
Journal of Intelligent Information Systems, 7, 205-233 (1996)
Q 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Intensional Query Answering by
Partial Evaluation

GIUSEPPE DE GIACOMO degiacomo@dis.uniromal.it

Dipartimento di Informatica e Sistemistica, Universitfi di Roma "La Sapienza ", lqa Salaria 113, 00198 Roma,
Italy

Abstract. Intensional query answering aims at providing a response to a query addressed to a knowledge
base by making use of the intensional knowledge as opposed to extensional. Such a response is an abstract
description of the conventional answer that can be of interest in many situations, for example it may increase the
cooperativeness of the system, or it may replace the conventional answer in case access to the extensional part of
the knowledge base is costly as for Mobile Systems. In this paper we present a general framework to generate
intensional answers in knowledge bases adhering to the logic programming paradigm. Such a framework is
based on a program transformation technique, namely Partial Evaluation, and allows for generating complete and
procedurally complete (wrt SLDNF-resolution) sets of intensional answers, treating both recursion and negation
conveniently.

Keywords: Knowledge bases, intensional query answering, logic programs, partial evaluation

1. Introduct ion

Intensional answers are responses that provide an abstract description of the conven-
tional answer to a query addressed to a knowledge base. They are expected to "pro-
vide compact and intuitive characterizations of sets of facts, making it explicit why a

specific set of facts answers the query instead of just which facts belong to the answer"
(Pirotte and Roelantes, 1989). Formally, intensional answers are logical formulas express-
ing sufficient conditions for objects in order for them to belong to the conventional an-
swer. Various research studies have investigated this kind of answers, e.g. (Corella, 1984,
Cholvy and Demolombe, 1986, Irnielinski, 1987, Cuppens and Demolornbe, 1988, Shum
and Muntz, 1988, Motro, 1989, Pirotte and Roelantes, 1989, Motro and Yuan, 1990, Song,

Kim, and Geutner, 1990, Chu, Chen, and Lee, 1991, Chu, Lee, and Chen, 1991, Morro,
1991, Pirotte, Roelantes, and Zimanyi, 1991, Demolombe, 1992, Fonkarn, 1992, De Gia-
corno, 1993, Kirn and Kim, 1993, Motro, 1993, Demolombe and Imielinski, 1994). Most
of such studies are concerned with increasing the cooperativeness of the system, however

it should be mentioned that intensional answers can also be exploited as an alternative way
to answer queries when the access to the extensional knowledge (typically a database) is
costly, as in the case of Mobi le Systems (Imielinski and Badrinath, 1993).

In this paper we assume knowledge bases to be, essentially, logic programs whose proof
procedure is the SLDNF-resolut ion, as in (Lloyd, 1987), and we propose a method for
intensional query answering based on a program transformation technique, namely Partial
Evaluation (PE). PE for logic programs in the SLDNF-resolut ion framework is defined

206 DE GIACOMO

in (Lloyd and Shepherdson, 1991). Although PE is usually considered an optimization
technique, it turns out to be also very effective in generating intensional answers.

We show that given a program P and a query Q(X), a new program _P~ = P u {q(X) +--
Q(X)} (where q is a predicate symbol not occurring in P) can be defined such that for
every PE of q(X) in P ' there corresponds a complete set ofintensional answers to Q(X) in
19 Furthermore, each set SIA of intensional answers computed in this way is procedurally
equivalent to the original query Q(X), i.e. the conventional answers that can be computed
from SIA in P are exactly those that can be computed from Q(X) in P.

Having pointed out this correspondence we have a tool to produce intensional answers for
a very general class of queries and programs, i.e. for every query in every program intended
to run under SLDNF-resolution. Therefore, in principle, we can deal with function symbols,
recursion and negation, something usually not permitted by other approaches to intensional
query answering.

Specifically, we suggest a simple but quite effective way to return intensional answers
when recursion is involved. Notice that often using PE we obtain recursion-free intensional
answers for a query involving recursive predicate symbols. In case we cannot remove a
recursive predicate symbol p from an intensional answer, then we return, together with
the intensional answer, an auxiliary definition for p. This is a specialized definition that
is general enough to cover the meaning of p in the context of the intensional answers in
which it appears. Note that, if a recursive predicate symbol ff other than p shows up in the
auxiliary definition for p, then we return an auxiliary definition for f f as well.

The pair < SZA, AD >, where SIA is a set of intensional answers to a query Q(X) and
AD is a set of auxiliary definitions for SIA, can be interpreted as the implicit representation
of the infinite set of all the intensional answers to Q(X), which can be inferred from S'IA,
using the axioms corresponding to AD.

With regard to negation, we remind the reader that if a negative literal is found at a certain
point of the PE process, then either it is completely evaluated, or the atom in the negative
literal is partially evaluated and the definition obtained is added to the PE returned (e.g. see
(Benkerimi and Lloyd, 1990)).

We could follow a similar approach in the generation of intensional answers, returning
auxiliary definitions for the atoms in the negative literals that cannot be evaluated. Yet,
this would be quite unsatisfactory, because we would lose the "interaction" between the
positive part and the negative part of an intensional answer. To avoid this problem, we
propose making some additional logical transformations. Roughly, given such an auxiliary
definition, we consider its completion, negate both sides of the equivalence, perform some
logical manipulations on the right side, and replace the corresponding negative literals in
the intensional answers by the proper instances of the right part of the equivalence obtained.

The rest of the paper is organized as follows. After recalling some basic notions on
logic programming, Section 2 introduces intensional answers. Section 3 introduces partial
evaluation. Section 4 presents the basic techniques for intensional query answering by
partial evaluation. Our treatment of recursion is described in Section 4, while the one for
negation is described in Section 5. Conclusions and further work end the paper.

INTENSIONAL QUERY ANSWERING 207

2. Preliminaries

In this section we introduce some basic definitions, the kind of knowledge bases considered,
and intensional answers. We assume the reader's familiarity with the standard theoretical
results of logic programming (cf. (Lloyd, 1987)). 1

Definition. A statement is a first order formula of the form

A+--W

where A is an atom and W is a first order formula. A is the head of the statement and W
the body of the statement. The body of a statement may be empty, in this case the statement
is a fact. Statements whose body is a conjunction of literals are called program clauses or
just clauses.

Definition. A program is a finite set of statements. A program whose statements are
program clauses is called a normal program.

Definition, The definition of a predicate symbol p in a program P is the set of all statements
in P which have p in their head.

Definition. A goal is a first order formula of the form

~ W

where W is a first order formula. Any free variable in W is assumed universally quantified
in front of the goal. A goal ~-- W such that W is conjunction of literals is called a normal
goal.

Definition. Let P be a program. The dependency graph of P is a directed graph in which
the nodes are the predicate symbols in P and there is a directed arc from p to q if there exists
a statement s in P in which p is the predicate symbol in the head of s and q is a predicate
symbol occurring in the body of s.

Definition. Let P be a program and W a first order formula. We say that W depends
upon a predicate symbol p in P if there is a path from a predicate symbol in W to p in the
dependency graph for P.

The declarative semantics we adopt in this paper is standard Clark's completion. As
usual, we denote as comp(P) the completion of a program P, which is the first order theory
corresponding to the program P, formed by the collection of completed definitions of the
predicate symbol in P together with associated Clark's equality theory. SLDNF-resolution
is assumed as procedural semantics.

Any program P can be transformed (applying Lloyd-Topor transformations) in a normal
program PN called the normal form of P such that comp(Px) is a conservative extension
of eomp(P).

208 DE GIACOMO

To run a goal +-- W in a program P, first a predicate symbol ans, not appearing in P or
in W, is defined as

ar t s (X) ~ W

where X are the free variables of W, and then the goal *-- ans(X) is run in the normal
program P~r ns, that is the normal form of P U {ans(X) ~ W}. Keeping in mind such
considerations, when we talk about SLDNF-resolution for non-normal programs we refer
to the corresponding normal forms.

Definition. L e t P be aprogram and +--- W agoal. A correctanswerfor comp(P) U{~--- W}
is a substitution 0 for the free variables in W such that comp(P) implies the universal closure
of WO:

eomp(P) ~ VWO.

Definition. Let P be a program and G a goal. A computed answer 0 for P U {G} is
the substitution obtained by restricting the composition 01 • •. On to variables of G, where
01 • •. 0n is the sequence of substitutions used in an SLDNF-refutation of P U {G}.

Next definition formalizes the concepts of procedural equivalence for programs wrt goals.

Definition. Let P and p t be two programs, G and G t two goals with the same free variables.
We say that P U {G} and P ' U {G ~} are procedurally equivalent if the following holds:

1. P U {G} has an SLDNF-refutation with computed answer 0 iff P ' U {G'} does.

2. P U {G} has a finitely failed SLDNF-tree iff P ' U {G'} does.

Intuitively, P U {G} and P ' U {G ~} are procedurally equivalent iff every time an answer
(possibly negative) is obtained for one of them, the same answer is obtained for the other
one as well.

Now we introduce a definition needed throughout the paper.

Definition. Let S be a set of definitions of predicate symbols. We denote by

comp' (S)

the set of the corresponding cbmpleted definitions together with Clark's equality theory.

Given a program P, comff(P) is the subset of comp(P) formed by the completed
definitions of the predicate symbols explicitly defined in P (i.e. the predicate symbols
appearing in the head of a statement of P). To further clarify the concept let us look at an
example.

INTENSIONAL QUERY ANSWERING 209

Example: Consider the following program P :

p(x) +-- ~(x) A s(x)
,-(a) +--

comp(P) is

Vx(p(x) ~ ,-(~) A 4 x))
vz(,~(x) ~ (x = a))
v z (~ 4 x))

while eomp'(P) is

V~(p(~) ~ ,-(~) A 4 x))
v:~(,-(~) ~ (~ -- a)) .

[]

We consider a knowledge base K13 essentially constituted by a program divided in two
strata I D B and EDB.

• I D B is a set of predicate definitions that may depend upon predicate symbols defined
in EDB. We call I D B the intensional program of the knowledge base KB.

• E D B is a set of predicate definitions which do not depend upon predicate symbols
defined in IDB. We call E D B the extensionalprogram of the knowledge base KB.

Notice that E D B cannot contain a predicate symbol defined in IDB, neither in the
head nor the body of its statements. The notions of I D B and E D B introduced here are
a generalization of the usual notions of intensional database and extensional database in
the deductive database context, in which IDI? is a set of statements and E D B a set of
facts - indeed, wrt the intensional program IDB, the extensional program E D B can be
considered as specified by a (possibly infinite) set of facts.

We say that an intensional program I D B is a normal intensional program if it is normal
program. In the same way we say that an extensional program E D B is a normal extensional
program if it is a normal program.

A query to a knowledge base can be any first order formula 2. Let Q(X) be a query whose
free variables are X. A tuple of ground terms T is an extensional answer for Q(X) in a
program P iff the substitution 0 = { X / T } a correct answer for comp(P) U { ~ Q(X)} .

We now turn our attention to intensional answers. We adopt the same definitions as
in (Cholvy and Demolombe, 1986), (Pirotte and Roelantes, 1989), (Pirotte, Roelantes, and
Zimanyi, 1991), etc., adapting them to the SLDNF-resolution framework. Let I D B be the
intensional program of a knowledge base KB, and Q (X) a query whose free variables are
X.

Definition. A first order formula A~(X), whose free variables are X, is an intensional
answer for Q(X) (wrt I D B) if

comp'(IDB) ~ VX(A i (X) --+ Q(X)) .

210 DE GIACOMO

Obviously not all the intensional answers are interesting, e.g. we can drop intensional
answers which are trivial variants of the query, those inconsistent wrt eompt(IDB), and
those subsumed by others.

Definition. A set SIA of intensional answers for Q(X) (wrt IDB) is complete if

comp'(IDB) ~ VX((V As(X)) ~ Q(X)).
AIEStA

Since, SLDNF-resolution is sound but not complete in general, it makes sense to introduce
the notion of a set of intensional answers, complete from the procedural point of view.

Definition. A set SIA ofintensional answers for Q(X) (wrt IDB) is procedurally complete
if for every possible extensional program EDB,

IDBUEDBU{+-- V Ai(X)}andIDBUEDBU{~Q(X)}
AIESIA

are procedurally equivalent.

Let us show a simple example of intensional query answering.

Example: Consider the following fragment, concerning scientific publications and the
bonus they get, of the intensional program IDB of a research institution knowledge base.

publication_bonus (x, 50)
conference_publication(x, y)

publication_bonus(x, 100) ~--
conference_publication(x, y) A major_conference(y)

publication_bonus(x, 150) ~--
journal_publication(x, y)

major_conference(x) ~-- sponsor(x, AC M)
major_conference(x) ~ sponsor(x, I EEE)
major_conference(x) *-- accepted_rate(x, y) A (y < 0.2)

Suppose we want the answer to the query "Which are the papers that get a publication-bonus
greater or equal to lOOT', that is:

~-- ~y(publication_bonus(x, y) A (y > 100)).

A (complete and procedurally complete) set of intensional answers can be:

INTENSIONAL QUERY ANSWERING 211

{ 3z(con f erence_publication(x, z) A sponsor(z, ACM)),
3z(con f erence_publication(x, z) A sponsor(z, IEEE)),
3z(con f erence_publication(x, z) A accepted_rate(x, z) A (z < 0.2)),
3z(journal_publication(x, z))}.

That is, "Papers published in an ACM conference, papers published in an IEEE conference,
papers published in a conference whose accepted rate is less or equal to 0.2, and papers
published in a journal." []

Beside IDB and EDB, a knowledge base KB may contain additional components that
could be exploited in generating intensional answers. In particular KB may contain a set
IC of integrity constraints which are closed first order formulas such that:

comp(IDB U EDB) ~= IC.

Note that the integrity constraints IC can be considered as part of the intensional knowledge
of KB, thus we may define intensional answers Ai(X), as

comp'(IDB) U IC ~ VX(Ai(X) ~ Q(X))

and complete sets of intensional a n s w e r s SIA, as

comp'(IDB) U IC ~ VX((V Ai(X)) ~ Q(X)).
AiEStA

However arguments have been exhibited (e.g. see (Pirotte, Roelantes, and Zimanyi, 1991))
showing that integrity constraints are often inadequate for inferring additional intensional
answers, and that they are better suited for controlling the inference process. In the present
paper we leave open the possibility of exploiting integrity constraints for controlling the
generation of intensional answers, although we do not investigate the issue further.

3. Partial evaluation

Partial evaluation was introduced as an optimization technique, first in functional program-
ming, and then in logic programming (cf. (Komorowski, 1981)). It consists in deriving a
"custom" version of a program, wrt some known input data. Usually, partial evaluation is
used to increase the efficiency of a program, computing, a priori, as much as possible of the
program wrt a certain class of input.

In logic programming terms, partial evaluation 3 can be described as follows. Given a pro-
gram P and a goal G, partial evaluation produces a new program pt , which is "customized"
for the goal G. Obviously, G should have the same answers wrt P and PC

Partial evaluation relies on the following transformations of the program:

• unfolding (in-line substitution) of procedure calls,

• specializing with forward and backward propagation of data structure.

212 DE GIACOMO

The two transformations above merge together in the logic programming framework. The
first transformation corresponds to unfolding of a literal in a derivation, and the second,
i.e. the propagation of partially instantiated data structures, is automatically supported by
unification during the unfolding process. The basic technique to obtain a partial evaluation
p i of a logic program P is to construct "partial" search trees for P and suitably chosen
atoms as goals, and then extract P ' from the definitions associated with the leaves of these
flees.

The formal notions and results described here are from (Lloyd and Shepherdson, 1991).
We refer to normal programs and normal goals only. It is convenient to use slightly more
general definitions of SLDNF-derivation and SLDNF-tree than those given in (Lloyd, 1987).
In (Lloyd, 1987), an SLDNF-derivation is either infinite, successful or failed. We also allow
it to be incomplete, in the sense that at any step we are allowed simply not to select any
literal, and terminate the derivation. Likewise, in an SLDNF-tree we may neglect to unfold
a goal.

Definition. A resultant is a first order formula of the form

Q1 +-- Q2

where Qi (i = 1, 2), is either absent or a conjunction of literals. Any variables in Q1 or
Q2 are assumed to be universally quantified at the front of the resultant.

In general a resultant is not a clause because Q1 stands for a conjunction and not a
disjunction of literals.

Definition, Let P be a normal program, G a normal goal ~-- Q, and Go = G, G 1 , . . . , G~
an SLDNF-derivation for P U {G}, where the sequence of substitutions is 01 , . . . , 0n, and
Gn is ~ Q~. Let 0 be the restriction of 01 , . . . , 0n to the variables in G. Then we say the
derivation has length n with computed answer 0 and resultant QO ~-- Qn. 4

Now, we state the definition of partial evaluation (PE for short). Note that the definition
refers to three kinds of PE: the PE of an atom in a program, of a set of atoms in a program,
and of a program wrt a set of atoms.

Definition. Let P be a normal program, A an atom, and T a (not necessarily complete)
SLDNF-tree for P tO {+-- A}. Let G I , . . . , Gr be a set of (non-root) goals in 7" such that
each non-failed branch of 7- contains exactly one of them. Let Ri (i = 1 , . . . , r) be the
resultant of the derivation from ~ A down to Gi associated with the branch leading to Gi.

* The set of resultants 7r --- { R 1 , . . . , Rr} is a PE of A in P. These resultants have the
following form:

Ri = AOi ~ Q i (i = l , . . . , r) ,

where we have assumed Gi =+-- Qi

INTENSIONAL QUERY ANSWERING 213

• Let A = {A1 , . . . ,As} be a finite set of atoms, and 7ri (i = 1 , . . . , s) a P E o f A i inP .
Then II = 7rl U . . . U 7rs is a PE of A in P.

• Let p1 be the normal program resulting from P when the definitions therein of the
predicate symbols in A are replaced by a PE of A in P. Then P ' is a PE o f P wrt A .

Intuitively, to obtain a PE of an atom A in P we consider a (not necessarily complete)
SLDNF-tree 7" for P U {+- A}, and choose a cut in T. The PE is defined as the resultants
of the derivations from the original goal +-- A down to the goals in the cut that do not fail
in T.

Note that given a (not necessarily complete) SLDNF-tree 7- and a cut C of 7-, we can
always define an incomplete SLDNF-tree 7-', such that the PE formed by the resultants of
the derivations in 7-/from the original goal to the non-failing leaves, is identical to the PE
formed by the resultants of the derivations in 7- from the original goal to the non-failing
goals in the cut C. 5

Thus, without losing generality, we can obtain PE as the resultants of the derivations from
the original goal to the non-failing leaves of an incomplete SLDNF-tree. In such a way,
the choice of the PE depends entirely on the choice of the SLDNF-tree, which, in turn,
depends on the selection rule (computation rule) 6 used to expand goals in the nodes of the
SLDNF-tree.

The next theorem is the main result on the declarative semantics. First we report the
definition of the closedness condition to be used in the theorem.

Definition. Let S be a set of first order formulas and A a finite set of atoms. We say S is
A-closed if each atom in S containing a predicate symbol occurring in A is an instance of
an atom in A.

Intuitively, the reason we need this condition is that if we "specialize" the definition of
a predicate symbol p wrt an atom A containing p, then we cannot expect to be able to
correctly answer calls to p that are not instances of A.

THEOREM 1 (LLOYD-SHEPHERDSON) Let P be a normal program, W a closed first
order formula, A a flnite set of atoms, and p1 a PE of P wrt A such that p1 U {W} is A-
closed. I f W is a logical consequence of comp(P'), then W is also a logical consequence
of comp(P), i.e.

w omp(P) w.

Notice that, the converse of this theorem does not hold.

For the procedural semantics we have a theorem stating the procedural equivalence of the
original program and its partial evaluation, under the closedness condition and the additional
condition of independence.

Definition. Let A be a finite set of atoms. We say A is independent if no pair of atoms in
A have a common instance.

214 DE GIACOMO

The meaning of the independence condition can be understood as follows. Let p by the
predicate symbol appearing in an atom Ai E A. A P E of A~ in a program P contributes
to the corresponding PE of P wrt A with a part of the definition of p. The independence
condition A imposes that such contributes be disjoint, that is the heads of the clauses coming
from the PE of two different atoms cannot have common instances.

THEOREM 2 (LLOYD-SHEPHERDSON) Let P be a normal program, G a normal goal,
A afinite, independent set of atoms, and P' a PE ofP wrt A such that P'tO {G} is A-closed.
Then P tO {G} and P' tO {G} are procedurally equivalent.

In the theorem above, the closedness condition can be replaced by the coveredness con-
dition given below.

Definition. Let P be a normal program and G a normal goal A a finite set of atoms, P ' a
PE of P wrt A, and P* the subprogram of P~ consisting of the definitions of the predicate
symbols in P ' upon which G depends. We say that P ' tJ {G} is A-covered if P* tJ {G} is
A-closed.

In the coveredness condition we only force the definitions of the predicate symbols that
are actually used in the derivation from the goal G in the partially evaluated program P~,
to be as "general" as those in the original program.

We remark that the PE of a program wrt a goal is not directly defined. Anyway, there
are procedures (e.g. (Benkerimi and Lloyd, 1990)) that, given a program P and a goal G,
compute a set of atom A and a PE of the program t9 wrt A such that the original program
and the partially evaluated program are procedurally equivalent wrt the goal G.

4. Intensional answers by partial evaluation

In this section we set up the basic results on generating intensional answers by means of
partial evaluation.

Let us stress that the intensional program I D B of a knowledge base K B is an "incomplete
program", i.e. a program for which some predicate symbol definitions are missing, hence it
should be considered more as a collection of predicate symbol definitions than as a running
program. It is evident that for 1DB, the completion cornp(IDB) does not make sense (all
predicate symbols defined in E D B would be set to false), while comp'(IDB) does.

The partial evaluation theorems seen in the previous section are not directly useful in
dealing with intensional programs. Here, we state analogous theorems which are suitable
for such programs. First, we need the next definition (Benkerimi and Lloyd, 1990).

Definition. Let L be a set of predicate symbols. We say that a literal is L-selectable if
its predicate symbol is in L. We say that an SLDNF-tree is L-compatible if the predicate
symbol of each selected literal in the tree (including subsidiary refutations and trees) is in
L.

Let IDB be a normal intensional program of a knowledge base KB, LIDB the set of
predicate symbols defined in IDB, A a finite set of LiDB-selectable atoms, and !DB '

INTENSIONAL QUERY ANSWERING 215

a PE of I D B wrt A obtained from a LiDB-compatible SLDNF-tree, such that I D B ~ is
A-closed. The following two theorems hold.

THEOREM 3 Let W be a first order formula which is A-closed. Then

comp'(IDB') ~ W ~ comp'(IDB) ~ W.

Proof: First, I D B ~ and W being A-closed, by Theorem 1, we have that for every normal
extensional program EDB, which is obviously A-closed,

comp(IDB' U E D B) ~ W ~ comp(IDB U E D B) ~ W.

Now, suppose the thesis was not true, that is

comp'(IDB') ~ W ~ comp'(IDB) ~ W.

Consider the extensional program EDB* such that EDB* = {A +- A : the predicate
symbol in A is not defined in IDB, and an instance of A occurs in the body of a pro-
gram clause in IDB} . Since comp(IDB tO EDB*) is identical to comp'(IDB), and
corap(IDB' U EDB*) is identical to comp'(IDB'), we would have that

cornp(IDB' U EDB*) ~ W ¢, comp(IDB U EDB*) ~ W,

which is a contradiction. []

THEOREM 4 Let G be a normal goal which is A-closed. If A is independent, then for
every possible normal extensional program E D B of K B : 1DB U E D B U {G} and
I D B ~ U E D B U {G} are procedurally equivalent.

Proof: From the definition of PE it is obvious that SDB ~ U E D B is a PE of SDB U E D B
wrt A. Since A is independent and $DB ~ U E D B U {G} is A-closed, by Theorem 2 the
thesis follows. []

We are now ready to describe the first results on generating intensional answers by using
partial evaluation.

1) Let *-- W be a normal goal. We define a new predicate symbol (i.e. a predicate symbol
not appearing in K B or W), as

q(X) ~-- W

where X are the free variables occurring in W, and we add this new definition to IDB,
getting

I D B q = I D B U {q(X) *-- W}.

2) Let LIDBq be the set of the predicate symbols defined in I D B q. We choose a PE 7r of
q(X) in IDBq obtained from an LiDBq-compatible SLDNF-tree for I D B q U {+-- q(X)}.
Let 7r be

216 DE GIACOMO

q(X)O

q(X)Or +-- Wr

where 04 = {X~/T~}, Xi are the variables in X instantiated by 0~, and T~ are terms.

3) We rewrite the completed definition for q given by these resultants as follows:

VX(q(X) +-+ 3YI((X1 --- 71) A W l) V . . . V 3Yr((Xr -= Tr) A Wr)) (1)

where Y/ are the free variables in (Xi = Ti) A Wi other than those in X, and Xi = Xi
is a loose notation for (xli = tt i) A . . . A (xni = t~i) (supposing Xi to be the sequence

X l i • . • X n i) .

4) We are returned the set constituted by the disjuncts in the above formula

~YI((X~ = T~) A W~)

3Y~((Xr = Tr) i W~).

Each of these formulas can be regarded as intensional answers. Furthermore the whole set
of these formulas is a complete and procedurally complete set of intensional answers, as
the following theorems show.

THEOREM 5 The formulas returned by the process above form a complete set of inten-
sional answers for the query W in the program P.

Proof: Let IDBq' be the PE of I D B q wrt A = {q(X)} obtained by substituting the
original definition for q with the PE zr of q in I D B q at step 2. The atom q(X) is LIDBq-
selectable. I D B q' is A-closed, being q(X) the most general atom whose predicate is q.
Hence, by Theorem 3 for every A-closed first order formula W we have

l t
comp (IDB q) ~ W ~ comp'(IDB q) ~ W.

In particular, indicating the disjuncts in the formula at step 3 as Ei, (i = 1 . . . r) the formula
VX(q(X) ~ E1 V . . . V E~.) is A-closed, and s o

comp'(IDB q) ~ VX(q(X) ~ E1 V . . . VEr).

By the axiom VX(q(X) ~ W) in comp'(IDBq) we can write

comp'(IDB q) ~ V X (W ~-* ~-~1 V. . . VEr).

Now, since the predicate symbol q does not appear in V X (W ~ E1 V . . . V E r) , we can
drop the axiom V(q(X) *--* W) from comp(IDBq), getting

comp'(IDB) ~ V X (W ~ E1 V . . . V E~).

INTENSIONAL QUERY ANSWERING 217

Obviously the following holds as well

comp ' (IDB) ~ V X (W ~ E~), i : 1 . . . r .

Recalling the definitions of intensional answer and complete set of intensional answers the
thesis follows. []

THEOREM 6 The set of intensional answers returned by the process above is procedurally
complete.

Proof: We want to show that

I D B U E D B U {~--- W} (2)

and

[DB U EDB U {~- V ~Y{((X{ = T{) A W{)}
i:1

are procedurally equivalent, for any E D B .
First notice that (3) has to be transformed into normal form.

transformations we get

(3)

Applying Lloyd-Topor

I D B U E D B U {ans(X)Oi ~-- Wi, i = 1 . . . r } U {+-- a n s (X) } (5)

where Oi = {X i /T i } .
On the other hand (2) is procedurally equivalent to

I D B q U E D B U { ~ q(X)} (6)

because every SLDNF-derivation for ~-- q(X) in I D B q U E D B has ~-- W as node at
depth 1, and q(X) *-- W is not used again in the derivation.

Let I D B q be the PE of I D B q wrt A = {q(X)} which is obtained by substituting the
original definition for q with the PE 7r ofq in I D B q at step 2. A is independent and q(X) is
LiDBq-selectable. I D B q' is A-closed, being q(X) the most general atom whose predicate
is q. Hence, by Theorem 4, (6) and

/

I D B q U E D B U { ~ q(X)} (7)

are procedurally equivalent.
Noting that (7) and (5) differ only for the names of the predicate symbols q and arts,

combining the procedural equivalence above, the thesis follows. []

Let us illustrate the method just presented with an example.

Assuming for the predicate symbol "=" the standard procedural meaning "unifiable", then
(4) is procedurally equivalent to

I D B U E D B U {ans (X) ~-- (Xi = T{) A W i , i = 1 . . . r} U {+- a n s (X) } (4)

2 1 8 DE GIACOMO

.- q(z)

*-- pb(z, y) A (y > 100)

{y/5o} ~ { y / l o o }

,-- cp(~, z) ^ ~ ~- jp(~, z) ^ (15o >_ loo)
cp(x, z) A me(z) A (100 > 100)

I
fail e-- cp(x, z) A rnc(z)

~ ~ ~- j p (x , z)

~- cp(x, z) A s(z, A C M) ~-- cp(x, z) A ar(z, z ') A (z' < 0,2)

~- cp(x, z) A s(z, I E E E)

Figure 1. The SLDNF-tree used for the partial evaluation.

Example: Consider again the intensional program I D B on scientific publications and the
query "Which are the papers that get a publication-bonus greater or equal to lOOT', of the
previous example. We proceed as follows:

1) We define a new predicate symbol q as

q(x) ~- publication_bonus(x, y) A (y > 100),

Let I D B q be I D B U {q(x) ~ publication_bonus(x, y) A (y > 100)}.

2) We choose a PE 7r of q(x) in I D B q obtained from an LiDBq-compatible SLDNF-tree.
Let such a tree be the one in Figure 4, and 7r the PE associated with the non-failing leaves
of such a tree, i.e.

q(x) ~-- conference_publication(x, z) A sponsor(z, A C M)
q(x) ~ conference_publication(x, z) A sponsor(z, I E E E)
q(x) ~-- conference_publication(x, z) A accepted_rate(x, z) A (z < 0.2)
q(x) ~-- journal_publication(x, z).

3) We rewrite the completed definition of q in IDBq:

Vx(q(x) ~ ~z(con f erence_publication(x, z) A sponsor (z ,ACM)) V

~z(con f erence_publ ication(x, z) A sponsor(z, I E E E)) v

~z(con f erence_publication(x, z) A accepted_rate(x, z) A (z <_ 0.2)) V

3z(journal_publication(x, z))).

INTENSIONAL QUERY ANSWERING 219

4) We return the disjuncts in the right hand part the above formula. These form a complete
and procedurally complete set of intensional answers, precisely the one previously seen.

[]

We conclude the section making some remarks of the method presented. Observe that,
the process above is parametric wrt the choice of the PE 7r of q in I D B q at step 2.

The quality of the intensional answers returned strongly depends on the choice of 7r, which
in turn essentially depends on the selection rule for the related SLDNF-tree. While we do
not directly address such an issue in this paper, finding criteria from which to devise a "good"
selection rule is one of the most crucial to doing intensional query answering in practice.
Suggestions for possible options can be found in (Pirotte, Roelantes, and Zimanyi, 1991),
however more work has to be done in defining quality measures for intensional answers•

The termination of the above process depends again on the selection rule to be used in the
generation of the PE 7c. Such a selection rule should build finite (incomplete) SLDNF-trees.
Conditions on the selection rules, dealing with the termination of the partial evaluation, can
he found in the related literature (e.g. Van Harmelen, 1989, Martens, De Schreye, and
Bruynooghe, 1992, Martens, De Schreye, and Horv~ith, 1994, Bol, 1993)).

5. Recursion

The basic method presented in the previous section allows one to return intensional an-
swers for every query in every logic program. In particular, it does not rule out recursion.
Obviously, such intensional answers should be expressed in a language that is known by
the user. 7 If recursive predicate symbols (i.e. predicate symbols which appear in a loop in
the dependency graph of a program) are allowed to appear in the intensional program of a
knowledge base, then it might be impossible to obtain a complete set of intensional answers
in which no occurrences of recursive predicate symbols/that are not known by the user,
appear. In this case, no satisfying set of intensional answers would be returned.

The next example shows the problem arising when recursion cannot be eliminated, and
hints on how it can be tackled.

Example: Consider the following fragment of the intensional program of a knowledge
base:

collateral_line_relative(x, y) ~-- ancestor(x, z) A ancestor(y, z)

ancestor(x, y) ~- parent(x, y)
ancestor(x, y) ~-- parent(x, z) A ancestor(z, y)

and suppose we want intensional answers for the query:

*-- collateral_line_relative(x, y)

Possible complete sets of intensional answers are

{~z(aneestor(~:, z) A ancestor(y, z))}

220 DE GIACOMO

or

{3z(p~rent(~, z) A ancestor(y, z)),
~z3z' (parent(x, z') A ancestor(z', z) A ancestor(y, z))}

oLalso

{~z(parent(~, z) A parent(y, z)),
~z~z' (parent(x, z') A ancestor(z', z) A p~rent(y, z)),
3z3z' (parent(x, z) A parent(y, z') A ancestor(z', z)),
3z3z'3z" (parent(x, z') A ancestor(z', z) A parent(y, z") A ancestor(z", z)))

etc.
As we can see, we cannot eliminate the predicate symbol ancestor in the set of intensional

answers returned. Now, if the meaning of ancestor is known by the user, then the most
intuitive set of answers is probably the first one, being the simplest. But, if the meaning of
ancestor is not known (e.g. the user may not be clear on whether or not his wife's grandfather
is his ancestor), none of the above sets is satisfying, because ancestor appears in each of
them. We need a type of definition giving the meaning of ancestor in the context of the set
of intensional answers returned.

For instance we may return:

{ 3z(ancestor(x, z) A ancestor(y, z))}

ancestor(x, y) ~- parent(x, y)
ancestor(x, y) *-- parent(x, z) A ancestor(z, y).

In this way, asking "which are collateral-line relatives?" we get an answer such as "the
individuals that have a common ancestor, where an ancestor is a parent or a parent of an
ancestor". []

Given the observations in the above example, we propose to answer a query by a set SIA
of intensional answers and a set R D of definitions for the recursive predicate symbols,
that for some reason are marked unknown s , occurring in the answer. Notice that, if other
predicate symbols marked unknown appear in such definitions, then their definitions are to
be included in R D as well. ° To formalize the set R D we now introduce the notion of "set
of auxiliary definitions".

The general idea is to return an answer made up of two components: a set of intensional
answers, and a set of special definitions for the elements of a given set of predicate symbols
L. The latter component is called set of auxiliary definitions.

Intuitively a set of auxiliary definitions supplies the meaning of each atom occurring in
the composite answer returned, whose predicate symbol is in L (i.e. wrt the atoms occurring
in the composite answer Whose preHicate is in L, the auxiliary definitions retain the same
meaning as the corresponding definitions in the intensional program).

Typically, the set L will be the set of unknown recursive predicate symbols occurring
in the composite answer. However this is not the only interesting case, sometimes, for
example, we may choose a different L to return a shorter composite answer instead of an

INTENSIONAL QUERY ANSWERING 221

excessively large set of intensional answers. Another choice of L is shown in the next
section, when the treatment of negation is presented.

We now formally introduce the notion of set of auxiliary definitions. As usual, let I D B
be the intensional program of a knowledge base KB, LIDB the set of predicate symbols
defined in IDB, Q(X) a query whose free variables are X, and S~A a set of intensional
answers Ai(X) (i = 1 , . . . , n) for Q(X).

Definition. Let L be a subset of LH)B, AL a set of atoms, one for each predicate symbol
in L, and AD a set of statements such that all predicate symbols in L occur in the head of
at least one of its statements.

We say AD is a set of auxiliary definitions (wrt AL) for predicate symbols in L if:

1. comp'(IDB) ~ comp'(AD)AL, and

2. SIA tO comp~(AD)Ar is AL-closed,

where comp'(AD)AL denotes the instance of corap'(AD) such that the atoms on the
left hand sides of the completed definitions therein coincide (modulo variants) with the
corresponding atoms in AL.

Notice that, each predicate symbol p in L is contained in no more that a single atom in
AL, hence we have exactly one logical equivalence in comp'(AD)AL involving p. This
equivalence can be thought of as the logical definition ofp in the context of SIA and AD. t°

Notice also that given a set L C_ LIDB of predicate symbols, a set AD of auxiliary
definitions for predicate symbols in L, always exists. In fact, the I D B definitions of these
predicate symbols form one such a set. But generally the definitions in AD are specialized
versions of those in IDB.

Finally, let us remark that we do not require the definitions in AD to be used, instead of the
corresponding definitions in IDB, to evaluate the intensional answers in SSA, preserving
the correct answers, or at least the computed answers, of the original query. Indeed such a
property would be quite "severe", since, to enforce it, we should return auxiliary definitions
that are not only general enough to cover the meaning of the predicate symbols in L, in
the context of ~IA and AD, but also to cover their meaning throughout the evaluation of
each intensional answer in SIA. Indeed, if a predicate symbol p ~g L, which depends
on predicate symbol p ' C L, appears in some atoms of SIA tO AD, then in choosing the
generality of the auxiliary definition for p ' we should consider the occurrences o fp ~ arising
from the evaluation of these atoms as well.

Observe that, the intensional answers in SIA have the same status as queries, while the set
AD of auxiliary definitions is an (incomplete) program. How does the pair < SIA, AD >
relate to the original notion of intensional answers?

The pair < SIA, AD > can be interpreted as the implicit representation of the infinite set
of all the intensional answers for Q(X) which can be inferred from the intensional answers
in Sza using the axioms of corap'(AD)hL.

Indeed, the pair < SIA, AD > may be thought of as representing the infinite set of all
the formulas Xij(X) (i = 1 , . . . , n; j = 1, 2 , . . .) such that

222 DE GIACOMO

comp'(AD)AL ~ V(Xtj(X) -~ Ai(X)). (8)

Note that Xij(X) (j = 1, 2 . . .) are intensional answers to At(X) wrt the intensional
program AD.

By definition of a set of auxiliary definitions, the following holds

comp'(IDB) ~ comp'(AD)AL. (9)

From (8) and (9) we get

comp'(IDB) > Y(Xt / (X) --+ At(X)). (10)

Now, for Ai(X) we have

eomp'(IDB) ~ V(A~(X) ~ Q(X)). (11)

Hence, from (10) and (11)

comp'(IDB) ~ V(Xij(X) ---+ Q(X)), (12)

that is, Xij(X) (i = 1 , . . . , n; j = 1, 2 , . . .) are intensional answers to Q(X) wrt KB.

Let us turn to the problem of how to compute a set of auxiliary definitions. Assuming
I D B to be normal, we get the following result.

THEOREM 7 Let L be a subset of LIDB, AL a set of atoms, one for each predicate symbol
in L, and SI A a set of intensional answers for a query W. Then, any PE YI Of A L in I D B,
obtained from an LIDB-compatible SLDNF-tree and such that ~IA U 1-[is AL-closed, is a
set of auxiliary definitions (wrt AL) for the predicate symbols in L.

Proof: We have to show that:

1. comp'(IDB) ~ comp'(H)AL,

2. SIA U comp'(II)AL is AL-closed.

The second condition is an immediate consequence of the assumption that SIA U H is
AL-closed.

Turning to the first condition, we have that comp'(H) ~ comp'(1-t)A L , and hence by
Theorem 3 comp'(IDB) ~ comp'(H)A~. •

When AD is computed by PE, unfolding the intensional answers in SIA using statements
in AD leads to new sets of intensional answers ~IA which preserve the completeness and
the procedural completeness, as the following theorem states.

THEOREM 8 Let L be a subset of LIDB, and AL a set of atoms, one for each predicate
symbol in L. Let also SIA be a complete and procedurally complete set of intensional
answers for the query W, and AD a set of auxiliary definitions (wrt AL) for the predicate

INTENSIONAL QUERY ANSWERING 223

symbols in L, which is a PE Of AL obtained from an LsDs-compatible SLDNF-tree, and
such that S I A U AD is A L-closed. Then every set S~ A of intensional answers for Q derived
by SLDNF-resolution from SIA using statements in AD, is complete and procedurally
complete.

Proof: By the Sub-Derivation Lemmaand Lemma4.12 in (Lloyd and Shepherdson, 1991),
it follows that each SLDNF-derivation from the original query, using resultants in AD can
be expanded in a corresponding SLDNF-derivation that uses only statements of the original
intensional program IDB. This in turn implies that any SLDNF-tree built using resultants
in AD can be expanded into an SLDNF-tree built using only program clauses in IDB.

Now, suppose S1A to be the set {Ai(X) , i = 1 , . . . , n} where X are the free variables of
the query W. We introduce a new predicate symbol ans defined as {ans(X) ~ Ai (X) i =
1 , . . . , n} and add such a definition for arts to I D B obtaining I D B TM.

From what has been said above, every ~JA can be computed as a PE of ans(X) in
IDBa~% By Theorem 5 and Theorem 6, S~A is a complete and procedurally complete set
of intensional answers for ans(X), and hence for Q. •

Now that we have characterized the notion of a set of auxiliary definitions, we can turn
back to dealing with recursive predicate symbols. We answer a query with a set SSA of
intensional answers and a set RD of auxiliary definitions for the recursive predicate symbols
marked unknown appearing in SIA o r in RD itself.

Note that, by Theorem 8, if an auxiliary definition D C RD of some predicate symbol
p is not recursive in reality, then (assuming, for now, that p does not occur in a negative
literal) we may unfold the corresponding positive literals in SIA and RD, and drop D from
RD.

In Figure 2 we show a procedure, based on partial evaluation, to compute SIA and RD,
which is adapted from the procedure in (Benkerimi and Lloyd, 1990). The underlying idea
is to build "run-time" the set of atoms A n that is partially evaluated, while computing
SIA and RD. The procedure makes use of most specific generalization, briefly msg (cL
(Plotkin, 1969, Reynolds, 1969)), formally defined as follows.

Definit ion. Let S be a set of atoms with the same predicate symbol. Then an atom A is a

most specific generalization (msg) of S if:

• for every atom B in S, B is an instance of A, and

• if all the atoms in S are instances of an atom C, then A is an instance of C as well.

6. Negation

The notion of PE is directly derived from the notion of SLDNF-tree. Therefore, the negation
during the PE process is treated in a somewhat limited way. In fact the following two
constraints must hold.

1. A negative literal can be selected only if it is ground.

2 2 4 DE GIACOMO

P r o c e d u r e IQA1
I n p u t ' . A normal query W , and a normal intensional p rogram I D B .
O u t p u t : A set of intensional a n s w e r s SIA , a set AR of a toms , and u set R D of auxil iary
defini t ions (wrt A R) for the recursive predicate symbols in SXA and R D marked unknown.

1. Define a new predicate symbol q as q (X) *-- W , where X are the free variables in W. Let
I D B ~ = I D B tj {q(X) *-- W } .

2. Let A = -[q(X)}, A {}, Ao,~ = {}, D = {).

3. Repeat

(A) Select an a tom A in A t ha t has not been selected before (modulo var iant) .

(B) Choose a Pig of A in I D B ~ obta ined by an LfDBq-se lec table SLDNF-t ree .

(C) P u t (or replace if it is a l r e ~ y present) in D the definition D for the predicate symbol
in A.

(D) A a ~ := A tJ {p(T) I p (T) is in a literal of the body of a s t a t e m e n t in D, and p is
recursive and marked unknown).

(ig) A o z ~ : = A,

(F) A :-- { the rasgs of A~x}.

4. Until A = Aol~.

5. Ex t r ac t f rom the definition of q the set of intensional answers S z x .

6. Igxtract AR dropping the a tom conta in ing q from A.

7. Ex t r ac t R D dropping the definition for q f rom D.

End Procedure.

Figure 2. Procedure to compute S I A and R D

2. If a ground negative literal is selected then it is either completely evaluated (if possible),
or not evaluated at all.

In the literature on partial evaluation (e.g. (Benkerimi and Lloyd, 1990)) the negation is,
usually, dealt with as follows: if a negative literal ~p(T) , where T are terms, cannot be
evaluated during the PE of a certain atom A in a program P, then p(T) is separately partially
evaluated, returning a PE of {A,p(T)} in P instead of just a PE of A in P - the set of
atoms A, to be partially evaluated, is incrementally computed, starting from the atom A,
and adding in A the atoms in the negative literal that cannot be evaluated. Notice that, this
way to proceed strongly resembles how SLDNF-resolution works.

Similarly to what is shown in the previous section, given a query W, we can generate a
composite answer, constituted by a set S1A of intensional answers, and a set of auxiliary
definitions for predicate symbols marked unknown occurring in the answer, partitioned

I N T E N S I O N A L Q U E R Y A N S W E R I N G 225

into two subsets RD and ND. RD concerns recursive predicate symbols occurring in
either positive or negative literals of the answer, whereas N D concerns those non-recursive
occurring in negative literals.

Supposing I D B and W to be normal, partial evaluation can be used to generate such
an answer. Actually the procedure in Figure 2, can be modified to compute SIA, RD and
ND. The resulting procedure is shown in Figure 3.

P r o c e d u r e IQA~
Input : A n o r m a l que ry W, and a no rma l intensional p r o g r a m IDB.
O u t p u t ' - A set SZA, two sets of a t o m s A R and A N , and two sets R D and ND.

1. Define a new p red i ca t e symbol q as q(X) *-- W, where X are the free var iables in W. Le t
rDBq = ~DB u {q(X) ,-- W}.

2. Let A ---- {g (X)} , A {}, Aot~ = {}, D = {}.

3. R e p e a t

(A) Select an a t o m A in A t h a t has no t been se lected before (modu lo var ian t) .

(B) Choose a P E of A in I D B q ob ta ined by an LzDBq-se lec tab le SLDNF- t r ee .

(C) P u t (or rep lace if it is a l r e ady present) in D the definit ion D for the p r ed i ca t e symbol
in A.

(D) A a ~ := A u {p (T) [p(T) is in a l i teral of the body of a s t a t e m e n t in D , a n d p is
m a r k e d u n k n o w n a n d e i ther recursive, or non- recurs ive bu t a p p e a r i n g in a nega t ive
l i teral }.

(E) Aoza :---- A .

(F) A := { the m s g s o f A ~ , x) .

4. U n t i l A = Aota-

5. E x t r a c t f rom the defini t ion of q in D the set of in tensional answers S tA .

6. E x t r a c t form A the two sets A R and A N , where A R is fo rmed by the a t o m s of A in
which the recurs ive p r e d i c a t e symbols occur , a n d A N is ob t a ined f rom A - A R , d r o p p i n g
the a t o m c o n t a i n i n g q.

7. E x t r a c t fo rm D the two sets R D and ND, where R D is formed by the def ini t ions in D of
recurs ive p r ed i ca t e symbols , a n d ND is o b t a i n e d f rom D - RD, d r o p p i n g the defini t ion
of g.

E n d P r o c e d u r e .

Figure 3. Procedure to compute SIA , R D , and N D

Within such an approach, however, in the formulas of S][A, R D and N D , the "interaction"
(i.e. possible simplifications) between the part of information in the positive literals and the
one in the negative literals is lost, because the latter is embedded in separate definitions.
We should try to recover any such interaction in order to make the answer more effective.

Now, for each predicate symbol p in a negative literal there is an auxiliary definition in
N D to which corresponds a logical equivalence in compP(ND)Ar~ of the form:

226 DE GIACOMO

vx(p(T(x)) 3Y(F(X, V))), (13)

where T (X) denotes a tuple of terms, X the variables therein, and Y the variables, other
than those in X, which are free in F. We may negate both sides of such an equivalence
getting:

VX (~p(T(X)) ~3V (F(X, V))). (14)

The literals of SIA 12 RD U N D in which p occurs must, by definition, be instances of
p(T(X)) , so we may replace them with the proper instances of the right hand side of (13)
or (14). Obviously, when such an expansion of a negative literal is applied, the formulas
obtained are logically equivalent to the original ones, but they may not be procedurally
equivalent, hence while no correct answers are lost or gained, the same is not true for the
computed answers, in general.

Such a treatment is tightly related to constructive negation (Chan, 1988, Chan, 1989,
Przymusinski, 1989, Drabent, 1995) 11, and has been used to handle negation during the
partial evaluation process in (Chan and Wallace, 1989). Here we want to apply such a
treatment of negation off-line wrt the partial evaluation process, so as to retain the notions
and the results in (Lloyd and Shepherdson, 1991). Moreover, our aim is to expand the
negative literals in such a way as not to lose computed answers.

In Figure 4, we present a procedure for such an expansion.
Let us make some remarks on such a procedure. First, formulas obtained by the procedure

are logically equivalent to the original ones. Second such formulas may contain existential
quantifiers (possibly negated), but no universal quantifiers. Third, the procedure always
terminates, since the definitions in N D are non-recursive. Fourth, after the procedure has
terminated, N D is no longer needed and can be eliminated. Furthermore, the next theorem
states that a kind of procedural containment holds.

THEOREM 9 Let SIA, RD, and N D be obtained by partial evaluation as shown above.
Let S~IA and RD' result from transforming these by the expansion procedure in Figure.
Finally, let S~I~A be any set of intensional answers derived by any number of SLDNF-
resolution steps from S~IA using statements in RDq Then for every extensional program
EDB, we have:

1. If l D B U E D B U {+-- V A~eS~A Ai} has an SLDNF-refutation with computed answer
O, then so does I D B U E D B U {+-- V ATeS,;~ A~'}.

2. If I D B U E D B U { ~ V A~S,A Ai} has a finitely failed SLDNF-tree, then so does
I D B U E D B U { ~ VA:,¢S,~A A~}.

Proof: First of all notice that, by Theorem 8, we can unfold the goal ~ VAIESIA Ai
using the definitions in ND, preserving the procedural equivalence. Now, by induction on
the number of nested expansions, it is easy to prove that Phase 1 corresponds to such an
unfolding.

Base case. If no expansions are performed, then it corresponds to performing no unfolding.

I N T E N S I O N A L Q U E R Y A N S W E R I N G 227

P r o c e d u r e NsgExp
Input: SL4, RD, ND.

I Output : StA and RD j with no references to predicates defined in ND.

For every formula in StA and RD, apply the two-phase procedure below.

• Phase 1. Recursively apply the following sequence of t ransformat ions until it is no longer
possible.

1. Replace a toms in the positive and negative literals of the formula, with the r ight hand
sides of the corresponding instances of the completed definitions in eornp~(ND).

2. Simplify the equalities in the formula as follows:

(A) Subst i tute equalities whose terms unify by the equali ty corresponding to thei r
rngu (if the mgu is the empty subst i tut ion then the equali ty is eliminated), and
eliminate the conjunctions in which there is an equali ty whose te rms do not
unify - the result of such a t ransformat ion is logically equivalent to the original
formula, by Clark 's Lamina (cf. [11], also L e m m a 15.2 in [27]).

(B) Eliminate the equalities in which one of the terms is an existentially quantified
variable, by means of the following logical equivalence: 3y((x = y) A B) *-*

3. Push the existential quantifiers as far righ~ as possible, e l iminat ing the redundant
ones (those tha t quantify variables which do not occur free in the formula).

s Phase 2. Move negat ion all the way inward (el iminating doable negat ions) , s topping in
frong of the existential quantifiers.

End Procedure .

Figure 4. A procedure for expand ing negative literals

Inductive case. Assume the correspondence to be defined for n nested expansions, we
now define it for n + 1 expansions. Consider the goal

+- . . . A a . . .

and the completed definition A +-+ Vi 3(X~ = Ti A Bi) of the predicate symbol in Aa.
We first replace the atom Aa by the right hand side of the instance of the above completed
definition corresponding to Ac getting:

+ - . . . V 3((x, = T,)o A B,o)

i

where mgu(Ao, A) = 0 (notice that AO=Ac).
Then we simplify the equalities as in the step 2 arriving at

V 3(z = R, B,eod...
i

Where the equalities Zi = Ri denote the result of the simplification, and Oi = { y / x I
~y(x = y A . . .) } . Now we push the existential quantifiers as far right as possible, and

228 DE GIACOMO

we put the formula in normal form. Notice that last step has no influence on the resulting
normal form. We get:

I D B u EDB{A,~ew +-- Z~ = R~ A BiOOi I i = 1 , . . . } U {~---- . . . A n e w . . . }

Consider the SLDNF-derivation from + - . . . Anew . . . which at the first step unfolds Ane~
by using the statement Anew +-'- Zi ~ Ri A BiOOi and then resolves all the equalities in
(Zi = R~). The following is the final goal of this derivation:

,-- BiOOi~ri . . .

where O0io'i = m g u (A a , A { X i / Ti}). 12
Turning to Phase 2, we prove that it preserves the computed answers and the finite

failures of the original intensional answers. We proceed by induction on the number of
times a negation is pushed inward.

Base case. If no negations are pushed inward, then the result holds trivially.
Inductive case. Given that the result holds pushing negations inward n times, we prove

that it holds if negations are pushed inward n + 1 times. We use the following notation: for
any formula W, we denote by W ~ the formula obtained from W applying step 3.

Let us assume that in a derivation from the original goal, we select a formula

(to be precise we select the negative literal that arises transforming F in normal form). Note
that in F no free variables can occur, otherwise the derivation would flounder) 3

Suppose F fails. It means that, for some k, i j ~ Bkj~ succeeds, that is all Bkjk (for all
jk) succeed. Consider the transformed subgoal

F,= AV B ,. ~31"

i j~.

In each of its conjuncts (once transformed in normal form) there is exactly one B1kjk (for
some Je) that occurs in it. By inductive hypothesis, such a B~j k succeeds, so ,~B~j k fails.
It follows that the whole (At Vj~ ,,~B(.~3~, ~ fails.

Suppose F succeeds. This means that, for every k, A jk Bkjk fails, that is, for every k,
there is a Bkjk (for some Jk) that fails. Let us denote this Bkj~ by/3k. It follows that
the transformed subgoal F ~ succeeds too, indeed there is a conjunction C in F I formed
exactly by all /3 k (for all k). Since by inductive hypothesis all/31 fail, C succeeds. k

If the intensional program of the knowledge base is not a normal program, then by
using Lloyd-Topor transformations to apply partial evaluation, we introduce new predicate
symbols 14 that are obviously unknown (i.e. they are meaningless to the user). By the
procedure presented here, such predicate symbols can always be replaced by a meaningful
formula.

Let us illustrate the treatment of negation with an example.

INTENSIONAL QUERY ANSWERING 229

Example: Consider the following intensional program IDB:

should_visit(x, y) +-- serves(y, z) A likes(x, z)
happy(x) +-- frequents(x, y) A should_visit(x, y)
very_happy(x) ~ Vy(frequents(x, y) ~ should_visit(x, y))
unhappy(x) +-- Vy(frequents(x, y) --+ ~should_visit(x, y)),

the following extensional program E D B (schema):

f r equen t s (DRINKER, PUB)
serves (PUB, B E E R)
l i kes (DRINKER, BEER) ,

and the query "Who are the drinkers that are neither unhappy nor very happy?", that is:

+-- ,.~unhappy(x) A ~very_happy(x).

First notice that the last two statements must be transformed into normal form.

unhappy(x)+-~npl(x)
npl(x)+--frequents(x,y) Ashould_visit(x,y)
very_happy(x)+--~np2(x)
npl(x)~---frequents(x,y) A~should_visit(x,y).

The only possible set of intensional answers computed by the basic method is the one
constituted by the query itself. To it we may add the following set N D of auxiliary
definitions.

unhappy(x) +-- ~npl(x)
npl(x) ~-- frequents(x, y) A serves(y, z) A likes(x, z)
very_happy(x) +-- ~np2(x)
np2(x) +-- frequents(x, y) A ~should_visit(x, y).

Now we proceed to the expansions. We expand (in parallel, for sake of brevity) both
~unhappy(x) and ~very_happy(x) :

~unhappy(x) A ~very_happy(x) (original goal)

npl(x) A np2(x) (first expansion)

3y(frequents(x, y) A should_visit(z, y))A
By(frequents(x, y) A ~3z(serves(y, z) A likes(x, z))) (second expansion)

3y(frequents(x, y) A 3z(serves(y, z) A likes(x, z)))A
3y(frequents(x, y) A ~3z(serves(y, z) A likes(x, z))) (third expansion)

Last formula is a nice intensional answer, i.e. "The drinkers who visit at least a pub where
a beer they like is served and a pub where no beer they like is served." []

230 DE GIACOMO

7. Conclusions

In this paper we have presented a set of tools, based on PE, to generate intensional answers
in the SLDNF-resolution framework, allowing function symbols, recursion, and negation.
The techniques developed here have two main features wrt those presented in the literature,
e.g. (Cholvy and Demolombe, 1986, Pirotte and Roelantes, 1989, Pirotte, Roelantes, and
Zimanyi, 1991), which are based on theorem proving.

First, we have a substantial increase of efficiency. Indeed, PE and the procedures proposed
here, are much more efficient than general theorem proving. Of course, there is a price, it
is possible that some interesting intensional answers cannot be captured by PE, although
we believe that a considerable number of them can in fact be captured.

Second, in a logic programming setting where we use as a reasoning procedure SLDNF-
resolution which is not complete wrt the declarative semantics, we become interested in
making sure that the intensional answers characterize the extensional answers not only
theoretically (from a declarative point of view) but also in practice (from a procedural point
of view). In such conditions PE, and more generally program transformation techniques,
which have been developed with such a duality in mind, give us better adapted tools for
generating effective intensional answers, than general theorem proving.

Further extensions of the present work are possible along several directions. We outline
some of them below.

The PE process tends to destroy the structure of the program to which it is applied. There
are no reasons to preserve the structure of the original program. In fact, such a structure is
normally hidden from the user, and is too general, in the sense that it does not reflect the
particular query asked. Nevertheless, if the structure of the user's knowledge is at hand, it
could be used to re-express the intensional answers in a language that is more familiar to
the user. Hence, an issue to investigate further is the use of additional components, usually
considered for modeling structural aspects of a knowledge base (e.g. taxonomies or integrity
constraints15), to improve the quality of intensional answers.

We remark that the techniques developed in this paper do not refer to any particular PE.
So, in general, as the research on strategies and criteria to define "intuitive" intensional
answers progresses, the new results can be reflected in the particular choices of PE.

This work may be considered a first step toward a program transformation approach to
intensional answering, and it could be naturally extended using other program transfor-
mation techniques. Moreover such an approach can be applied to other kinds of non-
conventional query answering. For instance, PE can be used for both "Knowledge query
answering" (Motro and Yuan, 1990) and, adding folding techniques, "Intelligent query an-
swering" (Imielinski, 1987).

Finally we want to mention the possibility of adopting different declarative and procedural
semantics. For instance, sometimes we may want to interpret negation as classical negation
in contrast to negation as failure. The work (Inoue, 1991, Inoue, 1992) can be used as
a starting point for investigation in this direction. Similarly we may want to adopt the
well-founded semantics as declarative semantics. PE in this setting as been studied in
(Aravindan and Dung, 1994).

INTENSIONAL QUERY A N S W E R I N G 231

Acknowledgments

I am grateful to John W. Lloyd who supervised me during the early stages of this research,
and to Maurizio Lenzerini who gave me precious advice and supported me throughout the
work.

Notes

1. We mainly use the same notation as (Lloyd, 1987) except that we denote sequences of terms by a single capital
letter. The few other differences are pointed out as encountered.

2. In (Lloyd, 1987) a query is a goal. Let ~-- W be such a query, we call "query" the first order formula W.

3. Recently, in the context of logic programming, the name partial deduction has been proposed to replace the
name partial evaluation, leaving the original name to denote the optimization oriented use of such a machinery.
In this paper we continue to use to the name partial evaluation in conformity with (Lloyd and Shepherdson, 1991)
and (Benkerimi and Lloyd, 1990) whose results are extensively used.

4. Note, if n : 0, the resultant is Q ,-- Q.

5. T t is formed by the complete failed branches of T , and by the branches of T corresponding to the derivations
from the original goal to the goals in the cut that do not fall.

6. We consider the selection rule not as a function of the current goal alone (cf. (Lloyd, 1987)) but as a function
of the whole history of the derivation from the root goal to the current goal (cf. (Shepherdson, 1984)).

7. We assume that the user knows a set of predicate symbols which includes those defned in the extensional
program of the knowledge base, and all constants and function symbols.

8. We may consider a predicate symbol to be marked unknown either generally (e.g. because its meaning is not
known by the user) or more specifically, wrt the formulas in which it appears.

9. In very unfortunate cases, the set of definitions R D may almost coincide with the whole intensional program.

10. We could have also assumed that an independent set of atoms corresponds to p. This would entail that in
corrzpt(AD)Az there would be a distinct logical equivalence involving p for each such atom, therefore the
idea of a single logical defnition o fp in the context of SIA and A D should be replaced by the idea of a logical
definition o fp in the context of a single intensional answer of S'IA or statement of AD in which it appears. In
this paper we stick to the first assumption; nevertheless the results shown here can be immediately extended
to the case where the second assumption is adopted.

11. Incidentally we observe that, intensional answers are syntactically similar to "equational formulas" of (Przy-
musinski, 1989, in which not only equalities but also extensional and possibly intensional predicates are
allowed.

12. Note that this is identical to the goal obtained resolving AG with the statement A { X i / T I } ~-- Bi in N19.

13. Obviously there may be existentially quantified variables, but recall that we do not push negation inside
existential quantifications.

14. New predicate symbols are introduced to eliminate the negated existentially quantified (universally quantified)
formulas.

15. Integrity constraints can also be used by selection rules to prune away inconsistent goals.

References

C. Aravindan and E M. Dung. Partial Deduction of Logic Programs wrt Well-Founded Semantics. New
Generation Computing, 13(1):45-71, 1994.

K. Benkerimi and E Hill. Supporting transformation for partial evaluation of logic programs. J. of Logic and
Computation, 3(5):469-486, 1993.

232 DE GIACOMO

K. Benkerimi and J. W. Lloyd. A partial evaluation procedure for logic programs. In Proc. of North American
Conf. on Logic Programming, pages 343-358. MIT Press, 1990.

R. Bol. Loop checking in partial deduction. J. of Logic Programming 16(1-2):25--45, 1993.
D. Chan. Constructive negation based on the completed database. In Proc. of 5th International Conference and

Symposium on Logic Programming, pages 111-125. MIT Press, 1988.
D. Chan. An extension of constructive negation and its application in coroutining. In Proc. of North American

Conf. on Logic Programming, pages 477--493. MIT Press, 1989.
D. Chan and M. Wallace. A treatment of negation during partial evaluation. In Meta-Programming in Logic

Programming (Proc. META'88), pages 299-317. MIT Press, 1989.
L. Cholvy and R. Demolornbe. Querying a rule base. In Proc. 1st Int. Conf. on Expert Database Systems, pages

365-371, 1986.
W. W. Chu, Q. Chen, and R.-C. Lee. A pattern-based approach for deriving approximate and intensional answers.

In Proc. of the 1stint. Work. on lnteroperability in Multidatabase Systems, pages 262-265. IEEE Comput. Soc.
Press, 1991.

W. W. Chu, R.-C. Lee, and Q. Chen. Using type inference and induced rules to provide intensional answers. In
Proc. of lEEE Int. Conf. on Data Engineering, 1991.

K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293-322. Plenum Press, 1978.
E Corella. Semantic retrieval and levels of abstraction. In Proc. 1st Int. Workshop on Expert Database Systems,

pages 397-420, 1984.
F. Cuppens and R. Demolombe. Cooperative answering: a methodology to provide intelligent access to databases.

In Proc. 2nd Int. Conf. on Expert Database Systems, pages 333-353, 1988.
G. De Giacorno. Intensional query answering: an application of partial evaluation. In Logic Program Synthesis

and Transformation (Proc. of LOPSTR'92), pages 132-150. Springer-Verlag, 1993.
R. Demolombe. A strategy for the computation of conditional answers. In Proc. of the lOth Europ. Conf. on

Artificial Intelligence, 1992.
R. Demolombe and T. Imielinski, editors. Nonstandard Queries and Nonstandard Answers. Studies in Logic and

Computation, Oxford Science Publications, 1994.
D. A. De Waal. The power of partial evaluation. In Logic Program Synthesis and Transformation (Proc. of

LOPSTR'93), pages 159-161. Springer-Verlag, 1994.
W. Drabent. What's failure? An approach to constructive negation. Acta Informatica, 5(1):27--60, 1995.
M. M. Fonkam. Employing integrity constraints for query modification and intensional answer generation in

multi-database systems. In Advances in Database Systems (Proc. of the l Oth British Nat. Conf. on Databases),
pages 244-260. Springer-Veflag, 1992.

T. Imielinski. Intelligent query answering in rule based systems. J. of Logic Programming, 4(3):229-257, 1987.
T. Imielinski and B. R. Badrinath. Data management for mobile computing. SIGMOD RECORD, 22(1):34-39,

1993.
K. Inoue. Extending logic programs with default assumptions. In Proc. of the 8th Int. Conf. on Logic Programming,

pages 490-504, 1991.
K. Inoue. Linear resolution for consequence finding. Artificial Intelligence, 56:301-353, 1992.
Y. H. Kim and H.-Y. Kim. Applying intensional query processing techniques to object-oriented database systems.

In Proc. of the 3rd lnt. Sym. on Database Systems for Advanced Applications, pages 405-412. World Scientific,
1993.

H. J. Komorowski. A specification of an abstract prolog machine and its application to partial evaluation. Technical
Report LSST 69, Link~ping University, 1981.

H. J. Komorowski. An introduction to partial deduction. In Proc. of the 3rdlnt. Work. of Meta-Programming in
Logic (META'92), pages 49~59. Springer-Verlag, 1992.

J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-Verlag, 1987.
J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. J. of Logic Programming, 11(3&4):

217-242, 1991.
J. W. Lloyd and R. W. Topor: Making prolog more expressive. J. of Logic Programming, 1(3):225-240, 1984.
B. Martens, D. De Schreye, and M. Bruynooghe. Sound and complete partial deduction with unfolding based on

well-founded measures. In Proc. of the International Conference on Fifth Generation Computer Systems, pages
473--480, 1992.

B. Martens, D. De Schreye, and T. Horv~ith. Sound and complete partial deduction with unfolding based on
well-founded measures. Theoretical Computer Science, 122(1-2):97-117, 1994.

INTENSIONAL QUERY ANSWERING 233

A. Morro. Using integrity constraints to provide intensional answers to relational queries. In Proc. 15th Int. Conf.
on Very Large Data Bases, pages 237-246, 1989.

A. Motro, Intensional answers to database queries. Technical report, Department of Information and Software
Systems Engineering, George Mason University, Fairfax, Virginia, 1991.

A. Motto. Responding with knowledge. In Advances in Databases and Artificial Intelligence, Vol. I: The
Landscape of lntelligence in Database and Information Systems. JAI Press, 1993.

A. Motto and Q. Yuan. Querying database knowledge. In Proc. ofACM SIGMOD-90, pages 173-183, 1990.
A. Pirotte and D. Roelantes. Constraints for improving the generation of intensional answers in a deductive

database. In Proc. 5th Int. Conf. on Data Engineering, pages 652-659, 1989.
A. Pirotte, D. Roelantes, and E. Zimanyi. Controlled generation of intensional answers. IEEE Trans. on

Knowledge and Data Engineering, 3(2):221-236, 1991.
G. D. Plotkin. A note on inductive generalization. In Machine Intelligence, Vol. 5. University Press, 1969.
T. C. Przymusinski. On constructive negation in logic programming. In Proc. of North American Cotf on Logic

Programming, pages 1-19 (addendum). MIT Press, 1989.
J. C. Reynolds. Transformational systems and algebraic structure of atomic formulas. In Machine Intelligence,

Vol. 5. Edinburgh University Press, 1969.
J, C. Shepherdson. Negation as failure: a comparison of Clark's completed data base and Reiter's closed world

assumption. J, of Logic Programming, 1(1):51-81, 1984,
C. Shum and R. Muntz. Implicit representation for extensional answers. In Proc. 2nd Int. Conf. on Expert

Database Systems, pages 257-273, 1988.
I.-Y. Song, H,-Y. Kim, and P. Geutner. Intensional query processing: a three-step approach. In Proc. of the lnt.

Conf. on Database and Expert Systems Applications, pages 542-549. Springer-Verlag, 1990.
E VanHarmelen. The limitations ofpartial evaluation, In Logic-Based Knowledge Representation, pages 87-111.

MIT Press, 1989.

