would be used
to compute the following weighted moments:

m0 = P43 (52)

ml = P43h (53)

m 2 = ESh 2 (54)

where the summations are over all edge elements found
in a particular search (along a perpendicular to the
predicted edge). The search would extend sufficiently
far to make/3 negligibly small (perhaps 4ff h in each
direction).

Finally, these moments would be used to compute
the combined measurement and its absolute weight, as
follows:

ml
u - (55)

m0

m0 w = (56)
(f + mo) I02 + m2 2 - u

mo

wheref is a given quantity that represents the a priori
probability density of false edge elements being detected
(due to extraneous markings or shadows on the object
or noise in the image). The justification of (55) and
(56) is as follows. The expression for u is just the
weighted average of the detected edge-element posi-
tions, and thus produces a reasonable value to use for
the combined measurement. In the expression for w,
the second expression in parentheses in the denominator
denotes the accuracy (variance) of the measurement.
This consists of two parts: the a priori variance 02, and
the variance about the mean of the detected edge
elements m2/m o - u 2. (This latter effect is included
because, if several elements have been detected spread
over a wide area, it becomes very uncertain where the
true edge is.) The reciprocal of this total variance is
then the appropriate weight to use in a least-squares

Visual Tracking of Known Three-Dimensional Objects 255

adjustment. However, the factor mo/(f + mo) is in-
cluded so that, if the only elements detected are so far
away from the predicted position that it is more likely
that they are extraneous features rather than the desired
object edge, the weight is reduced accordingly. (For
example, i f f = 0.01, which means that an extraneous
edge would be expected about once every 100 pixels
on a one-dimensional scan, the Gaussian function is
equal to f a t h = 2.72(r h. Thus, anything beyond this
point would not get much weight; but if an edge ele-
ment were detected well inside this point, it would get
nearly full weight, since it likely would be the true
edge.)

This improved method of collecting the edge infor-
mation (according to (51)-(56)) would slow down the
tracker somewhat if done in the same computer.
However, a parallel or pipelined image-processor device
such as PIFEX [Gennery & Wilcox 1985] would be able
to implement, at high speed, improved edge detectors
and an approximation to the above improved edge-
collection technique. Implementing these changes in
such a device would make the tracker more robust and
also slightly faster, since the search in effect would be
done in this device also.

65 Combining Measurements from All Edges

The measurements u and weights w obtained by one
of the methods in sections 6.3 and 6.4 must be collected
into an overall solution. One way to do this would be
to use them directly in the usual equations for N and
C, considering u to be the observations and Oh/aP to
be the partial derivatives of the observed quantities with
respect to the parameters. However, this would require
computing the 6x6 components of N and the 6xl com-
ponents of C for every u, which currently is every third
pixel along the predicted object edges, and summing
over all of these values. A much faster way is to col-
lect the information from each predicted edge, which
requires summing only a 2x2 matrix and a 2xl matrix,
and then combining this information into the overall
solution by computing the larger matrixes only for each
complete predicted object edge and summing over
them. In effect, what is done is to fit a straight line
to the measurements along each predicted object edge,
and then to combine all of these line fits into an overall
solution. Under the linear approximation, which is valid
if the fitted line is close to the predicted line, these

methods are mathematically equivalent. The two in-
termediate parameters to be adjusted are the values of
h at the two end points, that is, by how much the fitted
line misses the predicted vertex at each end. The
weighted least-squares fit for these is

g g (57) w = ~ w 1 - - [7 g
7

U = 2 wu (58)
g

7

Iht I = (59) W- 1U
h2

where the summations are over all the points along the
predicted edge for which u and w were computed. W
is the weight matrix (inverse of the covariance matrix)
of the resulting h i and h 2 values.

These results can now be used in the overall solu-
tion, by using the facts that A1 and A2 as defined in
equations (44) and (45) represent the partial deriva-
tives of h 1 and h 2 with respect to the parameters, and
W[h~ h2] r = U. Thus, in the usual normal equations
of a weighted least-squares adjustment ND = C, where
D represents the corrections needed to the parameters
(without filtering), N (6x6) and C (6xl) are as follows:

E'I N = E[AI A~IW (60)
A2

C = 2 [A~ A~]U (61)

where the summations are over all of the predicted
edges. Notice that hi and h2 themselves are not used
in (61), but only their weighted values U. Therefore,
even if only one point is found along an entire predicted
edge, W and U still contain useful information,
although W is singular and thus hi and h2 are unde-
fined in this case. It is not necessary to compute (59),
unless it is desired to check hi and h 2 for reasonable
values. (The present tracker makes a crude check of
this sort, but doing so is not very important, since most
wildly erroneous measurements are prevented by not

256 Gennery

using edge elements far from the predicted edge.
However, h 1 and h2 are used in computing one of the
diagnostic quantities described in section 8.)

Some comments about efficiency in computing equa-
tions (57), (58), (60), and (61) can be made. Since small
matrixes are involved here, efficiency can be gained
without too much effort by multiplying out the matrix
products and dealing with scalar quantities. Further sav-
ings can be made by using the fact that W and N are
symmetrical matrixes. For example, in the summation
in (60), only the 21 unique elements of N need to be
accumulated. After the summations are complete, the
15 elements on one side of the main diagonal can be
copied to the other side to complete the 36 elements
of the matrix.

7 Adjustment

The N matrix computed in Measurement represents the
combined weights of adjusted values of pose, and C
represents the weighted adjusted values. That is, if no
filtering were desired, the weighted least-squares solu-
tion for the six parameters, ignoring the predicted
values except as initial approximations to be corrected,
would apply the correction N-1C to the predicted
values, and the accuracy of the results would be
represented by the covariance matrix N -J.

The velocities are included in the adjustment by con-
sidering there to be twelve adjusted parameters, con-
sisting of the column marixes P and V, where P is com-
posed of the three components of position and the three
components of incremental orientation, and V is com-
posed of the three components of linear velocity and
the three components of angular velocity. The
measurements which produce N and C above contribute
no information directly to V. However, the predicted
values P and f / c a n be considered to be additional
measurements directly on P and V with covariance
matrix S, and thus weight matrix ~-1. Therefore, by
computing the vector mean [Mikhail 1976] (least-
squares with measurements directly on the parameters)
of the corrections to [~ and ~¢, the adjustment including
the information contained in the predicted values in
principle could be obtained as follows:

s II: °0t +'t (62)

(63)

However, using (62) and (63) is inefficient and may
present numerical problems, since the two matrixes are
to be inverted are 12x12 and may be nearly singular.
If S and S are partitioned into 6 x6 matrixes according
to (1), a mathematically equivalent form can be pro-
duced by using the following equation (an identity if
N and Svp are square and the same size):

(I + SppN)-lSpp CI + SppN)-lSpv]
[(I + SppN)-ISpv] T S w - S~vN(I + SppN)-lSpv

(64)

which is proved in appendix B.
Substituting (64) into (62) and (63), using the defini-

tions in (1), and replacing P and V with their compo-
nent vectors produces

Spe = (I + SppN)-tSpp (65)

Svv = (I + SvvN)-ISpv (66)

S w = S w - S~,vN(I + SvvN)-lSpv (67)

E l:Eil+ vc
where d and 4~ are the corrections needed to the pre-
dicted position and orientation to produce the adjusted
values. (These are shown in this manner because orien-
tation must be handled differently from the others, as
shown below.) Not only is this form more efficient com-
putationally, but the matrix to be inverted (I + SppN)
is guaranteed to be nonsingular (unless Spp or N is in-
finite), because both Spp and N are nonnegative
definite. Discussion of the relative efficiencies of these
two forms and the usual form of Kalman filters is pro-
vided in section 9.

Since Spp and S w are symmetrical matrixes, a

Visual Tracking of Known Three-Dimensional Objects 257

small amount of time could be saved by utilizing this
fact in the above computations. Even if this is not done,
because of numerical error these matrixes must still be
forced to be symmetrical, perhaps by averaging each
matrix and its transpose as produced by (65) and (67).
(These statements would apply to the whole S matrix
if (62) were used.) The reason this is necessary is that
otherwise numerical error would gradually accumulate
over many iterations, causing the matrixes to depart
from symmetry and producing large errors. (Analytic-
ally, if S starts symmetrical, it will always remain sym-
metrical through the computations in the tracking loop.
But with finite precision, this does not happen.)

The adjusted velocities were obtained above in (69).
The adjusted position is

p = ~ + d (70)

The orientation correction vector 0 must be used to
produce the adjusted orientation quaternion R from the
predicted orientation quaternion/~. Since O is con-
sidered to represent an infinitesimal rotation, the quater-
nion corresponding to it can be derived from equation
(A3) by using the small-angle approximations for the
trigonometric functions, to produce

= (1, ~0) (71) F

Then the quaternion product F/~ gives the adjusted
orientation, except for normalization. The normaliza-
tion is needed both to correct for the fact that F is not
exactly normalized (because of the small-angle approx-
imation) and to correct numerical error that otherwise
would accumulate over many iterations. Thus,

Fk
R - (7 2)

~/norm (FR)

(The denominator in (72) is simply the square root of
the sum of the squares of the four components of the
numerator.)

The results of the adjustment are p from (70), R from
(72), v and ~0 from (69), and S from (65)-(67) accord-
ing to (1). These (along with the time associated with
the image from which they were derived) are used as
output from the program, and they are used as input
to Prediction for another iteration.

8 Performance Indicators

The tracker computes a few quantities that indicate
how closely things are conforming to expectations.
Currently, these quantities are used only as output for

diagnostic purposes. However, in the future they may
be used to change some of the parameters within the
tracker so that it can adapt to changing conditions.

One such indication is how well the detected edge
elements can be fit by straight lines corresponding to
individual object edges, according to (59) in section
6. The measure of goodness of fit in a weighted least-
squares adjustment is the quadratic form of the residuals
and weight matrix, which is the quantity being mini-
mized and which has an expected value equal to the
number of observations minus the number of parame-
ters being adjusted (the degrees of freedom of the adust-
ment), if the weight matrix is the inverse of the covari-
ance matrix of observation errors. However, this is
equal to the quadratic form of the observations (or
discrepancies in a nonlinear adjustment) and weight
matrix minus the inner product of the adjusted param-
eters (or corrections in a nonlinear adjustment) and the
vector of "constants" in the normal equations [Mikhail
1976]. This latter form does not require computing the
residuals.

Therefore, the quadratic form that indicates the
goodness of fit to an object edge is

q' = ~ wu 2 - hxu 1 - h2u 2 (73)

where the summation is over all points used along this
object edge, and where u 1 and u2 are the elements of
U (provided that there are at least two points along the
edge so that h~ and h 2 a r e determined). The number
of degrees of freedom b' associated with this is the
number of points minus two if the simple method of
(47) and (48) is used. However, if the more elaborate
method of (50)-(56) is used, this should be corrected
by multiplying by the average of the probability mo/(f
+ m0) that each detected feature is genuine. Thus,

b ' = ~ 1 - ~ 1 r~ m° (74)
f + m0

instead of k - 2, where k is the number of points
summed along the edge. Then q' and b' are summed
over all edges in the object to obtain the total effective
quadratic form q and the total effective degrees of
freedom b (not necessarily an integer, as a true number
of degrees of freedom would be), q and b are smoothed
over time with a first-order recursive filter to obtain
0 and/~, and the ratio of the quadratic form to degrees
of freedom (for both unsmoothed and smoothed values)
is computed. The expected value of this ratio is unity.
If it is considerably larger than unity, it indicates that
perhaps the data is noisier than expected. _Therefore,
it might be possible to use the value of gl/b to adjust

258 Gennery

the value of a. (At present, q, b, q/b, and ~//~ are used
as output.)

Another type of indication is whether the correc-
tions needed to object pose at each time are about what
would be expected from the assumed nature of the
measurement noise and the object acceleration. (If the
corrections are unexpectedly large, this might indicate
that the accelerations are higher than expected, if the
noise level has been verified by the above method.) This
information can be obtained by comparing the correc-
tion vectors d and ~ obtained from (68) in section 7
to their total covariance matrix, which represents the
entire range of values and not just their uncertainty. This
covariance matrix can be obtained as follows.

First, we can consider (68) to be obtained from an
equivalent least-squares adjustment in which the
measurements are Po (the pose that would be obtained
by fitting the object model to points obtained at this
time only) with weight N (and thus covariance matrix
N-l). In this equivalent adjustment, the discrepancies
are Po - P, since the predicted values P are the ini-
tial approximation for this adjustment. Therefore, in
(68) we can replace C with N(P o - P), so that the
vector of corrections is SepN(Po - P). Then, doing
covariance propagation in the usual way produces the
following for the total covariance matrix of the correc-
tions, since N -1 is the covariance matrix of Po, SPP is
the covariance matrix of P, and it is assumed that the
current measurements (leading to Po) are uncorrelated
with anything previous (leading to P):

E = SppN(N -1 + Spp)(SppN) r

= SppN(N -1 + Spp)NSpp

= SppN(I + SppN)Spp

= SppN~ + SppN)(| + SppN)-lSpp

= SppNSpp (75)

where in the second line we have used the fact that Spp

and N are symmetrical, and in the fourth line we have
substituted an expression for Spp from (65).

A suitable indicator might be the quadratic form
[d r qIT]E-l[d v 4~r] r, whose expected value is 6; or
separate quadratic forms for the position and orienta-
tion parts (each with expected value 3) might be desired
so that the effects of linear acceleration and angular ac-
celeration can be seen separately. However, to save
computation time, the program currently uses only the
main diagonal elements of E and computes the follow-
ing two quantities:

d~ + d 2 + d~
G O = (76)

ell + e22 + e33

~ = 02 + ~b~ + 02 (77)
e44 + e55 a t- e66

where the numerical subscripts refer to individual
elements of the matrix and vectors. The expected values
of ~p and ~ are unity. They are smoothed by a first-
order recursive filter and used as output. In the future,
it might be possible to use them to adjust the values
of the acceleration parameters a and c~.

9 Discussion of Filtering

The filtering action in the tracker represents an applica-
tion of Kalman fitlering. However, in the usual formula-
tion of the Kalman filter, the general equations cor-
responding to (62) and (63) are transformed by means
of the "matrix inversion lemma" [Maybeck 1979] into
mathematically equivalent but computationally different
form in which the size of the matrix to be inverted is
equal to the number of new observations instead of the
number of parameters in the state vector, although
several matrix multiplications also are then needed. In-
deed, Kalman originally derived the filter in this latter
form (but somewhat more general), directly from first
principles [Kalman 1960]. Since the number of new
observations usually is considerably less than the size
of the state vector, the latter form usually is more effi-
cient. However, here that is not the case, except for very
simple objects.

In order to make a simple quantitative comparison
of the efficiency of the various approaches, the number
of multiplications and divisions, called "operations"
below, will be used. This will be taken to be n 3 for in-
verting an nxn matrix, and lmn for multiplying an Ixm
matrix by an mxn matrix. (Including additions and sub-
tractions would not change the relative performance of
the different approaches by much).

Since (62) involves two inversions of 12z12
matrixes, it requires 3456 operations, and (63) requires
72 (not counting multiplying by the zeros), for a total
of 3528 for this approach derived directly from the
usual least-squares formulation.

The amount of computation when using the Kalman
formulation in the usual way directly on the measured
quantities depends on the number of features. For ex-
ample, consider a cube (a fairly simple object). Typic-
ally nine edges are visible, and even the efficient tech-
nique described in section 6 of collecting all of the
elements along each edge into two observations would

Visual Tracking of Known Three-Dimensional Objects 259

produce 18 observations, which is greater than the size
of the state vector (12 here, as far as the adjustment is
concerned, even though the actual state contains 13
quantities because of the redundancy contained in the
quaternion used to represent orientation). The usual
Kalman formulation (see [Maybeck 1979] or Appen-
dix B) then would require about 16,000 operations (not
counting multiplying by the zero derivatives with
respect to the velocities). Running the Kalman filter
over the edges in sequence (which is equivalent to
recursive estimation [Mikhail 1976]) would also be in-
efficient (since of the nine solutions produced at each
time point, only the last would be of any use). It would
required about 5000 operations (not counting multiply-
ing by zero). (These approaches would be efficient with
only one or two features.)

However, by using the results of Measurement here,
we can consider the observations to be direct
measurements of the 6 incremental pose parameters.
Therefore, the observations would be N-1C, with
covariance matrix N -~. With only 6 observations, the
usual Kalman equations ((B5)-(B7) for the case here),
including the computation of the inverse of N, would
require 3096 operations (independently of the complex-
ity of the object). Furthermore, as discussed in appen-
dix B, in this case the measurement matrix would con-
sist entirely of ones and zeros. Eliminating the
multiplications involving it would reduce the number
of operations to 1800 (by using equations (B8), (B9),
and (B7)). This is more efficient than using (62) and
(63) (requiring 3528 operations), but it is not as good
as using (65)-(69), as we shall see. (Since the different
forms are mathematically equivalent, it is of course
possible to transform algebraically the Kalman equa-
tions into (65)-(69), as discussed in appendix B.)

Now consider the formulation actually used here,
in which (62) was transformed into (65)-(67). The lat-
ter involve one 6 ×6 inversion and five multiplications
of 6×6 matrixes, requiring 1296 operations, and (68)
and (69) require 72 operations, for a total of 1368. This
is only 39 % as much as using (62) and (63) (and 76 %
as much as the fastest Kalman formulation described
above). This saving is possible because of the
sparseness of the matrix containing N in (62), which
in turn is caused by the fact that, although velocity is
included in the state vector, the observations are in-
dependent of velocity. This efficiency and the numerical
considerations mentioned in section 7 are the reasons
for using this formulation.

The fact that in the adjustment corrections are ap-
plied to the predicted values in order to obtain the ad-
justed values causes the solution to converge to the op-
timum solution just as it would in a standard linear-
ized least-squares adjustment. Since the prediction is
usually close to the actual pose of the object, the
nonlinearities usually are small, and thus the con-
vergence is very rapid here, if a and a are large.
Therefore, in the absence of noise and high accelera-
tions (since the prediction uses velocity), the tracker
very closely tracks the actual movement of the object,
and separate iterations at each time point are not
needed. However, the fact that the predicted values are
given some weight in the adjustment produces the falter-
ing action, because of the memory of previous meas-
urements contained in the predicted data. This filter-
ing action determines the way that the tracker responds
to noise and to acceleration, and it allows the use of
stereo with noncoincident pictures. These two effects
now will be discussed.

As in any Kalman filter, the amount of smoothing
depends on the amount of plant noise that is assumed,
here represented by the acceleration parameters a and
c~, and the weight given to the measurements, here
represented by N. If the acceleration parameters are
small (or N is small), old information is given relatively
high weight in the adjustment, and as a result there is
a large amount of smoothing. If the acceleration
parameters are large (or N is large), the effect of old
information rapidly decays, and as a result there is not
much smoothing. However, the precise nature of the
smoothing depends on the particular prediction model
used here.

In order to obtain a simple quantitative analysis of
the filter, some approximations must be made. In par-
ticular, let us assume that the filter is linear and sta-
tionary. The linearity assumption has been made
already in the design of the filter and is accurate when
the deviation between the predicted values and actual
values are small. Stationarity requires that the same in-
put points with the same accuracy and same geometry
are present at every time point, the time interval be-
tween these is constant, and sufficient time has elapsed
for these conditions to cause the covariance matrix S
to become constant. This assumption is accurate only
when the angular velocity is so small that the object
does not rotate appreciably during the time constant
of the filter and when the set of detected edge points
does not change appreciably from one time to the next.

260 G e n n e r y

When an edge comes into view or disappears from
view, the assumption of stationarity can be grossly
violated (both because of the differing data and because
of the fact that the time interval may change con-
siderably because of the differing amount of computing
needed), and noncoincident stereo violates it in a way
discussed below.

In general, the weights as stated by N are different
in different dimensions. Thus the amount of smoothing
will be different in different dimensions, with the direc-
tions of Sower accuracy being smoothed more, as they
should be. The directions for which different smoothing
is produced in general are not aligned with the coor-
dinate axes, but are aligned with the eigenvectors of
N, provided that the different dimensions are scaled
so that a and a are numerically the same in all six
dimensions. (We have previously assumed that a is the
same in all three spatial dimensions, and similarly for
ce. If the distance unit is chosen so that a and c¢ are
numerically equal, the stated condition is achieved, so
that the only thing that causes different amounts of
smoothing is N.) When things are scaled in this way,
the eigenvalues of N control the amount of smoothing
along each eigenvector, as if separate one-dimensional
filters were being used in each of these six directions
(as long as the linearity and stationarity assumptions
are accurate). (This same condition holds in the more
general case of arbitrary acceleration parameters, ex-
cept that it is not just N that determines these
directions.)

When the filtering action is analyzed quantitatively
[Gennery 1990] for a linear, stationary, one-
dimensional, second-order recursive filter of the type
used here, one result is that the time constant of the
filter is

4(~_~n 1 1/4 ct ,~ (78)

where n is the eigenvalue of N for this direction, and
where a represents either a or c~. This approximation
is reasonably accurate when a is sufficiently small so
that c~ >- r. The time constant c t is the time required
for the amplitude of oscillation of the filter output
to decay by a factor of 1/e or for the phase of the
oscillation to change by one radian, after an initial in-
put disturbance. (Within the accuracy of the approx-
imation, these two are equal for this filter.) The time
constant thus gives a rough indication of the amount
of smoothing.

When only one camera is used, the depth informa-
tion comes only from the known size of the object and
is not very accurate, since the object usually subtends
a small angle at the camera. Therefore, the covariance
matrix Sup represents a long thin ellipsoid aligned with
the camera-object line. (Similar remarks apply to the
other portions of S.) If two or more cameras were used
in an ordinary least-squares adjustment, the resulting
Sop matrix would be the inverse of the sum of the in-
verses of the Spy'S that would result from each camera
alone. If the ellipsoids from each camera intersect at
an appreciable angle, the amount of uncertainty in the
depth direction is greatly reduced, and the resulting
ellipsoid is not so elongated. (This is just ordinary
stereo action.) If the multiple cameras are used at dif-
ferent times, the error ellipsoid will grow between the
times of successive pictures. If the acceleration
parameters are small, it will not grow very much, and
thus the result is nearly the same as in the ordinary
stereo case and the approximation in (78) above is ac-
curate, provided that for N and r the average of their
values over all of the cameras is used. However, if the
acceleration parameters are large, the error ellipsoid
will grow by a large amount between pictures, and thus
combining two of them may not reduce the depth uncer-
tainty much. This is reasonable, since, if the object
could randomly accelerate that much, its position could
change unpredictably so much from one picture to the
next that the two pictures could not be combined to pro-
duce reliable stereo information. In this case, the filter
is not stationary.

The choice between the two ways of using multiple
cameras (simultaneous or sequential) depends on the
available hardware and timing considerations. If only
one image can be stored at a time, then the sequential
method (one camera on each time through the loop)
must be used. If the object model is complicated and
there are many features to find in the picture, Projec-
tion and Measurement will occupy most of the com-
puting time, and thus it makes sense to use the infor-
mation from each of the cameras immediately in Ad-
justment, to produce updated results reasonably rapidly.
Thus the sequential method would be recommended.
On the other hand, if the object is very simple and has
few features to find, Projection and Measurement won't
require much time. Therefore, they might as well be
done for all images at once (if these can be stored),
so that more complete results will be available from
the adjustment, without the prediction uncertainty that

Visual Tracking of Known Three-Dimensional Objects 261

would enter if a wait until the next iteration (through
another prediction and adjustment) were introduced.
Such a simple case might seldom occur. However, the
same situation exists if the hardware is sufficiently fast
that the computations can be completed in one frame
time of the television cameras. (The present version of
the tracker uses only the sequential method.)

10 Results

The tracker has been tested extensively in the JPL
Robotics Lab. A few examples are shown here. Our
old setup [Gennery 1982] had two cameras 0.56 meter
apart, each with 240 lines by 188 pixels per line. The
tracker program ran on a General Automation
SPC-16/85 computer.

Using this setup, the tracker was tested by using a
Unimation Puma arm under manual control to move
an object in an arbitrary way as the program tried to
track it. The tracker was tested using both one camera
and two cameras, under various lighting conditions,
with various background clutter, and with the object
translating, rotating, and both. With only one camera,
the program was fairly sensitive to clutter and lighting,
but with two cameras the presence of the redundant in-
formation and of the accurate depth information from
stereo caused much more robust operation.

The object used in most of these early experiments
is a hexagonal prism 0.203 meter tall with side faces
0.128 meter wide, painted flat white. A rod protrudes
from the center of one of the hexagonal faces for the
purpose of grasping the object, but this rod is not in-
cluded in the object model. In the test described below,
this object was about 1.7 meters from the cameras. Pic-
tures from the two cameras were taken alternately, and
typically about 0.4 second of processing was required
for each picture. In addition, in this case there was a
deliberate delay of 0.1 second to prolong the display
of the results (so that the total time through the main
loop shown in figure 1 was around 0.5 second). The
values used for the acceleration parameters were a =
1 mm2/sec 3 and ~ = 0.0001 radian2/sec 3. The
assumed standard deviation ~ of the edge measurements
was one pixel.

Figure 2 shows the results from six successive
frames (of those used by the program), alternating be-
tween views from the left camera and the right camera.
In the figure, the brightness edges found by the IMFEX
edge detector are indicated by faint lines, the predicted

visible object edges are indicated by brighter lines, and
the edge elements used by the tracker are shown as yet
brighter dots. (Detected edges from the object, some
background clutter, the Puma arm, and some shadows
can be seen in the figure.) In this figure, the object is
rotating approximately at 0.27 radian/sec about an axis
that is horizontal and perpendicular to the line of sight
from the cameras (not one of the body axes). (It reached
this velocity from zero in about 14 seconds, while the
program was tracking it.) In the process of rotating the
object, the Puma arm passed partly in front of the ob-
ject, as can be seen in the figure. Nevertheless, the pro-
gram continued to track the object, as can be seen from
the fact that the bright lines (predicted object) are close
to the faint lines (detected edges) produced by the ob-
ject. (If a predicted edge lies exactly on a detected edge,
hopefully the bright dots can be seen on the bright line
in the figure, indicating that the detected edge is there.)
The adjusted data probably would be even closer to the
detected data, but were not displayed by the old ver-
sion of the program.

Essentially this same test was repeated many times.
When two cameras were used, it almost always was suc-
cessful. When only one camera was used, the program
often lost track, no matter which camera was used,
although it always tracked through at least part of the
run. The computed accuracy (combined standard devia-
tion in three dimensions, equal to the square root of
the sum of the three diagonal elements of the ap-
propriate covariance matrix) of the adjusted data in tests
such as this (with two cameras) typically was about 2
mm in position, 0.01 radian in orientation, 2 mm/sec
in velocity, and 0.02 radian/sec in angular velocity. The
filter time constants ranged approximately from one to
two seconds.

The new setup has three cameras, with two cameras
at the same elevation 2.8 meters apart and another
camera 1.3 meters above their midpoint, for the ex-
amples below. The camera focal length is 12.5 mm,
each camera has 240 lines by 320 pixels per line (of
which only 238 by 245 are useful from IMFEX), and
the image size is 6.6 mm by 8.8 ram, resulting in
0.0275-mm square pixels. (Two other cameras, with 25
mm focal length, are mounted on an arm for closeup
views and can be seen in figure 4, but they were not
used in the examples presented here.) The cameras were
calibrated as described by Gennery et al. [1987]. The
tracker program runs on a Digital Equipment Corpora-
tion MicroVAX II.

262 Gennery

i, !

17

,lJ';

/ ,, .¢(;

(a)

(c)

, i

\

%1 #

(b)

"~;i ~
, ,) ~ ,

(d)

! e 6 ~ e

o ~ 1 o

, r ,

,IZ,

,11

(e)

I

1

(0

Visual Tracking of Known Three-Dimensional Objects 263

The new version of the program displays the ad-
justed position of the object superimposed on the raw
digitized image from one of the cameras, in a separate
image buffer from that used for the input edge data,
so that the correctness of track can easily be seen.
Usually only the visible vertexes and corners in the ob-
ject model are shown (as white dots at the nearest pix-
el), instead of the edges, for speed. Figure 3 shows such
results from tracking the same object (in the
foreground) used in the example above, when it was
about three meters from the cameras. (In this case, the
program was able to process about six frames per
second.)

Fig. 3. New sample track with vertexes overlaid on raw digitized

picture.

Most of the new experiments used an imitation satel-
lite, shown in figure 4 (and faintly in the background
of the digitized image in figure 3). It has the approx-
imate shape of a hexagonal prism 1.22 meters tall with
side faces 0.76 meter wide. Each of the six side faces
consists of a panel surrounded by an aluminum frame.
The frame was covered with thermal protective foil (as
shown in figure 4) for the later experiments. Five of
the panels are real solar panels; the sixth is an
aluminum panel containing a smaller white panel and
a fluid coupling. The top of the object is open for
suspension but is lined with black cloth to appear solid.
The aluminum surfaces are partially specular; the foil
is highly specular but somewhat crinkled. Two handles
are attached to the white panel, and two grappling fix-
tures are attached to the frame beside the aluminum,

Fig. 4. Imitation satellite (held by arms).

panel. The object model used for the experiments in-
cludes the outline of the hexagonal prism, the six panels
on the six faces, and the white panel. Each of the sur-
faces so defined was modeled as a planar region of con-
stant reflectivity, with the shapes being hexagons for
the top and bottom, rectangles with rectangular holes
for the flame and the aluminum panel, and rectangles
for the other panels. The wire-frame representation of
the model is shown in figure 5. The coupling, handles,

I

Fig. 5. Perspective view of object model of imitation satellite, show-

mg all edges.

Fig. 2. Consecutive sample results from old version of program, for (a) left camera at t ime t a, (b) right camera at t a + 0.52 sec, (c) left camera

at t a + 0.97 sec, (d) right camera at t a + 1.42 sec, (e) left camera at t a + 1.80 sec, (f) r ight camera at t a + 2.23 sec.

264 Gennery

and other minor features are not included in the model.
The grappling fixtures are included in the model for
grappling purposes, but are not used by the vision
system. The object was suspended from the ceiling so
that it could move with six degrees of freedom, in-
cluding unlimited rotation about the vertical axis. Its
center was about four meters from the cameras; there-
fore, each pixel represents about nine millimeters on
the object.

Figure 6 shows typical digitized pictures of the sta-
tionary imitation satellite without the foil, from the
three cameras. Figure 7 shows the corresponding edge
maps produced by IMFEX, with the portions not proc-
essed by IMFEX (roughly equal on the left and right)
deleted. Figure 8 shows one frame of the results pro-
jected into the right picture, while tracking the mov-
ing object under these conditions. White dots, as before,
show the computed vertex positions projected into the
right picture. The object was rotating at 1.02 radian/sec
about the vertical axis at the time of this frame. (It
reached this velocity from zero in about 45 seconds,
while the program was tracking it.) About 0.5 seconds
was required for each frame (so that about 1.5 seconds
was required to loop through the three cameras). For
this test, a = 10 mm2/sec 3, ot = 0.0001 radian2/sec 3,
and a = 1 pixel. At the time of figure 8, the resulting
filter time constants were around one second, and the
computed total standard deviations of the adjusted data
were 4.7 mm in position, 7.6 mradian in orientation,
5.7 mm/sec in velocity, and 14.0 mradian/sec in angular
velocity. From the closeness of the white dots to the
vertexes in the picture, it can be seen that the program
was accurately tracking, in spite of the poor quality of
the edge maps.

Similarly, figure 9 shows digitized pictures of the
imitation satellite with the thermal protective foil (and
with a different background and different arm posi-
tions), and figure 10 shows the corresponding edge
maps produced by IMFEX. Figure 11 shows one frame
of the results projected into the top picture, while track-
ing the object as it was rotating at 0.24 radian/sec about
the vertical axis.

A test of absolute accuracy was done by having the
program track an 8V2 ×ll-inch sheet of paper taped to
the calibration fixture in one of its calibration positions
(3.5 meters from the plane of the cameras). The dif-
ference between the three-dimensional positions com-
puted by the tracker and accurately measured by hand
was 6.5 mm (roughly in the direction from the fixture
to the cameras, as one would expect). Some of this error

i , r .

(a)

~ ~;"~t,? o., ,

(b)

(c)

_4 ~

i i

Visual Tracking of Known Three-Dimensional Objects 265

i

"1

r,7:, •

., J

. . ~1".. "

17!

"E - " ' -

Fig. Z Edge pictures corresponding to figure 6.

Fig. 8. Sample track of object in figure 6.

probably is due to miscalibration of the cameras, caused
by the fact that lens distortion was not included in the
camera model and possibly by errors in the multiple
positions of the calibration fixture.

The tracker has been used in successful laboratory
grappling experiments [Wilcox et al. 1989]. Figure 4
shows a typical position of the two Puma arms and the
imitation satellite after the arms have grabbed it under
autonomous control of the tracker and brought it to rest.
Typical angular velocities in these experiments have
been about 0.2 radian/sec, and typical position errors
in the points of contact of the arms relative to the ob-
ject have been around one centimeter.

It would be possible to model the arms, so that the
tracker will know not to look for features in portions
of the scene where an arm obscures the tracked ob-
ject. However, at present this is not done. Therefore,
edges detected on the arms act as spurious data to the
tracker.

I I C o n c l u s i o n s

The method described here can track (in six degrees
of freedom) a rapidly translating and rotating rigid
three-dimensional object for which an object model is
known, after being started approximately on track. (Ex-
amples were shown with rotations up to about 30 ° per
frame.) With the aid of a hardware feature detector,

Fig. 6. Digitized pictures of irmtation satellite (without foil) from the (a) left, (b) top, and (c) right cameras•

266 G e n n e r y

computational speeds of around two to six frames per
second were achieved on fairly slow computers, when
tracking objects of moderate complexity. Currently
available hardware should allow the computations to
be done at the usual video-frame rate for such objects.

The method is able to tolerate a considerable amount
of missing and spurious features, especially when stereo
is used. This is because it looks for features (usually
edge elements) only near their expected positions,
because the typical abundance of features produces con-
siderable overdetermination in the adjustment, and
because of the smoothing produced by the filtering.
Because of the spatial coherence produced by the ob-
ject model and the temporal coherence produced by the
prediction model used in the filter, finding the features
by looking near their predicted positions in each im-
age is more robust than tracking individual features in
a sequence of noisy images.

Appendix A: Quaternions

The properties of quaternions will be briefly reviewed.
Proofs and further information can be found in the
references [Brand 1947; Corben & Stehle 1960; Golds-
tein 1980].

A quaternion Q can be defined to be a quadruple
of real quantities qo, ql, q2, and q3- A quaternion also
can be considered to be the combination of a scalar
(corresponding to qo) and a vector (whose components
are ql, q2, and q3). The notation used here for this
representation is Q -- (s, v), for a quaternion Q with
scalar part s and vector part v. (Another way of look-
ing at quaternions, as a generalization of complex
numbers, with one real part and three imaginary parts,
will not be used here.)

The product R = PQ of two quaternions is defined
as follows:

ro = Poqo - P l q l - Pzq2 - P3q3

rl = Poq l + P l q o + P2q3 - P3q2

r2 = Poq2 + P2qo + P3q~ - P lq3

r3 = Poq3 + P3qo + P l q 2 - P2ql (A1)

The equivalent definition using the scalar-vector nota-
tion is

(a,u)(b,v) = (a b - u ' v , a v + b u + u × v) (A2)

Note that this is not commutative. However, quaternion
multiplication is associative.

i l l

_ ÷

(a)

f ~ 'i I
,~ (,,,%

(b)

e"

J
f

,~.,-.;.-.

(c)

Visual Tracking of Known Three-Dimensional Objects 267

a

r L.:I I,q' {f;.,

•

~ ~ " - ~ _ _ _ _ _ .

b

--_- n:.-,.-~-=-~.,"" i,T :

. . . .

Fig. 10. Edge pictures corresponding to figure 9.

Fig. 11. Sample track of object in figure 9.

The conjugate of a quaternion Q (denoted by Q*)
is obtained by changing the sign of the vector portion
(that is, the signs of ql, q2, and q3). The conjugate of
a product can be changed to a product of conjugates
by reversing the order of multiplication (that is, (PQ)*
= Q'P*). The norm of a quaternion is the sum of the
squares of its four components.

Any rotation in three-space can be represented by
a quaternion whose norm is unity (known as a unit
quaternion). By Euler's theorem, any such rotation can
be represented by a single rotation angle 0 about some
unit vector u. The quaternion R representing this rota-
tion is

ic0 R = os 2 ' u sin (A3)

In this case the four components of R are known as the
Euler parameters. Successive rotations can be combined
by multiplying the corresponding quaternions from
right to left. Note that R and - R represent rotations
differing by one revolution, and thus represent the same
orientation. (The quaternion representing the negative
of the rotation represented by R is R*.)

A vector can be represented by a quaternion by set-
ting the scalar part to zero and setting the vector part
to the vector. A vector represented by the quaternion
Vcan be rotated by a rotation represented by the quater-
nion R as follows:

V' = RVR* (A4)

Fig. 9. Digitized pictures of imitation satellite (with foil covering frame) from the (a) left, (b) top, and (c) right cameras.

268 Gennery

where the quaternion conjugate and quaternion product
have been used. However, if there are several vectors
all to be rotated the same, it is more efficient to com-
pute the rotation matrix and to compute the matrix pro-
duct of this matrix times each vector in the usual way
(v' = Rv). The rotation matrix R corresponding to a
unit quateruion R is

I ~ + 8 - ~ - ~ 2(r, r2 - r0r3)

R = 2(rlr2 + r°r3) ~ + ~ _ ~ _

2(rlr 3 - ror2) 2(r2r3 + r0rl)

2(rlr3 + r°rg-) 1

2(r2r 3 -- rorl) J (A5)

Since ~ + ~ + ~ + ~ = 1 for a unit quatermon,
(A5) is equivalent to the following alternative form:

2(~ + ~) - 1 2(rlr 2 - r0r3)

R = 2(rlr 2 + r0r3) 2(~ + ~) - 1

2(rlr 3 - ror2) 2(r2r3 + rorO

2(rlr 3 + r0r2)

2(r2r 3 - rorl) (A6)

2(~ + ~) - 1

Appendix B: Proof of Equation (64)

The equation

+ I'PP ' vl 11=

I 1
[(I + SppN)-lgpv] T SW - S~,vN(I + gppN)-lSlwJ

030

can be derived by applying the usual formulas for in-
verting a matrix by partitioning [Mikhail 1976] to the
two indicated inverses. However, a simpler proof of 031)
can be obtained by manipulating it according to the
rules of matrix algebra until an obvious identity is ob-
tained. First, by the definition of the matrix inverse,
031) is equivalent to

I
(I + SppN)-lSpe (I + SppN)-lSpv

[(I + SpeN)-lgpv] r Svv - S~,vN(I + SppN)-lSpv

where the identity matrix is written in terms of 6x6
matrixes for uniformity. Premultiplying both sides of
(82) by S (expressed in terms of 6x6 matrixes accord-
ing to (1)) produces

+ Seen

[_gpv r (I+f~Sl, e) -1 g w - ~ l , vN(I+~eeN)-lgevJ

= (83/

Expanding the product on the left side of 033) produces

[SPP 'PV 1
g~,vN(I + SppN)-lSpp + g~,V(I + NSpp) -1 SwJ
ISPP Spv 1

= (84)

gvv
Finally, some matrix manipulation (bringing Spp into
(I + SppN) -1 from the right and factoring it out to the
left, factoring (I + SppN) -1 out to the right from the
entire expression, and canceling I + SppN and its in-
verse) shows that the lower-left element of the left side
of 034) reduces to S~'v. Thus 034) reduces to an iden-
tity, and, since all of the steps performed above are
reversible (if S and SPI, are nonsingular), this verifies
(B1).

Another way of proving (Bl) is to derive it (actu-
ally, (65)-(67) derived from it and (62)) from the usual
Kalman filter equations. If we consider N-1C to be the
measurements (relative to the predicted values), with
covariance matrix N -1, as mentioned in section 9 as
one possibility, then the matrix of partial derivatives

Visual Tracking of Known Three-Dimensional Objects 269

of the observations relative to the state vector is [I 0]
(in terms of the 6 x6 identity and zero matrixes), since
the observations are direct measurements of P (pose)
but are independent of V (velocities). Therefore, the
Kalman update equations [Maybeck 1979] in this case
become the following:

K = S[I 0]v([I 0]S[I 01T + N-l) -1 (B5)
S = S - K[I 0]S (B6)

(K is the Kalman gain matrix.) Partitioning g into 6x6
matrixes according to (1) and expanding the matrix pro-
ducts involving [I 0] simplifies 035) and (B6) in terms
of the amount of computing involved, since it eliminates
multiplying by ones and zeros, to produce

I ~PP] N-l)-, K = (Spe + (B8)
Lg vJ

I SPPSTV SvvjSpv1 =ISPP~spv SvvJ ~PV1 -K[Spp Spv] (B9)

with (B7) unchanged. Then, a considerable amount of
matrix manipulation can simplify (B8), (B9), and (B7)
further into (65)-(69).

Acknowledgments

The research described here was carried out by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration. The program-
ruing for the original version of the tracker was done
primarily by Eric Saund, with portions by Doug Varney
and Bob Cunningham. Melinda Yin and Todd Litwin
converted the tracker program to run on the MicroVAX.
Todd Litwin made several recent improvements to the
program, developed the manual acquisition software,
and assisted in running the recent tracking experiments.

References

Ayache, N., and Faageras, O.D. 1988. Building, registrating, and fus-
ing noisy visual maps. Intern. J. Robotics Res. 7:45-65.

Brand, L. 1947. Vector and Tensor Analysis. Wiley: New York.
Broida, T.J., and Chellappa, R. 1986. Estimation of object motion

parameters from noisy images. IEEE Trans. Patt. Anal. Maeh. In-
tell. PAMI-8:90-99.

Corben, H.C., and Stehle, E 1960. Classical Mechanics (2rid ed.).
Wiley: New York.

Dickmanns, E.D., and Graefe, V. 1988a. Dynamic monocular
machine vision. Mach. Vis. App. 1:223-240.

Dickmanns, E.D., and Graefe, V. 1988b. Applications of dynamic
monocular machine vision. Maeh. Fls. App. 1:241-261.

Eskenazi, R., and Wilf, J.M. 1979. Low level processing for real-
time image analysis. Jet Pmpulsaon Laboratory, Pasadena, CA, JPL
Publication 79-79.

Gennery, D.B. 1982. Tracking known three-dimensional objects. Proc.
AAAI 2nd Natl. Conf. Artif Intell., Pittsburgh, PA, pp. 13-17.

Germery, D.B. 1986. Stereo vision for the acquisition and tracking
of moving three-dimensional objects. In Techniques for 3-D
Machine Perception (A. Rosenfeld, ed). Elsevier: Amsterdam.

Gennery, D.B. 1990. Properties of a random-acceleration recursive
filter. Jet Propulsion Laboratory, Pasadena, CA, JPL internal report
D-8057.

Gennery, D.B. 1991. Camera calibration including lens distortion.
Jet Propulsion Laboratory, Pasadena, CA, JPL internal report
D-8580.

Gennery, D.B., Litwin, T., Wilcox, B., and Bon, B. 1987. Sensing
and perception research for space telerobotics at JPL. Proc. IEEE
Intern. Conf. Robot. Autom., Raleigh. NC, pp. 311-317.

Gennery, D.B., and Wilcox, B. 1985. A plpellned processor for low-
level vision. Proc. 1EEE Comput. Soc. Conf. Comput. Vision Patt.
Recog., San Francisco, CA, pp. 608-613.

Gilbert, A.L., Giles, M.K., Flachs, G.M., Rogers, R.B., and U,
Y.H. 1980. A rea/-time video tracking system. IEEE Trans. Patt.
Anal. Mach. lntell. PAMI-2:47-56.

Goldstein, H. 1980. Classical Mechanics (2nd ed.). Addison-Wesley:
Reading, MA.

Hedgley, D.R. 1982. A general solution to the hidden-hne problem.
Ames Research Center, Dryden Flight Research Facxlity, Edwards,
CA, NASA Reference Publication 1085.

Kalmau, R.E. 1960. A new approach to hnear filtering and predxc-
tion problems. Trans. ASME, series D, J. Basic Engin, 82:35-45.

Martin, W.N., and Aggarwal, J.K. 1978. Dynamic scene analysis.
Comput. Graph. Image Process. 7:356-374.

Maybeck, P.M, 1979. Stochastic Models, Estimation, and Control,
vol. 1. Academic Press: New York.

Mikhail, E.M. (with contributions by E Ackermann) 1976. Obser-
vations and Least Squares. Harper & Row: New York.

Nagel, H.-H. 1978. Analysis techniques for image sequences. Proc.
4th Intern. Conf. Patt. Recog., Tokyo, pp. 186-211.

Pinkney, H.EL. 1978. Theory and development of an on-line 30 Hz
video photogrammetry system for real-t~me 3-dimensional control.
Proc. ISP Symp. Photogramm. Industry, Stockholm, Sweden.

Roach, LW., and Aggarwal, LK. 1979. Computer tracking of objects
moving in space. IEEE Trans. Patt. Anal Maeh. Intell.
PAMI-l:127-135.

Saund, E., Gemaery, D.B., and Cunningham, R.T. 1981. Visual track-
ing in stereo. Joint Autom. Cont. Conf., sponsored by ASME,
University of Virginia.

Verghese, V., and Dyer, C.R. 1988. Real-time, model-based track-
ing of three-dimensional objects. University of Wisconsin, Madison,
WI, Computer Sciences Tech. Rept. #806.

2 7 0 Gennery

Wilcox, B., Tso, K., Litwin, T., Hayati, S., and Bon, B. 1989.
Autonomous sensor-based dual-ann satellite grappling. Proc. NASA
Conf. Space Telerobotics, Pasadena, CA (JPL Publication 89-7),
vol. III, pp. 307-316.

Wu, J.J., Rink, R.E., Caelli, T.M., and Gourishankar, V.G. 1989.
Recovery of the 3-D location and motion of a rigid object through
camera image (An extended Kalman filter approach). Intern, J.
Comput. Vis. 2:373-394.

Wu'nsche, H.-J. 1986. Detection and control of mobile robot motion
by real-time computer vision. In Mobile Robots. W.J. Wolfe and
N. Marquina, eds., Proc. SPIE, 727, Cambridge, MA, pp. 100-109.

Yakimovsky, Y., and Cunningham, R.T. 1978. A system for extrac-
ting three-dimensional measurements from a stereo pair of TV
cameras. Comput. Graph. Image Process. 7:195-210.

Young, G.-S.J., and Chellappa, R. 1990. 3-D motion estimation using
a sequence of noisy stereo images: Models, estimation, and unique-
ness results. IEEE Trans. Part. Anal. Mach. Intell. PAMI-12:

735-759.

