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Abstract. Simple calculations of the apparent roughness length for the areally averaged flow over flat but 
heterogeneous terrain are presented. These results could be used to specify effective roughness lengths for 
use in large-scale models. Some of our conclusions differ significantly from those reached recently by Andre 
and Blondin (1986). 

1. Introduction 

In their recent paper, AndrC and Blondin (1986) consider the parameterization of 
heterogeneous terrain in large-scale models using the concept of an effective roughness 
length, zg*. Their results suggest that zzff is signikantly different from the value one 
would obtain from a spatial average of the logarithm of the local micrometeorological 
roughness lengths over a model grid square and that it is strongly dependent upon the 
height of the first level, zi, of the model being used. We shall argue against any 
dependence on z, and suggest that, 

where 

ZO 
eff, zom (2) 

h zonl = < h-l z, > , 

and ( ) implies a grid-square average, is usually a reasonable approximation. We also 
propose a first-order correction based on PBL similarity theory and discuss various 
alternative approaches to the definition of z~*. As large- and meso-scale numerical 
models develop, it may be found necessary to improve on this and we can perhaps use 
high-resolution models to guide in the representation of sub-grid scale effects or even 
to produce ‘grid-square specifk’ parameterizations. At the present time, however, 
estimates of zzff within a factor 2 are probably adequate and such considerations may 
be premature. 

2. The Problem 

Andre and Blondin simplify their analysis by considering only neutral stratification and 
assuming that zi is sufficiently close to the ground for the local velocity profiles to be 
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logarithmic of the form 

u=~(hlz-lnz,). 
k 

(2) 

We shall do the same and also assume, as they do, that the heterogeneous grid square 
is flat and consists of a patchwork of areas (or ‘patchwork quilt’) of different roughness. 
Then, although z, = ze(x, y), the local profiles will be of the form (2) except in narrow 
transition areas between different regions. These areas should only have a small 
contribution to the average. An alternative might be to assume slow spatial variations 
in z0 so that profiles are always in approximate local equilibrium. Averaging Equation (2) 
over the grid square gives 

(u(z)) =$[(u,>lnz- (u,lnz,)]. (34 

This average profile is logarithmic in z but: 
(a) the apparent friction velocity ( U* ) is not necessarily equal to the square root 

of the average stress ( u’, ) and 
(b) the apparent roughness length is not simply related to the local roughness length 

distribution but also depends to some extent on the U, distribution. Denoting the 
‘apparent roughness length’ by z,,~, we would have 

lnz,,= (u,lnzo>/(u,> W) 

in order that 

(u(z)) = (uk*2(lnz/z0J. 

In general we suggest setting zd = z,, but wish to distinguish between the two on a 
conceptual basis at this time. 

A very simple case is that of a ‘half and half grid square with z0 = z,, in the smooth 
half and z,,,. in the rough. Figure 1 shows schematic profiles of u vs ln z for this situation. 
In drawing this graph, we do not know the relationship between the U, and U, profiles 
but have sketched them on the basis that, given the same driving force generating the 
profiles over the rough and smooth surfaces, we would expect U,(Z) > U,(Z). Key 
questions are: 

What should be considered as the driving force? and 
Is it uniform over the grid square? 

Andre and Blondin, in Section 2 of their paper, assume that u is fixed, and equal to U, 
at z = zi. In our example, this would imply pi, = uls. If z1 is large, say O(200 m + ), this 
may be an acceptable assumption but it is not appropriate for zi N 10 m. For heights 
in this range, we know from everyday experience that winds are reduced over rougher 
surfaces. In our view then, it is inappropriate to regard the wind speed at some height 
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Fig. 1. Schematic diagram of velocity profiles above a ‘half-and-half grid square: - ‘rough’ and 
‘smooth’ protiles, u, , u, ; - - - - - grid-square average proiile ( u(z) ) . 

within the surface layer as providing the driving mechanism for the near surface 
boundary-layer flow since it will not be uniform over the grid square. 

3. A Better Way? 

For studies of surface boundary-layer flow above variations in roughness where the 
upstream or unperturbed flow is a constant stress layer, the appropriate upper boundary 
condition and driving force is one of a constant applied shear stress (see, for example, 
Taylor, 1969a). This is not strictly appropriate here but note that it would lead to 
equilibrium profiles above different roughnesses all having the same value of u* and, 
hence, In z,, = In z,,. 

For situations considered by GCMs and synoptic and regional scale NWP models, 
we can reasonably expect that horizontal pressure gradients, on the synoptic- or 
meso-scale, will vary only slowly across a grid square and will be relatively unafkcted 
by sub-grid scale variations in surface properties. If this is the case, our sub-grid scale 
problem becomes one of representing the average planetary boundary layer (PBL) over 
heterogeneous terrain. In this case, the driving force is the externally imposed pressure 
gradient and the upper boundary condition, as z A co, could either be one of zero stress 
or, equivalently, requiring that II + us, the gradient or geostrophic wind in balance with 
the pressure gradient. Taylor (1969b) and Jensen (1978) have considered this situation 
for a simple step change in roughness and neutral conditions. Both analyses give similar 
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results and show that, following a step change in roughness, the surface friction velocity 
at lirst overshoots the new equilibrium value for the downstream surface and then slowly 
adjusts back towards it. Complete adjustment of the flow to the new surface conditions 
appears to take a distance of 0( V,/f ), where f is the Coriolis parameter and V, = 1 ug / . 
This is typically N 100 km and Jensen (1978) uses this to argue that the PBL is rarely 
in equilibrium with the surface boundary. We accept this but note that u * and the near 
surface wind speeds adjust rather faster than wind directions and speeds higher up in 
the boundary layer; we also note that the results indicate that surface friction velocities 
should almost always be within 5 y0 of their equilibrium downstream values within a 
fetch of 10 km. On this basis and in the present context, we shall assume that the PBL 
transition zones are small relative to the sizes of individual areas in our patchwork quilt. 

4. A Relationship for zO, 

If then, the surface stress is assumed to adjust fairly rapidly to changes in z,, the 
implication is that we can estimate the relationship between u.+ and lnz,, (needed for 
Equation (3b)) from models or theories of the PBL over homogeneous terrain. This has 
been investigated fairly extensively, especially on the basis of Ekman layer similarity 
theory and ‘resistance laws’ (see, for example, McBean, 1979). A graph of u * /I’, as a 
function of 1nRo (where Ro is the roughness Rossby number VJfzo) based on this 
theory is given in Figure 2. Additional details are in Appendix 1. Note first that u * varies 
relatively slowly with z, and, to a reasonable degree over limited ranges, can be 
approximated as varying linearly with lnz,. For fixed V, and f, a suitable approximation 
would be 

where 

u* = u*m (1 + a,(lnz, - lnz,,)), (5) 

fq=($&) at hr.z,=hrz,, (6) 

and u*rn is the value of u * corresponding to lnz, = lnz,,. With the assumed linear 
relationship, Equation (5) this will be equal to ( u* ) . 

Substituting (5) into (3b) and assuming a*, = ( u* ) gives 

h, = (lnz, > + al((0n‘zd2 > - t( lw >)‘I (74 

or 

The same result can be obtained, correct to 0(A3) where A = lnz, - hrz,,, by using a 
Taylor series expansion for U* in place of Equation (5). Since a, > 0, the value of hrz,, 
will always be 2 ( lnz, ) but not by too much in many cases. Note that there is no 
dependence on z, in this analysis. As a simple illustration, consider a grid square with 
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h Ro =h V,lf -ho 

Fig. 2. The relationship between u * /V, and Ro for neutrally stratified PBL Row, based on similarity theory: 

1 ** . 1 
a, =- a2 = - d2% 

II* d(lnz,) ’ 2u, d(lnz,,)2 

See Appendix for additional details. 

equal halves with z, = 0.02 and 0.5 m. Then, with a, = 0.087 (from the Appendix or 
Figure 2), 

lnz,, = - 2.303 + 0.087 (7.89 - 5.30) = - 2.078. 

In this case, the value of z,, corresponding to ( Inz,, ) is 0.1 m while z,, = 0.125 m. 
Given all the other uncertainties and imperfections in the parameterization of the 
boundary layer within large-scale models, this seems a rather insignifkant difference. 
However, it can be larger in cases with a wider range of surface roughness within a grid 
square. For the simple ‘half and half case, we have computed lnz,, based both on 
Equation (7b) and from Equation (3b) using the full PBL similarly theory relationship 
(see Equation (Al)) between U* and hrzO for a number of cases. The results are given 
in Table 1 together with values of z,,,. It is clear in all cases that Equation (7b) provides 
an excellent approximation to the ‘exact’ solution based on Equations (3b) and (Al). 
The results also confirm our earlier assessment that z,, should be adequate in most 
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cases. In the two extreme cases included where the ratio of rough-to-smooth roughness 
lengths, zO,/zoS = 104, the apparent z0 is substantially increased ( x 5 and x 6 in the two 
cases tabulated). This situation could arise in grid squares containing, for example, a 
mix of land and water surfaces or of forest and snow covered open ground. In these 
cases we suggest using Equation (7b) to determine zOa. In other cases, the same 
equations could be used but the correction to the simpler Equation (1) is probably not 
significant for present large-scale models. Note also that although a, varies from 0.6 to 
1.1 over the Ro range considered, we could get a reasonable estimate of z,, by taking 
a constant value of 0.85 for a,. 

5. The Surface Stress 

Returning to problem (a), we might ask whether our proposed approximation to lnz,, 
can also provide an estimate of ( u’, ). We know from the Schwartz inequality that 
( z.45 ) 2 (( U* ))*; the question to be asked is whether or not the correction is 
significant in relation to other model errors. 

We can see from averaging Equation (5) that differences between ( u * ) and u *m are 
second order in (In z0 - In ze,). The same will be true of differences between ( u’, ) and 
( u * ) * and in order to estimate these we must take an extra term in the expansion (5) 
to give 

u* = Uem(l + UI&O - ( hzo >) + a,(hz, - ( lnz, ))*) . 

An equation for a, is given in the Appendix while values are shown in Figure 2. With 
this second-order term, we can also get an estimate for the error involved in assuming 

TABLE I 

Ro” 

Different estimates of zErr and ( u”, ) for ‘half-and-half grid squares 

~o,l~o, Equation (1) Equation (7) Equation (3) 

IO5 25 0 1.0 0.26 1.30 0.26 1.30 
lo2 0 1.0 0.53 1.70 0.52 1.68 

106 25 - 2.30 0.10 - 2.08 0.12 - 2.08 0.12 
lo* - 2.30 0.10 - 1.84 0.16 - 1.85 0.16 
lo4 - 2.30 0.10 - 0.46 0.63 - 0.53 0.59 

IO7 25 - 4.60 0.01 - 4.40 0.012 - 4.41 0.012 
lo2 - 4.60 0.01 - 4.20 0.015 -4.21 0.015 
104 - 4.60 0.01 - 3.00 0.050 - 3.04 0.048 

IO8 25 -6.91 0.001 - 6.74 0.0012 - 6.13 0.0012 
IO2 - 6.91 0.001 - 6.56 0.0014 - 6.55 0.0014 

B Ro values based on V, = 10 m s- ‘, f = 10m4 s- ’ and zOm. 
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Table I (continued) 

<u* >/u,, 
Equation (9) Similarity theory 

<U:)I(U*)2 
Equation (10) Similarity theory 

1.020 1.018 1.026 1.027 
1.041 1.039 1.053 1.051 

1.017 1.018 1.019 1.018 
1.034 1.038 1.040 1.039 
1.137 1.144 1.159 1.148 

1.013 1.009 1.015 1.014 
1.027 1.023 1.030 1.030 
1.109 1.113 1.121 1.116 

1.010 1.012 1.011 1.013 
1.021 1.025 1.023 1.024 

(u* > = u*?w This is obtained by averaging Equation (8) over the grid square to give 

<u* > = u*m(l + ~,&J~ (9) 

We can now square and average Equation (8), square Equation (9), divide and 

approximate to show that the ratio ( ~1 ) /( ( u* ))” is given, to second order, as 

Estimates of (u, )/u,, and ( u* ) 2/ ( u’, ) based on these equations and the full 
similarity theory are given for ‘half and half grid squares in Table I. Differences between 
(u, > mdu,, are small (< 5 %) except in the cases where z,,/z,-,, = 104, and even then 
they are < 15%. 

The ratio ( u * ) 2/ ( u’, ) is always close to 1.0 for the cases considered and shows 
that possible errors in estimating surface stress as ( u* )’ could be expected to be 
negligible. If corrections are considered necessary, the estimate based on Equation (10) 
provides a good approximation to the full similarity theory calculation. 

6. Alternative Approaches 

We believe that (3b) is the most appropriate definition for zEff. There are, however, other 
possibilities, based on the requirement that the assumed profiles will give the correct 
surface stress directly. This is indeed a useful feature and was incorporated in the 
original definition by Fiedler and Panofsky (1972). It does however have the 
disadvantages that the profile for z < z1 is no longer equal to ( u(z) ) and the value of 
zgff is dependent on the choice of zr. Two alternative definitions, denoted here by zob 
and zoC are based on the equations 

(U,) = (us)1’2p) 
‘Ob 
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(u31/2= ‘“y2p). 

ZOC 

(12) 

With zob we could obtain the correct stress from a known ( ui ) while with z,,, which 
is perhaps a little esoteric, we would need knowledge of ( UT ) . If z1 is suthciently high 
that ui is uniform across the grid square, then zo6 and z,, would be equivalent and would 
correspond to the value obtained by simply averaging the drag coefficients as suggested, 
for example, by Wieringa (1986, p. 874). This leads to yet another estimate of ~6~“; the 
relationship can be written as 

w,/zod)-2 = ((~zl/zo)-2 > . (13) 

The analysis in Section 2 of Andre and Blondin’s paper is based on a profile of the form 
(4) with u;~ = ( u, ) (their Equation (6b)). Their zzff, which we shall identify as z,, 
satisfies 

(h$J’ = (hg; (14) 

this is equivalent to their Equation (8). 
We must stress that the formulations of both z,, and z,, assume a uniform u, and 

ignore variations of u, with z, within the grid square. In our view, this assumption may 
be defensible for zi - 200 m but will be less and less valid as z, decreases. 

The wind speed at the lowest level in a large-scale model is presumably intended to 
represent the grid-square average value, ( ui ) ; the appropriate .zgff to give the correct 
surface stress directly would be zob. We can, after some algebra, relate this to z,, through 
the relationship 

hz,, = a lnz,, + (1 - a) lnz, (15) 

a= <u,>I(u’, )112, 

and will be I 1 by the Schwartz inequality. 
Equation (15) shows that zob will increase with increasing z, although in most cases 

the rate of increase will be slow since a N 1. By contrast, zod and z, both decrease as 
z, increases. Some comparisons between ail of the different zgff estimates discussed are 
given for half-and-halfgrid squares and zo,/zo, = lo2 in Table II. In calculating z,,, zob, 
and z,,, we have assumed that the local u* and z. values are related through simikuity 
theory as illustrated in Figure 2 and discussed in the Appendix. We can see that the z, 
dependence in zob and zoC is relatively weak and that both give results very sin&r to 
z,,, bearing in mind that it is Inz, which is significant rather than z, itself. Both z,, and 
z,, values are substantially higher than z,, for relatively low (10 m) values of zi. 
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TABLE II 

Further zd estimates for ‘half-and-half grid squares; z,,JzO, = lo*, different z, levels 

Ro zl (4 preestimates (m) 

106 10 0.100 0.159 0.170 0.136 0.455 0.316 
60 0.100 0.159 0.176 0.161 0.318 0.229 

300 0.100 0.159 0.182 0.176 0.258 0.194 

10’ 10 0.010 0.0148 0.0163 0.0150 0.030 0.022 
60 0.010 0.0148 0.0168 0.0162 0.024 0.018 

300 0.010 0.0148 0.0172 0.0170 0.021 0.017 

7. The Effective Roughness Length for Flow Above a Surface with Sinusoidal 
Perturbations to In z, 

In addition to considering the ‘patchwork quilt’ problem, AndrC and Blondin (1986) 
present results from a computation of the flow over a surface with sinusoidal pertur- 
bations to lnz,. Their model is two-dimensional and is essentially for the surface layer, 
in the sense that there are no Coriolis forces. Their formulation of the problem includes, 
however, two features to which we must draw attention: 

(a) since there is no ‘driving force’, the flow decays with time and the computations 
of z;” have to include corrections for non-steady-state effects; 

(b) the flow situation considered is not truly periodic but consists of an area of 
uniform roughness followed by two wavelengths of sinusoidal lnz, perturbation. 

Walmsley et al. (1986) and Beljaars et al. (1987) have recently used flow over 
sinusoidally perturbed In z0 as a test case for their linearized models of flow in complex 
terrain. They also compare their results with results from a third, nonlinear finite- 
difference model described by Taylor (1980). The flow situation considered in these 
papers is that of steady-state flow over an infinite plane with sinusoidal perturbations 
to In z,. These models use a surface-layer formulation with the flow driven by an applied 
stress at the upper boundary. Ideally one would use a PBL formulation for the present 
application but we believe that the results of these models should still give some useful 
indication of the effect of sub-grid scale roughness modulation on the effective roughness 
for larger areas and avoid some of the potential problems inherent in AndrC and 
Blondin’s computations. 

To determine the effective or apparent roughness length for this flow, we could set 
out to determine profiles at each point and then produce the average profile ( U(Z)). 
The models of Walmsley et al. and Beljaars et al. are, however, linearized in terms of 
the perturbations in lnz, and the difference between lnz,, and ( lnz, ) will be a 
second-order quantity, which we cannot compute from the area-averaged profiles. We 

can, however, compute lnz,, using Equation (3b), provided we assume that ( U(Z) ) is 
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logarithmic in z, a reasonable hypothesis especially for large-wavelength roughness 
modulations. 

In our notation the roughness variation can be written as 

lnz, = (lnzo) - qcos(2nx/A), (16) 

where 1 is the wavelength of the modulation and the ( ) symbol now denotes an average 
over this wavelength. If we again set 

lnz,, = (lnz,) , (17) 

then 

z. = z,,exp(- qcos21cx/A). (18) 

The roughness length minimum is located at x = 0 for q > 0. 

This is essentially the same situation considered by Andrt and Blondin but is truly 
periodic and uses a different notation for ease of comparison with Beljaars et d's work. 
With this distribution for lnz,, Equation (3b) gives 

lnz,, = ( u* lnzOm - qu, cos(2744>/( u* > 

= lnz,, - 4 <u* CO~(~744>/( u* > . 

The linear models provide us with surface stress distribution of the form 

(19) 

where z, is the applied stress at the top of the model and z, is the O(q) perturbation 
induced by the roughness variation. A simple balance of forces shows ( z1 ) = 0 for 
periodic flows. In Beljaars et af.‘s linearized model, z, is written in the form 

z, = 7, cos (2~x/L) - zi sin(2nx/;l) . 

Also, on linearization, we can write 

(20) 

1 Tl u* = ry2 1 + - - . 
( ) 2 To 

(21) 

Substitution of these expressions in (19) then gives, after some manipulation and 
averaging 

+ 3rd order terms (22) 

The second-order correction term ( - a(q z,/z,), which is positive since 5 < 0 for q > 0, 

can be obtained from the linear theory in this case because of the form of Equation (3b) 
- in general second-order quantities cannot be obtained from the results of linear 
theories. in a somewhat similar way, we can also determine the ratio ( u y ) /( ( u: ))‘j2, 
another quantity which is second order in q, since the wavelength-averaged first- and 



COMMENTS AND ANALYSIS ON EFFECTIVE ROUGHNESS LENGTHS 413 

second-order perturbations to u’, will be zero. The result is 

(u.,.) =ri”(l-a T)+%dorderterms 

= #(l - &Jr; + 7:)). 

Inverting and squaring this gives a relation in the same form as Equation (10): 

(u”, ) = (Id* )2(1+ &f + rf)). (24) 

TABLE III 

Ratios of zJz~~ and ( u’, )/( U* )* for surface boundary-layer flow above sinusoidally modulated 
In z0 

q = ln2 

ML 

q=lnlO 

E-E FD ML E--E FD 

(a) Ratio zOJzom 

IO3 1.083 
IO4 1.053 
105 1.038 
106 1.029 
10’ 1.024 

(b) Ratio (u’, )/( U* )2 

lo3 1.026 
lo4 1.011 
lo5 1.006 
lo6 1.004 
10’ 1.002 

1.042 1.071 2.405 1.580 2.145 
1.034 1.050 1.764 1.442 1.723 
1.028 1.037 1.510 1.349 1.506 
1.023 1.030 1.375 1.283 n/a 
1.019 1.025 1.293 1.235 n/a 

1.007 1.020 1.284 1.079 1.239 
1.005 1.010 1.126 1.051 1.119 
1.003 1.006 1.066 1.034 1.066 
1.002 1.004 1.039 1.024 nla 
1.002 1.002 1.025 1.017 n/a 

ML: Beljaars et al. (1987), mixing-length closure. 
E - E: Beljaars et al. (1987), E - E closure. 
FD: Taylor (1980), turbulent kinetic energy equation, specified 2. 

Results based on Equations (22) and (24) are given in Table III for two values of q 
( = In 2 and In lo), five values of A/z,, and with two alternative closure schemes. Also 
given are results based on Taylor’s (1980) nonlinear finite difference model. This has 
a closure intermediate between the mixing length (ML) and E - E forms in Beljaars 
et al., but here gives results in good agreement with the Beljaars et al.‘s ML model. 

We note first of all that departures from unity of both ratios, zop/zo, and 
( u”, )/( U, )’ are always positive and decrease with increasing n/z,,. The increases in 
z, are generally quite moderate and probably not significant for boundary-layer 
parameterization in large-scale models except for the lowest values of J/z,, considered. 
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The case considered by Andre and Blondin corresponds to C-J = m2 and 
GO, = 1.5 x 106. They calculate a ratio z,“/S, equivalent to our z~~/z~,,,, as 1.067 for 
z1 = 5 m. With l/z,, = 106, the present calculations give z,,/z,, = 1.03 and, from 
Equation (15) with zi = 5 m, zob/zom = 1.04. The discrepancy could be due to differences 
in the forms specified for mixing length or to the differences in flow configuration 
discussed earlier. It should, however, be stressed that both values are insignificant 
compared to the uncertainty usually present in our knowledge of the local z,, field. It 
is interesting to note that Andre and Blondin’s Figure 4 does show the effective 
roughness length perturbation, their A, increasing with height, zi, near the surface and 
then decreasing above z1 N 50 m. In our view, the behaviour of their solution for 
z1 < 50 m is qualitatively correct and in accord with our Equation (15). For zi > 50 m, 
we suspect that their result is influenced by the fact that the flow at this level is not in 

a) 8 

6 

-2 

Fig. 3. Velocity profiles above a surface with sinusoidal perturbations in lnz,. Perturbation amplitude, 
q = In 10, (a) A/zO, = 104, (b) A/z,,, = 10’; - profiles over roughness extrema, u, , u, ; - - - - average 
profile, ( u(z) ) ; - - - straight line extrapolation of ( u(z) ) for determination ofz,,; - - - schematic 

straight line profiles through z,, maX, z0 min 
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b) 

Fig. 3 (cont.). 

4 8 

ul p 
12 16 

a steady state. Simple order-of-magnitude estimates of the depth of flow tiected after 
an elapsed time of 1500s support this suspicion. 

To complete this discussion, we have used linite-difference model results to calculate 
sample average velocity profiles ( u ). These are plotted in Figure 3, together with 
profiles above the roughness maximum and minimum, for cases with A/.zo = lo4 and lo5 
and with q = In 10. We can think of these as parameter values representing variations 
between short grass (zO N 0.01 m) and woodland or buildings (z, N 1 m) with a 1 km or 
10 km wavelength - a sort of suburb with sports fields. The plots are of u/r~/’ against 
ln((z + zO,)/z,,). This format forces the profiles to go through (0,O) as the lower 
boundary condition but we can extrapolate from the profiles at upper levels where z b z, 
to calculate or graphically determine z,,,. These values are indicated on the figures and 
show zOJz,, = 1.82 and 1.49, respectively, for the two cases with A/z, = lo4 and 105. 
These differ slightly from the values given in Table II based on the use of Equation (3b). 
The slight discrepancies could be due to the average profiles not being exactly of the 
form (3a) or to discretization error in the finite-difference model (which used a 20 x 25 
mesh). The profiles co&m that, for z % z e, the ( u(z)> profile is approximately 
logarithmic, justifying, oposteriori, the use of Equation (3b). 
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The results of this section confirm Andre and Blondin’s result that the effective 
roughness length for horizontally averaged flow over spatially varying z0 is slightly 
greater than zOm, and also provide estimates of the ratio zO,/zO, for two values of q and 
a range of values of n/z,,. Our interpertation of them, in contrast to that made by Andre 
and Blondin, is that the zoo values computed are not significantly different from zem and, 
furthermore, that the stress correction factor, ( u’, )/ ( U, )’ is not significantly 
different from 1.0 in most cases, relative to other errors and uncertainties in the 
treatment of the boundary layer in large-scale models. Doubling the largest value of q 
used in Table III would give more significant differences but clearly strains the validity 
of the linear model results. However, let us consider what happens with q = In 100 and 
ah = lo6 (roughness varying from z, = 0.0001 m to 1 m with a wavelength of 10 km). 
This is quite an extreme case but somewhat representative of the lakes and forests of 
parts of Canada. Beljaars et al.‘s (1987) ML model predicts zO,/zO, = 3.57 and 
( U: )/( U, ) 2 = 1.16. This suggests that, for these extreme cases, the assumptions 
made in earlier sections of the paper concerning the neglect of transition zone effects 
could warrant closer inspection. 

8. Discussion 

The primary intent of this research note is to provide an alternative view of Andre and 
Blondin’s assertions that (i) ‘the ERL (effective roughness length) is mostly determined 
by the roughest elements in the averaging domain’, (ii) ‘the ERL increases as the first 
level of the numerical model (zi) gets close to the surface’, and (iii) ‘it (zg”) is not a 
quantity with unambiguous physical signticance’. We have aimed to show that 
assumptions made in parts of Andre and Blondin’s analysis lead to an overestimation 
of (i) and that in most cases a simple average of the logarithm of the local surface 
roughness over a grid square will yield an adequate estimate for In zgff. We also suggest 
a ‘correction’ term based on the variance of lnz, within the grid square (Equation (6b)) 
and using relationships based on PBL similarity theory. This correction does bias the 
average towards the larger lnz, values in qualitative accord with Andre and Blondin’s 
result but to a rather lesser extent. For our preferred definition of an effective roughness 
length, z,,,, there is no dependence on the grid level, z,, and with our second choice, z,,, 
there is a weak decrease with decreasing z,. This contrasts with the behaviour given 
by (ii) above and also with values, z,,, based on grid-square averages of the drag 
coefficient C,(z,). Results based on numerical models of flow above a surface with 
sinusoidal perturbations to Inz, are discussed. These confirm Andre and Blondin’s 
result that zg” > zom for such flows but our interpretation is that these differences are 
small except in extreme cases. The analyses given here are not the final word on zEff but 
do, we believe, provide some useful guidance in relating effective roughness lengths for 
large-scale models to the sub-grid-scale micrometeorological roughnesses. There is still 
some ambiguity in the specification of ztff but it is less than Andre and Blondin imply. 

We have not addressed the problems associated with abrupt transition zones, the 
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representation of the drag due to flow over sub-grid scale topographic features or the 
potentially very difkult problems of boundary-layer parameterization in areas with 
spatial inhomogeneities in thermal stratifkation (see, for example, Smith and Carson, 
1977). Some progress may be possible by using detailed boundary-layer models to study 
the flow in either generic or specific areas of complex terrain corresponding to single 
grid squares of larger-scale models. In particular, we believe that Beljaars et d’s (1987) 
MSFD model, or an extension theorof, has the potential for this type of application and 
we hope to pursue this area of research in the future. 
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Appendix 1. Similarity Theory Forms for the u, (In z,,) Relationship 

PBL similarity theory predicts the relationship between surface friction velocity and 
roughness Rossby number to be 

(See, for example, McBean, 1979, p. 45, but beware the missing + sign!) Here k is the 
von Karrnkn constant which we shall take as 0.4. A and B are constants for neutral 
stratification but can also be considered as functions of the stability parameter 
p = ku,/fL where L is the Monin-Obukhov length, for non-neutral cases. Even for 
neutral conditions they are not very well determined. We shall use A = 4, B = 2 as 
‘typical’ values for calculations of the curves shown in Figure 2. Differentiating (Al) with 
respect to lnz, and rearranging terms leads to the relationship 

1 
a, = - d”* - F F 

u, d&z,) A2 + F2 + F = F + k2Vi/uZ, 
642) 

where 

In:-B+lns 
g f% 

Note that this is only valid ifp is regarded as fixed, as it would be for neutral conditions. 
There will be additional terms involving U/d Inz, and dB/d lnz, if the stability 
parameter is an implicit function of lnz,. 

Further differentiation and manipulation under the same assumptions leads to 

1 
a, = ~ d2U* - (2F + 1) (A2 + F’)a, - A2 

’ 2u, d(lnz,)’ 2(A2 + F2 + F)2 
643) 
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