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Process monitoring using auto-associative, 
feed-forward artificial neural networks 
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The potential of using artificially simulated neural networks as intelligent, adaptive process- 
monitoring devices is discussed. The investigation is considered as a method for automatic, 
intelligent exception reporting for quality control applications. The technique is also 
compared with the conventional statistical approaches of principal component analysis and 
Kohonen's feature map. The applications of the technique in aerospace and manufacturing 
environments are presented and a possible extension of the method to incorporate a 
diagnostic function is discussed. 

Keywords: Neural networks, condition monitoring, resistance welding, acoustic emission 

1. Introduction 

In this report two distinct applications of neural networks 
are described which demonstrate the benefits of using 
these networks as intelligent monitoring systems for 
industrial applications. The applications described are 
firstly, incipient fault detection in aircraft engines 1 and 
gearboxes and secondly, monitoring the quality of 
welded joints in an automated resistance spot welding 
environment. The aim is to devise an intelligent system 
which can learn the individual characteristics of its own 
application environment and operational routines, with- 
out detailed knowledge of the likely faults and their 
associated symptoms. It is also desirable that the monitor 
be capable of self-adapting to the long-term changes in 
its application environment, due to ageing and mainte- 
nance. 

A neural networks-based approach seems appropriate 
for devising these monitoring systems, primarily because 
of their intrinsic capabilities to self-organize, and extract 
characteristics or features from the available data, parti- 
cularly in noisy environments. The auto-associative net- 
works are used because supervised learning is only 
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feasible if an adequate number of examples spanning the 
entire domain of both satisfactory and unsatisfactory 
operating conditions are available. Data representing 
satisfactory process operations can readily be captured; 
however, data enveloping all possible unsatisfactory 
behaviours are difficult to generate in an experimental 
programme. It is also uncertain whether examples of 
every possible fault can be simulated to a reasonable 
level of accuracy, either experimentally or numerically. It 
is therefore preferred to avoid a conventional supervised 
learning strategy. The use of auto-associative neural 
networks appears to be a feasible approach. 

The auto-associative network is employed, initially to 
extract important features from the input pattern, with- 
out supervision, which are then presented to a more 
intelligent system, operating at a higher level. At this 
second level, which may well be a more advanced neural 
net, the experience gained from processing of the satis- 
factory behaviour forms the basis for highlighting any 
subsequent deviations from it and its possible causes. 
The application can therefore be considered as a form of 
intelligent exception reporting providing an initial indica- 
tion of an unsatisfactory behaviour pattern. 

The system as reported here only provides an intelli- 
gent condition-monitoring device without any fault- 
identification capability. However, the speed at which 
trained neural networks operate certainly provides an 
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opportunity for some diagnostic capability to be incorpo- 
rated in the system. The work concerning identification 
of different faults and subsequent initiation of appropri- 
ate remedial actions has not yet reached a stage where 
results can be reported. It is nevertheless felt that the 
technique has a broad potential for applications in 
monitoring the performance of intricate processes with- 
out involving costly human evaluation, especially where 
the nature of the evaluation testing is likely to be 
complex or even destructive. 

The main reason for using a neural network is to take 
advantage of its ability to self-organize the data providing 
an alternative, objective analysis with no pre-conceived 
expectation of the form of potential faults. An important 
secondary reason is that the adaptive nature of the 
learning process involved in neural networks allows a 
monitor to adapt to the individual characteristics of its 
host machinery and its operating environment. 

2. Characteristics of data 

Data for the first application were obtained by digitizing 
the broad-band recordings of the acoustic emission of a 
Rolls-Royce GEM engine (Hewitt et al., 1989; Witcomb 
et al., 1989). The acoustic information in the form of 
spectral components was obtained by performing a Fast 
Fourier Transform (FFT) using a Hanning window on 
raw microphone signals. The FFT favours the parti- 
tioning of the signal into 2" frequency bins and it was 
necessary to balance the high computational load caused 
by a large value of n against the loss of details in the 
information for a small value of n. Sixty-four bins gave 
an acceptable compromise, where the calculations of 
both the FFT and neural network could be performed in 
real time While retaining the major features in the 
spectral frames. Nine adjacent frames were averaged to 
produce spectral frames at the rate of five frames per 
second. The following are typical characteristics of the 
data. 

(1) There is potentially an infinite number of input 
patterns, ruling out any prospect of target learning which 
would, in any case, defeat the self-adaptive aim of the 
system. There is also a high degree of correlation 
between the inputs, especially those closer together in 
the time domain; 

(2) Some inputs represent short-lived, transient engine 
conditions, such as those experienced during the 
acceleration phase. Others such as those encountered 
during cruise flight are of longer duration. The inputs, 
therefore, cannot be presented to the network in any 
organized sequence or at any controlled frequency. The 
system must be capable of distinguishing between these 
states; 

(3) The noise and natural variability change in a 
complex manner across the input set (Hewitt et al., 1989; 
Witcomb et al., 1989). Such complexity has a profound 
effect on the learning strategy. 

3. Artificial neural networks 

A number of methods for simulating neural networks are 
available (Lippman, 1987), and three of these models, 
namely Kohonen (1989), Carpenter and Grossberg 
(1987) and Rumelhart et al. (1987), were tried. The 
networks suggested by Kohonen (1989) and Carpenter 
and Grossberg (1987) showed some useful learning 
behaviours for both applications. The results, however, 
were found to be less satisfactory for the first application, 
primarily because these models led the networks towards 
a form of vector quantization. Also, data involved in the 
applications placed special requirements on the net- 
works. 

Most satisfactory results were, however, obtained by 
employing a feed-forward layered network with error 
back-propagation methodology derived by Rumelhart et 
al. (1987), often referred to as multi-layered perceptron 
(MLP). A brief summary of this methodology is outlined 
in Appendix A. After some experimentation, a symmet- 
rical five-layer perceptron, shown schematically in Fig. 1, 
was used. The number of cells in each layer was chosen 
empirically. 

The network employed the error back-propagation 
learning strategy to reproduce its input on the output 
layer. The outputs from the cells in the middle layer were 
used as an encoded form of the input. The number of 
cells in the middle layer controlled the dimensionality of 
this encodement. The reduction in dimensionality also 
had the effect of removing noise from the input signal in 
a manner very similar to the method of principal 
components and resulted in a characteristic 'acoustic 
signature' as discussed in the next section. This arrange- 
ment circumvented the necessity of 'supervised learning', 
bringing the benefits of automation and removing the 
need for prior knowledge of the engine's acoustic signa- 
ture. Additionally a controllable learning threshold was 
used to inhibit the network from re-adaptation on 
already learned patterns, such as those representing less 
frequent engine conditions. 

It is perceived that without such intervention in the 
learning process, the extremes of the persistent input 
subset, corresponding to the engine cruise state condi- 
tions, would map onto the extremes of the internal 
representations at the expense of the transient subset 
features. Kuczewski et al. (1987) have suggested a similar 
technique which they call a 'dead zone'. This incorpo- 
rates a chosen discrepancy between the inputs and the 
reconstructed outputs and new learning is only initiated 
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Fig. 1. The 'hour glass' arrangement for the auto-associative multi-layer perceptron. 

for discrepancies outside this dead zone. A multiplica- 
tive, rather than a constant, tolerance in discrepancy was 
employed in the present application, the dead zone being 
some fixed proportion of the input values. With up to a 
10% threshold value, satisfactory learning performance 
was achieved. 

For the second application a Kohonen (1989) network 
seems appropriate as the patterns to be learned and 
subsequently identified at the second level by the system 
can be considered as discrete, but related. In a Kohonen 
(1989) network, as outlined in Appendix B, the 'neurons'  
or 'nodes'  are arranged in a two-dimensional grid and 
when activated they influence each other by stimulating 
close neighbours. This stimulation affects the learning 
process. Consequently the neuron synapses adapt to a 
closer match to the stimulating pattern so that neighbour- 
ing cells learn to recognize input patterns which are 

'near'  to one another. The result is that the network 
produces a reduced dimensional mapping of the input 
space. This mapping can preserve some measure of 
distance observed in the input pattern space, whilst each 
cell provides an exemplar pattern acting as a vector 
quantizer. 

This model provided results which were similar to the 
five-layer MLP network described above, with the advan- 
tage of a faster learning rate. The technique has its 
limitations, however, as the number of desired clusters 
needs to be specified prior to its application. The system, 
as mentioned earlier, is intended to operate in an 
unknown pattern space, and such a requirement may 
restrict its scope in a broader sense. There is also no 
mechanism built into the model which can curtail its 
tendency to re-adapt on less frequent patterns, such as 
the patterns representing the first few welds produced by 
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a new welding electrode. Kohonen-type networks are 
further explored for both of the problems described, but 
the work is not yet at a stage where conclusions may be 
drawn. 

4. Machine condition monitoring using neural 
networks 

The application of an auto-associative neural network to 
condition monitoring approaches the problem from a 
new standpoint. Conventional condition monitoring 
assumes some knowledge of the fault conditions and 
associated symptoms. The purpose of a neural network- 
based monitor, as outlined earlier, will be to extract 
information from the experience gained by monitoring 
the satisfactory operating conditions and then to signal 
any future deviations from these satisfactory states. Heli- 
copter gearboxes and the health of jet engines (Hewitt et 
al., 1989; Witcomb et al., 1989) have been used as the 
basis for research but the approach is applicable to a 
wide range of problems. This implies that the monitoring 
system could be applied to many types of system, with 
the restriction that the network must be able to learn 
from experience spanning the entire range of satisfactory 
states. 

A block diagram of the monitor is given in Fig. 2, 
which shows two levels of the intended intelligent sys- 
tem. In operation the first-level monitor would perform 
the following functions. The network is trained by 

showing it the input patterns for the satisfactory operat- 
ing behaviour only and the learning parameters are 
frozen. With the connection weights fixed, inputs to the 
MLP would be matched to the corresponding output, 
which can only occur if the features were encountered 
during training. Then, if an unsatisfactory match is 
obtained, the reduced dimensional outputs from the 
central hidden layers are passed to the second-level 
monitor for analysis in the context of other parameters 
and dynamic effects. This second-level analysis is per- 
formed, at present, using conventional statistical 
approaches. The adaptive nature of the neural networks 
would be exploited by retraining the networks at inter- 
vals as the individual machines to which they are 
connected are modified or age. A detailed description of 
the first level of operation follows. 

The first level uses acoustic information in the form of 
spectral components. The neural network encoder, a 
symmetrical five-layer MLP operating in an auto-associa- 
tive mode, reduces the dimensionality of the data at the 
central hidden layer, thus forming an internal representa- 
tion of the spectral data which constitutes the acoustic 
signature. 

The second half of this hour-glass arrangement effec- 
tively decodes the signature back to the archetype 
spectral representation. The acoustic inputs to the moni- 
tor are processed to reduce the volume of the data and to 
monitor the mismatch between the input-output pattern 
simultaneously. The mismatch is construed as an unsatis- 
factory operating behaviour. In the case of a mismatch, 
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Fig. 2. Block diagram for the engine-monitoring system, showing the two levels of neural network processing. 
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the resulting acoustic signature is presented to the second 
level of the system. At  the second level other inputs, 
representing both control and response parameters,  are 
then concocted together to establish the auto-correlation 
with the acoustic signature. 

The reduction in dimensionality is achieved by finding 
a set of connection weights which characterize features of 
the inputs, whilst evading modelling of the noise present 
on the signal. It is difficult to decipher this encodement  
in relation to the physics of the problem, as it is not clear 
how the non-linear combination of weights across the 
hidden layers achieves this characterization and what it 
physically symbolizes. The numerical validity of this 
encodement  can, however,  be established. 

An example showing the performance of the encode- 
ment is presented in Fig. 3 which uses intensity (light to 
dark) to indicate increasing acoustic energy level so that 
the moving peaks do not obscure one another. Acoustic 
data in the form of spectral frames, as shown in Fig. 3a, 
are transformed by the MLP into the three values depicted 
in Fig. 3b. The output spectra reconstructed by the MLP 
from these three values is shown in Fig. 3c. The 
reconstructed patterns are visually indistinguishable from 
the input patterns, showing that the main features have 
been captured and used in reconstruction. 

The encodement  of the central layer shows that spectra 
that occur close in time are encoded into a close 
representation, and this three-dimensional representation 
can be thought of as a path in time or a trajectory. An 
alternative demonstration of these values from the cen- 
tral hidden layer is provided in Fig. 4, where a projection 
of the path defined by the three values is shown in a unit 
cube defined by the possible values cells may take in the 
central hidden layer. This illustrates the way in which the 
continuous, high-dimensional input is mapped onto a 
continuous low-dimensional encodement.  

There are two distinguishing features of this applica- 
tion. First, the states to be monitored are not discrete, 
that is to say the acceptable states are connected in a 
continuous fashion and occupy a restricted volume in 
their high-dimensional vector space. Figure 3a illustrates 
this, where the acoustic emission at 64 frequencies 
constitutes the measurement space and the transition 
between the end points forms a well-defined path. The 
difference between neighbouring states depends on the 
speed of transition and sampling rate, and in the limit 
would become continuous. In this context, vector 
quantization may give poor  results as a discrete set of 
reference vectors will give inaccurate matches at bound- 
aries, unless the number of reference vectors is large, in 
which case the calculation load may then become exces- 
sive. 

The second feature is the very restricted availability of 
data for fault condition - not many aircraft engines are 
tested to destruction - hence the need to establish a 

monitoring method based on the experience of accept- 
able performance. The function of the monitor is to 
signal potential problems early enough to allow a soph- 
isticated diagnostic technique to be applied, and con- 
sequently minimize the down-time. It is important that 
the potential problems do not have to be pre-specified, 
although as a result some new conditions will be signalled 
which a r e  not necessarily faults. 

The ability to detect incipient faults has been tested 
under laboratory conditions. The adaptive, localized 
nature of the monitor allows it to concentrate on the 
characteristics of an individual machine eliminating inter- 
machine effects. The simple fault-detection capability of 
this approach has been tested by exposing the first-level 
monitor to acoustic data in which the operation of the 
engine has been modified, but which has not been 
included in the training set. Changes in the reheat nozzle 
angles, and opening of the bleed valves, can be detected 
instantaneously using conventional statistical approaches 
at the second level. 

As an example, the detection of a small disturbance to 
the acoustic input is described and illustrated in Fig. 5. 
The original GEM data were used to generate a larger test 
set, by sampling as a random walk and overlaying 
uniform noise in the range + 10%. A second test set was 
then generated by adding a disturbance of 0.1% of the 
total input signal to the 40th frequency bin. The MLP 
was exposed to both test sets and a cumulative summa- 
tion of errors (CUSUM) (Page, 1954) used to measure 
the input-output  match. The CUSUM is a simple mea- 
sure of fit, calculated by accumulating, through time, the 
input-output  difference across all frequencies. Under  the 
assumption that the error term is distributed with zero 
mean, i.e. the acoustic signature is centred on the actual 
signature, the expectation of the CUSUM is zero, and 
hence consistent deviation from zero indicates that some 
change has occurred. The simplicity of the CUSUM 
approach avoids the need to estimate the distribution and 
associated parameters of the errors. In the example of 
Fig. 5c the CUSUM is shown for both test sets after 10 
minutes' simulation. The broken line indicates that the 
CUSUM for the test set with the disturbance is con- 
sistently diverging from zero. 

4.1. Comparison with conventional methods 

The statistical method of principal component  analysis 
(PCA) can also be used to reduce dimensionality in 
problems containing redundant information, and may 
provide a performance benchmark. Ba|di and Hornik 
(1989) have shown that a linear network with no 
threshotding performs a task similar to PCA. The logistic 
activation function and thresholds of the MLP extend 
this theme so that the auto-association may be con- 
sidered similar to a non-linear PCA, with a correspond- 
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ing inversion. Deleeuw et al. (1976) have described an 
alternating least-squares algorithm which obtains com- 
binations of non-linear transforms to perform a non- 
linear PCA. This algorithm, implemented on the Statis- 
tical Analysis Systems (SAS) computer package, was 
used as a comparison for the performance of the MLP. 
Table i shows the results for a number of transforms, 
with the MLP outperforming the non-linear PCA by a 
small margin. Linear PCA fall far short of this perform- 
ance with the first six components accounting for only 
94% of the variance. 

The results above show that it is possible to train 
a neural network self-adaptively to characterize the 
normal operating behaviour of its host machine, using 
the available information which may contain some redun- 
dant information. Small deviations from normal opera- 
tion can then be detected. The function performed by the 

Table 1. Comparison of the performance of the MLP encoder 
with linear and non-linear PCA 

Method of analysis Number of % variance 
components explained 

Linear PCA 3 82.5 
6 93.7 

Non-linear PCA - cubic spline 3 97.5 
- monotone 

cubic spline 
Auto-associative MLP 

3 96.5 
3 98.9 

neural network, in this case, is to derive a continuous 
mapping from the input space onto a lower-dimensional 
space. The methodology differentiates the reported 
approach from more usual application of neural networks 
to classification problems, where decision surfaces are 
derived which partition the input space. The adaptive 
nature of the neural network, and the simple auto- 
associative training method, allows highly specific, auto- 
mated development of monitoring systems. 

It is believed that this complementary approach of 
anomaly detection will allow a wide range of manufactur- 
ing and commercial systems to be monitored which 
previously were considered too complex or data inten- 
sive. For example, quality control may be achieved by 
identifying small changes quickly so that early corrective 
action may be taken. 

5. Non-destructive testing of weld strength 

The second application describes the use of neural 
networks in an automated production environment to 
monitor the quality of joints achieved by resistance spot 
welding. Resistance spot welding has long proved ade- 
quate for the bulk of mass production applications such 
as car manufacturing and aerospace industries. The spot 
welding process is a complex interaction of electrical, 
mechanical and metallurgical phenomena. There are 
many variable factors involved in the process: welding 
current, voltage, shape of the electrode tip, force, time, 



86 Skitt et al. 

o.  I N P U T  s p s c t ~ u m  s e q u e n c e .  

: . : . . .  : : . .~ : .  ~. ' :~: : i : :  : : ' : i : i i i i ~ : i i . : : . . ' ~ i : i ! i r : i : i l  ..": i ' : i :::::: i l . i~::. i::~:~ii;-:: i i . i : i : i : i  : : i i ~ : : .  i i ! .~ ' i i i i . ; . i  
: :  . . . .  : : ' . : :  • . ' . ' . : . : ' . : :  : : . ' . . : : : : " : : ' . - ' . : ' . ' 2 " : :  ~.' ~ : : : " : . L " :  : ' : ' .  i ' .  i :  . ' :  " : . : ' . :  : : . ' . : . " . ' . ' . ' . . " . ' . ' . : : : : ' : : . .  " :  : :  . . :  : ' . ' : ' . . . " . : "  : 

" : : :  : . "  " ' : . . 1 .  " "  . : :  : . . : . . : ' " : . . " : : "  : . :  : : . ' d ' . : ' - : : . " . "  • : " " : '  . . - : : . . . . -  • . : . a . . . . : . . . . . . . . . . . . .  : . . j . . : : . . : . :  . : . . . . : . :  - . . . . 1  

N . . . . . . . . . . . . : .  : . . . -  • • . . : .  . . : : . - . . . . . . : .  : . - .  : . . .  : . .  : . . . - : :  . . . .  . . : .  . . : . .  i :  "" : . ' . . L 3  ; . ' : : .  : - ' .  - . . - .  • • . . . . .  : . ' . ' . -  

- r -  • : " . :  : "  :" :" : "..::" " " : " : "  : ' "  " ' : " '  - ' : " . :  ' ~ " " : '  i ; :: : : ' " " '  : "  ' :"  ' :  " ' : ' "  : " " • ' : ; "  ' i ' "  :" " "  " :  ~:'" :" ' . :  : "  .: " ;  , : '  i" " < "  " " . . . .  " " "  " : ' ' ' " ~ ' ,  ~ '  " ' " " " "  " " ' i '  " ~  . . . .  ' " '  . . . . .  ' ' " " " " ' 5  . . . .  1 . ' . . ~  . . . . . . .  . . , : .  . '  . . . .  " '  - '  I . ' , '  - '  

. . . . . .  "" "" : " "  '" " :  " : : ' : "  : '  " ;"  ' ;" " '" : : ' "  " " ' :: :" '" : '  : : " i ' "  :4 :  ; v . . " . . - . : ,  ; . ,  . , ' . . . . "  : . , "  .1., : . :  : . . ; ' . . ,  , .  ",. : . : : . . "  : , 

" ~ ' :  ' • : . . . .  : " • • ~ ' • • . • ~ . . . .  : • • I . : .  ~ . . :  ~ . . .  . : . . . . .  : . . . 3  " 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' . . . . . . . . .  

~ .  . i ~ 5 . s :  i . .  

~ J - - L : ~ , l ; ; ~ , ' ~ - t l d  l l t f t  I l t l L L ~ I  I ~ : ~ ; :  , . : . :  . . . . : . . : . , . :  " 5 , ;.'.';:~:!:~:: ~ . . . . .  " . . . .  : ~ ' . . : ~  . : . : U . , . : . - : . . : . , : , : , , . : ~ : , : , ' , ' .  . . . . .  : . : . , o . : , , ' '  2 . = I . ' 1  , '% , '  . . . . . . . . . . . . . . .  ,~  I I I  • ~ , ~ , ~ , l ~ . , ~ - ~ p . i . - . .  , , m , ~ ' ~ . ' , - ' . : : - : . , ,  . - - . . . . . . . ,  .., ,5 .-5 , . . . . ,  , . . ,  . . . .  u . , ,  , ,  ~ . - . . . . .~ . - ,  ,~ ~ ! . : : , , : ' : : : ~ : 5  .:',.:'~.:',-:-: ,5 . . ,  - . . .- .  ,, . . . . . . ,  . . ,  : . . . .  ,. 
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ : : " ' " : : : : ' ;  . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  , , . . . .  ~ . . . . . . .  , . . . . . . . .  , .5 . - - . .  ~ - .  . . ,  5 . .  • , ; . . . . . . .  ~ : , ' : : . . ' , " ~ , ' 4 : :  . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  i . ' . I . . . . . . . . . . . . . . . . . . .  | I 1 . . . . .  _~.::::::,::.~ , . , . . :  :.,~.: ,,,,~, , : , , , , , ,  ,,~1 , , , f t 1 , , , .  ,411~!. i!t,llld, ~ ,,,,~ i , lu 
? ~ ; ' , ~ : , , ' . ' . : , , ~  ~ 4 t , : ~ : : : : . . . :  " ' I  . . . . . .  : : '  ' ~ " " ' .  t , :  I t '  " ' " ' i ;  I ; 1 , : 1 ,  " "  : t  : ; "~  " " t  ' : ' : ' :  

W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  • £ .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T i m e  i n ~ e P v o l e  o ~  ~ . 2  s s o s  

b. OUTPUT e p e c t n u m  s e q u e n c e .  

: : : : : . . . i i i i i i i ~ i : . . ~ : ~ . : : ~ : ~ i i i i i i i i i i i i i ~ i ~ i ~ i i ~ H ~ i ~ i i . i i i : ~ i i ~ . ~ i i i i i i ~ i ~ i  

" l - . - : : : : : : : : : : : : ' : ' : :  : • . . : . 4 ;  ": : : :  ; ; : ; : :  ; ~ . b  ; ; : : : : ' .  • :'::. " • • . :  . . : : : : : : : .  . : : . : . : . : : : . ; : : : . : : :  : : . . . : ' . . :  : . : : .  . :. : . . : : .  : 

= = = = = = = = = = = = = = = = = = = = = = = =  : : ; • : ~ : 
. . . . . . . . .  , , . ,  , . . . ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

" ~ ' :  : . . . . .  : ' ~ ' ~ : : :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T : ' . U " ; ~ ' ~ ' ~ ' ,  : ' ' : ; i~ '" . ; . ' . j ;  . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . .  
: : : : : : : :  : : : : : :  . . . . . . . . . .  . . . . . . . . .  . . . .  ; . . . . .  . . . .  . . . . . .  . . . . .  

. . . . . . . . . . . . . . . . . . . . .  i.i . . . .  . . . . . . . .  i . i  . . . .  I e I 111 : : : : . : : : :  . . . . . . . .  , .... , . . . . .  , I1~' I " 1  I ' ~ 1  I • , , .  , 
..~::::,:,~:::~.:,.:~;;: ::,:"'i~1, i~!l ~t, , l! l~l, l , i i l ,  ,: .  .::::-.::, . : : : .  ! ! u ~ , l ! l * i ! i l  
4.~ PI. . . . . . . . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I " " ' .  . . . . . . . . . . .  

. : . ~ I . ~ . , . . ~ . . . . . . . . . ' ; : : : . ~ :  . . . . .  , . , , ,  . . . . . . . .  " " -  ' ' "  " : ' " M ' ; ' M  , ' , '  " " : "  " ' "  ' ' ' "  ' ' " - , 5 - " . ,  . . . . . . . .  " ' " ' " ' ' ' "  . . . . . . .  : . . . . . . . .  
f'.'....:':"'i '....:':': ': '! '. . . . . . .  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  : ' : : ' i i  : : : :  : : :  : : : : ' "  i : : ' "  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . , ;  . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . . . . . . . . . . . . . . . . . .  
~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . • i . . . . . . . . . . .  i i . . . .  . .  • ~ . . . . . . . . . . .  i • • 

: ' :  . . . . . . . . .  ; " " ,  1 ; ' ~ ,  ; ; '  " ;  ~ 1  t 1 ~  I t I , I ,  1 t I I l t ; ;  . . . . . . . . . . . . .  ; 1 ~ ~ I I 1  

/"~-- : i  ~ ~:~ : :~ : : :  : : i :  : i  : : i :  : : i :  : : i112: : i : i l  t t I I : t  t t t : t  : : i : i t  I t~:~t 1 ::1 t ] t  t t 1 I I t t 1 t.1,1 t I I t 1,1.1 I t t I t . t  t . t  1 t . t  I t . I  I I J  t I . I  t t . I  t]1 I I:1 : i l i :  I : t  I : : i t  : t :  !? :11  f I t  t | I I )2 |  t 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  . . . . . . . . . .  : : : . . . - . ~ . .  . . . . . .  . . . . . . . .  . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  : : : : : : : . . ~  . . . . . . . . . . . . . . . .  

L L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . I  t ~ . . . . .  
: ' : ~ . ' : ' . . : ~ : ' ~ ' : ' : ~ : ' : ( ; : ' : ~ : ' : . . ' . ' . : . : . ' ' ~ . ~ ' ~ . ' . ' . ' . ' . ' . U ~ : ' : . : ' : ~ : . ' ~ : . ' . ' . ' . ' ~ ' . ' ~ ' ' ' ' U . ' .  - : . : . : . : . :  . . . .  I . . . . I . 1 . 1 . . t . . I . I . W  I . W . . . . : . : . : . . . I . . . . : . : . : . : . : . , . : . ,  , . , . , . , . , . ,  , . , . , . , . , . : : , : : . : 1 . . : . : . : : : . : . : . : : : . : :  

Time intervols o? ~ . 2  s e e s  

~. CUSUNs showim9 normal operotion ( continuous line ) 
and disturbed input  ( ~Poken l i n e  ).  

. . . .  , . . . .  , . . . .  , , . . . , , , . . , , , , ~ . ' . , . ,  _ _ _  ~ . _ _ , ~  

. . . .  ~ . , , ~ l , l ~ m ~ ' t ~ - - , , l  . . . .  ~ , ~ I ~  I . . . .  j , l . , i ~ l l  i . . . .  

Fig. 5. Example of CUSUM detection of a small (0.1%) disturbance after 10 minutes '  simulation. The cumulative differences 
between input spectra (a) and output  (b) are plotted (c) where the disturbance has caused its C U S U M  (broken line) to diverge 
from zero. 
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fit-up of parts, and so on. Some of these factors can be 
measured and incorporated into a weld qualification 
procedure. The principal weld qualification procedure 
customarily used in industry has been based on the 
estimations from a destructive peel or chisel test. The 
weld is destroyed to evaluate the nugget size, which is 
related to the strength of the welded joint. A minimum 
nugget size is then specified in order to meet the required 
minimum strength. More recently dynamic resistivity 
profiles (Holden and Sanders, 1989) of the components 
being welded have been studied to formulate the basis of 
weld quality control procedures. 

The increasing use of galvanized steel to enhance the 
corrosion protection of the exposed parts in the manufac- 
tured products has given rise to the need for a more 
sophisticated weld qualification procedure. The tradi- 
tional technique based on the dynamic resistivity profiles 
has its limitations for coated materials, primarily because 
the wear of the welding electrode and electrode tip 
corrosion have a profound effect on these profiles. The 
technique can therefore cause misleading assessments. A 
non-destructive procedure capable of qualifying the 
welded joints is a particularly difficult but important task 
for the automated manufacturing industries. This auto- 
mated resistance welding qualification procedure is the 
subject of the present discussion. 

It has been noted that the zinc coating on steel alters 
the thermal and electrical properties (McGregor, 1983) 
of the electrode-sheet and sheet-sheet interfaces. Zinc 
being a better conductor of electricity than steel implies 
that in order to generate the same amount of heat at the 
faying surface, as would be required for uncoated steel, 
the welding current must be increased. Zinc is also a 
better conductor of heat, so more of the generated heat 
is conducted away from the area of weld formation. The 
consequence of these effects implies that coated steel 
requires a larger welding current and a smaller welding 
lobe, i.e. it has a reduced tolerance to variations in 
welding conditions. The requirement of a larger supply 
current needed to produce an acceptable nugget size 
helps intensify the brassing effect at the electrode tips as 
a consequence. All this contributes towards reduced 
electrode life (Tanaka et al., 1985; Holden and Sanders, 
1989), but more importantly it is difficult to quantify and 
monitor the quality of welds in a real-time environment 
with high confidence. 

5.1. Analysis of data 

The welding process as a whole has a number of 
measurable control parameters such as current, voltage, 
pressure and time. There are however a multitude of 
factors relating to physical and metallurgical properties 
of the material being welded, e.g. the fit-up of the parts, 
state of the weld tips, and so on, which can cause an 

unacceptable weld joint. The objective of this application 
is to identify acceptable welds using measurable data. 

The raw data consisting of current, voltages (AC and 
DC components), time and weld tip age were measured 
for 0.8 mm hot-dipped galvanized mild steel (Holden and 
Sanders, 1989). The current was measured using a toroid 
on the transformer secondary and the voltage was 
measured using a sampling technique (Holden and San- 
ders, 1989). The tests consisted of performing 95 welds 
on one sheet of material. The welds were then broken 
and the nugget size recorded. It was hence established 
that for the given material a nugget size of 3.5ram 
diameter was the minimum required size to achieve an 
adequate strength level. The measured data were pro- 
cessed using a MATLAB software package to remove 
bursts of periodic noise and to combine into an empir- 
ically determined time-dependent function called 'weld 
signature'. It is simply calculated by dividing the mea- 
sured voltage by the supply current. Figure 6 shows some 
typical weld signatures in the life-time of a typical 
electrode. 

5.2. Results and discussions 

There is a similarity between this and the former 
application in that the fault conditions were excluded 
from the learning process: firstly, because there are 
fewer such samples available and the validity of simu- 
lated faults for the purpose of teaching the network is 
highly dubious and may not bear any resemblance to the 
real-time faults; secondly, because allowances for chang- 
ing conditions such as weld tip age must be incorporated. 

The differences between the two examples are 

(1) The welding examples are not connected in a 
continuous fashion like the adjacent engine states in the 
former example; 

(2) A diagnostic element was deemed necessary. 

The last point is complicated by the fact that the 
conventional dynamic resistivity profile criterion cannot 
be employed beneficially to distinguish a faulty weld 
signature from a good weld signature. The objective of 
the investigation is then initially to identify weld signa- 
tures which do not fit into the satisfactory pattern and to 
identify the doubtful welds in real time. In the latter case 
further investigation may be appropriate or a pre-defined 
remedial action could be taken. The relationship be- 
tween weld quality and weld signature is established by 
considering the measured nugget size in comparison with 
the average value of the weld signature as illustrated in 
Fig. 7. It is readily seen that the unsatisfactory welds fall 
into a separate region, but are only distinguishable if the 
nugget size is known. The correlation coefficient relating 
the average weld signature and nugget size is observed to 



88 Skitt et al. 

@ 
] 

> 

@ 
L 
] 

[ 

Weld (~) 
Nu99st size 5. 1 mm 

@ 
] 
r4 

0 
> 

@ 
L 
] 
$ 
a 
[ 

"W 

Weld <b) 
Nugget size 4.6 mm 

time 15~ milllseos" . [] time 15[] millieeoe. 

@ 
] 

> 

@ 
[ 
] 

[ 

"M 

Weld <o) 
N u g g e t  size 5.8 mm 

[] time 15[] milliseos. 

] 

> 

@ 
L 
] 

[ 

.W 

@ 

Weld (d) 
N u g g e t .  size 3. 2 mm 

@ 
] 

> 

@ 
[ 
] 

[ 

"H 

Weld (s) 
Nugget size 4.7 mm 

@ 
] 

g 
> 

@ 
[ 
] 

[ 

'H 

@ 

Weld (£) 
Nugget size 1. 5 mm 

z 

[] time 15[] ~i 1 lieeos. [] time 15[] milllseoe. 

Fig. 6. Examples of weld signatures during the life of a pair of weld tips. 
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Fig. 7. The average signature values plotted against weld nugget size show that there is a relationship between them that may be 
useful for non-destructive testing, but that better discrimination is required. 

be 0.73. There is also an overlap between the classes of 
satisfactory and unsatisfactory welds. 

A three-layer MLP was taught to associate the weld 
nugget size with the weld signature and a correlation 
coefficient of 0.85 between target and predicted weld size 
was obtained. This gave an indication that there was 
additional information in the time domain that could 
help discriminate between the classes. 

Supervised learning as such was avoided since it would 
have implied knowledge of all possible circumstances. 
An auto-associative feedforward five-layer MLP net- 
work, based on the previous model of engine monitor,  
was employed to avoid this problem and to pass the data 
through a two-dimensional central layer. As before the 
input-output  mismatch was used as the measure of 
difference. 

The network was trained on 50 satisfactory weld 
signatures, and 10 weld signatures (five satisfactory and 
five unsatisfactory) were used for testing purposes. The 
results are shown in Fig. 8. It is seen that the five faulty 
welds are distinguishable from the good welds while the 
five good welds occupy the same region as other good 
welds. Figure 8 shows that a mismatch between the input 
and output signals a signature outside the experience of 
the network. 

Although the changes in the weld signature are gradual 
and predominantly reflect the steady wear and con- 
tamination of the electrode tips, yet the data may not 
necessarily be restricted to a continuous path through the 
input space in a manner similar to the jet engine 
example. There  are other sources of discontinuities 
involved in the data such as the effects of a weld splash. 
Techniques based on a vector quantization-type metho- 
dology may therefore be considered more suitable for 
welding application as compared to the jet engine 
application. 

The two-dimensional feature map, as suggested by 
Kohonen (1989), was employed to explore and compare 
its discrimination capabilities with the five-layer symmet- 
rical MLP. The results for a 10 x 10 output map are 
displayed in Fig. 9 and are typical of the results obtained 
by employing different sizes of output maps, e.g. having 
6 × 6, 8 × 8, 10 x 10, and 12 x 12 nodes in the output 
map, and giving a range of 36 to 144 reference vectors. 
The discrimination between satisfactory and unsatisfac- 
tory welds is quite reasonable, provided the nugget size is 
known. The prime objective of the exercise is to devise a 
monitor which can predict a good weld on the basis of 
the measured parameters,  i.e. voltage and current. 

The classification performed by the MLP has proved 
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more satisfactory towards meeting this goal and it can be 
implemented readily in real-time environments. The 
MLP can be trained on the weld signatures correspond- 
ing to the entire domain of good welds and then 
employed to identify the signatures corresponding to the 
bad welds. A mismatch between the input-output values 
implies that the signature is outside the domain of its 
experience. An example is shown in Fig. 10, where weld 
signatures (d) and (f) are successfully identified as bad 
welds, based on the expected and actual values of the 
weld signature. This technique can easily incorporate a 
decision mechanism on the basis of area under the 
signature curves. If the area under the actual curve is less 
than that under the expected curve, taking into account 
the learning threshold parameter relating to the 'dead 
zone' as explained earlier, the weld is identified as a bad 
weld. An appropriate corrective measure such as a current- 
stepping mechanism can then be initiated. The applica- 
tion essentially amounts to non-destructive testing to 
evaluate the quality of welds in real time. 

6. Conclusions 

Neural networks have been shown to be a suitable 
method of process monitoring. Features of such applica- 
tions in quality control of a manufacturing process 
(resistance welding) and a condition monitoring (aircraft 
engine) have been described. MLP-type neural networks 
operating in auto-associative mode can perform intelli- 
gent exception reporting equally well in situations involv- 
ing discrete states as well as continuous states. More 
importantly the potentials of neural network-based moni- 
toring schemes for processes with large intractable data 
have been demonstrated. 

There are obvious similarities with the statistical 
method of principal component analysis and vector 
quantization. Neural networks however automatically 
perform feature extraction tasks in complex non-linear 
problems in an adaptive way. This gives them an advantage 
over purely analytical techniques provided the long 
learning times are not an obstacle. It is envisaged that 
the symptoms highlighted by the monitor will eventually 
be used by a higher level of intelligence to perform 
diagnostic functions, but this must be based on some 
experience of the representations derived by the network 
being linked to observable causes. A database could be 
built over an extended period of time for this purpose. 

Non-linear PCA and vector quantization with inter- 
polation offer analytic solutions which could achieve 
similar results. However, the neural network appears to 
perform equally well and have an advantage in flexibility 
of application. 

Acknowledgement 

The authors wish to express their gratitude to Dr R. C. 
Witcomb of Smiths Industries and Prof. F. Arther, Dean 
of the faculty, for their constant encouragement and 
support during the course of these studies. Thanks are 
also due to Mr N. Holden for his efforts and contribution 
in obtaining the experimental data. 

Appendix A 

Computing with the MLP 

The multi-layer perceptron (MLP) comprises of a 
densely interconnected system of parallel distributed 
simple computational elements usually called nodes. 
These nodes are typically arranged as layers of proces- 
sing elements. There are three types of layer: input 
layer, output layer, and hidden layers, as shown in Fig. 
A1. The hidden layers do not interact with the outside 
world directly and their role is to transform the input 
pattern and to associate it with the output pattern. The 
number of nodes in the input and output layers depends 
upon the dimensionality of the observation pattern and 
the exemplar pattern. The number of nodes in the 
hidden layer and the number of hidden layers depends 
upon the complexity of the task, but can be chosen 
arbitrarily and an appropriate topology derived empiri- 
cally. 

The principle of computation is similar to an analogue 
computer. The input pattern is presented to the nodes in 
the input layer and these nodes generate an output. The 
output is propagated forward, layer by layer, through the 
entire network. The output thus produced by the net- 
work is compared with the exemplar pattern. The 
resulting error is propagated backwards layer by layer 
and the weights adjusted in order to minimize the error. 
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This error minimization is achieved by the so-called error 
back-propagation strategy. 

The nodes in each layer have the same basic structure. 
The computational functions performed by a typical node 
are depicted in Fig. A2. Each unit consists of three main 
components: 

(1) The weights which adjust the strengths of the 
incoming signal from units in the previous layer. 

oj, -i x wij,  

where Oj,k-1 is the output of the jth node in the ( k -  1)th 
layer; Wij, k is the weight between the jth node in the 
( k -  1)th layer and the ith node in the kth layer. 

(2) The summation block which adds all the incoming 
weighted signals to the threshold value, say /3, of that 
node and forms the total input to that node. 

NETi,~ = ~ (Wi , j ,  k X Oj,  k _ l )  q- [3i, k 
j=0 

where n represents the number of nodes in the ( k -  1)th 
layer; fli,k represents the threshold of the ith node in the 
kth layer. 

(3) The output activation function which produces the 
output signal of that node as a function of its total input. 
A typical form of activation function is the sigmoid. 

1 
O i ' k  : (1 -]- e -NETi'k) 

The weight values and the threshold values are chosen 
arbitrarily at the start of the learning process. Networks 
using sigmoid transfer functions can be trained by 
learning algorithms. The generalized delta rule 
(Rumelhart et al., 1987) has been used extensively for 
this purpose and shown to work efficiently for non-linear 
transformation between input and output patterns. 

The training procedure consists of presenting the input 
pattern to the input layer and calculating the output 
pattern at the output nodes using the current set of 
learning parameters. This set of learning parameters of 

0 j,k-1 

>(~ Wl, J, k 

Fig. A2. The neural net cell. 

O i,k 

the system consists of the weights and the node threshold 
values. The output pattern is compared with the exemp- 
lar pattern and the error is calculated by computing the 
distance between the actual and desired output. The 
process is repeated for the entire set of input-output 
patterns and the total error, E, determined from: 

E I / 2 Z Z ( d  i 0 2 - i,n) 
c i 

where index c represents summation over all the input- 
output cases used for training; index i represents summa- 
tion over all nodes in the output layer; di represents the 
desired output at the ith output node; Oi,n represents the 
actual output at the ith output node; n represents the 
total number of nodes in the output layer. 

The learning procedure aims to drive the error E to 
zero or close to zero by adjusting the learning parameters 
suitably. This essentially is a minimization problem which 
the generalized delta rule attempts to solve by gradient 
descent technique. The calculation of the error gradient 
with respect to learning parameters is performed by 
propagating the error backwards through the network 
and involves simple local computations at nodes in the 
same layer. Once the gradient is calculated the learning 
parameters are adjusted using the gradient descent 
method. The change in the learning parameters is made 
as follows 

OE 
A W  i - ~ - - - ~  O W  i 

where 7/represents a positive step size, usually termed as 
learning rate; wi is a learning parameter; E represents 
the total error. 

Rumelhart et al. (1987) suggest that the expression can 
he modified as 

( m w i ) ( m )  : - - ~  (m) -}- oL(mwi ) (m-1 )  

where m is used to indicate the mth iteration; oz is a small 
positive step, usually termed as momentum rate. 

The momentum term is used to specify that the 
changes in weights at the mth step should be similar to 
the changes undertaken at the (m - 1)th step. In this way 
some inertia is built into the procedure and the mo- 
mentum in the rate of change is conserved to some 
degree. 

Appendix B 

Kohonen's networks 

The Kohonen (1989) self-organizing feature map is based 
on an algorithm which performs a form of vector 
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quantization. The mapping is usually from a high-dimen- 
sional input space onto a two-dimensional output. In 
operation it is similar to k-means clustering algorithm, 
but produces an ordered mapping of the input patterns 
onto the two-dimensional array of output nodes. A 
schematic diagram of the network is shown in Fig. B1. 
The ordering occurs as a result of the output nodes 
having feedback connections between them. The feed- 
back is invariant and follows the so-called 'Mexican hat' 
function, where close neighbours are stimulated and 
more distant nodes are inhibited. 

Kohonen has shown that when the network is pre- 
sented with an input pattern and allowed to become 
stable over a period of time, a 'bubble'  of active output 
nodes will emerge. The radius of this bubble (neighbour- 
hood) depends on the lateral feedback function, and the 
centre will be the node which responded most strongly 
when the pattern was first presented. Kohonen then 
obtains the following shortcut learning algorithm, for a 
network with N inputs and M outputs. 

(1) Set the values of the weight vectors mi (i = 1, M) 
for each of the output nodes to random values, and set 
the radius of the neighbourhood set of nodes N¢; 

(2) Present the network with an input vector x; 
(3) Find the centre of the bubble c where: 

[Ix - me[ I = min {l[x - mill} 

m 

INPUT PA'rTImN 

Fig. B1. Two-dimensional array of output nodes used to form 
feature maps. 

(4) Update the weight vectors of all nodes in the 
neighbourhood of c using gain a: 

m i = m i + O t ' ( x - m i )  

for i E Nc 

(5) Repeat  from step 2. 

Kohonen states that for good self-organizing results, 
both the radius of the neighbourhood and the gain 
should decrease as the number of presentations of input 
vectors increases. 
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