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Abstract 
We address the problem of computing the three-dimensional motions of objects in a long sequence of stereo frames. 
Our approach is bottom-up and consists of two levels. The first level deals with the tracking of 3D tokens from 
frame to frame and the estimation of their kinematics. The processing is completely parallel for each token. The 
second level groups tokens into objects based on their kinematic parameters, controls the processing at the low 
level to cope with problems such as occlusion, disappearance, and appearance of tokens, and provides information 
to other components of the system. We have implemented this approach using 3D line segments obtained from 
stereo as the tokens. We use classical kinematics and derive closed-form solutions for some special, but useful, 
cases of motions. The motion computation problem is then formulated as a tracking problem in order to apply 
the extended Kalman filter. The tracking is performed in a prediction-matching-update loop in which multiple 
matches can be handled. Tokens are labeled by a number called its support of existence which measures their 
adequation to the measurements. If this number goes beyond a threshold, the token disappears. The individual 
line segments can be grouped into rigid objects according to the similarity of their kinematic parameters. Ex- 
periments using synthetic and real data have been carried out and the results found to be quite good. 

1 Introduction 

The problem of analyzing sequences of images to ex- 
tract three-dimensional motion and structure has been 
at the heart of the research in computer vision for many 
years. It is very important since its success or failure 
will determine whether or not vision can be used as 
a sensory process in reactive systems. There are of 
course many possibilities for attacking the problem and 
many more remain to be explored. We discuss a few 
of them. 

In fact, image sequence analysis is a rather vague 
term and can cover several meanings. Our definition 
is that, given one or several sequences of images ac- 
quired from one or several cameras whose relative posi- 
tions are known and which are rigidly moving in an 
unknown environment containing a number of mobile 
rigid objects, we must determine the various relative 
motions (cameras and objects) and the structure of the 
scene. 

There has been a tremendous amount of work on the 
analysis of monocular sequences of images. This work 
has basically followed two main paths: optical flow and 
token tracking. The philosophy of optical flow is to 
work in two steps. First estimate from the variation of 
image intensities the projection of the three-dimensional 
velocities and second, compute those velocities (in fact 
the kinematic screw that defines them) and the depth 
from the optical flow. The reason for splitting the proc- 
ess of recovery into those two steps can be traced back 
to the work of Gibson [1950] and Koenderink [Koen- 
derink & van Doorn 1975; 1978; Koenderink 1986]. 
Because of fundamental difficulties such as the aper- 
ture effect, researchers have only been able to partially 
solve the first step [Horn & Schunk 1981; Nagel 1983, 
1986; Hildreth 1984], and the results of the second step 
have been reported to be of very poor quality. These 
and other reasons such as the fact that the relationship 
between the optical flow and the projected velocity field 
is a bit uncertain [Faugeras 1990] and the optical flow 
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can only be reliably estimated near image discontin- 
uities, have led researchers to explore another route, 
to track tokens. 

The philosophy of the token tracking approach is also 
to work in two steps. First detect reliable tokens such 
as curves, corners, from the spatial variations of image 
intensities, assuming that they correspond to markings 
on the three-dimensional objects. Second, track them 
over time and recover the depth and three-dimensional 
velocities of the corresponding 3D tokens. This track- 
ing is performed by building a kinematic model for the 
two-dimensional tokens. There are two main possibil- 
ities, either to work directly in 3D or to work in 2D. 
The advantage of the first option is that one works in 
the "right place" where it makes more sense to model 
the kinematics of objects but at the cost of being very 
sensitive to noise. The advantage of the second ap- 
proach is that one works in the "easy space" where 
measurement are made but at the cost of not computing 
directly the values we are really interested in comput- 
ing. This is where the largest amount of work has been 
performed [Sethi and Jain 1987; Crowley et al., 1988; 
Gambotto 1989; Hwang 1989; Deriche & Faugeras 
1990; Broida & Chellappa 1986; Broida & Chellappa 
1989; Weng et al., 1987; Dickmanns 1987; Dickmanns 
and Graefe, 1988a,b]. 

Another possibility for performing this computation 
is to consider that the two-dimensional tracking gives 
us matches between different frames and estimate the 
three-dimensional motions from those matches. This 
last problem has also received considerable attention. 
A lot of work has been published on algorithms for 
recovering motion and structure from n point matches, 
p line matches, between q views, where typically n is 
5, p is 6, and q is 2 or 3 [Ullman 1979; Tsai & Huang 
1981; Huang & Tsai 1981; Longuet-Higgins 1981; Yen 
& Huang, 1983; Tsai & Huang, 1984; Zhuang & 
Haralick, 1985; Liu & Huang, 1986; Liu & Huang, 
1988; Aggarwal & Wang, 1987; Faugeras & Maybank, 
1990). These results are theoretically very interesting 
but are limited to the estimation of the motion of a single 
object and to the reconstruction of the structure of the 
scene up to a scale factor unless considerable a priori 
information is available. Also, due to the complexity 
of image formation and the nonlinear relation between 
3D motion and changes in the images, the solutions 
have been reported to be very sensitive to noise, and 
thus have so far been of little practical use except, 
perhaps, for calibration. 

There has also been a large amount of work on stereo 
[Baker & Binford, 1981; Grimson, 1981, 1985; Nishi- 
hara 1984; Ohm & Kanade 1985; Pollard et al. 1985; 
Marr & Poggio 1976; 1979; Yachida 1986; Ayache & 
Lustman 1987; Kitamura & Yachida 1990] which can 
be seen as the analysis of two or three sequences of 
images (if we use binocular or trinocular stereo), each 
sequence being limited to only one image. The main 
problem has been, and remains, to establish corre- 
spondences between the images and to reconstruct a 
depth map which is as dense as possible. 

Much less has been done on the analysis of several, 
simultaneously acquired, sequences of images. Clearly 
the amount of information is much higher and one 
would hope that this would allow us to solve the prob- 
lem in a more robust fashion. It is not obvious, however, 
to decide how to proceed and build upon existing tech- 
niques, for example those developed for the analysis 
of monocular sequences and stereo. In [Zhang et al., 
1988; Zhang & Faugeras 1991; Zhang & Faugeras 
1992], we have proposed an algorithm based upon the 
hypothesize-and-verify paradigm to match 3D line 
segments and to compute 3D displacements between 
two 3D frames obtained from stereo. In order to reduce 
the complexity of the method, we have made the as- 
sumption that objects are rigid. This algorithm has been 
extended to deal with the case where several mobile 
objects are present. 

The solution we explore in this paper is the follow- 
ing. We assume that we can do reliable stereo at a 
reasonable rate, let us say five times a second to fix 
ideas. We then match the set of sequentially recon- 
structed three-dimensional representations and estimate 
motion. Therefore, we do three-dimensional motion 
from three-dimensional structure. 

Of course, there are many details that need to be 
filled in: 

1. What are the three-dimensional representations that 
are used? 

2. How do we match them? 
3. How do we estimate motion from the matches? 

The answer to point number 1 is that we use an edge- 
based stereo algorithm that has been developed in the 
past [Ayache & Lustman 1987] and put into hardware 
[Faugeras et al. 1988b]. It can deliver three-dimensional 
line segments at the rate of 5Hz. Therefore, our repre- 
sentation is quite simple and consists of sets of three- 
dimensional line segments. It is not clear how crucial 
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this assumption is for the whole system. We believe that 
many of the ideas described here can be used for other 
simple geometric primitives, other tokens, even though 
in the details of the current implementation the line seg- 
ment assumption plays an important role. 

The answer to points number 2 and 3 is that we build 
a model of the kinematics of each token, assuming that 
it is attached to a moving rigid object. We use this 
model to predict the appearance of the token in the 
three-dimensional visual map obtained at the next time 
instant. We use this prediction to verify whether the 
token is present and match it, if possible, to a real token. 
The match is then used to update the kinematic model. 
The whole process is implemented as a Kalrnan filter. 
Therefore, matching and estimation of motion are inti- 
mately related in this approach. One interesting feature 
is that we actually integrate the kinematic equations by 
making the assumption that the motion we observe can 
be well approximated on a short-time scale by constant 
angular velocity and constant linear acceleration. This 
is in general true only if the time-sampling frequency 
is high enough so that the accelerations can be neglected 
between two sampling times. 

We also tackle the following problems that arise when 
we deal with (long) sequences of images: 

- -  Occlusion: A moving object may be partially or 
totally occluded by the background or by other 
objects. 

--  Disappearance: A moving object in the current field 
of view may move partially or totally out of it in 
the next frames. 

- -  Appearance: A previously unseen object may par- 
tially or totally come into view. 

Clearly, occlusion is related to disappearance and ap- 
pearance, since when we talk about the occlusion of 
an object, we mean that some of its features disappear 
for a moment and may eventually reappear in the future. 
Those three events are due to reguIar transformations 
of the scene. We must add to them a fourth which is 
due to the failure of the algorithms that produce the 
description: 

- -  Absence: When features that should be present are 
not, due to the failure of the feature extraction (or 
reconstruction) process. 

These remarks bring forward an interesting aspect 
of the problem, namely that there are always two kinds 
of tokens: those that have been seen for a sufficiently 
long time so that the system has been able to build a 
good model of their kinematics, and those that have 

just entered the field of view and for which no kine- 
matics information is available. The first kind of tokens 
is easily dealt with since it is likely that the prediction 
stage wilt help to cut down heavily the number of tenta- 
tive candidates to a match in the next frame. For the 
second kind, a computational explosion is likely to hap- 
pen: in order to find the right match, we may have to 
explore a large number of possibilities and if we make 
the wrong choice we will lose track of the token. There- 
fore our system can be seen as operating in two modes, 
the first one called the continuous mode and the second 
called the bootstrapping mode. 

The continuous mode applies to tokens for which the 
system has built up a kinematic model with low uncer- 
tainty. The model at time t is used to predict the posi- 
tion and orientation of the token in the scene at time 
t + At. Since the uncertainty of the model is small, 
the search for corresponding tokens can be restricted 
to a small zone around the predicted token. 

The bootstrapping mode assumes no knowledge of 
the kinematics of the token, i.e., it assumes that it is 
not moving, with a large uncertainty. Its position and 
orientation at time t + At are predicted to be the same 
as those at time t but, since the uncertainty of the model 
is large, the search for corresponding tokens is con- 
ducted in a larger zone than in the previous mode, 
leading to the possibility of many candidates. 

One interesting feature of both modes is that they use 
the idea of least-commitment and, instead of forcing 
a decision, may make multiple correspondence choices 
and use the time continuity to throw away later the ones 
which are not confirmed by the measurements. 

Another feature of our approach is that we can detect 
multiple motions by grouping tokens that have similar 
kinematic models, thus obtaining a segmentation of the 
scene into "objects" (i,e,, sets of tokens) moving rigidly. 

We are not the first ones to investigate this problem 
from that viewpoint. Young and Chellappa [1988] de- 
scribe the computer simulation of a system that uses 
a number of noisy 3D points assumed to belong to the 
same rigid object to estimate its motion. In their work, 
the problem of obtaining the matches from frame to 
frame and the problem of multiple objects are not 
addressed. 

2 Statement of the Problem 

We address the motion-tracking problem that arises 
in the context of a mobile vehicle navigating in an 
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unknown environment where other mobile bodies such 
as humans or robots may also be moving. A stereo rig 
mounted on the mobile vehicle provides a sequence of 
3D maps of the environment. The current stereo system 
is trinocular [Ayache and Lustman 1987], and the 3D 
tokens we are using are line segments produced by 
significant intensity discontinuities in the images. 
Although the framework to solve the motion-tracking 
problem developed here arises in this specific con- 
text, we believe it should be applicable in other con- 
texts; in particular we could use other 3D primitives, 
for example, points, combinations of points and lines, 
curves. 

% 

F2 

Fig. 1. Illustration of the motion-tracking problem. 

The situation is illustrated in figure 1. The static en- 
vironment is represented by hatched regions. Only one 
moving object is drawn, represented by a square. The 
mobile robot is represented by a frame of reference, 
which is the one of the stereo system. This reference 
frame is attached to the mobile robot and its numerical 
parameters are determined in the camera calibration 
phase [Faugeras & Toscani 1986]. In the figure, the ob- 
ject undergoes a general motion from right to left, and 
the robot moves from left to right. We want to solve 
the following problems: 

1. Find the positions of static and moving objects in 
each stereo frame, 

2. Determine the motion of the robot as well as motions 
of the moving objects with respect to the static 
environment. 

As stated earlier, in order to resolve these issues we 
have to handle problems in dynamic scene analysis such 
as occlusion, appearance, disappearance, and absence 
of features. 

Those problems can be solved at the level of objects: 
object tracking, or at the level of features that constitute 
objects: token tracking. In the object-tracking approach, 
the scene must first be segmented into objects, and this 
in general requires high-level knowledge about the 
characteristics of objects such as rigidity and geometry 
(planar world). This approach is in general difficult. 
In some special cases, such as Radar imagery and in 
the experiment reported by Gordon [1989] using ten- 
nis balls, objects can be easily detected and can be 
replaced by points (usually their centers of gravity). In 
the token-tracking approach, no such knowledge is re- 
quired and the tracking process can be carried out in 
parallel for each token. For this reason and also for 
the following, we track 3D line segments instead of 3D 
objects: 

- -  Objects can be later identified by grouping line 
segments with similar motion, 

- -  After tracking individual line segments, one can 
detect multiple moving objects, articulated objects, 
or even deformable objects based on common mo- 
tion characteristics. 

Because of this, the hypothesis that assumes that ob- 
jects are moving rigidly can be somewhat relaxed in 
the analysis of long sequences. 

3 A F r a m e w o r k  to  S o l v e  the  M o t i o n - T r a c k i n g  

P r o b l e m  

To clarify the presentation, we call the 3D line segments 
being tracked the tokens and the currently observed 3D 
line segments the scene tokens. 

3.1 Outline of the Motion-Tracking Algorithm 

Our motion-tracking algorithm consists of two levels 
(see figure 2). In the figure, single arrows represent 
data flow, and the double arrow represents the flow of 
control. 

The low level is called the tracking team. A token 
being tracked can be considered as one of the team 
members. As we discussed earlier, the token-tracking 
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Fig. 2. An architecture for motion tracking. 
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process uses a model of the 3D kinematics, instead of 
a model of the evolution of the token parameters. A 
token is then characterized by its position and orienta- 
tion in the current frame, its kinematic parameters, and 
a positive number called support. The support indicates 
the degree of support for the existence of the token, 
which will be described in section 9. 

When a new frame is acquired, each token being 
tracked searches the whole flame for a correspondence. 
The search space can be considerably reduced by us- 
ing a kinematic model and information from previous 
flames: before the new flame is available, one can 
predict the occurrence of each token in the new flame 
based on the kinematic model. When the new frame 
is obtained, one only needs to look for scene tokens 
in the neighborhood of the predicted position. 

When a match is found, the parameters of the token 
kinematic model are updated, the position parameters 
are replaced by those of its match l, and the support 
parameter is also updated. The prediction and update 
of the position and kinematic parameters are done by 
using an extended Kalman filter. The matching process 
is based on the Mahalanobis distance. Due to occlu- 
sion or absence of some scene tokens in the current 
frame, a token may not find any match in the neigh- 
borhood of its predicted position in the current frame. 
Of course, this phenomenon may also occur due to the 
disappearance of the token. To handle the occlusion and 
absence of scene tokens, it is necessary to hypothesize 
the existence of the token and continue to change its 
kinematic parameters according to the kinematic model 
and update its support. 

P r e d i c t i o n  I .  
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diagram of the toaken tracking algorithm. 

Figure 3 shows the block diagram of the algorithm, 
and the details will be described in the following sec- 
tions. As we can observe, the above process can be per- 
formed independently for each token to be tracked, and 
this allows a completely parallel implementation. 

The high level is called the supervisor. It has three 
main functions: 

- -  Grouping tokens with similar kinematic parameters 
as a single object. If  there exist multiple moving ob- 
jects, they can be segmented on the grounds that they 
undergo different motions. We describe later the 
details about how to group tokens. 

- -Moni tor ing the tracking team by detecting the 
following events: 

1. Appearances: When a new token appears, that 
is, when a scene token in the current frame can- 
not be matched with any token being tracked, 
then the supervisor activates an additional token 
in the tracking team. This new token starts the 
same process as the others. 

2. False matches: When a token loses the support 
of its existence (see section 9), the supervisor 
then deactivates this token. Unusually such 
tokens have been activated due to false matching 
in the previous frames. In a parallel implemen- 
tation, the processor occupied by this token 
would be freed, and could be used by some new 
token. 

3. Disappearances: When a token moves out of the 
field of view, the supervisor deactivates this 
token. We can easily determine whether a tracked 
token is out of the field of view by projecting it 
onto one of the camera planes. Just as in the 
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previous case, in a parallel implementation, the 
processor occupied by this token would be freed, 
and could be reutilized. 

4. Multiple matches: A token being tracked may 
find multiple matches in the current frame with 
a criterion defined a priori (the Mahalanobis 
distance, for example), especially when several 
scene tokens are near to each other. A common 
way to solve this problem is to choose the scene 
token that is the nearest to the predicted position 
(best-first search), as in [Crowley et al. 1988; 
Deriche and Faugeras 1990]. This may lead to 
unpredictable results. A more robust approach is 
to keep tracking the token using several nearest- 
scene tokens in the current frame; thus a token 
can be split. This approach can be called beam 
search. In our implementation, we choose the 
two nearest scene tokens to the predicted position 
in the sense of the Mahalanobis distance (see sec- 
tion 8), if both their distances are less than some 
threshold. The token updates its kinematic param- 
eters by incorporating the nearest scene token. 
If  the second-nearest-scene token exists, then the 
token reports it to the supervisor. The supervisor 
activates an additional token by integrating the 
original token and the matched one. The beam- 
search strategy is utilized in other research fields, 
such as in the HARPY speech understanding sys- 
tem [Lowerre & Reddy 1980]. This strategy has 
been found to be efficient as well as robust. 

5. About changes: A potential capacity of the 
supervisor to monitor the tracking team is to 
detect abrupt changes in the motion of a token 
due, for example, to collision, and to reinitialize 
its kinematic parameters. 

- -  Providing information to other components of the 
global system. For example, in an active tracking 
application, one may need to control the motion of 
the robot or adjust the camera parameters to adapt 
the changing situation based on the information pro- 
vided by the motion-tracking algorithm. The infor- 
mation may include the kinematics of the robot (ego- 
motion) and the kinematics and relative positions 
of the moving objects. 

3. 2 A Pedagogical Example 

Figure 4 shows an example of how the tracking team 
works. At t2, token 1 is split in two (token 1 and token 

hypothetical ~ . .o  d e a c t i v a t e d  
extension , "" - - - -~  ..."" 

x~k • -'°°O°° 

split occlusion 

I I I I I ', 
t 1 t 2  t3 t 4  t 5 t6 

Fig. 4. An example of motion tracking. 

1') due to ambiguous matches. At t 3, token 1' cannot 
find a correspondence in the current flame, and it 
makes a hypothetical extension to cope with the occlu- 
sion problem. But because too many such hypothetical 
extensions are made consecutively, it loses its support 
for existence at t5 and is then deactivated. At t 5, token 
1 cannot find its correspondence in the current frame, 
and it makes a hypothetical extension. It finds its cor- 
respondence at t6. Thus the occlusion problem is 
handled gracefully. 

4 R e p r e s e n t a t i o n  o f  3 D  L i n e  S e g m e n t s  

Our stereo system reconstructs a set of 3D line segments 
about its environment. These segments may correspond 
to the contours of objects, to shadows, or to region 
markings. Line segments addressed here are oriented 
thanks to the intensity contrast. In this section, we pro- 
pose a new representation for a line segment which we 
think is well adapted for the task at hand. 

4.1 Motivation 

It is a consensus among many researchers in the field 
that uncertainty should be explicitly represented and 
manipulated in computer vision and robotics applica- 
tions [Ayache & Faugeras 1989; Durrant-Whyte 1988]. 
We can think of uncertainty as follows. Let us model 
the features as random and consider their probability 
density functions. In practice those functions are very 
hard to estimate and one is usually satisfied with the 
first few moments, usually the first two, the mean vec- 
tor and the covariance matrix. This does not imply that 
the features are modeled as Gaussian but only that we 
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neglect their higher-order moments. The question of 
whether this poses problems, for example with the 
Kalman filter, is answered in section 6. 

A related question is the following. Suppose that we 
have a random feature vector x with mean x0 and 
covariance matrix Ax to which we apply a nonlinear 
function f to produce a new random feature y. The ques- 
tion is to compute the mean and covariance matrix of 
y. One way to do this is to compute the Taylor series 
expansion of f in the vicinity of x0. If we perform this 
expansion up to the second order, we obtain 

y = f (x )  

= f (x0)  + f ' ( x o ) ( x  - x0) + o ( l l x  - x0112) 

This shows that, up to the first order, we have 

E(y) = f(xo) = f(E(x))  

and 

Ay = E [ ( y  - E(y))(y  - E(y)) r]  

= f ' (x0)  Axf ' (x0)  r (1) 

Of course these may be poor approximations if the sec- 
ond order term is not negligible. For example, up to 
the third order, the mean is given by z 

l ,, 2 
E(y) = f(xo) + ~ f (Xo)ax 

This formula clearly shows that the fact that the second- 
order term can or cannot be neglected depends upon 
both the magnitude of the second-order derivative of 
f and of the variance of x. 

In this article, we assume that the first-order approx- 
imation is sufficient either because the second-order 
derivatives are small compared to the first-order deriv- 
atives, or because the second-order moments are small, 
or both. 

A line segment is usually represented by its endpoints 
M 1 and M2, which require 6 parameters, and their co- 
variance matrixes A1 and A2. A1 and A2 are estimated 
by stereo triangulation from point correspondences 
[Ayache 1988]. Equivalently, a line segment can be 
represented by its direction vector v, its length l, and 
its midpoint M, and their covariance matrixes. 

But we cannot directly use these parameters in most 
cases. As explained in section 4.2.2, the endpoints or 
the midpoint of a segment are not refiable. Thus, instead 
of the line segment, the infinite line supporting the seg- 
ment is usually used, as in [Kim & Aggarwal 1987]. 
In an earlier version of our algorithm for motion anal- 

ysis of two stereo views [Ayache & Faugeras 1987a; 
Faugeras et al. 1988a; Zhang et al. 1988], a line seg- 
ment is treated in a mixed way. The infinite supporting 
line is used in estimating motion and the line segment 
is used in matching. 

Many representations have been proposed in the liter- 
ature for a line segment [Ayache & Faugeras 1987b; 
Roberts 1988]. The main problem is that the uncertainty 
on the line parameterization does not reflect that of the 
segment that the line supports (see Zhang [1990] for 
more details). A segment with big uncertainty may yield 
a small uncertainty in the line parametrization, for ex- 
ample, if its uncertainty is in the direction of the line. 

4.2 Our Representation 

Because of the deficiencies of the previous representa- 
tions for a line or a line segment, we use a five- 
parameter representation for a line segment: two for 
the orientation, three for the position of a segment. This 
is a trade-off between an infinite line and a line seg- 
ment. If we add the length, a line segment can then 
be fully specified. Special attention is given to the rep- 
resentation of uncertainty. 

4.2.1 Representing the Orientation by lts Euler Angles ch 
and0. Let us consider the spherical coordinates. Let u = 
[ux, Uy, uz] t be a unit vector of orientation, we have: 

I ux = cos4 sin0 
Uy sin~b sin0 (2) 
u z cos  0 

with0 __ 0 < 2a-,0 _ 0 _< ~r. 
From u, we can compute q~ and 0: 

I arccos ux 

, _- ; - 4 

Ux 
27r - arccos .]1 u x 

_ 2 

ifuy>_ 0 

otherwise 

0 = arccos u z (3) 

If we denote [q~, 0]tby ~, then the mapping between 
and u is 1-to-l, except when 0 = 0. When 0 = 0, 

q~ is not defined. This will show in the covariance 
matrix of ff as a very large entry for the variance of 
4~, indicating that the h-measurement cannot be trusted 
very much [Zhang 1990]. 
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Another problem with this representation is the dis- 
continuity, in ~b when a segment is nearly parallel to 
the plane y = 0. In that case, the angle 4~ may jump 

from the interval [0, a-/2) to the interval (37r/2, 2r) ,  
or vice versa. This discontinuity must be dealt with in 
matching and fusion. 

In the following, we assume that the direction vector 
v = Ix, 3; z] t and its covariance matrix Av of a given 
segment are known. We want to compute ff and its 
covariance matrix A~ from v and Av. ~b and 0 are 
simply given by 

I x 
arccos 

= x ~ + Y  2 

x 

L 2z - arccos x ~ +  y2 

Z 
0 = arccos 

~x 2 + y2 + z 2 

i f y  _> 0 

otherwise 

(4) 

Since the relation between ~b and v is not linear, we 
use the first order approximation of equation (1) to com- 
pute the covariance matrix Af from Av. That is 

0~k 0~ '  
A~ = ~-~ Av Ov (5) 

where the Jacobian matrix 

I 
00 O0 O0 

O~ = Ox Oy Oz 

Ov O0 O0 O0 
Ox Oy Oz 

4. 2.2 Modeling the Midpoint of a 3D Line Segment. 
We choose the midpoint as the three parameters to 
localize a segment, but a special treatment on the co- 
variance is introduced to characterize the uncertainty 
in the location of a segment. 

The reason for this is that the way the uncertainty 
of the endpoints of a three-dimensional segment is com- 
puted takes only into account the uncertainty of the pixel 
coordinates due to the edge detection process and the 
uncertainty of the calibration of the stereo rig [Ayaehe 
& Faugeras 1989]. But it does not take into account 
the uncertainty due to the variations, in the different 
images of the stereo triplet, of the polygonal approx- 
imations of corresponding contours. There are two main 
sources for these variations. 

The first is purely algorithmic: because of noise in 
the images and because we sometimes approximate 
significantly curved contours with line segments, the 
polygonal approximation may vary from frame to frame 
inducing a variation in the segments' endpoints that has 
not been accounted for. The second is physical: because 
of partial occlusion in the scene, a segment can be con- 
siderably shortened or lengthened and this has also to 
be taken into account in the modeling of uncertainty. 

In an attempt to cope with all this, we model the mid- 
point m of a segment M1M2 as 

m = M + n u  (6)  

where M = (M1 + M2)/2, u is the unit direction vec- 
tor of the segment, and n is a random scalar. Equation 
(6) says in fact that the midpoint has some extra uncer- 
tainty attached to it. It may vary randomly along the 
line supporting it in successive views. 

The random variable n in equation 6 is modeled as 
zero-mean with deviation an, a positive scalar. If  a 
segment is reliable, a~ may be chosen to be a small 
number; if  not, it may be chosen to be a big number. 
In our implementation, an is related to the length I of 
the segment, that is, % = d, where K is some con- 
stant. That is to say that the longer a segment is, the 
bigger the deviation an is. That is reasonable since a 
long segment is much more likely to be broken into 
smaller segments in other views. In our experiments, 
K = 0 . 2 .  

In order to compute the covariance of m, we should 
first compute u and A u. The unit direction vector u 
and its covariance Au can be computed from a non- 
normalized direction vector v and its covariance matrix 
Av from equation (1). Indeed, we have 

V u -- 
Ilvll 

Ou Ou t 
An = 0-~ Av 0v (7) 

where 0n/0v is a 3 x 3 matrix 

OU 13 v v  t 

Ov llvll Ilvll 3 

Note that the covariance matrix A u is singular (the de- 
terminant is zero). This is due to the fact that the three 
components of u are not independent since I lu l l  - -  1. 

At this point, the covariance of m can be computed. 
We start with the covariance of nu. Since n and u are 
independent of each other, we have 
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E[nu] = E[n]E[u] = 0 (8) 

A,m = E[(nu)(nu) t] = E[n2]E[uu t] 

= a2(A. + fifit), (9) 

where fi = E[u]. Now we have 

E[m] = E[M] + E[nu] = E[M] 

and 

Am = E[(m - E[m])(m - E[m]) t] 

= E[(M - E[M])(M - E[M]) t] 

+ E[(nu)(nu) t] + E[n(M - E[M])u'] 

Since n is independent of M and u and has zero-mean, 
the last two terms are equal to 0 and 

A m = A M + Anu 

We consider that Ma and M2 are independent, therefore 

AM _ Aa + A2 
4 

and this completes the computation of AM, up to the 
first order. 

If we add another parameter 1 to denote the length 
of the segment, we can then exactly represent a line 
segment. This ends our modeling of a line segment. 
See [Zhang & Faugeras 1990a; Zhang 1990] for more 
details. 

5 K i n e m a t i c  M o d e l  

A common approach to model the motion kinematics 
is to divide the motion into two parts: a rotation about 
a point (called the center of rotation) and a translation 
of the center of rotation. The rotation is often assumed 
to be constant angular velocity or constant precession. 
The trajectory of the rotation center is assumed to be 
well approximated by the first k terms of a polynomial 
(k _> 0). See [Broida & Chellappa 1986, 1989; Weng 
et al. 1987; Young & Chellappa 1988] for such a modei- 
ing. We show [Zhang 1990] that in case of constant 
angular velocity, that modeling is a special case of the 
one described in this section. Webb & Aggarwal [1982] 
used thefixed-axis assumption to recover the 3D struc- 
ture of moving rigid and jointed objects from several 
single-camera views. The fixed-axis assumption is 
stated as follows: Every rigid object movement consists 
of a translation plus a rotation about an axis that is fixed 
in direction for short periods of time. In this section, 

we describe the kinematics of the well-known classical 
model of rigid bodies and then derive the closed-form 
solutions for some special motions. 

5.1 The Classical Kinematic Model 

Given a Cartesian system of reference Oxyz for rigid 
bodies in which a rigid body is in motion. Choose a 
point on the solid, noted by P. Consider any point M 
of the solid, then its velocity vM is the sum of the 
velocity v e of the point P and the rotation around the 
point P (see figure 5), that is 

v~(t) = vp(t) + w(t) x PM (10) 

where to(t) is called the angular velocity, and × denotes 
the cross-product of two vectors. 

The above equation is true for any point P. For sim- 
plicity, we choose the origin as the point P, that is, 
P = O, and we have the kinematic model as follows: 

VM(t) = V(t) + to(t) × OM (11) 

The kinematics of any point M of the body is completely 
characterized by v(t), the velocity of the point of the 
solid coinciding with the origin of the reference system, 
and to(t), the angular velocity of the point M around 
the origin. The pair (t0(t), v(t)) is called the kinematic 
screw of the solid. _-_.> 

Let us replace OM in equation (11) by p(t), and 
VM(t) by Ii(t), where Ib(t) denotes the time derivative 
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Fig. 5. Illustration of the classical kinematics for rigid bodies. 
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of p(t), that is, dp(t)/dt. For the sake of clarity, we write 
the time as a subscript. For instance, p(t) is written 
as Pr If  we denote by ~7 the antisymmetric matrix 
associated with v - [v 1, v2, v3] t, that is, 

i0,.] "¢ = v3 0 - v l  (12) 
- v2  vl 0 

then we have v × u = ~u. Equation (11) can therefore 
be rewritten as a first-order differential equation in Pt: 

l~t = ~tPt + v, (13) 

It is very difficult to get the solution of equation (13) 
for a general motion. In the appendix of this paper, we 
show that a closed form can be obtained if the angular 
velocity is constant and the translational velocity is 
described by a polynomial of degree n(n _> 0). We give 
in the following section the closed form of the kinematic 
models for two special motions. 

5. 2 Closed-form Solutions for Two Special Motions 

In the case of  constant angular and translational veloci- 
ties, we have a simple closed-form of the solution 
(theorem 1). Let tot = w and vt = v. 

Theorem 1. Trajectory in the case of constant angular 
and translational velocities: 

The trajectory of a point Pt given by equation (13) 
is given, in the ease of constant angular velocity to and 
translational velocity v, as 

Pt = Wpo + Vv (14) 

where 

W : 13 + sin (0 At) ~ 1 - cos (0 At) ~2 (15) 
0 to "~- 0 2 

1-cos(0At) ~ 
V = I3At + 02 to 

0 At - sin (0 At) ~2 (16) 
+ 03 

and 0 = ]lto[], At = t - to, 13 is the 3 × 3 identity 

matrix, and P0 = Pro. • 

See the appendix for the proof. From theorem 1, we can 
observe that when w = 0 (i.e., pure translation), then 

P, = P0 + v(t - to) (17) 

This is the well-known equation for a point moving on 
a straight line with constant velocity. 

When angular velocity and translational acceleration 
are constant, we have the following equations: 

t o t = t o  

vt = v + a(t - to) (18) 

where to denotes the constant angular velocity, v denotes 
the translational velocity at t = to, and a denotes the 
constant translational acceleration. The trajectory of a 
point in this case is defined by the following theorem. 

Theorem 2. Trajectory with constant angular velocity 
and translational acceleration: 

The trajectory of a point Pt given by equation (13) 
is given, in the case of constant angular velocity to and 
constant translational acceleration a, as 

Pt = Wpo + Vv + Aa (19) 

where W is the same as in equation (15), V is the same 
as in equation (16), and 

At 2 0 At - sin (0 At) ~ 
A I3 T 

+ 03 to 

+ (0 At) 2 - 2(1 - cos (0 At)) ~2 
204 (20) 

and 0 = II to l l ,  = t - to and 13 is the 3 × 3 identity 
matrix. • 

See the appendix for the proof. From theorem 2, we 
observe that when w = 0 (i.e., pure translation), then 

( t  - t 0 )  2 
Pt = P0 + v(t - to) + a ~  (21) 

This is the well-known equation for a point moving on 
a straight line with constant acceleration. 

6 Extended Kalman Filter 

In this section, we adapt the extended Kalman filter 
(EKF) [Maybeck 1982] formulation to our problem. 
It will then be used in the next section to solve our 
motion-tracking problem. For more details, the reader 
is referred to [Maybeck 1979; Maybeck 1982]. 

In practice, the individual state variables of a dynamic 
system cannot be determined exactly by direct measure- 
ments; instead, we usually find that the measurements 
we make are functions of the state variables and that 
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these measurements are corrupted by random noise. 
The system itself may also be subjected to random dis- 
turbances. We want to estimate the state variables from 
the noisy observations. 

If  we denote the state vector by s and denote the 
measurement vector by x, a dynamic system (in 
discrete-time form) can be described by 

st+ 1 = hi(st) + ni, i = 0, 1 . . . .  -(22) 

f/(xi, si) = 0, i = 0, 1, . . .  (23) 

Equation (22) is the state equation, and equation (23) 
the measurement equation. In equation (22), n i is the 
vector of random disturbance of the dynamic system 
and is usually modeled as white noise: 

E[n, ] = 0 and E[n~ n:] = 6,j Q, 

Where 6ij = 1 if i = j and 0 otherwise is the Kro- 
necker symbol. The measurement x, is corrupted by 
additive random noise, that is 

E[xt] = xi and E[(xi - -  XI ) (Xi  - -  Xi) t] : Axl  

We assume also that there is no correlation between 
the noise process of the system and that of the obser- 
vation, that is 

E[(xi - ~,)n~] = 0 

When h, and f~ are linear functions, we write S,+l = 
His, + n, and x i = Fis ,  and the standard Kalman 
filter [Maybeck 1979] is directly available. 

The performance of the Kalman filter in the linear 
case have been completely characterized as, for example, 
in [Maybeck 1979]. If we assume that the n, and the 
x, are Gaussian then, among all possible estimators, 
the Kalman filter provides the one with minimum var- 
iance, that is, which minimizes 

E [ ( s ~  - ~ . ) ' ( s ,  - ~)] 

If we do not assume Gaussianness, among all possible 
linear estimators (those that are computed as linear 
functions of the measurements), the Kalman filter also 
computes the one with minimum variance. Note that 
in this ease there may exist nonlinear estimators that 
yield better results, that is, a smaller variance. 

In that sense, in the case of linear state and measure- 
ment equations, the Gaussian assumption is unnecessary. 

If h~(si) is not linear or if a linear relationship be- 
tween xt and s i does not exist, the so-called extended 
Kalmanfilter (EKF) can be applied. The EKF approach 
is to apply the standard Kalman filter (for linear sys- 

tems) to nonlinear systems with additive white noise 
by continually updating a linearization around the pre- 
vious state estimate, starting with an initial guess. In 
other words, we only consider linear Taylor approxima- 
tions of the state equation at the previous state estimate 
and of the measurement equation at the corresponding 
predicted state. This approach gives a simple and effi- 
cient algorithm to handle a nonlinear model. However, 
convergence to a reasonable estimate may not be 
achieved if the initial guess is poor or if the disturbances 
are so large that the linearization is inadequate to 
describe the system. Contrary to the linear case, there 
are no optimality results for the EKF; but note that the 
Gaussian assumption is also unnecessary. 

The measurement equation fi(xl, s3 = 0 is first 
linearized to obtain a new measurement equation 

Y, = Mis, + vi (24) 

where y, is the new measurement vector, vi is the 
noise vector of the new measurement, and M i is the 
linearized transformation matrix. They are given by 

M, - Ofi(x,, si) 
OSi 

Yi = --f,(x,, S t] + 0f,(xi, Si) 
OS t Si 

E[v,] = 0 

E[vtv~] - Ofi(xi,ox, s,) Ax, 3fi(X,ox, s,)' _a Vi 

The partial derivatives are evaluated at si = sil,-1 and 
x i = ~,. The extended Kalman filter equations are 
given as follows: 

Algorithm: Extended Kalman Filter 

State prediction: 

Sili-I : h i ( s i - 1 )  

Prediction of the state covariance matrix: 

3h, 3h~ 
Po-1  = ~ Pi-1 ~ i  + Qi-1 

Kalman gain matrix: 

t e t If, = Pi[i_lM](Mi &_lMi + ~ . ) - 1  

Update of the state estimation: 

= s ~ l , - i  + ~ ( y ,  - M , ~ i l , - , )  

= ffili-, - K, fi('2i, s+-l )  
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Update of the state covariance matrix: 

Pz = (I - KiMi)Pzli-1 

Initialization: 

P010 = Aso if010 = E[s0] 

7 Formulation of  Motion-Tracking Problem for 
EKF Approach 

In this section, we formulate the motion-tracking prob- 
lem in such a way that we can apply the extended 
Kalman filter formulation of the preceding section. The 
token is assumed to undergo a motion with constant 
angular velocity and constant translational acceleration 
(see theorem 2). We are given a sequence of stereo 
frames taken at to, tl . . . .  t,_l, t,, . . . ,  such that the 
interval between t H ,  and ti is constant and is denoted 
by At. 

7.1 State Transition Equation 

Let the angular velocity at time t, be 60i, the transla- 
tional velocity v i and the translational acceleration at. 
Define the state vector as 

S z "~- [¢0 i V i a,] t (25)  

The state transition equation can be written as: 

St = nsi-  1 "~ hi-  1 (26) 

where 

[ ' 3 O O  1 H = 0 13 13 At 
0 0 13 

We then replace Oh,/0s, in the EKF Algorithm by H, 
since the transition function is linear. The ni_ ~ in 
equation (26) is the random disturbance, with 

E[ni_l] = 0 and An,_1 = Qt-1 

n, is used first to model noise due to, for example, 
vibration of objects during motion. But our constant- 
acceleration kinematic model is also in general only 
an approximation. By adding n,_ 1 in the dynamic 
model, we can partially take the approximation error 
into account. 

7.2 Measurement Equations 

As described in section 4, a segment S is represented 
by ~b and m and their covariance matrixes. Suppose a 
match {$1, $2} is given, where $1 occurs at time tt-1 
and $2 at time t/. We define the measurement vector as 

x = [~{mtl t t t  ~2 m2] (27) 

From theorem 2, we have the following equation: 

m 2 = Wm 1 + Vv + Aa 

Let u I be the unit direction vector of segment S x and 
uz that of segment $2. We have the following relation: 

U 2 = W u  1 

If we define two functions g and h to relate ~k and u 
together (see equations (2) and (3)) so that 

~b = g(u) and 

then we have the following 
F 

fix, s) = ] 
g ( W h ( l ~ l ) )  

L Wmx + Vv + 

u = h(~b) (28) 

measurement equation 

-- 1~2 1 = 0 (29) 

J Aa - m2 

This is a 5-dimensional vector equation. In the follow- 
ing, the first two elements in f(x, s) are denoted by fl 
and the last three elements by f2. 

The relation between s and x described by equation 
(29) is not linear. In order to apply the EKF algorithm, 
it is necessary to compute the derivatives of f(x, s) with 
respect to s and x. It is easy to show that 

where 

F cqfl °_r=] 
Os a6 

L ,9,0 

F0g, 
, ,  0_r __ [0:, 

0 0 

V A 

q 
0 --I 2 0 1 

J W 0 -13 

Oft _ Og O(WuO 
&o Ou; 0¢o 

Ofe _ O(WmO O(Vv) 
0o~ 0o~ + ~ + - -  

0fl _ Og Oh 
OWl OU[ W 0 ~  1 

O(Aa) 

(30) 

(31) 
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with U 1 = h(¢1) and u[ = 14hi. Og/Ou~ can be com- 
puted from formula (3). 0h/c9¢, 1 can be computed from 
formula (2). Since a(VehO/Oco has the same formula as 
O(Veinl)/Oco, we then only need to compute O(14tll)/Oco, 
0(l&)/0co, and O(Aa)/Ow. 

After some simple computations, we get 

O(Wu) 
Oco 

sin (0 At) _ 
- -  U 

0 

0 At cos (0 At) - sin (0 At) 
+ 03 (&u)d 

0 At sin (0 At) - 2(1 - cos (0 At)) 
-}- 04 (~(¢~u)) ¢0t 

+ 1 - cos (0 At) - 
02 [--~U + (w • u)I3 - ut0 t] 

(32) 

O(Vv) 
OcO 

1 - cos (0 At) - 
02 v 

0 At sin (0 At) - 2(1 - cos (0 At)) 
-1- 04 (~v) cot 

3 sin (0 At) - 0 At (2 + cos (0 At)) 
+ 05 (g~(~v))d 

+ 0 At - sin (0 At) 
03 [ - w v  + ( w ' v ) I  3 - vco t] 

(33) 

O(Aa) 
0co 

0 A t -  s i n ( 0 A t )  . 
03 a 

3 sin (0 At) - 0 At (2 + cos (0 At)) (~a)~o t 
+ 05 

+ 4(1 - cos (0 At)) - (0 At) 2 -- 0 At sin (0 At) 
06 

x (;~(~a))co t 

+ (0 At) a - 2(1 - cos (0 At)) 
204 

X [ - ~ a  + ( t0"a)I3  - aw t] (34) 

where ~0 • u denotes the inner product of the two vec- 
tors w and u. 

When a token matches a segment in the current 
frame, we use the above formalism to update its kine- 
matic parameters. The same process is applied to each 
token. 

8 M a t c h i n g  S e g m e n t s  

In this section, we describe how to match a token being 
tracked to a segment in the current flame. The match- 
ing technique is based on the Mahalanobis distance, 
which can be considered as an Euclidean distance in 
parameter space weighted by uncertainty. 

8.1 Prediction of  a Token 

Let z = [~b t, mr] t be the parameter vector of the token 
being tracked. The token kinematic parameters are 
[cO t, V t, at] t. We can use them to predict its parameter 
vector i = [~t, fnt]t at the next time instant: 

I 
~ = g(Wh(~)) 

rh Wm + Vv + A a  
(35) 

where the functions g and h are defined as in equation 
(28) in section 7. Due to noise from multiple sources, 
it is very unlikely that a segment can be found with 
exactly the parameters i = [~U, rht] t and we have to 
design a matching strategy. 

8.2 Matching Criterion 

Let { . . . .  [~/t, m~] . . . .  } be the set of observed seg- 
ments in the scene and [~b t. rif] t be the expected seg- 
ment. All segments have their measures of uncertainty 
attached (covariance matrixes): { . . . .  A,, . . . }  and 
Atoke n. Atoke n is the covariance matrix of the predicted 
parameters i = [~t, mtlt of the token being tracked, 
whose computation is given below. The Mahalanobis 
distance between the expected segment to each segment 
in the current frame is then given by 

dff = ri'Ar~ -1 r, (36) 

where 
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r i = ^ 

m i m 

Ar, = A~ + Atoke n 

The variable d/m is a scalar random variable following 
a X 2 distribution with 5 degrees of freedom. 

By looking up the X 2 distribution table, we can 
choose an appropriate threshold c on the Mahalanobis 
distance. For example, we can take e = 11.07 which 
corresponds to a probability of 95 % to have the distance 
d, M less than e if the match is correct. Thus segments 
in the current frame can be considered as plausible 
matches, if they verify the inequality: 

d/M < e (37) 

Using the above technique, a token may have multiple 
matches in the current frame. This problem has been 
described in section 3. 

Before we compute the Mahalanobis distance (equa- 
tion (36)), we must take care of the discontinuity of 

when a segment is nearly parallel to the plane y = 0 
(see section 4). The idea is the following. If a segment 
is represented by ~b = [<h, O] t, it is also represented by 
[c k - 27r, O] t. Therefore, when comparing the repre- 
sentations of two segments S and S', we perform the 
following tests and actions. If th < 7r/2 and $ '  > 37r/2, 
then set $ '  to be $ '  - 27r; else if ~ > 37r/2 and 
¢ '  < 7r/2, then set ¢ to be q5 - 27r; else do nothing. 
Notice that adding a constant to a random variable does 
not affect its covariance matrix. 

Note that the fact that q~ is discontinuous is only an 
artifact of the representation used. The right way to 
avoid this kind of problems is to use the notions of 
manifold and maps [Faugeras 1991] which are outside 
the scope of this paper. 

Now we return to the problem of computing Atoke n. 
Given the original parameters of the token [~b t, mt] t and 
their covarianee matrix A(~,m), and given the kinematic 
parameters [~t, v t, at]t and their covariance matrix 
A(,~.v.a). Under the first order approximation, the co- 
variance matrix of the expected segment is given by 

Atoke n = J($,m)A(k,m)J~6,m ) + J(~,v,a)A(~,v,a)J~o),v,a) 
(38) 

From equation (35), the Jacobian matrix with respect 
to [~b t, mr] t is 

Og Oh 1 
J(~,m) ~ - 5 W ~  0 

= (39) 

0 w /  

and the Jacobian matrix with respect to [~t, V, at] t is 

Og O(Wu) 
Ou' &o 0 0 

J(~,v,a) = (40) 
0(Wm) 0(Vv) 0(Aa) 
0 ~  + ~ + --b--~-w V A 

where u = h(¢) and u '  = Wh(¢). All derivatives in 
the above equations are computed as in section 7. 

8.3 Reducing the Complexity by Bucketing Technique 

Although the complexity of matching one segment is 
linear in the number of segments present in the current 
frame, the matching process may be slow, especially 
when there is a large number of segments. This is be- 
cause the computation of the Mahalanobis distance is 
relatively expensive (it involves the inversion of a 5 × 5 
matrix). If we can compute the distances d/~ of the ex- 
pected segment to only a subset of segments which are 
near the expected one, we can considerably speed up 
the matching process; this can be achieved by the use 
of bucketing techniques; which are now standard in 
computational geometry [Preparata & Shamos 1986]. 

We can apply the bucketing techniques either in 3D 
space or in 2D space. Bucketing in the image plane of 
one camera is preferred because it is cheaper. The im- 
age plane is partitioned into m 2 square windows 
(buckets) W,j (in our implementation, m = 16). To 
each window W,j we attach the list of segments {Sk} 
intersecting W,j. The key idea of bucketing is that on 
the average the number of segments intersecting a 
bucket is much smaller, and in practice constant, than 
the total number of segments in the frame (see for ex- 
ample [Faugeras et al., 1990] for details). Given a 
predicted token to be matched, we first compute the 
buckets which the disk defined by the predicted segment 
intersects. The disk is defined as follows: its center coin- 
cides with the midpoint of the predicted segment and 
its diameter equals its length plus a number correspond- 
ing to the projected uncertainty of its midpoint. Again, 
the idea is that, on the average, this disk will intersect 
a small number of buckets, except for a token which 
just appeared. Since we initialize such a token with a 
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Fig. 6. Bucketing technique. 
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big uncertainty in motion, its corresponding disk is 
quite big and may intersect many buckets. The set of 
potential matching candidates is then the union of the 
lists of segments intersecting these buckets. This set 
is now considerably reduced, on the average. Figure 6 
illustrates the bucketing technique. In the figure, T is 
the expected segment. Thanks to the bucketing tech- 
nique, it finds 4 potential matching candidates {$1, $2, 
$3, $4} instead of 9 in total. After computing the 
matching criterion described in the above section, there 
remain only two candidates $3 and $4. Note that the 
computation of buckets can be performed very quickly 
by an algorithm whose complexity is linear in the num- 
ber of segments in the current frame. 

9 Support of Existence 

In this section we describe in detail how the beam- 
search strategy sketched in section makes tracking 
much more robust by allowing multiple matches. 

Indeed, in practice, a token being tracked may find 
several correspondences in the current frame. The most 
common strategy is to choose the nearest segment (as 
in Crowley et al. [1988]; Deriche & Faugeras [1990]) 
and to discard the other possibilities. 

Our implementation is based on the work of Bar- 
Shalom and Fortmann [1988] and is much less sensitive 

to false matches. The idea is to keep open the possibility 
of accepting several or no matches for any given token. 
But, if tokens never disappear we may rapidly reach 
a computational explosion. To avoid this we compute 
for each token a number that we call its support of ex- 
istence which measures the adequateness of the token 
with the measurements: if the token has not found any 
correspondences in a long time then it is bound either 
to be the result of a false match that happened in the 
past or to have disappeared from the scene. 

We use the notations of section 8 and denote the se- 
quence of measurements corresponding to the token 
being tracked up to time t k as Z k ~= {z(q), . . . ,  Z(tk) } 
in which z(t,) = [~bt(ti), mt(ti)] t is the parameter vector 
of the segment observed at time ti. Denote the event 
that Z k yields a correct token, that is, that its compo- 
nents z(ti) were produced by the same segment moving 
in space, by e ~ {Z k yields a correct token}. The like- 
lihood function of this sequence yielding a correct token 
is the joint probability density function (or PDF): 

if(e) = p(Zkle) = p[z(q) . . . .  , z(tk)le] (41) 

From the definition of a conditional PDE if(e) can be 
written as 

Lk(e) = p[Z k-l,  z(tk)]e ] 

= p[z(tk)IZ k-l, e] p[Zk-lle] 

k 

= 1-1 P[Z(t,)l Zi-1, e] (42) 
i=1 

where Z ° represents the prior information. 
As in section 8, we denote the measurement residual 

as r, that is, r, = z(ti) - i(h). Then p(ri) = N[ri; 0, 
Arl ] with Ar, = A i + Atoke n. We use N[x; i ,  A] to 
denote the Gaussian density function of the random 
variable x with mean i and covariance A. We now make 
the admittedly strong assumption that the r i are Gans- 
sian and uncorrelated. We thus write: 

p[z(ti)JZ i-l ,  e] = N[ri; 0, Arl ] (43) 

It follows that under the previous assumption: 

II 1 ~ r/Ar~, l r  i if(e) = 7=1 12~rAr' I-1/2 exp - 2 ~=1 

Note that r tA- l r i  = d/M (see equation (36)). The 
l r t 

modified log-likelihood function, corresponding to the 
exponent of Lk(e), is defined as 
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if(e) ] k 
= e : Z d P  

1~ a - 2  In I - I  127rAr, 1-1/2 ,=1 
t= l  

and can be computed recursively as follows: 

l e :  le_, + 

The last term has a X 2 distribution with n r = 5 degrees 
of freedom. Since the re are assumed to be indepen- 
dent, l e has a X 2 distribution with k n  r degrees of 
freedom. 

The statistical test for deciding that Z ~ yields a cor- 

rect token is that the log-likelihood function satisfies 

l e < r (44) 

where the threshold K is obtained from the X 2 table 
with k i t  r degrees of freedom by setting Pr (X~ < K) 
= c~, where a is typically equal to 95 %. 

In practice, the test (44) cannot be used for long se- 
quences because the likelihood function is dominated 
by old measurements and responds very slowly to recent 
ones. In order to limit the "memory" of system, we 
can multiply the likelihood function at each step by a 
discount factor c < 1. This results in the fading- 
memory likelihood function: 

k 

[k = elk-1 -Jr d M = Z ck-i  dM 
i=1 

The effective memory of l e is now (1 - c)-l,  and in 
steady state Ik is approximately a X 2 random variable 
with n~(1 + c)/(1 - c) degrees of freedom, mean 
n/(1 - c), and variance 2n/(1 + c~). See Bar-Shalom 
and Fortmann [1988] for the proof. In our implemen- 
tation, c = 0.75. 

In the above discussion, we assume implicitly that a 
match is detected at each sampling time. As described 
earlier, match detection may fail from time to time for 
a number of reasons. These failures mean that 

d M > e  

as described in section 8. Thus, if  at time te no match 
if found, the fit between the prediction and the obser- 
vation is not very good. But note that even in that case 
we may still have lk < K and the processing of the 
token will continue. This allows us to cope with prob- 
lems such as occlusion, disappearance, and absence. 
Of course if the Mahalanobis distances stay over the 
threshold e at too many consecutive time instants, that 

is, if the token too often does not find any good match 
in the scene, then le will go beyond the threshold K, 
and the token will be discarded, as expected. In practice 
we setd~ t = ae where o~ --- 1.2 in our implementation. 

10 Grouping Tokens into Objects 

In the previous sections, we have described how to track 
each token and estimate its kinematic parameters in 
parallel. In this section, we address the following prob- 
lem: how can the supervisor group tokens into objects 
based on their kinematic parameters? 

We assume that moving objects in the scene are rigid. 
From section 5, we know that each token belonging to 
a rigid object must have the same kinematic parameters 
with respect to a common point. In our algorithm, the 
kinematic parameters of all tokens are computed with 
respect to the same point--the origin of the system of 
reference. We can then define an object as follows: an 
object is a set of tokens with the same kinematic param- 
eters. Under this definition, two different objects are 
grouped as a single one if they undergo the same 
motion. 

Of  course, the estimated kinematic parameters are 
uncertain, and have attached to them an uncertainty 
measure--their covariance matrix. One cannot expect 
to find two tokens having exactly the same kinematic 
parameters. The Mahalanobis distance is again used in 
this case to measure the discrepancy between kinematic 
parameters. Given two kinematic parameter vectors s~ 
and s2 and their covariance matrices As, and As2, their 
Mahalanobis distance is given by 

6 M = [S 1 - S2lt(Asl + As)-l[Sl - s2] (45) 

When s = [o~, v, a] t, 6u is a random scalar following 
a x 2 distribution with 9 degrees of freedom. By look- 
ing up the X 2 distribution table, we can choose an ap- 
propriate threshold ~ on the Mahalanobis distance. For 
example, we can take ~ = 16.92 which corresponds to 
a probability of 95% that the distance 6 ~ is less than 
~. Thus two tokens can be considered to belong to the 
same object, if the Mahalanobis distance of their kine- 
matic parameters verifies the inequality 

6m < ~ (46) 

I f  two tokens are identified to belong to a single object 
by the above test, we can compute a better estimate s 
of the kinematic parameters for the object from those 
attached to each token by the Kalman filter or simply 
by the modified Kalman minimum-variance estimator: 
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s : As-l(As~lsl + As~tS2) 

A s = (A~ 1 + A~I) -I (47) 

where A s is the covariance matrix of the new estimate 
s. We then try to find more tokens compatible with s 
and A s and update them by equation (47). When all 
tokens have been processed, we get 

- -  an object with a list of tokens associated with it and 
its kinematic parameters, and 

- -  a list o f  tokens not yet attached to an object. 

The same process is then performed on the list of non- 
identified tokens to recover new objects, and so forth, 
until no more objects can be identified. We finally ob- 
tain all plausible objects in the scene. 

11 Experimental Results 

We have implemented the proposed algorithm on a SUN 
workstation using the C language. Our program can dis- 
play and control interactively the motion-tracking proc- 
ess. In this section, we provide two experimental results 
with real data to show the performance of our algo- 
rithm. Results with synthetic data have been reported 
in [Zhang & Faugeras 1990b]. The angular velocity unit 
is radians/unit-time, and the translational velocity unit 
is millimeters/unit-time, except when stated otherwise. 

11.1 Real Data with Controlled Motion 

The data are acquired as follows: the trinocular stereo 
rig is in front of a rotating table (at about 2.5 meters). 
The rotating table has two degrees of freedom: vertical 
translation and rotation around the vertical. The motion 
is controlled manually. Boxes are put on the table and 
will be considered by the program as an object. The 
table undergoes a general motion, combination of a 
rotation and a translation parallel to the rotation axis. 
It rotates 3 degrees (clockwise, if viewed from the top), 
and at the same time, has translation from bottom to 
top of 50 millimeters between adjacent frames. Thus, 
the motion corresponds exactly to the constant-velocity 
model. There are in fact three "objects" in the scene 
(see figure 7): the second is the static support of the 
table, and the third is what is below and attached to 
the rotating table, and undergoes the same translation 
but no rotation. 

static 
support 

T 
translation 

static 
support 

Fig. 7. Description of the rotating table undergoing general motion. 

Ten 3D frames have been acquired for this experi- 
ment. Each frame contains about 130 3D line segments. 
Figure 8 displays the images taken by the first camera 
at t I and tl0. To show the motion, the first and the sec- 
ond 3D frames are superposed in figure 9 and the first 
and the last in figure 10, together with a pair of stereo- 
grams. We find that the data are very noisy even for 
the static object and that occlusion, appearance, disap- 
pearance and absence problems are very severe. We 
can also observe that the object in translation is not 
detected until the third frame is taken. (Note: In figures 
9 through 18 when there are four pictures, the upper 
left one is the front view of a 3D frame--that is, its 
orthographic projection onto a frontoparallel plane-- 
the upper right one is the top view--that is, its ortho- 
graphic projection onto a horizontal plane--and the 
lower left and right ones form a stereogram to allow 
the reader to perceive 3D information by cross-eye 
fusion. If there are only two pictures, they are a pair 
of stereograms.) 

Each segment in the first frame is initialized as a 
token to be tracked. Since the motion-tracking algo- 
rithm is recursive, some a priori information on the 
kinematics is required. A reasonable assumption may 
be that objects do not move, as the interframe motion 
is expected to be small. The kinematic parameters are 
thus all initialized to zero, but with fairly large uncer- 
tainty: the standard deviation for each angular velocity 
component is 0.0873 radians/unit-time, and that for each 
translational velocity component is 150 millimeters/ 
unit-time. The variances on the acceleration compo- 
nents are set to zero (no acceleration). 

Those tokens are then predicted for the next instant 
t2 and the predicted tokens are compared with those 
in the new frame. Of course, since we have assumed 
no motion, the predicted position and orientation of 
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Fig. 8. The images taken by the first camera at tl and q0. 

each token remains unchanged, but its uncertainty 
changes and becomes very large. Thus figure 9 displays 
also the difference between the predicted tokens (in 
solid lines) and the observed line segments (in dashed 
lines) at time t 2. As expected, multiple matches occur 
for most of the tokens. Techniques based only on the 
best match usually fail at this stage, since the nearest 
segment is not always the correct match. We retain the 
two best matches if a token has multiple matches. The 
token updates its kinematic parameters using its best 
match. The supervisor initializes a new token by com- 
bining the token and its second-best match which is 
used to estimate its kinematic parameters. 

We continue the tracking in the same manner. Figure 
11 shows the superposition of the predicted segments 
for t 3 and the observed segments. As can be observed, 
more active tokens (in solid lines) exist at this moment: 
some have been activated due to multiple matches at 
time t2 and some just entered the field of view. We 
observe that segments belonging to the object under- 
going general motion coincide well, and so do the 
segments of the static support. The segments belonging 
to the translating object do not coincide well, because 
they just appeared in the field of view and no informa- 
tion about their kinematics is available. Figure 12 shows 
the superposition between the predicted segments for 
tl0 and the observed segments. Almost all segments 
are well superposed except those in the middle part. 
Those segments correspond to the outline of the rotating 
table which is an ellipse. Using line segments to approx- 

imate an ellipse is of course difficult, and this is clearly 
one of the limitations of our system. One can notice 
that most of the tokens, due to false matching in the 
preceding instants, have disappeared, because they have 
lost their supports of existence. 

The supervisor successfully segments the scene into 3 
groups of objects based on the information of the kine- 
matics of each token. In the following, we show the 
result of the estimated kinematic parameters of the object 
undergoing general motion. If we describe the motion 
in the stereo coordinate system, the kinematic parameter 
vector is s = [0.0, 5.236e - 02, 0.0, ?, -50, ?]t. The 
x and z components of the translational velocity are not 
known, since because of the calibration method we have 
used, the rotation axis (that is, the axis of the cylinder) 
is not known in the stereo coordinate system. We know 
the y component of the translational velocity because 
the rotation axis is parallel to the y axis. Figure 13 shows 
the variation of the absolute errors in the estimation 
of the angular velocity. Figure 14 shows only the error 
in the estimation of the y component of the translational 
velocity. The results are good: after a few (four or five) 
frames, the error for the angular velocity is less than 
2.5 milliradians/unit-time (compared with 52.36), and 
the error for the translational velocity is less than 1.5 
millimeters/unit-time (compared with 50). The final 
estimation for this object is 

= [4.291e - 04, 5.328e - 02, -7 .059e - 04, 

-7 .387e + 00, -4 .951e  + 01, 3.677e + 01] t 
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Fig. 9, The superpositon of the first (in solid lines) and the second (in dashed lines) frames. 

The relative error of the angular velocity is 2.36%. The 
angle between the true and estimated axes of rotation 
is 0.9 degrees. Similar results are observed for the other 
objects. The final motion estimate corresponding to the 
translating object is 

[3.437e - 04, 1.353e - 03, - 7 . 3 0 3 e  - 04, 

- 2 . 0 0 9 e  - 01, - 4 . 9 3 7 e  + 01, 8.361e - 01] t 

which should be compared with [0, O, 0, 0, - 5 0 ,  0]. 

The final motion estimate of the static object is 

[ - 2 . 3 2 1 e  - 04, 5.009e - 04, 2.981e - 04, 

2.681e - 02, - 3 . 3 9 9 e  - 01, 4.799e - 01] t 

We now show that the position of the axis of the 
rotating table in the stereo coordinate system can be 
computed from the estimated kinematics ~ and the 
known nature of  the motion. For a point not on that 
axis, its trajectory is a helix. For a point on that axis, 
its trajectory is a straight line. Let a point on the axis 
be p. From equation (11), the velocity of  p is given by 

v p = v + 6 o × p  

Since the rotation is about the axis of the table, the 
velocity v o of  p must be parallel to the rotation axis 
~0, that is ~ x Vp = 0. We thus have 

x v + ~ X (~  x p) = 0 (48) 
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Fig. i0. The superposition of the first (in solid lines) and the last (in dashed lines) frames. 

Equation (48) gives only two independent scalar equa- 
tions, because the three components of a cross-product 
are not linearly independent. It defines the axis of the 
table. In order to compute a point on it, we can choose 
the y component py of p equal to 0, and compute its 
x and z components: Px andpz. In this example, we get 
Px = 677.68 and Pz = 131.08. That point is shown at 
the intersection of the two bold line segments in the 
top view of figure 12, and seems roughly correct. 

11.2 Real Data with Uncontrolled Motion 

The data described in this section are acquired as fol- 
lows. The trinoeular stereo rig is mounted on a mobile 
vehicle, which moves in the laboratory. Objects in the 
scene are about 2 to 7 meters away from the mobile 
vehicle. We have taken 15 stereo views while the vehi- 
cle was supposed to undergo a translation. Figure 15 
displays the images taken by the first camera at q and 
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Fig. 11. The superposition of the predicted (in solid lines) and the observed (in dashed lines) segments at time t3 

t15. We have thus reconstructed 15 3D frames using 
our stereo system, each containing around 85 line 
segments. 

Ideally, the motion of the vehicle is a pure translation. 
If described in our stereo coordinate system, the transla- 
tion between successive views is about [ -  25, 0, -98]  t, 
that is, a displacement of 100 millimeters. However, 
due to precision of the mechanical system and slipping 
of the vehicle wheels, it is naive to believe that the vehi- 
cle motion is going to be exactly the requested one. To 
check this, we have applied an algorithm developed 
earlier for computing motion between two 3D frames 
[Zhang et al. 1988; Zhang & Faugeras 1992] to every 

successive 3D view. We have found that there is a ran- 
dom rotation of about one degree between successive 
views and a difference in translation of up to 30 milli- 
meters in x or z direction. To give an idea, we show 
in table i the x and z components of the computed 
motions (the sign is omitted). We can remark that the 
motion realized by the mobile vehicle is not very 
smooth and does not satisfy either the constant velocity 
or the constant acceleration model. This is our ground 
truth data for checking the performances of the methods 
presented in this paper. 

We apply the techniques described in this paper to 
the above data. As in the previous experiment, each 
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Fig. 12. The superposition of the predicted (m solid lines) and the observed (in dashed lines) segments at time rio. 

segment in the first frame is initialized as a token to 
be tracked. The kinematic parameters are all initialized 
to zero, but with fairly large uncertainties: the standard 
deviation is 0.0873 radians/unit-time for each angular 
velocity component, and 150 millimeters/unit-time for 
each translational velocity component. The variances 
on the acceleration components are set to zero (no ac- 
celeration). The only difference is that the noise term 
n,-1 in the state equation (equation (26)) is not zero. 
We have added at each step a noise with standard devia- 
tion 0.5 degrees/unit-time to the to components and a 
noise with standard deviation 2 millimeters/unit-time 
to the v components. 

The position and orientation of those tokens are then 
predicted for the next instant t2 and the predicted 
tokens are compared with those in the new frame. Of 
course, since no motion is assumed, the predicted posi- 
tion and orientation of each token remains unchanged, 
but its uncertainty changes and becomes very large. 
Figure 16 displays a stereogram showing the difference 
between the predicted tokens (in solid lines) and the 
observed line segments (in dashed lines) at t2. The 
reader can perceive the 3D information by cross-eye 
fusion. As expected, multiple matches occur for most 
of tokens, which are treated in the same way as in the 
previous experiment. 
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Fig. 15. The images taken by the first camera at fi and qs. 

Table 1. x and z components of the translations between successwe views. 

" , ¢ 

Views 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15 

x (mm) 30.8 34.8 18.7 24.7 21.0 29.5 33.1 26.2 7.1 30.7 9.8 19.9 21.1 25.4 

z (mm) 104.1 85.7 91.1 99.7 107.7 108.7 89.4 95.0 126.8 97.3 104.8 104.3 103.7 93.8 
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Figure 17 displays a stereogram showing the super- 
position of the predicted (in solid lines) and observed 
(in dashed lines) segments at t3. As can be observed 
from the figure, more active tokens (in solid lines) exist 
at this moment: some have been activated due to multi- 
ple matches at time t 2 and some just entered into the 
field of view. We observe that most of the tokens already 
have good kinematics information since their predic- 
tions coincide well with their observations. Unfortu- 
nately, this is not always the case. For example, the 

motion between the ninth and tenth views is not 
coherent with the global motion (see table 1). Figure 18 
displays a stereogram showing the superposition of the 
predicted (in solid lines) and observed (in dashed lines) 
segments at tt0. We can observe a big difference be- 
tween the prediction and the observation. After several 
views, such occasional incoherent motion will be com- 
pensated for by the algorithm. Figure 19 displays a 
stereogram showing the superposition of the predicted 
(in solid lines) and observed (in dashed lines) segments 
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Fig. 19. A stereogram showing the superposition of the predicted (in solid lines) and observed (in dashed lines) segments at t15. 

at t]5. Quite a good fitting between the prediction and 
observation can be observed. The final estimate of the 
angular velocity (in radians/unit-time) is [-1.1 x 10-5, 
2.6 x 10 -3, -3 .2  x 10-4] t. The final estimate of the 
translational velocity (in millimeters/unit-time) is 
[-24.5, -1.25, -97.1y. 

The program runs on a SUN 4/60 workstation. The 
number of active tokens varies between 110 and 155, 
except in the first view (89 tokens). The average user 

time for predicting a token is about 6.7 milliseconds 
and that for matching and updating a token is about 
44.6 milliseconds. That is, if we implement the algo- 
rithm on a parallel machine with the same performance 
as SUN 4/60, the time required to process two frames 
is a little more than 50 milliseconds. The average user 
time required to group tokens into objects is about 2.5 
seconds. In the last view, 90 segments have been iden- 
tified as belonging to the static environment. 
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12 Discussion 

In the above discussion about multiple matches we pre- 
sented the concept of sph'tting of a token. In fact, two 
cases of multiple matches should be distinguished. Fig- 
ure 20 shows such cases. The token L is represented 
by a thick line segment. It has two matches $1 and $2 
(represented by thin line segments). In the first case, the 
two matches St and $2 are not collinear. The splitting 
technique can be applied to handle the problem. That 
is, the token L is duplicated, one pursuing the tracking 
by incorporating St, and another pursuing the tracking 
by incorporating $2. 

In the second case, the two matches $1 and $2 are 
collinear. Of course, the splitting technique is still ap- 
plicable, but we do not want to apply it (see below). 
A reasonable interpretation is that $1 and $2 are both 
parts of a single longer segment in space. The segment 
is broken in two because of the edge detection process, 
the line segment fitting process or other reasons. Note 
that not any two collinear segments can be interpreted 
this way. We use the fact that there exists a token, L 
which links S1 and $2 together because it has been 
matched to both of them. Based on the above considera- 
tion, we first merge S1 and $2 into a single segment 
S (see [Zhang & Faugeras 1990a] for the merging tech- 
nique). The token L continues to track by matching S 
without splitting. 

The merging concept is very important. It can avoid 
the abnormal growth of the number of tokens due to 
splitting. For example, in an extreme case as shown in 
figure 21, we have 2 tokens at tz, 4 tokens at t4, 8 
tokens at t6, , . .  

13 Conclusion 

Several of the ideas developed here are not completely 
new, and can be found in the literature [Roach & 

t l  t2 t3 t4 t5 t6 

Fig. 21. An example to show the ~mportance of merging. 

O O 0  

• O • 

Aggarwal, 1979; Hwang 1989; Crowley et al. 1988]. 
Consider, for example, the concept of support. In 
[Hwang 1989], Hwang postulates that the correspon- 
dence process in human vision is local and opportunis- 
tic. The correspondence of two image features in two 
consecutive frames should be determined only by the 
contextual information collected during some short time 
interval in the past. And the correspondence algorithm 
should allow multiple competing solutions. As more 
three-dimensional frames are observed, the correspon- 
dence that best fits the observed data should eventually 
win. Due to occlusion or absence of features or false 
match in the past, a trajectory may not find any match 
in the current frame by extension. In his algorithm, he 
uses a concept called age to indicate the number of 
times that a trajectory (similar to our concept of token) 
does not find any match in the observed frame. Any 
trajectory whose age is greater than MAXAGE (a fixed 
integer) is removed from further consideration. 

Our concept of support differs significantly from the 
age concept in that it takes into account not only the 
number of times a token has not been present, but also 
the number of times it has been present in the past and 
how well the measurements agreed with the predictions. 
This is nicely summarized in the log-likelihood function 
defined in section 9. 

Jenkin and Tsotsos [1986] proposed an approach dif- 
ferent from ours to handle the multiple matching prob- 
lem. They called it a "wait and see" approach: multiple 
matches are first hypothesized to be correct and are later 
disambiguated based on a temporal smoothness con- 
straint by considering all possible temporal combina- 
tions. Their approach requires storing of observed data 
during the last instants (at least three frames) in mem- 
ory. In our approach, only the log-likelihood function 
is updated and retained. 

Our approach to tracking is similar to several 
methods existing in the literature [Gennery 1982; 
Broida & Chellappa 1986; 1989] in the sense that they 



Three-dimensional Motion Computation and Object Segmentation 237 

are also based on estimation theory and that the state 
parameters are estimated by filtering over time. The 
main difference is that the other approaches assume that 
there exists only one moving object in the scene or that 
all objects are known a priori. Such an assumption is 
not used in our approach, in which objects are seg- 
mented after tracking, making it more flexible. 

Our system is based upon three main assumptions. 
The first one is that the stereo process provides us with 
features that are fairly stable over time in the sense that 
they move rigidly in space. Our choice of features has 
been straight-line segments which work well if  the en- 
vironment is close to polyhedral. It is expected that if 
many curved objects are present the method will break 
down unless we choose new features; but this is an open 
area for research. 

The second assumption is the approximation of the 
angular velocity by a constant vector and the linear 
velocity by a polynomial of  known degree in time (in 
practice, the degree has been taken equal to 0 or 1). 
The goodness of this approximation increases with the 
time sampling frequency which is limited by the rate 
at which we can perform stereo. Currently our hard- 
ware for stereo works at frequencies varying between 
1 and 5 Hz depending on the complexity of the scene. 
We have noticed that the use of noise in the state equa- 
tion was very useful in that it helped compensate for 
the systematic modeling errors. 

The third assumption is that the Kalman filter and 
more precisely the extended KaIman filter can be used 
to predict the positions and orientations of the straight- 
line segments being tracked. Even though the assump- 
tions that underlie the use of the Kalman filter are 
stretched a little in our case (but we have justified the 
reasons for our choice in sections 4 and 6) we have 
found in our experiments that we obtained excellent 
results if the first assumption was well verified. 

We are currently programming this technique on 
special-purpose hardware to accommodate the through- 
put of the stereo process and are trying to extend it to 
deal with significantly curved objects. 

Appendix: Proofs of the Theorems 

In this appendix, we prove that when the angular veloc- 
ity ~o(t) is constant and the linear velocity v(t) is a poly- 
nomial in t we can integrate in closed-form the differen- 
tial equation (13), that is, we can express the vector p, 
as a function of o~(t), v(t). 

The following notation (exponential of a matrix) will 
be used in this appendix: 

H 1 M2 1 M n . . .  g U L l +  . M + ~  + . . .  + ~  + 

(49) 

where M is an m × m matrix, I is the m × m identity 
matrix, and M n denotes the multiplication of n matrixes 
M, that is, 

n 

A 

Mn A = M . . . M  

I f M  is a constant matrix, it can be easily shown that 

d eM t = MeMt = eMtM (50) 
dt 

since we have 

d (Mt) n d dt = dt (M~t~) = nM" f~- 1 

= nM(Mt)n 1 = n(Mt)n-1M 

Note that in general, if M is not a constant matrix, equa- 
tion (50) does not hold. 

The following theorem known as Roderigues'for- 
mula [Rodrigues 1840] will be used in the following 
derivation. 

Theorem 3. Rodrigues' formula: 
Given a three-dimensional vector r. The following 

relation holds." 

sin 0 - 1 - cos 0 f2 (51) 
ef = 13 + T r + 02 

where f has the same definition as in equation (12) and 
0 is the magnitude o f r  O.e., 0 = Ilrl]). 

Proof: From equation (49), e ~ can be written as 

1 1 f2 1 ~n . . .  
e ~ =  I3 + ~ . ~ f + ~  + . . .  + ~  + 

It can be easily verified that 

f2n-I  = (_l)n-lo2(n-l)~ for n _ 1 

f2~ = (_1)~-102(~-1¥2 for n > 1 

Therefore we have 

~1 0 2 ( - - 1 ) n - l o 2 t n - 1 ) . l  
ef = I3 + 1~ -- 3~ + ' ' '  + (2n -- )! + ' "  f 
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I 1 02 

+ 25 - 4-7 + " "  + 

( _  1)n- 102(n- 1) 

(2n)! 
+ . . . ~  ! 72 

Recall  that  

0 03 05 
s i n 0  = 1 7 -  37 + ~ + " ' "  

02n 1 
+ ( - -1 )  n-1 q.- 

( 2 n -  1)! " ' "  

and 

02 04 02n 
c o s O =  1 - ~.T + 4-~ - " ' "  + ( - 1 ) "  .-:-: . .  

( 2 n y  
+ . . .  

we get formula  (51). • 

Now we show the fol lowing impor tant  theorem.  

T h e o r e m  4:  Trajectory with constant angular velocity 
and polynomial  linear velocity. 

The trajectory o f  a po in t  Pt given by equation (13) 
can be given in closed fo rm i f  the angular velocity is 
constant and i f  the translational velocity is a polynomial 
o f  degree n (n > 0). • 

P r o o f :  Let  the mot ion  be  descr ibed  by 6or = 6o and 

¥t = v0 + v ~ ( t -  to) + v 2 -  

(t - to) n 
+ Vn n! 

t.)v. 2 + . . .  (t 
2~ 

where  Vo is the veloci ty  at t ime to. Def ine  a new vari-  

able Yt so that  

Yt = e-~°(t t°)Pt 

This y ie lds  Yto = Po, the posi t ion of  the point  at  to. 
Based on equat ion (50), we have 

Yt = e-~(t-t°)(Pt - ~P,)  = e-a(t-t°)vt 

Integrat ing the above equat ion,  we get 

f , t  _ Yt = P0 + e-~(s-t°)Vs ds 
o 

F r o m  the def ini t ion of  Yt, we thus have 

P t  : eg'(t-t°)yt 

= e~O(t_to)p 0 + ft e?O(t_S)Vs ds (52) 
~ t o 

Using theorem 3, we find that 

e ?~(t-t°) = W 

where Wis  given by equation (15). Denoting the last term 
of  equation (52) by r t and using theorem 3, we have 

f f l  s i n [ O ( t - s ) ] _  
r, = 13 + 0 6o 

o 

1 - cos [O(t - s)] ~ 2 ]  
+ 02 / 

IV (s - t0) 2 
• 0 + Vl(S - to) + V2 2! 

(S n '  tO)n 1 + . . .  + v n - -  ds 

Let  us define 

and 

f t  
Lk = (s - to) k sin [O(t - s)] ds 

to 

f t t  Jk = (s - to) k cos [O(t - s)] ds 
o 

We can express  rt in terms of  Lk and Jk(k = 0 . . .  n). 
I f  we obtain c losed- form expressions  for L k and Jk, 
this wil l  be t rue also for r r Indeed,  

l f  t L~ = ~ (s - to) k d (cos  [O(t - s)]) 
o 

s=t  

1 (s to) k cos [O(t - s)] S=to 
0 

k f /  0 (s - to) k-1 cos [O(t - s)] ds 
o 

1 (t - to) k k = ~  - ~ 4 - ~  (53) 

= 

+ 

1 
j t (s - to) k d(sin[O(t - s)]) 

0 to 

1 
(s - to) ~ sin [Off - s)]l  s=t 

[ 

S=to 

k f t (s - to) k-1 sin [O(t - s)] ds 
Jto 

k Lk-  1 (54) 
0 

f t Lo = sin [O(t - s)l ds 
to 

1 {1 cos [ O ( t  to)]} 
0 

(55) 

f 
t 1 

Jo = cos [O(t - s)] ds = ~ sin [O(t - to)] (56) 
to 
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By iteration, we can obtain closed forms of L k and Jk 
for all k > O. Indeed, if we use the following notations: 

°, ll0 
bk = I (t - o 

I 1  - cos [O(t - to)] l 
a = sin [O(t - to)] 

we have 

k 
x k = oAXk-1  + bk for k > 0 (57) 

1 
x 0 = ~ a  (58) 

After some algebra, we obtain 

k! 
xk = ~ A k a  + Bk for k > 0 (59) 

where 

A k = ( - 1 )  r(k+l)/21 

I (k + 1) rood2  
- k  rood 2 

B k = 

1=o 

k mod 2 7 

J (k + 1) rood 2 

( -  1) I d 2i 
02i+ 1 dt2i (t - to) k 

~(k~/2] (--1) '  d 2l+1 

02(i+1 ) dt2,+l (t - to) g 
I=0 

Here FJ7 denotes the largest integer less than j ,  "mod" 
denotes the modulo function, and di/dfl (-) denotes the 
ith derivative with respect to t. This yields a closed- 
form expression for r t and therefore, also for Pt. 

Q . E . D . I  

Theorem 1 is a special case of theorem 4 for vt = v 
(that is, n = 0). The reader can easily verify it. 

Theorem 2 describes the special case v t = v + a(t 
- to) (that is, n = 1). From equation (59), we obtain 

1 1 
L1 = ~ (t - to) - ~ sin [O(t - to)] 

1 
= ~ {O(t - to) - sin [O(t - t0)l} (60) 

Jl = ~2 {1 - cos [O(t - t0)l} (61) 

After some algebra, we get theorem 2. 

Notes  

1. One can also update the position parameters by modifying a little 
the state vector in the formulatmn of section 7. The computation 
will be more expensive, as the complexity of EKF is O(n3), where 
n is the dimension of the state vector. 

2. For simplicity, we assume that x and y are scalar. 
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