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Abstract

Flaked stone tools are the most durable and therefore the most common artifacts available to archaeologists for
tracing the development of early Man. However, the essential mechanics of conchoidal flake formation has not
yet been described. In order to successfully create a relatively thin flake that does not terminate prematurely, the
direction of the flaking force has to be reasonably precise. We show that the direction of the flaking force is
determined mainly by the stiffness of the flake, the actual angle of the blow or impulse having relatively little
effect. Long thin flakes can be easily produced because this direction of the flaking force is very close to that
necessary to produce local symmetry at the tip of the crack propagating parallel to the surface of the stone.

1. Introduction

Human history before the age of metal is traced by archaeologists largely through the
identification of flaked stone artifacts. In some parts of the world, such as Australia, the
Stone Age lasted until well into the Nineteenth Century, and even today there are a few
isolated groups of people in the world, like the Jarawa of the Andaman Islands, who still
rely on stone for some of their essential tools. In fact, flaked stone artifacts are the
primary evidence of cultural evolution for more than 99% of the history of the human
species — they remain the single most archaeologically visible aspect of early technology
and the one that most distinguishes early Man as an intelligent species.

It is a common misconception that flaked stone tools were made from rock types that
could be split along well-defined cleavage planes. However, the stone types favoured for
tool-making were the most homogeneous and isotropic obtainable. Early Man discovered
that siliceous stone such as glassy obsidian and microcrystalline chert (one variety of
which is flint) had the desirable flaking properties; the more granular materials, such as
quartzite, were normally only exploited if better materials were unobtainable. In many
parts of the world the best stone for tool-making was traded by sea or overland for long
distances. By early Neolithic times good quality flint had become scarce in some parts of
Europe and so mines ten meters deep were dug to obtain it.

In the making of stone tools primary flakes are detached from a piece of stone (called a
core) either by a percussive blow with a hammer of stone or some other hard material, or
by the application of a more or less impulsive pressure with a shaft of bone, antler or
dense wood. Flakes thus removed often served as tools without needing further shaping.
Because the path of a fracture in homogeneous and isotropic stone was predictable, a
primary flake could be shaped by flaking it into a smaller tool of standard form. It is only
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Figure 1. A conchoidal flake.

in relatively recent prehistoric times that the standardized shaping of primary flakes by
retouch became in any way sophisticated.

Whatever flaking technique is used to produce a conchoidal flake the mechanics
involved is virtually the same. Force applied through the convex surface of a hard object
to a small area or platform near the margin of the core produces a partial Hertzian cone
crack [1]. As the crack grows it curves inward to form what will appear on the upper part
of the detached flake as a swelling, which is called the bulb of force. The crack quickly
flattens out beyond the bulb of force and propagates almost parallel to the surface of the
core. If the surface of the core under which the fracture forms is flattish, the fracture will
spread sideways to produce a thin shell-like or “conchoidal” flake (see Fig. 1). Narrow
blade-like flakes with very thin and sharp edges can be created by preforming a ridge
down the core that will prevent the sideways spread of the fracture. What is remarkable is
that such long thin flakes can be produced with relative ease. Practical experience
indicates that the blow required to detach a thin flake can have a large outward
component, which would be expected to make the fracture hinge outward to produce a
short stubby flake of little use as a tool.

Although the fracture surface morphology of flakes is now reasonably well understood
[2-5] the fundamental question of why a crack travels roughly parallel to the surface of
the core has not been addressed. A fuller understanding of the mechanics of flaking can be
expected to provide information about the prehistoric techniques of stone tool manufac-
ture. The mechanics of flaking is at least as important to the nascent field of use-wear
analysis in archaeology. During use stone tools can sustain damage in the form of small
flake scars on their cutting edges. Archaeologists are currently studying this fracture along
with other types of use-wear for the purpose of identifying the functions of prehistoric
stone tools [5-7].

In this paper we outline the essential mechanics of conchoidal flake formation in
relation to the question of why a fracture tends to run parallel to the surface of the core
subsequent to the formation of the bulb of force. Although our description of crack
propagation is couched in terms of conchoidal flakes, it applied equally well to flakes
initiated by bending which frequently occur when a soft flaking tool is used. For ease of
expression we will always refer to a flake that is being detached from a core as occurs in
primary flake production, even though the mechanics applies to secondary flaking and to
the detachment of a microflake from a stone tool during use.
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2. The stress intensity factor at the tip of a growing flake

Although the complete description of flake formation must take its three-dimensional
nature into account, the essential mechanics can be understood from a two-dimensional
model. The initial curvature of the flake around the bulb of force will not have a
significant effect on the flake’s subsequent formation. Consequently, we have modelled a
core with a partially detached flake as a two-dimensional square edged slab with crack
running parallel to one side. To non-dimensionalize the problem we have made the flake
of unit thickness. The Hertzian cone forms at the edge of the contact zone between the
indenter and the core. Typically the diameter of the contact zone is small, being in the
‘order of one or two millimeters. Therefore it is reasonable to place the point of force
application at the corner of our rectilinear model of a flake (see Fig. 2). The flake force
can be resolved into a direct component P (load case 1) and a transverse component Q
(load case 2). Because of their possible application in engineering we have also considered
a direct force applied to the centroid of the flake (load case 3) and a bending moment
(load case 4). We assume that in all cases the flake is small compared with the size of the
core or tool, so that the precise details of how the core is supported is unimportant.
Experimental flakes formed on the edges of square glass plates show that the direction of
crack is affected by the presence of the base of the core when the crack is closer than at
least six times the flake thickness [2].

2.1. The beam model

Gross and Srawley [8] have shown that the stress intensity factor for a double cantilever
beam (DCB) under symmetrical opening forces can be estimated from beam theory with
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Figure 2. Two dimensional model of a conchoidal flake.
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Table 1. The modulus of the stress intensity as given by simple bending theory
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Figure 3. The modulus of the stress intensity as a function of core size.

an accuracy of better than 12% provided the length to depth ratio is greater than 5. Under
antisymmetrical forces acting along the crack line the stress intensity factor obtained from
beam theory is accurate to better than 1% for beams as short as twice their depth [9]. In
these examples the stress intensity factor is either all mode I or mode II. There is no
symmetry in flake detachment and consequently the stress intensity factor is of mixed
mode. Although the modulus K= (K{+ K{;)"/* of the stress intensity factor can be
obtained from beam theory the individual components cannot be separated. However, the
modulus of the stress intensity factor obtained from beam theory is valuable in the
subsequent analysis.

We assume that the core rests on a base where the reactions to the flaking forces are
provided by direct and transverse forces acting at the centroid of the core together with a
bending moment. The modulus of the stress intensity factor is obtained from the variation
in bending and direct strain energy in the flake and core for an infinitesimal crack
extension (see Table 1). The shear strain energy has been neglected. For large cores
(g/a > 1) the energy stored in the core is very small compared with that stored in the
flake and the modulus of the stress intensity factor attains a limiting value K. The effect
of the core’s dimensions on the stress intensity factor is shown in Fig. 3. The stress
intensity factor for a flake that is loaded essentially by bending (cases 2 and 4) attains its
limiting value for a quite small core, whereas the core has to be much larger for a flake
under an essentially direct load (case 3). For load case 1, which is a combination of load
cases 3 and 4, the stress intensity factor quickly attains more than 90% of its limiting value
for a core that is no more than twice as wide as the flake, but its final limiting value is
only approached extremely slowly. Even when the core is eleven times thicker than the
flake, the stress intensity factor is still only 96.5% of its limiting value.

2.2. A boundary collocation solution for flaking

Gross and Srawley [8] have successfully used the boundary collocation technique to
calculate the stress intensity factor for a double cantilever beam loaded by symmetrical
opening forces. Although Gross and Srawley claimed that their empirical formula (based
on the collocation solution) was accurate for beams longer than twice their depth, recent
work [9] has shown that the method is accurate to within 4% for beams as short as one
third their depth.

In the Gross and Srawley method of boundary collocation [8], the Williams’ series
expansion for the Airy stress furniction for the stress distribution at the tip of a crack [11]is
used. The series, which in our case must include both symmetric and antisymmetric terms,
exactly satisfies the boundary conditions along the surface of the crack, but has conver-
gence problems. Since the Williams’ series is in terms of the radial distance from the crack
tip-raised to a positive power (except for the first symmetric and antisymmetric terms)
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convergence is poor or unattainable if the boundaries lie at a variety of distances from the
crack tip. True mathematical convergence cannot be attained by the Gross-and Srawley
method and the solution eventually must diverge as the number of terms is increased. The
most that can be hoped for is that the value of the stress intensity factor remains
reasonably stationary or fluctuates about a constant value with a moderate increase in the
number of terms retained.

For long flakes, the stress distribution in the flake some distance from the crack tip is
very close to that given by the simple beam theory and it is possible to avoid introducing
boundary conditions on the flake at a large distance from the crack tip. Consequently,
whenever the flake length is greater than 3, the boundary conditions have been introduced
along A’B’ and E’F’ rather than along AB and EF (see Fig. 2). Following Gross and
Srawley [6] it is easier to use an integrated form of the boundary conditions and to specify
Airy’s stress function x and its gradient rather than the normal and shear stresses. The
boundary conditions for the four load cases are given in Table 2.

Best convergence was obtained for more-or-less uniform spacing between collocation
points around the boundary. Convergence was fine-tuned by making the distance between
collocation points along the boundary EF somewhat greater than elsewhere on the
boundaries. Even so we found it impossible to obtain convergence in the stress intensity
factors for ¢ > 10 or a < 2. Since we know from elementary beam theory that the limiting
values of the stress intensity factors for load cases 1 and 3 are only approached when
g > 10, these limiting values could only be obtained by extrapolation of the collocation
solutions.

2.3. The limiting values for the stress intensity factors at the tip of a growing flake

The limiting values of the stress intensity factor for load cases 2 and 4 are easy to obtain.
For both cases there is a less than 1% change in the value of the stress intensity factors for
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Figure 4. Stress intensity factors for load case 2.
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Figure 5. Stress intensity factors for load case 3.

q > 3. The solution for case 4, where the flake is loaded by a bending moment, is also
independent of the flake length when a > 2. Agreement for the modulus of the stress
intensity factor obtained from simple beam theory and boundary collocation is remarka-
ble for this latter case — the difference in the two solutions being less than 1%. For a flake
loaded by a transverse load (case 2) the stress intensity factors are linear functions of the
flake length (see Fig. 4 and Table 3). The slope of the modulus of the stress intensity
factor line is almost precisely the same as that obtained from simple beam theory and, like
the Gross and Srawley solution for a double cantilever beam specimen, has a small
positive intercept on the zero axis.

The stress intensity factors for load case 1 and 3 are independent of the flake length for
a > 2, but vary significantly with the size of the core. The modulus of the stress intensity
factors is in good agreement with that obtained from simple beam theory (see Fig. 3) and
we assume that the limiting value of the modulus of the stress intensity factors for these
load cases is that given by simple beam theory. The stress intensity factors obtained from
boundary collocation for a > 2 are shown as functions of 1/¢g in Figs. 5 and 6. The
variation of K;/K/, for small values of 1/¢ is not large for load case 3 and the curve has
been extrapolated to zero. The values of K; and Ky for an infinite core have been
calculated from the limiting value of the modulus K obtained from simple beam theory
and the extrapolated value of K/Ky;. The variation of K;/K;; with 1/q for load case 1 is
more pronounced and the limiting values have been calculated from load cases 3 and 4.
Examination of Figs. 5 and 6 shows that the limiting values obtained by this means are in
good agreement with the results from boundary collocation.

The limiting values of the stress intensity factors are summarized in Table 3. The
second term in the Williams’ series expansion 7, which represents a constant stress
parallel to the crack, has also been calculated (see Table 3).
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Figure 6. Stress intensity factors for load case 1.

3. Crack paths in flaking

There have been many descriptions of the path that cracks take in a brittle homogeneous
and isotropic material. The earliest proposal, which is the one currently accepted, is that
cracks propagate to extend perpendicular to the maximum circumferential stress [12-16].
Others have proposed a maximum energy release rate [18-20] or stationary strain energy
density function [21-23]. One of us has pointed out in a previous paper [24] that all these
criteria have the implication that a crack propagates so that it maintains a pure mode I
stress field at its tip and are encompassed by the “criterion of local symmetry” [25-27].
Certainly any non-elastic deformation at the tip of the crack will affect the local stress
distribution. It has been shown [13-16,20] that non-elastic deformation can be accom-
modated if the stress is examined not right at the crack tip but at a small characteristic
distance from it. The more brittle the material the smaller is the material characteristic
dimension r,. Since the siliceous materials favoured for stone tools were extremely brittle,
we neglect any effects of non-elastic deformation and will examine the stress field right at
the crack tip. The velocity of crack propagation in flaking is relatively low [2,28] and
hence dynamic effects can be neglected.

3.1. Effect of force angle on the crack path

To maintain the crack path parallel to the free surface of the core it is necessary for the
force angle to vary so that K= 0. Using the expressions for the stress intensity factor
given in Table 3, the required force angle ¢ has been calculated as a function of the flake
length (see Fig. 7). As the flake develops it is necessary for the direction of the force to
rotate to become nearly aligned with the free surface of the core. If the force angle is too
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figure 7. Force angle as a function of flake length.

large the flake will hinge towards the free surface of the core. On the other hand, too small
a force angle will cause intraflexion of the crack towards the interior of the core and
produce what archaeologists term a plunging fracture. Although in a fracture mechanics
sense the velocity of crack propagation is low, a stone-knapper could not possibly control
the force angle during the fraction of a millisecond it takes to form a flake.

To check the accuracy of the prediction of the force angle required to produce a crack
running parallel to the free surface of a core we performed some experiments on square
glass plates cut down one side with a diamond saw to model a core with a partially formed
flake. The apparatus to load this flake was designed to ensure that the force angle was
maintained during the flake’s final detachment (see Fig. 8). The glass plate was clasped
between two supporting bars in a vice. Load arms (one of which is cut away in Fig. 8 for
clarity) were pinned to a block that fitted on the top of the model flake and were loaded
by a turnbuckle. A sharp natural crack was introduced at the bottom of the partial
detachment by heating a small spot immediately below the saw cut with an electric
soldering iron. By slowly tensioning the load arms it was possible to produce a semi-stable
fracture. The crack paths resulting from various force angles for flakes of length ap-
proximately 5.5 times their thickness are shown in Fig. 9. The characteristic inflexion of
the crack path that occurs as the crack nears the free surface of the core, though not
important in the present paper, is also of interest. Such inflexions are common in bending
fractures [20,29] and are often a feature on the terminations of flakes [30]. There are some
anomalies in the crack paths shown in Fig. 9 caused most likely by an inability to produce
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truly two-dimensional flakes. However, the trend is clear. Small force angles cause an
intraflexion in the flake direction while larger angles cause the flake to hinge. The whole
range in load angles is only 10°, but this small range causes a large difference in the crack
paths.

For small crack growths the crack path can be estimated from a first order solution
[24]. The crack will continue to run parallel to the surface of the core if Ky; =0, which
gives a force angle of about 9°. The crack paths for other force angles are given by

12
y= tazlzﬂ {exp(,Bzx)erfc(—,Bxl/z)—l -2,8(%) } (1)
where x and y are measured as shown in Fig. §, 8= (2\/5 T/K; and 0 is the root of the
equation
sin 6 N ﬁ
Jecos§-1 K,

—0 )

given by Erdogan and Sih [12]. The crack paths calculated from these equations for the
extremes of the force angles (5° and 15°) are indicated by the shaded region in Fig. 9.
These extreme values are in agreement with the experimental results which indicate that
the force angle must vary during the formation of conchoidal flakes.

3.2. The effect of flake stiffness on the crack path

In percussion flaking with a hammer, the energy absorbed in the fracture process is small.
Therefore, the direction of motion of the hammer can vary only slightly during the
formation of the flake. The stone-knapper cannot change this direction in the extremely
short time it takes to create the flake. The pressure flaking technique in reality involves an
element of impulsive loading. The knapper in throwing part of his weight onto the flaking
tool controls not the force angle, but the direction of the impulsive motion. Although the
velocity of impact is very low, the kinetic energy is still considerable because a large part
of the knapper’s mass is involved. More delicate secondary flaking by pressure involves a
similar impulsive motion, but with a smaller energy. Hence percussion and pressure
flaking are mechanically very similar.

We have already shown that simple bending theory accurately models the formation of
a flake. If the direction of motion of the hammer or flaking tool makes an angle of & to
the free surface of the core, then the force angle ¢ as a function of the developing flake
length a (assuming that the equations of bending apply for all flake lengths) is given by

4 tan a + 3a
(3)

a(3tan a+4a)’

In Fig. 7 we superimpose the force angle defined by (3) on the force angle necessary to
cause the crack to propagate parallel to the core’s surface. The force angle is seen to be
very insensitive to the direction with which the core is impacted because the flake is much
more flexible in bending than in compression. For the range of striking angles commonly
used in flaking (0°-60°), the force angle determined by the stiffness of the flake
corresponds closely to those necessary to form long thin flakes. Hence thin flakes can be
removed by impacting a core over a wide range of angles. It is this stiffness that
determines the force angle appropriate for a flake’s formation.

tan ¢ =

3.3. The stability of the crack path in flaking

The stiffness of the developing flake does not so precisely determine the force angle that
the crack will have local symmetry at its tip when it is propagating exactly parallel to the
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surface of the core. However, small discrepancies in angle can be accounted for by a
self-correcting mechanism. If the crack should hinge toward the free surface, the negative
bending moment caused by the direct component of force increases. This increase has the
effect of making K;; positive which causes the crack to deflect back toward a parallel
path. Crack intraflexion into the body of the core has a similar correcting mechanism. In
part this self-correcting mechanism could be responsible for the undulations that are
observed on the surfaces of conchoidal flakes (see Fig. 1).

The constant term 7 in the Williams’ series expansion (which for a crack propagating
parallel to the surface of the core is positive except for extremely short flakes) does have a
potentially destabilizing effect [24]. However, what is important in determining the degree
of path stability is the magnitude of the ratio T/K|. This ratio is quite small for flakes
growing parallel to the surface of a core. For example 7/K; = 0.426 for a flake that has a
length ten times its thickness, as compared with 1.33 for a DCB specimen of similar
dimensions. Even in the unstable DCB specimen the crack deflection requires some
distance to be apparent [30] and it is reasonable to believe that any instability in the crack
path will be slight because the constant stress term 7T is positive. Indeed, others have
argued that the condition 7 < 0 for stability may be too severe for a real material. If there
is non-elastic deformation at the crack tip the path can be stable even if T is slightly
positive [16,20].

3.4. Experimental verification of the effect of the stiffness of the flake on the crack path

To demonstrate that the force angle does decrease as the flake is formed, we have removed
flakes from glass plates with an instrumented flaking tool (Fig. 10). This tool, which has a
conical steel tip, was provided with strain gauges which enable the direct and transverse
forces acting on it to be measured. The flaking experiments were performed in semi-dark-

Figure 10. Flaking with an instrumented tool.
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Figure 11. Flake length as a function of force angle at initiation.

ness under a photographic safety light and at the moment of flake initiation (sensed by the
breaking of a line of conducting paint) a microflash was triggered and a photograph taken
of the flaking tool to determine its orientation with respect to the glass plate. The forces
acting on the indentor, together in some cases with indications of the positions of the
crack tip from lines of conducting paint, were recorded on an oscilloscope.

Two sets of experiments were performed. The first was designed to record the forces at
initiation and used the applied force to trigger the oscilloscope. In the second set of
experiments the forces were measured during the propagation of the crack and the
oscilloscope triggered from the break in a line of conducting paint. It was not possible to
measure both initiation and propagation in the one experiment, because when the
oscilloscope was triggered from the force on the tool, the time base had to be of
comparatively long duration to avoid missing the initiation event and the propagation
phase was compressed so much that it could not be interpreted. Conversely, initiation was
missed when the oscilloscope was triggered from the break in a line of conducting paint.
The force angles ¢ have been calculated for both sets of experiments.

In Fig. 11 the length of the detached flake is shown as a function of the force angle at
initiation. Flakes that have run the complete length of the glass plate (150 mm) were
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Figure 12. Measured force angle as a function of flake length.
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produced for initial force angles varying from —1° to 51°. In addition, so-called feather
flakes (where the crack meets the surface of the core at a very small angle and never turns
sharply towards the surface) were recorded for initiation force angles as large as 65°. Short
hinge or step (arrested) flakes did sometimes occur if the initiation load angle was greater
than 19°. However, even these flakes had a length at least ten times their thickness. Hence
long flakes can be produced from impulses which initially apply the force over a wide
range of angles.

The variation in force angle as the crack propagates is shown in Fig. 12. These results
cannot be compared quantitatively with Fig. 7 because the thickness of the flakes is not
constant over their length; nevertheless, the general qualitative trend for the force angle to
decrease as the flake develops is unmistakeable. The greater flexibility of the flake in
bending causes the transverse force component to decrease rapidly with crack growth.

4. Conclusions

Unless the direction of the flaking force is appropriate, the crack forming a flake will
hinge outward toward the surface of the core or plunge inward. The required direction of
the force required to keep the crack parallel to the surface of the core varies with the
growth of the crack. Precise manual control of the flaking force is not possible. However,
the stiffness of the partially formed flake dictates that the line of force shall be close to the
angle required to cause the crack to propagate parallel to the surface of the core. The
actual direction of the blow or impulse that detaches the flake has little effect on the crack
path. Any discrepancies between the actual force angle and that required is translated into
small undulations in the thickness of the resultant conchoidal flake. If the force angle is
too large then the flake becomes thinner, causing a correcting increase in Ky;. Conversely,
too small a force angle causes the flake to thicken and decrease K.

Thus it can be seen that little skill is required to produce a usable conchoidal flake with
a sharp cutting edge. The plan shape of such flakes can be very irregular. Naturally, the
making of the beautiful, symmetrically flaked stone projectile points of late prehistoric
times did require considerable knowledge and skill in flaking techniques. However, the
angle at which the impulsive motion was applied could vary over a wide range even in the
production of these delicate implements. Only the best stone was used to make such
projectile points, so that secondary flake removals were unaffected by inhomogeneities
and were predictable. A planned reduction sequence involving careful preparation of the
platform from which small thin flakes were removed and the successive use of different
flaking implements were much more important than the precise angle of the impulse.

It is self-evident that simple conchoidal flaking must be easy or it would not have
appeared so early in our evolution. A hominid ancestor of modern Man, Homo habilis,
made simple but perfectly usable flaked stone tools more than one and a half million years
ago [32]. No doubt our remote ancestors used tools made from perishable materials such
as wood and bone, but flaked stone tools were fundamental to their technology. It is
tempting to speculate that Mankind may have had a different evolution if conchoidal
flaking had not been made easy by the controlling effect of stiffness on the crack path.
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Résumé

Les outils en pierre taillée sont les témoignages les plus durables et, dés lors, les plus courants & disposition des
archéologues pour traquer le développement des premiers hommes. On n’a cependant pas encore décrit les
mécanismes essentiels de la formation d’une écaille conchoidale. Pour créer avec succés une €caille relativement
mince qui ne soit pas prématurément trop courte, il faut que le direction de la force d’écaillage soit relativement
précise. On démontre que la direction de cette force est essentiellement déterminée par la raideur de I'écaille,
I'angle réel de percussion ayant, pour sa part, un effet relativement peu important. Il est possible de réaliser des
écailles longues et minces dés lors que la direction de la force d’écaillage est trés voisine de celle nécessaire a
produire une symétrie locale & I'extrémité d’une fissure se propageant parallelement & la surface de la pierre.



