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Susceptibility to manipulation* 

D O N A L D  G. SAARI  

Department o f  Mathematics, Lunt Hall, Northwestern University, Evanston, IL 60208-2730 

Abstract. All positional voting procedures can be manipulated, so it is natural to question whether 
some of these systems are more susceptible to being manipulated than others. In this essay, this 
susceptibility factor is measured for strategic action involving small groups. It is shown that the 
system least susceptible to micro manipulations for n = 3 candidates is the Borda Count (BC). 
The optimal choice changes with n, but the analysis shows that the BC always fares fairly well. 
On the other hand, the plurality and anti-plurality vote as well as multiple voting systems, such 
as approval voting and cumulative voting, always fare quite poorly with respect to susceptibility. 
Finally, it is shown why it is possible to justify any voting method by choosing an appropriate 
measure of susceptibility and imposing the appropriate assumptions on the profiles of voters. This 
statement emphasizes the importance of the basic assumptions of neutrality used throughout this 
essay. 

1. Introduction 

Many,  if no t  most  formal  group decisions are made with posi t ional  voting 

procedures.  These are the methods where, for n candidates,  n specified weights 

W n = (w 1 . . . .  Wn) , wj _> Wj+l, w 1 > w n = 0, are used to tally the ballots. In  

the t abu la t ion  wj points  are assigned to the j th  ranked candidate on a ballot,  

j = 1 . . . . .  n, and the group rank ing  for a candidate  is determined by the total  

n u m b e r  of points  she receives. For  instance,  (1, 0 . . . . .  0) corresponds to the 

plural i ty  vote, I (1 . . . .  , 1, 0) to the ant i -plural i ty  vote (which is equivalent  to 

voting a g a i n s t  one candidate),  and B n = ( n - l ,  n - 2  . . . .  , 0) to the Borda 

Coun t  (BC). Because these voting procedures are so widely used, 2 it is impor-  

tant  to analyze their properties to determine when one should avoid certain sys- 

tems because of their defects. 

Already in  the 1780s it was recognized that  one of the posi t ional  voting sys- 

tems, the BC, has a serious flaw: it can be manipula ted .  Namely,  there are situ- 

at ions in which a voter can change the election outcome to a personal ly more 

favorable  one by strategically misrepresent ing his t rue preferences. 3 Indeed,  

this weakness of the BC remains as an a rgument  against  using it. (See, for 

example, Riker, 1982; Sawyer and MacRae,  1962.) We now know, however, 
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that it is premature to disqualify the BC or any other election procedure just 

because it admits strategic voting. This is because the Gibbard (1973) - 
Satterthwaite (1975) Theorem asserts for n _> 3 that all reasonable election 
procedures, including all positional voting methods, can be manipulated. 

I f  "manipulabi l i ty"  is to play a role in the choice of  a positional voting 

method,  then it must be in terms of "degrees ."  Are some systems more easily 
manipulated than are others? To answer this question we must measure how 

susceptible a system is to being manipulated. Once a measure for manipulabili- 
ty is adopted, the analytic issue is to discover which positional voting methods 

minimize the likelihood of successful strategic actions. It turns out that the 

optimal system need not be one of the more commonly discussed methods, so 
the analysis must involve all possible positional voting methods. This is done 
here. Second, as I show in this essay (Theorem 3), the answer can change with 

the choice of  a measure. Indeed, as I indicate, a corollary of  Theorem 3 is that 

is possible to create a scenario with specially chosen profiles or a measure of  
manipulability to justify the use of  any positional voting method. This asser- 
tion has many consequences. One consequence is that there is no universal solu- 
tion to the manipulability problem; a given positional voting method can be 

the best selection with some electorates, but a poor  one with others. A second 

conclusion is that because of the sensitivity of  the answer to the choice of  a 
measure, we must take care when we adopt a measure or when we make any 
restrictive assumptions about how the voters will act. 

Two natural ways to measure manipulation involve whether there is a macro 
or a micro attempt to alter the relative election rankings of  two particular can- 

didates; will a large percentage or a small percentage of the voters try in a coor- 

dinated fashion to manipulate the outcome? 4 The choice of  which one is ap- 
propriate depends on the nature of  the electorate. For instance, there are 

noteworthy examples where one might expect macro manipulations of  an elec- 
tion, such as when there is a single manipulating voter in a small group, or when 

a large interest group tries to orchestrate the members '  strategic voting. On the 
other hand, quite often only individual voters or small coalitions try to coor- 
dinate attempts to manipulate the system. Examples include those organiza- 

tions, such as professional societies, in which not many  voters are likely either 

to at tempt a strategic manipulation or to possess the necessary information to 
discover an appropriate strategy. Other examples include heterogeneous socie- 
ties and other organizations without large, organized interest groups. My main 
emphasis is to understand which positional voting systems are the least sus- 

ceptible to micro manipulation. 
I must emphasize that considerations of  whether there is a micro or a coordi- 

nated macro attempt to manipulate the system are critical. This point is under- 
scored by comparing my results with the assertions in two interesting essays 
Chamberlin (1985) and Nitzan (1985). These two authors consider a similar 
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strategic issue with assumptions closely related to mine. What differs here is 
the methodology 5 and the choice of measures. While these authors investigate 
a kind of coordinated macro manipulation, I concentrate on micro manipula- 
tions. It is instructive and surprising to learn how radically their conclusions 
differ from mine. For instance, one can extrapolate from their computer simu- 
lations that those systems relatively immune to micro manipulations appear to 
be quite prone to macro manipulations, and vice versa. There are interesting 
mathematical explanations for this difference in our conclusions, and I outline 
them in Section 1.2. 

For any choice of a measure of  manipulation, the subsequent analysis must 
involve two factors. The first is to find the positional voting method, W n, 
which offers a strategic voter the largest impact on changing the final outcome. 
After all, each W n provides a different vote differential for the strategic voter 
to affect the final tally. With the techniques developed here, one can show for 
n = 3 that B 3 = (2, 1, 0), the BC, maximizes the expected strategic impact. 
(Consequently, one might expect, and it probably is true, that for carefully 
coordinated macro manipulations of a system, the BC fares quite poorly 
among the positional voting methods.) However, even if a voter attempts to 
be strategic, he need not be successful. So, the second factor involves "oppor-  
tuni ty."  How often will a voter (or a small coalition) be in a situation where 
the manipulative scheme is effective? Thus, an analysis of manipulating 
requires combining both the impact that a strategic voter has on the final out- 
come and an accounting of how often such a strategy succeeds. 

This essay's conclusions are based on this approach: Start with the sincere 
way that the voters mark ballots. Next, count the number of profiles for which 
a small group of voters, by changing how they choose to mark their ballots, 
can convert the outcome into a personally more preferable one. The more pro- 
files for which the voters successfully can manipulate the outcome in this man- 
ner, the more susceptible is the sytem. (Because the total number of profiles 
is fixed, this approach is equivalent to computing the proportion of possible 
profiles for which a micro manipulation is successful.) In a sense that I later 
make precise, the surprising conclusion is that for n = 3, the BC is the position- 
al voting system that is the least susceptible to micro manipulations! This me- 

ans that although it is easy to concoct examples to demonstrate certain strategic 
failings of the BC, if we admit all possible situations, the BC optimally avoids 
the consequences of  micro manipulations. 

The BC is not the optimal answer for n > 3. For n = 4, the unique method 
is (2, 2, 0, 0) (or, equivalently, (1, 1, 0, 0) - "vote  for your two top ranked 
candidates"),  and for n = 5 it is (2, 2, 1, 0, 0). It may appear that a pattern 
is beginning to develop in which the answer for n = 6 should be (2, 2, 2, 0, 
0, 0). There is a pattern, but it is not the obvious one because for n = 6 the 
optimal choice is, essentially, (6, 6, 5, 1, 0, 0). (The precise answer requires two 
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of the wj's to be irrational numbers. This result underscores my earlier com- 
ment that a careful examination of  manipulability must involve all possible 
Wn's.) For all other values of  n, the zeros of a set of algebraic equations 
coming from the gradient of the expression given in Eqs. 3.17 determines the 
optimal choice of W n. It appears from these equations that when n has a suffi- 
ciently large value, the optimal W n must have the differences between the suc- 
cessive wj's approach a common value. This is, of  course, a definition for the 
BC. Thus, for n = 3 and for larger values of n, it appears that the BC optimally 
avoids the effects of micro manipulation of a pair of candidates. It also is true 
that even when the BC is not the best choice, it is not far from being so. I show 
this for n = 4, 5, by comparing the ratios of the susceptibility measures for 
the BC versus the optimal choice. This approach extends for all values of  n. 
Finally, my results prove that for n >__ 3, (1, 0, . . . ,  0) (plurality voting) and 
(1, 1 . . . . .  1, 0) (anti-plurality voting) always share the dubious honor of being 
the most susceptible to binary manipulation. 

In addition to positional voting, I analyze multiple voting systems. A multi- 
ple system (Saari and Van Newenhizen, 1988a) is a voting system equivalent 
to allowing a voter to first rank the candidates on his ballot and then select how 

the ballot is to be tallied from among several specified positional voting 
methods. Some of the better known multiple systems include cumulative 
voting, approval voting, and any positional voting procedure that tolerates 
" t runca ted"  ballots. As one might suspect, the conclusion is that multiple sys- 
tems are far more susceptible to manipulation than are any of  the defining 
individual systems. The mathematical approach developed here, moreover, 
extends to run-off elections, to other elimination and social choice functions, 
as well as to certain other allocation and decision problems that do not admit 
standard incentive structures. 6 

1.1. The properties o f  a measure 

A measure for manipulability should reflect the goal of encouraging a sincere 
vote. "Telling the t ru th"  must play a central role; we do not want a system that 
penalizes honesty. But, what system satisfies these conditions? To understand 
the motivation for my assumptions, I briefly review some of the incentive 
literature. 

The Gibbard-Satterthwaite theorem informs us that for any choice of a 
voting procedure, when n ___ 3, there always are situations where someone can 
replace a sincere vote with a strategic one to achieve a personally better out- 
come. In game theoretic terminology, this assertion means that "telling the 
t ru th"  is not a dominant strategy. Because it is impossible to attain our goal 
of "hones ty"  for all possible profiles, the next step is to restrict attention to 
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certain "na tu ra l "  ones. In incentive theory, one approach is to seek those 

mechanisms where a person cannot do better than telling the truth when every- 

one else does so. That  is, with such mechanisms, truth-telling is a Nash 
equilibrium. This approach does not mean that such a system cannot be 

manipulated, that there are not strategies equally as good as being sincere, or 

that one cannot try to manipulate the system. It only means that if everyone 
else is truthful, a voter cannot successfully manipulate the system to his advan- 
tage. Of  course, carried to the extreme, one might question the value of  truth- 
telling. Here a remarkable result called the revelation principle is invoked. This 

result, which Gibbard (1973) first recognized, and then several other authors 

extended to many other settings, essentially asserts that if an appropriately de- 
fined implementation can be done at all, then it can be done truthfully. See 

Meyerson (1988) for an excellent introduction. 
Positional voting methods form an important  class of  mechanisms for which 

the incentive-manipulation problem is not resolved even with the Nash ap- 

proach. This means that for any choice of  a positional voting system, there are 
situations in which a manipulating voter can alter the outcome to a personally 
more favorable one even though all voters are sincere. So, the next step is to 
find out which Wn's minimize the likelihood that a voter or a small coalition 
can successfully manipulate the system if everyone else is sincere. This is the 

basic theme of this essay. 

An important  factor in studying manipulation is to determine: "who  knows 

what"  and "who is saying what to w h o m . "  For instance, if I know that there 
is a close contest between two candidates, then I may try to manipulate the out- 

come to favor my preferred candidate. But, without any such added informa- 
tion, my unguided efforts could be counterproductive. I f  this kind of  extra 

information about the electorate is available, it would be useful to an architect 

of  an "one  time only" voting system in the selection of  a method to encourage 
sincere voting. To illustrate, suppose the architect knows that of  the candidates 

{ci, c 2, c3}, c 1 and c 2 will closely contest the top position. Suppose the archi- 
tect also knows either that nobody ranks c 3 in top position, or that all voters 
with c 3 as top-ranked will vote sincerely. Here, the plurality vote, (1, 0, 0), 
encourages sincere voting, while the anti-plurality vote, (1, 1, 0), is the worst 

choice. Conversely, if the architect knows that nobody ranks c 3 in last place, 
then the answer is just the opposite: the plurality system is the worst system, 

while the anti-plurality system encourages a sincere vote. This theme extends. 
Theorem 3 of this essay asserts that for any choice of  a positional voting sys- 
tem, W n, there are distributions of  voter 's  preferences for which W n mini- 
mizes the susceptibility to manipulation. In other words, with the appropriate 
assumptions, with a correctly constructed scenario, any system can be justified 
as being strategically the best. As a corollary, one must view with suspicion 

those assertions about  the manipulability of  a system that rely only on a finite 
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number of examples or on restrictive assumptions. The answer may change 
when we admit more general situations. 

While an architect of a system intended for a single usage can exploit infor- 
mation about the characteristics of the electorate, such knowledge need not 
exist when a voting system is being selected for an institution. Here, it is under- 
stood that the system is to be used for all votes on all issues independent of 
membership changes. As we cannot judge the future, we do not know which 
alternatives or candidates will be the target of an manipulation attempt; we do 
not know who is going to vote strategically; and we do not know how the 
preferences of the voters are distributed. This means that we require a neutral 
approach to select W n. Therefore, my basic assumptions are: for any given set 
of  three or more candidates, it is equally likely for any pair of them to be the 
target of a manipulation attempt; any profile or distribution of voters' types 
is equally likely; and it is equally likely that a strategic voter or small coalition 
of strategic voters has any particular preference profile. It is in this sense that 
my results hold. 

As stated, my emphasis is to discover which positional voting methods 
minimize the likelihood that the relative ranking of a pair of  candidates is suc- 
cessfully (micro) manipulated. There are many other questions that one could 
raise, such as: which method minimizes the likelihood that the relative ranking 
of  a pair, or a triplet, or any other subset can be manipulated? With each new 
question, the choice of an optimal system can change. However, each of these 
issues as well as the macro manipulation concerns can be analyzed by using the 
analytical mathematical techniques developed here. Based on these techniques 
and the symmetry derived from the neutrality assumptions, I offer the conjec- 
ture that if one is concerned about the micro manipulation of any number of 
the n candidates, then the Borda Count is the method that either minimizes, 
or comes close to minimizing, the likelihood of  a successful manipulation. 

1.2. Why the Borda method? 

Why should the BC be either the optimal choice, or close to it? Intuitively, it 
is because the BC is the voting system that symmetrically splits the difference 
between the worst choices of the plurality and the anti-plurality vote. The 
mathematically more subtle explanation is related to the reasons that the BC 
is the unique positional voting method that significantly minimizes both the 
number and the kinds of  (sincere) voting paradoxes that ever could occur. (See 
Saari 1989a, b). Essentially, the traits of the BC grow out of the symmetry 
property that there is a fixed value for the successive differences between the 
wj's in B n. It is this symmetry that minimizes the number and kinds of election 
paradoxes; it is this symmetry that pushes the BC to the forefront in terms of 
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its minimal susceptibility to micro manipulation; but it also is this symmetry 
that forces the BC to be vulnerable to carefully coordinated macro manipula- 

tions of  the system. 
The success of the BC rests on the geometry of the set of all profiles identified 

with an election outcome. Call this set of  profiles a ranking set. Each W n 
determines the geometry of the ranking sets, and the fixed differences in the 
weights of  B n impose a symmetry on the geometry of each of its ranking sets. 
In a micro manipulation, the susceptible profiles must be sufficiently close to 
the appropriate boundaries of a ranking set. The reason these profiles must be 
close to the boundary is because a small strategic change in the profile must 
cross the boundary to change the election ranking. Therefore, the "oppor-  
tunity fac tor"  which constitutes a major part of  the measure of  susceptibility 
must be related to the higher dimensional surface area of  the boundary of this 
set. As it is commonly known, the more symmetrical a set (with a fixed 
volume), the smaller the surface area. (As an illustration, recall that of  all rec- 
tangles with a fixed area, the square has the minimum perimeter.) Because of 
the symmetry of the BC ranking sets, the surface area of  the boundary of the 
ranking sets is comparatively small. Indeed, this boundary is sufficiently small 
to compensate for the larger vote differential that B n provides each strategic 
voter. It is for this reason that the BC fares well with respect to micro manipu- 
lations. 

In a coordinated macro manipulation of  an election, one can carefully 
orchestrate the strategic choices of all of the voters. In such settings the most 
important factor becomes the differential that each W n provides each of the 
large group of strategic voters. Again, it is the symmetry properties of B n that 
make this value larger for the BC than for even the plurality and anti-plurality 

vote. Consequently, one should not expect the BC to fare as well as the plural- 
ity method for highly coordinated macro manipulations of elections. 

2. Framework and main results 

For the n candidates, C n = [ C 1 . . . . .  C n }, there are n! different linear rankings. 
Each ranking defines a voter type. Let pj denote the fraction of  all voters that 
are of the jth type, j = 1, . . . ,  n!, and let p = (Pl . . . . .  Pn!)" As pj _> 0, and 
~]jpj = 1 ,  each profile p is a point in the unit simplex, Si(n!), of  the positive 
orthant of R n!. In what follows, the profile p always represents the voters' 
truthful preferences while p '  includes attempts at manipulation. For a speci- 
fied voting vector, W n, let F(p; W n) be the function that gives the tally of the 
ballot. More precisely, compute the vote tally for cj as determined by p and 
W n. Let this value be the jth component of  a vector in R n. In this manner, 
F(p; W n) defines a vector in R+n; 
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F ( - ;  p) : Si(n!) ~ R+ n, 2.1 

where R+ n is the positive orthant of  R n. 

The values of  the coordinates of  F(p; W n) give the election ranking of the 
candidates. So, if the vector F(p; W n) is closer to the jth axis than the kth 

(i.e., cj received a larger vote than Ck), then the relative election ranking is 
cj > c k. I f  the coordinates of  R n are given by (x 1 . . . . .  Xn), then the plane 
xj = x k corresponds to the set of  all election outcomes where there is a tie vote 

between cj and c k. Call this plane the indifference surface between cj and c k. 
The truthful profile is p, so the sincere outcome is F(p; wn). If  a voter (or 

a small group) votes strategically, then the actual election tally is F (p ' ;  W n) 

where p '  = p + v and v represent the strategic change in voting. The manipula- 
tion v affects the election outcome if and only if F(p; W n) and F(p + v; W n) 

are on different sides of  an indifference surface. For such a change to be 

"successful ,"  the new outcome must be personally more favorable for the 
manipulators.  

To start the analysis, I formalize my assumptions. Assume that 

1. any p E Si(nO is equally likely, and that 
2. each pair o f  alternatives is equally likely to be the target o f  an attempted 

manipulation. 

To measure the "success" of  any attempted manipulation, I follow the lead 
of the Nash equilibrium by analyzing the situation in which a strategic voter, 
or a small group of strategic voters, tries to reverse the relative ranking of a 

particular pair of  candidates, while all other voters vote sincerely. Without loss 

of generality, assume that the strategic voter(s) attempts to influence the rela- 

tive election ranking o f  c 1 and c 2 in the direction c 1 > c 2. These assumptions 
define v. 

To motivate the definition of v, let n = 3 and let the voter types be labelled as 

Type Ranking Type Ranking 

1 c 1 ~ c 2 ~ c 3 4 c 3 > c 2 ~> c 1 

2 c 1 > C 3 > C 2 5 C 2 > C 3 > c 1 

3 c 3 > c I > c 2 6 c 2 > cl > c 3 
By assumption, a strategic voter is of type 1, 2, or 3. The most successful way 

that such a voter can manipulate the system is to pretend to be a type 2 voter. 
Any other choice either is not strategically maximal or is counterproductive. 
When a type-1 voter assumes the characteristics of  a type-2 voter, the profile 
changes. For instance, with twenty voters where p -- 20-1(6, 3, 2, 2, 3, 4), a 
single " t y p e - l "  strategic voter changes the profile to p '  = 20-1(5, 4, 2, 2, 3, 4), 
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so the vector v characterizing the at tempted manipulation is 20-1( - 1, 1, 0, 0, 

0, 0). Likewise, a strategic type-3 voter defines the vector v = m-l (0 ,  1, - 1 ,  

0, 0, 0), where m is the total number of  voters. The theme of neutrality leads 

to the assumption that 

3. it is equally likely fo r  a manipulating voter to be o f  any strategic type. Such 
a voter assumes a strategy (voter type) to maximize the effect o f  the manipu- 

lation. I f  there are several maximal strategies, the voter selects the one most 
consistent with his actual type. (Here we understand "consis tency" to mean 
that a maximal number  of  the relative rankings of  the pairs is preserved.) 

The second part of  Assumption 3 has meaning only for n _ 4. 

Example. If  a manipulating voter is of  type c 1 > C 2 > C 3 > C4, then the two 

maximal strategies are to assume type c I ~ c 3 )" c 4 ~ c 2 or c 1 > c 4 > c 3 

c 2. Of  these two strategies, the first is more nearly consistent with the voter 's  

true type. 

According to the third assumption, if n = 3, then it is equally likely for the 

strategic voter to be of  type 1 or 2. Consequently, the expected manipulation 
is a scalar multiple of  ( - 1 / 2 ,  1, - 1 / 2 ,  0, 0, 0). In general, v, the expected 
manipulation vector (EMV), is determined by averaging the effects of  strategic 
changes over all strategic types. The scalar multiple of  the EMV depends upon 

the small fraction of  voters that are strategic. For instance, with m voters and 

q manipulating voters, the multiple is q /m.  Everything that follows holds 
should the magnitude of  the EMV, I v ] ,  be sufficiently small, v Conse- 

quently, these results hold whenever the manipulating voters form a small frac- 
tion of  the total electorate. 

Definition. Let m > 2, and an EMV v be given. Let tx(wn; m), the m voter 
measure o f  binary susceptibility of W n, be the number of  p 's  in Si(n!) with a 

common denominator  m, so that F(p + v; W n) has the relative ranking c 1 > 

c 2 while F(p; W n) has the relative ranking c 2 _ c 1. 

This definition considers all possible profiles with m voters (the common 

denominator  of  the p's), while the magnitude of the EMV, v, determines the 

fraction of  strategic voters. The measure determines the number of  profiles for 
which a micro manipulation is successful with W n, where smaller values mean 
that the voting method is more immune to the strategic action. Again, because 
the number  of profiles is fixed, a smaller value for Iz(wn; m) also means that 
a smaller percentage of  all profiles can be successfully manipulated. The idea 
is to discover which Wn's minimize the value of this m-voter measure of  sus- 
ceptibility. 
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Unfortunately,  each value of  m admits an uncountable number of  Wn's to 
minimize ~(wn; rn). This is because for each m and W n, there is a continuum 

of positional voting methods for which an election outcome is indistinguish- 

able f rom that of  W n. For instance, an election tallied with (1, 0, 0) or one 

tallied with (1, 3, 0), 0 < 3  < m -1, always agree because the difference in the 

weights is not reflected by such a small electorate. This means that the answer 
to the susceptibility problem changes with the value of  m. So, to remove this 

annoying dependency on m, I retain only those Wn's that are optimal for all 
sufficiently large values of  m. This means that there are values of  Wn's that 

are "op t ima l "  for smaller values of  m, but they are dropped f rom considera- 
tion once m becomes larger. 

Definition. A voting system W n' is susceptibility efficient if 

/z(wn';  m) ~ p,(wn; m) 2.2. 

for all choices of W n and for all sufficiently large values of  m. The voting sys- 

tem W TM is susceptibility inefficient if Inequality 2.2 is reversed. 

A straightforward argument proves that W n is susceptibility efficient if W n 

minimizes the value of the next measure, the measure of  (binary) susceptibility 
of  W n. 

Definition. Let EMV v have a sufficiently small value. Define /z(wn), the 

measure of (binary) susceptibility of W n, to be the volume of {p E Si(n!) 
', F(p + v; W n) has the relative ranking c 1 > c 2 while F(p; W n) has the relative 

ranking c 2 >_ c 11. 

Theorem 1. a. For all n >_ 3, the plurality vote, (1, 0, . . . ,  0), and the anti- 

plurality vote, (1, 1 . . . . .  1, 0), are susceptibility inefficient, and/x((1, 0 . . . . .  

0)) = /z((1, 1, . . . ,  1, 0)). 

b. For n = 3, the unique susceptibility efficient system (USE) is the BC. For 

n = 4, 5, the USE are, respectively, (2, 2, 0, 0) and (2, 2, 1, 0, 0). 
c. The following ratios compare choices of  W n with the USE: 

# ( ( 1 , 0 , 0 ) ) / # ( B  3) = 1.027 

/ z ( ( 1 , 0 , 0 , 0 , 0 ) ) / / z ( ( 2 , 2 , 1 , 0 , 0 ) )  = 2254 .003  

/x (BS) / / z ( (2 ,2 ,1 ,0 ,0 ) )  = 13.914 

/ z ( (1 ,0 ,0 ,0 ) ) / / z (2 ,2 ,0 ,0 )  = 4 . 6 0 6 4  

# ( ( 2 , 1 , 0 , 0 ) ) / t x ( ( 2 , 2 , 0 , 0 ) )  = 3 .358  

/z (B4) / / z ( (2 ,2 ,0 ,0 ) )  = 2 . 0 1 4  

2.3 

Theorem 1 extends to all n ___ 3 by use of  Eq. 3.17; this equation gives the meas- 
ure of  susceptibility for all choices of  W n. 
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The ratios in Eq. 2.3 compare the relative vulnerability of  the different sys- 

tems. I find it surprising that the ratios are so close to unity for n = 3. (Because 

this ratio compares the worst situation with the USE, this value bounds all 
other ratios for n = 3.) On the other hand, these ratios prove for n _> 4 that 
the plurality and the anti-plurality systems are very susceptible to micro mani- 

pulations. Notice that while the BC is not the USE for n = 4, 5, the ratio is 

relatively small. The same conclusion holds for n _> 4. This result indicates that 

the BC might be adopted over the USE should it satisfy other criteria; for 
example, see Saari (1989a, b). 

Theorem 1 concerns the social welfare ranking of some two alternatives, but 

they need not be the two top ranked ones. In many  elections the purpose is to 
find a "winner , "  the top ranked candidate. So it is interesting to find out 

whether the conclusions of  Theorem 1 change should we restrict attention only 

to those profiles for which c 1 and c 2 are contesting for the top position. There 
are certain symmetries on the space of profiles that permit the answer to remain 
the same for all values of  n. 

Theorem 2. The systems that are least susceptible to a binary manipulation of 
the two top ranked candidates are B 3, (2, 2, 0, 0), and (2, 2, 1, 0, 0). 

The conclusions of  Theorems 1 and 2 rely on the neutrality assumptions. The 
next issue is to discern what happens if the neutrality assumption on who is a 

strategic voter does not hold. To be more specific, consider n = 3 and suppose 
with probability c a type-one voter is strategic, and with probabili ty ( l - c )  that 

a type-three voter is strategic. The resulting EMV, v c, is a multiple of  ( - c ,  1, 

- (1  - c ) ,  0, 0, 0), rather than ( -  1/2, 1, - 1/2, 0, 0, 0). The choice of  an optimal 
voting method requires finding W n to minimize the volume of IP ~ Si(n!)l F(p 

+ Vc; W n) has the relative ranking c 1 > c 2 while F(p; W n) has the relative 

ranking c 2 _ c 11. The surprising conclusion is that the answer changes with 
c, the electorate's manipulation characteristic. Part  of  the surprise is that this 

conclusion puts in doubt those standard arguments about the strategic proper- 

ties of  certain methods that rely on specialized examples or restrictive assump- 
tions on strategic action. This conclusion, moreover,  highlights the importance 
of the neutrality assumptions. 

Theorem 3. Let W 3 be given. There is a value for c, the electorate's manipula- 
tion characteristic, so that W 3 is the USE. 

This assertion holds for all values of  n _ 3 as well as for all multiple voting 
systems such as approval  or cumulative voting. 

Definition. A simple voting system for n candidates is one in which all ballots 
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are tallied with a specified W n. A multiple voting system for n candidates is 
one in which (i) there is a specified set of at least two simple voting methods 
{ wnj I, where the difference between any two of  them is not a scalar multiple 
of (1 . . . . .  1), and (ii) each voter can select any one of the voting methods to 
tally his ballot. 

Example. Cumulative voting, as used for half century in Illinois (Sawyer and 
MacRae, 1962) is defined by the set ((3, 0 . . . . .  0), (2, 1, 0 . . . .  ,0) ,  (3/2, 3/2, 
0, . . . ,  0), (1, 1, 1, 0 . . . . .  0) }. Approval voting is defined by { (1, 0 . . . . .  0), 
(1, 1, 0, . . . ,  0) . . . . .  (1, 1, . . . ,  1, 0)}. The simple system, given by W n, de- 
fines a multiple system, called the truncated ballot, if it includes provisions to 
tally those ballots in which the required number of candidates are not ranked. 
A multiple system that has an uncountable number of ballots is one in which 
each voter can split ten points in any desired manner among the candidates. 

The next theorem asserts that multiple systems are more susceptible to manipu- 
lation than are any of the defining simple systems. This conclusion is reasona- 
ble; after all, each of  the constituent simple systems offers voters certain strate- 
gies and opportunities to manipulate the outcome. We should suspect that a 
multiple system offers the union of these opportunities and strategies to the 
strategic voter, so the added opportunities should make a multiple system more 
susceptible to manipulation. The actual argument is more complicated, be- 
cause even more strategies are admitted, but this intuition serves us well. 

Theorem 4. Let n _> 3. If W n is one of the simple voting methods in a specified 
multiple voting system, then the multiple system is more susceptible to binary 
manipulation than is the simple system W n. 

Corollary. For n >_ 3, both cumulative and approval voting are more suscep- 
tible to binary manipulation than is any simple system, including the suscep- 

tibility inefficient system of plurality voting. 

Niemi (1984) contends that if one relaxes certain of the basic assumptions sup- 
porting approval voting, then this method begs to be manipulated. Theorem 4 
and its corollary rely on different arguments and a different approach, but they 
support Niemi's assertions. Theorem 3 provides a partial way to understand 
the conflict in assertions between the various positive assertions supporting the 
strategic action associated with approval voting and the conclusion of the 
corollary just stated. Much of the theory of approval voting rests on assump- 
tions about what is an "admissible" strategic action. If one adopts these 
assumptions, then approval voting appears to fare quite well. This is to be 
expected because, as Theorem 3 asserts, any system can be justified, or be 
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judged to be strategically optimal, just by imposing the appropriate  restrictive 

assumptions. But when a strategic voter tries to manipulate the election, he 

may not wish to restrict the strategic options only to those satisfying certain 
theoretical assumptions. I f  there are other strategic actions that achieve his 
desired objectives, he may wish to use the successful options. Thus, a more 
realistic approach is to relax these restrictive restrictions to admit all possible 

strategic actions admitted by the neutrality assumptions. Once this is done, the 

conclusions differ significantly. 
The approach and argument supporting Theorem 4 only admit those stra- 

tegic actions that require a misrepresentation of  truthful preferences. Conse- 

quently, this theorem does not admit any of those manipulative actions for 
which a voter remains true to his preferences, but where he uses the choice a 
tallying method as a strategic variable, s Thus a complete analysis would re- 

quire including this second kind of  strategic action. By introducing this second 
kind of strategy, however, it becomes clear that multiple systems are even more 

manipulable than suggested by the above results. Thus it is not necessary to 

complete this analysis here because Theorem 4 already makes the point. 
While the emphasis in this essay is on manipulating the relative ranking of 

a pair of  candidates, there are many other interesting kinds of  manipulations. 

For instance, an ambitious, strategic voter may wish to manipulate the relative 

rankings of  more than just two of the n candidates. The analysis of  this prob- 

lem remains open, but the symmetry properties of  the BC lead me to suspect that 
the optimal choice either is the BC or it is a system that is very close to the BC. 
For instance, notice that the USE for n = 3, 4, 5 definitely reflects the fact I 

am analyzing only binary manipulations. It  is reasonable to suspect that when 

one analyzes the effects of  a manipulation of  larger numbers of  candidates, the 
optimal W n will reflect higher order symmetries. This identifies the BC. 

3. Proofs  

Part  of  the p roof  relies on an interesting symmetry property based on reversing 

mappings. Let R r be an involution map that reverses a ranking. For instance, 

Rr(C 2 > c I > c3) = c 3 > c 1 > c 2. As such, R r reverses the ranking of  a profile. 
For example, if p consists of  four type-1 voters and one type-2 voter, then 

Rr(P) consists of  four type-4 voters and one type-5 voter. It is obvious that 
F(Rr(P); W n) = Rr(F(p; wn)). 

As it is well known, the election rankings associated with p are the same if 
we tally the ballots with W n or with aW n + bE n for a > 0 and E n = (1 . . . . .  
1). We use this fact to define a "reversing mapp ing , "  Rw, for voting methods. 
Namely, Rw(Wn ) is the class of  voting methods given by - a W  n' + bEn, where 

W TM = (Wn, Wn_ 1 . . . . .  Wl). For example, Rw((1 , O, 0)) = - [ ( 1 ,  O, 0)} '  + 
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(1, 1, 1) = - (0 ,  0, 1) + (1, 1, 1) = (1, 1,0). Thus, the involution of the plurality 
vote is the anti-plurality vote. These involution operators are related in this 
manner: 

Proposition. For n _> 3, Rr(F(p; wn)) = F(Rr(P); Rw(Wn)). 

Proof. The ranking Rr(F(p; wn)) is given by the ranking obtained from bE n 
-F(p; W n) = bE n + F ( p ; - W  n) = F(Rr(P); Rw(Wn)). 

This proposition proves there is a relationship between the strategic properties 
of W n and Rw(Wn). It shows that whatever happens for profile p with W n is 
mimicked by the profile Rr(P) with Rw(Wn). Therefore, it is straightforward to 
show that both systems embrace the same kinds of paradoxes and strategic 
action. This is why the susceptibility measure for both the plurality and anti- 
plurality votes agree. (As a different proof,  the conclusion follows from the 
symmetry properties of the indices in the susceptibility measure given by Eq. 
3.17.) 

Corollary. For n _> 3, /z(W n) = /z(Rw(Wn)). 

The number of subscripts needed for the proofs of the theorems grows rapidly 
with the value of n, and there is a danger that this proliferation of notation will 
obscure the basic ideas. Therefore, I first prove the theorems for n = 3. 

Proof of Theorem 1; n = 3. We use W 3 to tally an election for the candi- 
dates [c 1, c 2, %].  With the notation of Section 2 and for profile p, the tally 

of  c 1 is PlWl + P2Wl + P3W2 + P4W3 + P5W3 + P6W2 , while that for c 2 is 

PlW2 + P2W3 + P3W3 + P4W2 + P5Wl + P6Wl . Thus, H 3 = {p ~ Si(3!)', the 
election ranking has c 1 and c 2 tied} is given by 

( E6 ,  P )  = 1 3.1 
( N , p )  = 0 ,  3.2 

where N = (wl-w2, W1--W3, W2--W3, W3--W2, W3--Wl, W2--Wl) and ( - , - )  is 
the standard Euclidean scalar product. 

Replace W 3 with the equivalent representation (1, u, -1 ) ,  where [ u I < 1. 
With this notation, the BC, the plurality vote, and the anti-plurality vote are 
given, respectively, by the u values of 0, - 1 ,  and 1. Also 

N = ( l - u ,  2, u + l ,  - ( l + u ) ,  - 2 ,  - ( l - u ) ) .  3.3 

The goal is to find the volume of  the p's that are close enough to H 3 so that 
p + v crosses H 3. (Recall that v is a small positive multiple of ( - 1 / 2 ,  1, - 1 / 2 ,  
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0, 0, 0). Because I only compute the ratios of  measures, I suppress this and all 

other common multiples.) Thus, we compute tx(W n) by using the higher 

dimensional surface area of  H 3, S(H3), and the length of the component  of  v 
orthogonal to H 3. So, for any u, the measure is given by 

tx(W 3) = /x(u) = b < N / I N  ] , v> S(H3) 3.4a 

where b is a common multiple and [ N [ is the length of N. It is an elementary 

computat ion to show that 

< N / [ N I , v >  = 3/[213+u2}1/2]. 3.4b 

Notice that H 3 is a four-dimensional surface in R 6. To compute S(H3), I use 

two changes of  variables to reduce the problem to an integration problem over 

a region in R 4. We obtain the first change by solving Eq. 3.1 for Ps" 

Yl = Pl, Y2 = P2, Y3 = P3, Y4 = P4, Y5 = P6, P5 = (1-Ujyj). 3.5 

The integrating factor for this change of variables is 61/2 , so it is suppressed. 

In these variables the domain is 

yj > 0, <Es, y> ~< 1, 3.6 

while the equation (N, p)  = 0 becomes 

<N*, y) = 2, 3.7 

where N* = (3 -u ,  4, u+3,  l - u ,  l+u) .  

We obtain the second change of  variables by solving Eq. 3.7 for Y2, the only 

other variable with a coefficient independent of  u. This defines the new x vari- 

ables as x 1 = Yl, x2 = Y3, x3 = Y4, x4 = Y5, where we find the value of Y2 from 
the x's  through Eq. 3.7. The integrating factor for this change of variables is 
{42 + (3 -u )  2 + (3+u) 2 + ( l - u )  2 + (l+u)2} 1/2, which is a scalar multiple of  

{9+u 2 } 1/2. 3.8 

The geometry of the domain in the x = (Xl, x2, x3, x4) variables is given by 

<N j, x) < 2, and xj _> 0, 3.9 

where N I = ( l+u ,  l - u ,  3+u,  3 - u )  and N 2 = ( 3 - u ,  3+u,  l - u ,  l+u) .  The 
obvious symmetry between N 1 and N 2 results from the symmetry of {p 

Si(3!)',c I > c2} and {p E Si(3!) Ic 2 > ClJ. 
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The volume of  the domain  defined by Eq. 3.9 can be determined by elemen- 

tary arguments.  Let ej be the unit vector with unity in the j th component .  The 

region defined by the equat ion (N  1, x)  _< 2 is the convex region defined by 
0 and the four  vertices; 2 e l ( l + u ) - l ,  2e2(1-u)  -1, 2e3(3+u)- l ,  and 2e4(3-u)  -1. 

Correspondingly,  the region defined by (N 2, x)  _< 2 is convex region defined 

by 0 and the four  vertices; 2e4( l+u) - l ,  2e3(1-u)  -1, 2e2(3+u) -1, and 2e 1 

( 3 - u )  -1. The domain  defined by Eq. 3.9 is the intersection o f  these two 

regions, so it is the union  of  two congruent  regions, where one o f  them is the 

convex region defined by the five points 0, 2 e l ( 3 - u ) - l ,  2e2(3+u) -1, (1/2, 0, 0, 

1/2), and (0, 1/2, 1/2, 0). The four  dimensional  volume of  this object is a scalar 
multiple o f  (9-u2)  -1. 

F rom these results and the integrating factors given by Eqs. 3.8, 3,4, it fol- 
lows that 

#(u) = /x(-u) = D (3+u2)l /2/[(9-u2)(9+u2)l /2] ,  3.10 

where D is a scalar factor  determined by the suppressed constants.  The mini- 

m u m  value is at u = 0 - the BC - while the maxima are at u 2 = 1 - the 

plurality and anti-plurality votes. This proves the first part  o f  Theorem 1 (for 

n = 3); the last part  is a simple computa t ion .  

Proof of Theorem 2; n = 3. Here, we integrate Eq. 3.4a over the region cor- 

responding to c 1 = c 2 > c 3. By the symmetry  o f  Rr, the surface volume of  c l 

= c 2 > c 3 equals that  o f  c 1 = c 2 < c 3. Thus,  the value o f  the new measure 

is one-half  that  given in Eq. 3.10. The conclusion follows. 

Proof of Theorem 3; n = 3. Here  we replace v with v c = ( - c ,  1 , - ( t - c ) ,  
0, 0, 0), so (N,  v c) = 3 + u ( 1 - 2 c ) .  Therefore,  /xc(u ) is a scalar multiple o f  
(3+u( l -2c) ) (3+u2) l /2 / [ (9-u2) (9+u2) l /21 .  For  the c values o f  1, 1/2, and 0, 

the min imum values for  ~c are attained, respectively, for the u values o f  1 

(anti-plurality), 0 (BC), and - 1  (plurality). Because the min imum point  is a 

cont inuous  funct ion o f  c, it follows f rom the intermediate value theorem that  

any choice o f  u is the optimal choice for some value o f  c ( [0, 1]. 

Proof of Theorem 1; n >_ 3. Normal ize  the voting vector so that W n = 

(1, u I . . . . .  Un_ 2, - 1 ) ,  where uj -> uj+ l a n d  lu j l  - 1. As in the p roo f  for 
n = 3, the first condit ion is that  (En! , p)  = 1. We determine the replacement 

for  Eq. 3.2 by setting the tallies for c 1 and c 2 equal to each other.  Thus,  if pj 

is the fract ion o f  voters o f  the j th type, the coefficient for pj depends on how 

these voters rank c 1 and c 2. More precisely, this coefficient is the difference 

between the weights assigned to c 1 and c 2. The vector M = ( 1 - u  1, 1 - u  2 . . . . .  

1-(-1); u I - u  2, u 1 - u  3 . . . .  ; Un_2- ( -  1)) lists all o f  the possible combinat ions  
for c 1 > c 2 where the first series has c 1 top ranked, the second has c 1 second 
ranked,  etc. Notice that  - M  captures all o f  the possibilities for c 2 > c 1. More- 
over, for each of  the fixed relative rankings o f  c I and c 2, there are ( n - 2 ) !  ways 
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to rank the remaining candidates.  Thus,  with an appropr ia te  labeling o f  the 

types o f  voters,  we replace Eq. 3.2 with 

(N,  p)  = 0 where N = (M . . . . .  M, - M  . . . . .  - M ) .  3.11 

(Both M and - M  are repeated ( n - 2 ) !  times.) These two constraints define H n. 
To compute  v, note that  for each o f  the n ( n -  1)/2 ways there are to rank c 1 

and c 2, there are ( n - 2 ) !  ways to rank the remaining candidates. The assump- 

tions on a strategic voter mean that  he selects a ranking where c 1 is top- 

ranked,  c 2 is bo t tom-ranked ,  and the relative rankings o f  { c 3 . . . . .  c n } remain 

truthful .  Thus,  where the relative ranking of  [ c 3 . . . .  , c n } is fixed, the expect- 
ed change f rom p is a scalar multiple o f  ( -  1 . . . . .  - 1, [ n ( n -  1 ) / 2 ] -  1 . . . . .  - 1), 

where the positive value is in the same componen t  as 2 in M. So, by my neutrali- 

ty assumptions,  the EMV is a scalar multiple o f  V -- (v, v . . . . .  v, 0 . . . . .  0) 

where the factor  v is repeated ( n - 2 ) !  times. It now is a simple computa t ion  to 
show that  ( N / I N / ,  V)  is a scalar multiple o f  

[ ( n - 2 ) ( n - 1 ) - E j u j ( n - 2 j - 1 ) ] / [ 4 + 2 [ n - 2 + E j u j  21 + ]~j<k(Uj--Uk)2]l/2. 3.12 

Following the lead o f  the p roo f  for  n = 3, we use a change of  variables to calcu- 

late S(Hn), the n ! - 2  dimensional  surface volume of  H n. We find the y varia- 
bles by solving for a pj that  has a coefficient - 2 ,  where a t ruthful  ranking has 

c 2 top-ranked and c 1 bo t tom-ranked .  The domain  o f  the y variables is 

(En!_l,  y )  ___ 1, all yj _> 0, 3.13 

and I suppress the integrating factor  because it is a scalar that  depends only on 

n. In these new variables Eq. 3.11 becomes (N*,  p)  = 2 where N* = 2En!_ 1 

+ N '  and N '  is the project ion o f  N defined by dropping the coordinate  direc- 
t ion corresponding to pj. (These equations follow by solving for pj f rom 

(N,  p )  = 0. Namely,  pj = l - ( N n ! _ l  , p ) . )  
As true for  n = 3, the change to the x variables uses (N*,  p )  = 2. I derive 

this equat ion by solving for  a Yk term corresponding to a ranking where c 1 and 

c 2, respectively, are top- and bo t tom-ranked ,  the integrating factor  for this 
change of  variables is a scalar multiple o f  

[ 2 ( n - 2 ) { 4 ( n - 3 ) !  + n+21 + 2Ejuj 2 + ~j<k(Uj--Uk)2] 1/2 3.14 

The constraints Yk ----- 0 lead to 

(N2, x)  _< 2, x i >_ 0. 3.15 
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The first equation follows f rom (N*,  y)  = 2, so it is immediate that N 2 is 

obtained from N* with the same kind of  projection argument where the projec- 
tion is defined by the coordinate direction Yk" Now, either by using direct al- 
gebraic substitution, or by using symmetry arguments based on interchanging 

the order in which these two change of variables are obtained, it follows that 
Eq. 3.13 becomes (N 1, x) _ 2 where N 1 is obtained f rom N 2 by the same sym- 
metry condition, caused by the symmetry of [p (S i (n ! )  ', c 1 > c2} and {p 

Si(n!) ~, c 2 > ci}, that held for n = 3. 
To compute S(Hn), first we compute the volume of the region defined by 

(Nj ,  x )  < 2, j = 1, 2. This object is the union of two geometrically congruent 

convex regions defined by 0 and n ! - 2  vertices. One-half  of  these vertices are 
the e i points determined by the equation (Nj, x)  = 2 for one value of  j, while 
the remaining vertices are determined by the intersection of the two surfaces 
(Nj, x) = 2. By symmetry, these last vertices are points where the symmetri- 
cal coordinates equal 1/2 and all others are zero. (The symmetrical coordinates 

are the ones transferred into each other in the construction of N 1 and N2. ) 
These intersection points do not depend on W n or on any of the uj's. Thus, the 

volume of each congruent region is a scalar multiple of  the volume defined by 

the vertices on the coordinate axes. This is a scalar multiple of  

1/ [  IIj(9-- Uj 2) ] { IIj < k(Uj--Uk+ 3) (n-2)! 1. 3.16 

By using Eq. 3.16, the integrating factors, and V, tx(W n) is a multiple of 

[(n-2)(n-1)-Ejuj(n-2j-1)][(2n--4)(4(n-3)! + n+2) + 2Ejuj 2 + [;j<k(Uj-Uk)2] 1/2 3.17 

[ IIj(9-uj 2) } [ IIj < k(Uj -Uk+3)(n-2)! } { 2[n+Ej < k(Uj-Uk )2 } 1/2 

Theorem 1 now follows by applying elementary, but messy, calculus techniques 
to/x(wn). It follows f rom the symmetry considerations that at a critical point, 

uj = -Un_(j+l ). Therefore, if n is odd, then U(n+l)/2 = 0. For n = 4, 5, the 
minimum point is on the boundary of the region. For n >_ 6, some of  the values 
of  uj differ from 1, 0, or - 1. In particular, for n = 6, u 2 is an irrational num- 
ber. The USE specified in the introductory section is a rational approximation 

for this value. 
It is a straightforward asymptotic analysis argument to show that for large 

values of  n, the important  factor in determining the optimal value is 

[ (n -  2 ) (n-  1) -  Ejuj(n-  2j - 1)]/[ I I j (9 -  uj 2) I { IIj < k(Uj--U k + 3) (n-z)! 1. 

It follows from the symmetry of the terms that, modulo some boundary con- 
siderations, for all j, Uj--Uj+ 1 tends to a fixed value as n ~ oo. This, of  course, 
is the BC. 
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Proof of Theorem 2. The integrat ion is over the subset o f  H n, where c~ = 

c 2 are the two top-ranked candidates. On H n there are ( n - 1 ) !  different rank- 

ings; by symmetry,  each ranking defines the same surface volume. Of  these 

( n - 1 ) !  regions, ( n - 2 ) !  have c 1 = c 2 top-ranked.  Thus,  the measure for  prov- 
ing this assertion is ~ (wn) / (n  - 1). The conclusion now follows. 

Proof of Theorem 4. There are several ways to prove this theorem. The most  

obvious is to follow the lead o f  the intuitive comments  describing Theorem 4 

by showing that  the set o f  p 's  that  can be manipulated with each choice o f  Wnk 

is a proper  subset o f  the set o f  p 's  that  can be manipulated with the multiple 

voting system. I provide an alternative p roo f  that  introduces the space o f  pro- 

files and choices o f  tallying methods  described in footnote  8. 

Assume that  the multiple system is defined by the voting vectors {Wnl . . . . .  
Wnk 1. (If the multiple system admits more  than a finite number  o f  simple sys- 

tems, then let this be a proper  subset o f  the admissible choices.) Each voter has 

k ways to select how to have his ballot tallied. Let qj,i, i = 1, . . . ,  k, be the 

fract ion o f  the voters o f  the j th type that use wni to tally the ballots. This 

defines a point  qj E Si(k). Thus,  the true domain  for a multiple system is (p; 
ql,  - • ' ,  qn!) ~ Si(n!)x(Si(k))n!" This can be viewed as a fiber space over Si(n!) 

where a point  in each fiber indicates how the voters choose to split their ballots. 

The c 1 = c 2 indifference surface in Si(n!)x(Si(k)) n!, Hn, k, is a hyperplane in 

this fiber space. In  describing this equation,  the coefficient for the pj qj,i vari- 

able comes f rom the difference between the weights assigned to c 1 and c 2 as 

defined by wni for  the j th type of  voter.  It is simple to show (see Saari and 

Van Newenhizen,  1988a, b) that  for  any q ~ (Si(k)) n!, there is a p ~ Si(n!) so 

that  the pair  is on Hn, k. By the condi t ion on the wni ' s  , which leads to the 

indeterminacy of  the election outcomes,  this hyperplane creates an angle that  

differs f rom 90 ° with Si(n!). The measure o f  susceptibility is the number  o f  

profiles close enough to Hn, k so that  the ou tcome can be changed with a small 

scalar multiple o f  v. To compare  this measure with a componen t  simple system 

w n l ,  use the same space Si(n!)x(Si(k)) n! where there is no restriction on the q 

vectors. For  this setting, Hn, 1 is above H n and or thogonal  to the base space 

Si(n!). The conclusion now follows f rom this geometry.  The surface area for  

Hn, k must  exceed that  o f  H n. (This is equivalent to compar ing  the length o f  all 
segments in a rectangle starting at a c o m m o n  vertex and ending on one o f  the 

sides. The shortest segment is one o f  the " o r t h o g o n a l "  edges.) 

Notes 

1. As the election rankings for W n and aW n, a > 0, always are the same, all such multiples are 
identified with each other. The plurality vote, for example, corresponds to (a, 0 . . . .  ,0) for 
all values of a > 0. 



40 

2. It is difficult to avoid positional voting. Just by invoking some seemingly innocucous assump- 

tions about the class of  choice functions, one ends up with only the positional voting methods.  

See Young (1973) and Saari (1989a). 

3. Because B 3 = (2, 1, 0), a strategic voter with a true ranking c 1 > c 2 > c 3 who wants to alter 

the Cl, c 2 outcome should mark his ballot as c 1 > c 3 > c 2 to provide c I with a two point, not 

just a single point, differential over c 2. 

4. I emphasize percentages, not numbers  of  the voters, because, quite obviously, one out of  three 

voters has a much stronger impact on the election outcome than 1000 out of  three million 

voters. So, a key factor is the percentge size of  the "coordina ted"  manipulat ion attempt. While 

I do not carefully analyze the issue, my results include those situations of uncoordinated macro 

manipulat ions.  This involves heterogeneous electorates in which many voters do try to manipu- 
late the system, but  they do so in uncoordinated,  small groups. With the heterogeneity assump- 

tion, there is a cancellation of the strategic efforts of  the different groups, and this can reduce 

the analysis to a micro manipulat ion problem. 

5. The conclusions o f  these two essays rely on computer  experiments; mine rely on analytic argu- 

ments that permit precise statements.  Incidentally, Nitzan (1985) points out that " a n  analytic 

derivation of the various . . .  measures seems to be a hopelessly complex task ."  In light of  his 
comment ,  one of  the contributions of  my essay is the development of  the mathematical  struc- 

tures that now permits such an analysis. While my emphasis  is on micro manipulation,  the 

same techniques can be used to analyze macro manipulat ion of  the systems. 

6. This is by design. I view positional voting as being an important  prototype to understand the 

properties of  the kind of  incentive issue posed here. 

7. The smaller the value of I v I,  the more precise the conclusion. While I have not carried out 
any careful computations,  it appears that if [ v I is smaller than  1/20, then the conclusions 

hold. 
8. That  this choice of  a tallying procedure is a strategic variable is the theme of Brams and Fish- 

burn (1984) and it is discussed in Saari and Van Newenhizen (1988a, b). There is a debate over 

when the voter 's choice of a wnj is sincere and when it is a strategic variable. We can com- 

pletely resolve this modelling problem by extending the techniques developed here. Start with 

the space that consists of  all possible truthful rankings of the candidates as well as their choices 

of  a tallying method.  (See the last section in this essay and in Saari and Van Newenhizen, 

1988a). Each truthful  point is of  the form (p, q) where q indicates how the voters sincerely 

select the Wn's.  A function G(p, q; [wnj 1), defined in the obvious manner,  gives the sincere 

election outcome. Now suppose that a small group of voters strategically selects a tallying 

method.  The point  (p, q ' )  represents the strategic behavior where q '  = q + 6 (6 represents 
the strategic action) and G(p, q'; {wnj I) gives the actual election outcome. With this model- 

ling, the manipulat ion problem assumes a form similar to the one I use at the beginning of Sec- 

tion 2. The analysis continues in much the same way with similar conclusions. For instance, 

for mathematical  reasons similar to those that  explain why plurality voting does not fare well 

with respect to manipulations,  it follows that approval voting does not fare well in a class of  

comparable multiple voting systems. 
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