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Abstract. Jump or slab models are frequently used to calculate the depth of the convectively mixed layer and 
its potential temperature during the course of a clear day. Much attention has been paid theoretically to the 
parameterization of the budget for turbulent kinetic energy that is required in these models. However, for 
practical applications the sensitivity of the solutions of the model equations to variations in the entrainment 
formulation and in the initial and boundary conditions is also very important. We analyzed this sensitivity 
on the basis of an analytical solution for the model which uses the well-known constant heat flux ratio. The 
initial conditions for the mixed-layer height (h) and potential temperature (0,) quickly lose their influence. 
Only the initial temperature deficit is important. The mixed-layer temperature at noon on convective days 
is insensitive to the entrainment coefficient c. It is governed by the integral of the heat input and by the stable 
lapse rate. A change in c from 0.2 to 0.5 leads to a variation of 20% in h. This is not very much considering 
the accuracy in the determination of h from actual observations. 

1. Introduction 

Jump or slab models are frequently used to calculate the evolution of the depth of the 
convectively mixed atmospheric boundary layer and its potential temperature during the 
course of a clear day (Figure 1). Many theoretical discussions have been devoted to the 
parameterization ofthe turbulent kinetic energy budget which is required in order to relate 
dh/dt to the energetics of the turbulence in the mixed layer (Tennekes and Driedonks, 
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Fig. 1. The profile of potential temperature and the heat flux distribution in a jump model. 
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198 1). However, when we use these models for practical applications, we have to realize 
that the determination of the mixed-layer variables from atmospheric observations is 
difficult and that errors are inevitable, either due to the measured profiles not being as 
ideal as depicted in Figure 1 or due to statistical errors (Driedonks, 1981). Therefore it 
is equally important to assess the influence of various parameterizations on the solutions 
and to consider the effect of variations in the initial and boundary conditions. Here we 
analyze these effects for a widely used model. 

2. Governing Equations 

The equations that govern the dynamics of mixed-layer jump models are (Tennekes and 
Driedonks, 1981): 

d@ _ 
m = (ew, - ew,)/h , 

dt 

dA@ dh da,,, 

dt 
=;‘--- 

dt dt ’ 

-ew =AO% h 
q dt 

(1) 

The notation is as usual and is depicted in Figure 1. Closure of this set of equations is 
achieved by a parameterized form of the budget for turbulent kinetic energy. For a 
convectively mixed layer, a well-known result ofthis parameterization leads to a constant 
heat flux ratio 

- ewh = cew2,, , (4) 

where c is the entrainment constant. The values reported for c range between 0 and 1 
with an average value of 0.2 (Stull, 1976). This variation may partly be caused by the 
fact that (4) was used in situations in which a more complicated parameterization was 
required. Another possibility is the difficulty in getting an estimate for c from actual 
observations in which errors in the determination ofthe variables in (l)-(4) are inevitable. 
Therefore we analyze the sensitivity of the solutions of (l)-(4) to the initial conditions, 
to variations in the entrainment coefficient c, to errors in the surface heat flux Bw, and 
to errors in the value of the stable gradient y. 

3. Solutions of the Model 

The set of Equations (l)-(4) can be reduced to 

c8w,=AO $, (5) 
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dA@ 
__ = y f - Y(l + c) . 

dt 
(6) 

With the initial conditions: h(t = 0) = h,, AO(t = 0) = A@,, these equations have an 
analytic solution of the form: 

A0 = y ~h+(~)“+c”c(AOO-+&,). (7) 

Substitution of (7) in (5) and integration gives the following implicit solution for h 
(= h(t)): 

c h2m.e ? 
‘/c 

iY 
1 + 2c 0 ( 

heA@,-y c h; = 
1 + 2c 

c {I(t) + $yh; - heA@,} , 

where I(t) is the integral of the heat input: 

(8) 

I(t) = 
s- 

Ow,(t’) dt’ . (9) 
0 

Equation (8) gives h(t) as a function of the initial and boundary conditions (through h,, 
A@,, 7, and I(t)), and of the entrainment coefficient c. 

The solution for the temperature 0, is related to (7) and (8) by 

@n?(t) - @*,, = y(h - h,) + A@, - A0 

=y 1+2c 
*h-(~)(‘+=“‘(A@,-g& h,)+AO,-yh,. (10) 

4. The Initial Conditions 

A typical value for the entrainment coefficient c is 0.2. As a consequence the terms in 
(7), (8) and (10) in which (ho/h)‘/’ is involved, decay very quickly when h starts growing. 
For example, when c = 0.2 and h = 3h,, these terms are only of the order of 0.1% of 
their initial value. Thus, when a short time has elapsed, we may neglect these terms and 
approximate (7)-(10) by 

A@=y--I’h, 
1 + 2c (11) 

+yh2 = (1 + 2c) (r(t) - D,) , (12) 

l+c o,(t) = co,, + y ~ 
1 + 2c 

h, (13) 
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Fig. 2. Initial temperature profile. The shaded area represents the initial temperature deficit D,,. 

where D,, = h,,AO,, - iyhg and O,, = O,,, + A@, - $, (Figure 2). These results are a 
generalization of those obtained by Manton (1980) who used a constant heat flux and 
simplified initial conditions. 

For t 9 0 (and h B h,), the effect of the initial conditions on the solutions as given in 
(1 l)--(13) manifests itself only in (12) through the initial temperature deficit 
D, = &A@,, - ~yh$ The initial conditions thus play a role only in this combination; the 
individual values of O,,, and h, are not important. This is a fortunate result for the 
prediction of the mixed-layer depth and temperature at noon. 

With Equations (1 l)-( 13) we now can estimate by partial differentiation the effect of 
the entrainment coefficient c and of the forcing terms Z(t) and y on the resulting values 
of h and O,,,. 

5. The Sensitivity of h 

We first consider the influence of c on h through (12). Partial differentiation of this 
equation with respect to c leads to the result 

6h 6c -= 
h 1 + 2c3 

(14) 

where bh is the variation of h when we vary c by an amount 6~. From this relation we 
see that a change in c from c = 0 to c = 0.2 will cause only a change in h of about 20% 
at noon. The same change in h occurs when c is changed from 0.2 to 0.5. 

The variation of h due to a change in the integral heat input Z is given by 

E=Oj 6z 
h ’ Z-D,, 

(15) 

When we use D ,, = 0.31 as a typical value on clear days (Driedonks, 1981), we see that 
a change of 30% in the integral heat input causes a change of 20% in h. 



SENSITIVITY ANALYSIS OF THE EQUATIONS FOR A CONVECTIVE MIXED LAYER 419 

A change in the stable lapse rate y will lead to a change in h according to 

A typical stable lapse rate is 0.005 K m- ‘. An inaccuracy of 0.001 K m- ’ will then lead 
to a change in h of about 10%. 

From these considerations, we see that inaccuracies in Z(t) and y may lead to errors 
in h which are of the same order of magnitude as those caused by a large variation in 
the entrainment coefficient c. Therefore it will be difficult to get accurate estimates of c 
from atmospheric observations. 

6. The Sensitivity of 0, 

The influence of a variation in c on the mixed-layer temperature O,(t) is small. It may 
be estimated by partial differentiation of (13): 

60, = 2 (z-Do)c bc (“C). 
h(1 + 2c) 

(17) 

Typical values at noon are: Z - Do z 1000 K m, h z 1000 m. We then see that the change 
in 0, caused by a change in c from 0.2 to 0.5 is only very small, less than 0.1 o C. This 
difference can usually be neglected. 

The influence of a change in Z on 0, is somewhat larger. From (13) and (15) we 
estimate 

l+c 
60, = 0.5 ____ 

1 + 2c 

At noon, yh is typically 5 ’ C. A change of 20 y0 in Z will then change the temperature 
of the mixed layer at noon by 0.5 ’ C. This is much larger than could be caused by a change 
in c. The mixed-layer temperature is thus more sensitive to a change in the integral heat 
input than to a change in the entrainment coefficient. 

A change in y will lead to a change in 0, whch may be estimated from (13) and (16) 
as 

60, = fi * $h@y) (“C). 

For typical values c = 0.2, h z 1000 m, we see that a change of 6y = 0.001 K m- ’ causes 
a change of 60, of about 0.5 “C. 

7. Conclusions 

On convective days the initial conditions for ho and a,,,,, quickly lose their influence on 
the solutions for h(t) and O,(t). Only the initial temperature deficit Do = hoA@, - iyhi 
is important. 
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The mixed-layer temperature 0, at noon on convective days can be calculated without 
paying much attention to the value of the entrainment coefficient c. It is mainly influenced 
by the integral heat input I and by the stable lapse rate y. 

Although the mixed-layer height h is somewhat more sensitive to variations in the 
entrainment coefficient than a,,,, it will be difficult to estimate c accurately from 
atmospheric observations. We saw that a change in c from 0.2 to 0.5 leads to a variation 
of 20 :/0 in h. This is still not very much and the inaccuracy in the determination of h from 
actual observations will tend to obscure partly the effect of c. 
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