
Designs, Codes and Cryptography, 9, 143-155 (1996) 
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Almost  MDS Codes 

MARIO A. DE BOER 
Department of Matheraatics and Computing Science, Eindhoven University of Technology, 
P.O. Box 513, 5600 MB Eindhoven, the Netherlands 

marlob@win.tue.nl 

Communicated by: D. Jungnickel 

Received May 19, 1994; Accepted May 22, 1995 

Abstract. MDS codes are codes meeting the Singleton bound. Both for theory and practice, these codes are 
very important and have been studied extensively. Codes near this bound, but not attaining it, have had far less 
attention. In this paper we study codes that almost reach the Singleton bound. 
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1. Introduct ion  

1.1. Codes, Geometry and Designs 

In this section we will state some well known results that establish the geometric and 
design-theoretic properties of  codes. 

In this paper we will  only consider linear codes over finite fields Fq with parameters  as 
usual denoted by [n, k, d]. For such codes the Singleton bound holds [14]: d < n - k + 1. 

The following definition is natural in this context. 

Definition 1. The Singleton defect of an [n, k, d] code C is s(C) = n - k + 1 - d. 

The projective space of  r dimensions obtained from ]?q will be denoted by PG(r ,  q). We 
say that a set of  m points of  PG(r,  q) are in general position if  they are not contained in a 
subspace of  dimension m - 2. 

The following generalization of  a set of  mutually orthogonal Latin squares, due to 
K. A. Bush, reveals some of  the design-theoretic properties of  codes. 

Definition 2 ([4]). An n x M matrix A with entries from a set of  l > 2 elements,  is an 
orthogonal array of size M, n constraints, l levels, strength t and index ~., if  each t x M 
submatrix of  A contains all I t possible t-tuples exactly 3. t imes as a column. Then M ---- ~.l t 
and the array will be denoted by OAx(t ,  n, l).  

I f  the columns of  A form a linear space over the finite field Fq, the orthogonal array is 
linear. 

We can now state the following important result by Bose and Bush. 
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THEOREM l ([2]) The fol lowing are equivalent: 

1. C is an [n, k, d] code with s(  C) = s 

2. The columns o f  the parity check matrix o f  C are n points in PG(n - k - 1, q) each 
d - 1 o f  which are in generalposit ion 

3. The n × qn-k matrix A having as columns the codewords o f  C ± is a linear orthogonal 
array OAqs(d - 1, n, q). 

1.2. M D S  Codes 

Before we define almost MDS codes we will look at MDS codes. 

Definition 3. A code C with s (C)  = 0 is maximum distance separable (MDS for short). 
MDS codes of  dimensions k = 1, n - 1 and n are trivial. 

Many properties of  MDS codes have been proved by considering the geometric represen- 
tation as in case 2 of  Theorem 1. 

Definition 4. An n-arc in PG(r, q) is a set o f n  points such that every r + 1 of  them are in 
general position. 

From Theorem 1 we see that MDS codes, n-arcs and linear orthogonal arrays of  index 
unity are equivalent objects. 

The earliest results on MDS codes were obtained by Bush in [4], using the general setting 
of  (not necessarily linear) orthogonal arrays. The following result will be used later. 

THEOREM 2 ([4]) Let A be an OAl (t, n, l). I f  l < t, then n < t + 1. 

In the special case of  ('linear) MDS codes, Theorem 2 together with the fact that the dual 
of  an MDS code is MDS, yield the well known result that for a nontrivial [n, k, n - k + 1] 
MDS code we have that k < q and n - k < q. 

One of  the main problems in the theory of  MDS codes is determining the maximum length 
of  an MDS code. The following is a famous conjecture. 

Main Conjecture on M D S  codes. For a nontrivial [n, k, n - k q- 1] MDS code we have 
that n < q + 2 if q is even and k = 3 or k = q - 1, and n < q q- 1 otherwise. 

This conjecture is proven in a number of  cases, for example for codes over fields ~q with 
q < 19, and for codes with dimensions k < 5 (for references see [12] chapter 11, [10] 
chapter 27, and the recent paper [5].) 

In his paper, Bush discovered linear orthogonal arrays of  strength unity that achieve the 
maximum length in the conjecture. The corresponding codes are the well known extended 
Reed Solomon codes. 
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1.3. Almost MDS Codes 

We are now ready to define almost MDS codes. 

Definition 5. A code C with Singleton defect s(C) = 1 is almostMDS (AMDS for short). 
AMDS codes of  dimensions k = 1, n - 2, n - 1 and n are called trivial. 

Since it is easy to construct trivial AMDS codes of  arbitrary lengths, we will only be 
considering nontrivial AMDS codes. 

Unlike the MDS case, the dual of  an AMDS code need not be AMDS. To distinguish this 
property we follow Dodunekov and Landgev [7] in the following definition. 

Definition 6. ([7]) A code C with s(C) = s(C ±) = 1 is a nearMDS code. 

In their paper [7], a preliminary version of  which was published as [6], Dodunekov and 
Landgev study near MDS codes. Some of  their results were discovered independently by 
the author and will be presented in this paper. 

As in the MDS case we define sets of  points in projective space that reflect the property 
of  being AMDS. 

Definition 7. An n-track is a set of  n points in PG(r, q) such that every r of  them are in 
general position. The maximum size of  an n-track in PG(r, q) is denoted by/z(r ,  q). The 
maximum size of  an n-track for which the dual is also an n-track is denoted by lze(r, q). 

Theorem 1 yields that AMDS codes, n-tracks and linear orthogonal arrays o f  index q 
are equivalent objects. Hence/z(r ,  q) is the maximum length n for which there exists an 
[n, n - r - 1, r + 1] code over Fq, and Ize(r, q) is the analogue in the case of  near MDS 
codes. Equivalently,/x(r, q) is the maximal number of  constraints of  a linear orthogonal 
array of  index q and strength r. 

The aim of  this paper is to derive bounds on/z(r,  q) and find properties of  AMDS codes, 
or equivalently, of  tracks. We will use the construction of  shortening codes, that is taking 
all codewords that have a 0 at a fixed position, and deleting that position. The shortened 
code of  an [n, k, d] code has parameters [n - 1, k - 1, d] and thus has the same Singleton 
defect as the original code. In the language of  tracks it means that one projects the n-track 
from one of  its points onto a hyperplane. The resulting set is clearly an (n - 1)-track. This 
proves the following. 

LEMMA 1 /z(r, q) _< /z(r -- 1, q) + 1. 

2. Upper Bounds on/z(r, q) 

In this section we distinguish between two cases: r < q and r > q. 
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2.1. The Case r < q 

In view of  Theorem 1, the following is a well known result. 

THEOREM 3 [c f  [211/z(2, q) = q2 + q + 1. 

Proof  The projective plane clearly is a maximal  set that satisfies the conditions for a track. 

The next theorem generalizes a result by Gulati [8]. 

'rtIEOREM 4 Let 

1. q < 1 9 o r r < 5 o r r > q - 3  

2. q = pm and q > r > 2 .  

Then, i f  q is odd or 3 < r < q - 1 

< ~ q ( q - r + 3 ) + l  
tz(r, q)  

- [ q (q  r + 3) 
i f  r = q - pl + 3 f o r  some I < m 
otherwise. 

Proof  Let K be an n-track in PG(r,  q), and let Pl . . . . .  Pr- l  ~ K.  For the q + 1 
hyperplanes $1 . . . . .  Sq+l that contain PI . . . . .  Pr-I we have that S/fq K is an arc in PG(r  - 
1, q).  Condit ion 1 of  the theorem implies that the main conjecture on MDS codes holds for 
codes of  dimension r over Fq. Since q > r ,  this yields that I Si fq K I < q + 1. Since two 
Si only meet in the (r - 2)-space spanned by P1 . . . . .  Pr-I  we have that 

I g l  < r - l + ( q + l ) ( q - r + 2 )  

= q ( q - r + 2 ) + q + l  

= q ( q - r + 3 ) + l .  

Now suppose I K I = q (q - r + 3) + 1. I f  S is any (r - 1)-space, then by the above we have 
that if  IK A SI > r - 1, then IK N S] = q + 1. Now consider all (r - 2)-spaces passing 
through the points P1 . . . . .  Pr-2. There are q2 + q + 1 of  these and each of  them intersects 
K in either r - 2 points (the points PI . . . . .  Pr-2)  or q + 1 points (a complete arc). Hence 
there must  be an integer m such that 

m ( q - r + 3 ) + r  - 2 = q(q - r + 3) + 1 

and so we find that 

q - r  + 3 1 q  

which is impossible if  r ~ q - pt + 3 for some I < m. • 

Remark 1. The first condition in Theorem 4 is needed to assure that the main conjecture 
on MDS codes holds for codes of  dimension r over Fq. The condition can be replaced by 
other cases in which the main conjecture is known to be true. 
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Tdgether with the fact that for any q there exist ovoids (sets o f q  2 + 1 points in PG(3, q)  
with the property that there are no 3 collinear, for example elliptic quadrics), Theorem 4 
proves the q odd case of  the following result, which was first proved in this case in [2]. The 
proof  in the even case is due to Qvist [13]. 

THEOREM 5 ([2], [13]) For q Vk 2 we have/z(3, q) = q2 + 1. 

2.2. The Case r > q 

We start by giving a general upper bound on the maximum length of  [n, k, d] codes over 
Fq with d > q. It generalizes the Bush bound (Theorem 2) for linear orthogonal arrays. 

THEOREM 6 Let C be an [n, k, d] code with Singleton defect s and d > q. Then 

< d _ 2 + 2  qs+l - 1  n 
q - 1  

Proof Set r = n - k - 1. Then the columns of  the parity check matrix of  C can be 
considered as a set K o fn  points in PG(r,  q),  no r - s + 1 in a codimension (s + 1) subspace. 
Fix P1, P2 . . . . .  Pr-s ~ K and consider the (r - s)-dimensional  spaces S1 . . . . .  Sqs+,_, 

q-I 
• qS+l--1 

passing through them• For  i = 1 . . . .  q-1 the set Si N K is an arc with r - s = d - 2 > 
q - 1, so by Theorem 2 I Si fq K I _< r - s + 2 and we find 

_ 2 qs+l - 1 2 qs+l - 1 
IKI < r - s +  - d - 2 +  

q - 1  q - 1  

For  tracks the result of  Theorem 6 is the following. 

COROLLARY 1 Let r >_ q. Then/z(r, q) _< 2q + r + 1. 

In section 4 we will determine all codes that (almost) reach this upper bound. 
Corol lary 1 improves on the Plotkin and Hamming bound for these codes, and on the 

Griesmer  bound for r < 2q. For  r >_ 2q the result of  the Griesmer bound is strong: there 
are no AMDS codes with r _> 2q. This was also noted by Dodunekov and Landgev in [7]. 

THEOREM 7 [cf  [7]] I f  C is an [n, n - r -- 1, r d- 1] AMDS code, then r < 2q. 

Proof Let r >_ 2q. Then the Griesmer bound states 

n-r -2  Fr-k-1  1 
n>__ E > n + l  

i=o l qi l -  

which is a contradiction. 

As  also was remarked in [7], we can improve on this bound by rephrasing the following 
result from projective geometry. A plane 3-arc is a set of  points in PG(2,  q) with at most 
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3 points  on a line. The  matr ix  having the points  o f  a plane 3-arc as co lumns  is a genera tor  

mat r ix  o f  an [n, 3, n - 3] code.  The  converse  is also true so that the concepts  o f  a three- 

d imens iona l  A M D S  code  and a plane 3-arc are equivalent .  A result  by Thas  [15] shows 

that for q > 3 the number  o f  points  on a plane 3-arc cannot  exceed  2q + 1. This  has the 

fo l lowing  consequence  for A M D S  codes.  

THEOREM 8 [cf. [7]] I f  C is an [n, n -- r - I, r + 1] A M D S  code over Fq, q > 3, wi th  

r < n - 4 ,  t h e n r  < 2 q - 2 .  

P r o o f  Shorten the code  n - r - 4 times. The  resul t ing code  is equivalent  to a plane 3-arc 
o f  size r + 4, and so r + 4 < 2q + 1. • 

R e m a r k  2. For  [n, k, n - k] codes this can be rephrased as n < k + 2q - 2. 

We  now give a vers ion o f  Theo rem 8 for the case r = n - 3. 

THEOREM 9 The max imal  n f o r  which there exists an [ n, 2, n - 2 ] code over  Fq is n = 2 q + 2 .  

P r o o f  Let  G be  the genera tor  matr ix  o f  an [n, 2, n - 2] code.  Wi thou t  loss o f  general i ty  
we  assume that the first row o f  G has ones at the first w posi t ions fo l lowed  by n - w zeros,  

w _> n - 2. A t  the first w posit ions o f  the second row of  G every  e l emen t  o f  Fq may  occur  

only  twice.  This  proves  w < 2q and hence n < 2q + 2. It is c lear  that equal i ty  can occur. 

T h e o r e m  9 can be used to give the values o f / z ( r ,  q)  for r = 2q - 1 and r = 2q - 2. 

COROLLARY 2 I f q  > 3 t h e n / z ( 2 q  - 1, q )  = 2q + 2 a n d / z ( 2 q  - 2, q )  = 2q + 1. 

P r o o f  Let  r = 2q - 1 or r = 2q - 2. Then  r > 2q - 2 and T h e o r e m  8 yields r > n - 3, 

s o / z ( r ,  q )  < r + 3. Equal i ty  fol lows f rom Theo rem 9. • 

3. Duality and Near MDS Codes 

As remarked  in Sect ion  1.3, the dual o f  an A M D S  code  need not be  A M D S .  Never theless ,  

D o d u n e k o v  and Landgev  show in [7], that for r > q this is the case. 

THEOREM 10 ([7]) Let  C be an [n, n - r - 1, r + 1] A M D S  code. l f  r > q then C ± is also 

A M D S .  

I f  s o m e  part o f  the main  conjec ture  on M D S  codes  holds we  can give a bound  on the 

S ing le ton  defect  o f  the dual code  C -L in the case r < q.  

THEOREM 11 Let  C be an A M D S  code over Fq with r < q. Le t  q < 19 or  r < 5 or 

r > q -  3. Then 

s ( C  ± ) <  I q - r + 2  
- I q - r + l  

i f  r = 3 or r = q - 1 and q even 
otherwise. 
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Proof. Let C be an [n, n -  r -  1, r + 1 ] code and let the dual distance be d ±. Then shortening 
by the dual distance (construction Y1 in [ 12], page 592) yields an [n - d  ± , n - r  - d  -L, r + 1] 
MDS code. Since the conditions of  the theorem imply that for these parameters the main 
conjecture holds, this implies that n - d ± < q + 2 if r = 3 or q - 1 and q even, and 
n - d ± < q + 1 otherwise. This proves the theorem. • 

Remark 3. As in Remark 1, the conditions on q or r that are needed to assure the validity 
of  the main conjecture on MDS codes in Theorem 11 can be replaced by other cases in 
which the main conjecture is proven. 

Remark 4. Since there are [q2 -I- q + 1, q2 q_ q _ 2, 3] and [q2 + 1, q2 _ 3, 4] codes, we 
have as a consequence of  the above theorem that there exist [q2 + q + 1, 3, q2] for arbitrary 
q and [q2 + 1, 4, q2 _ q] codes for q odd. These parameters are quite good. 

4. Extremal  A M D S  Codes 

In this section we will find all [n, n - r - 1, r + 1] codes, r > q, that (almost) reach the 
upper bound of  Corollary 1, more precisely n = 2q + r + 1 or n = 2q + r. It will turn out 
that these codes only exist over small fields. 

We use the following form of the MacWilliams identities relating the weight distribution 
Ai of  code C to the weight distribution A/-L of  the dual code C -L (cf. [12] chapter 5). 

n - o (  _ i ~ - ~ ( n - - i )  _ L 
qV-k E A i = Ai , 

i=0 V i=0 13 
v = O , . . . , n .  

For near MDS codes this implies the following recurs±on on the A~. See also [7] for a 
similar result. 

[ ± 
Ak+t 

= A~-k 

( n ) _ ~ ( n - k - i )  ± 
.~ (qt _ 1) k + t i--o t - i Ak+i t = l  . . . . .  n - k .  

(1) 

This proves the well known fact that for near MDS codes the weight enumerator is known 
as soon as the number of  minimal weight codewords has been determined. 

In the extremal cases, where n differs at most one from the upper bound in Corollary 1, 
we can count the number of  codewords of  minimal weight. 

LEMMA 2 Let C be an [n, n - r - 1, r + 1] code with r > q. For the number o f  minimal 
weight codewords Ar+ 1 we have 

I (/_,)(q2-1) 
( ~ )  / fn  = 2q + r + 1 

Ar+l = (~n-')q(q-1) i fn  = 2q + r 
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Proof  We restrict to the case where n = 2q + r + 1 (the second case is quite the 
same). Let  K be an n-track in PG(r, q). The number of  minimal weight codewords is 
equal to q - 1 times the number of  dependent (r + 1)-tuples of  points of  K.  Fix r - 1 
points P1 . . . . .  P r - l  of  K.  Then there are q + 1 (r - 1)-spaces containing them and in 
each of  them there is exactly one pair of  points completing Pl . . . . .  P r - l  to a set of  r + 1 
dependent  points (they lie in an (r  - 1)-space). Hence there are (q - 1)(q + 1) minimal  
weight codewords with support containing r - 1 fixed coordinates. I f  we note that in this 
way we count every minimal  weight codeword (~+11) times, this completes the proof. 

Using equations (1) we find the following theorem. 

THEOREM 12 Let C be a [n, n - r - 1, r + 1] near MDS code with r > q. Then for  the 
number o f  codewords o f  low weight o f  C ± we have: 

n = 2 q + r  + l n = 2 q + r  

(rn_l)q(q--l) 
A~q_ 1 0 (~l) 

(r-nl)(q 2-1) [ n ] q - I  
a~q - ~  , r - l /  r 

A ~ +  1 0 0 

1 n 
a ~ +  2 0 "~(r--2)q(q -- 1)(q -- 2) 

"g(r--2)q(q -- 1)(q -- 2) --g(r--a)q(q 1)(q -- 5) A ~ + 3  1 n I n 

a~q+4 -5(r-3)q(ql  n _ 1)(q - 3) ~(r-4)q(qn _ 1)(q - 3)(2q 2 + 3) 

COROLLARY 3 Let C be an [n, n - r - 1, r + 1] n e a r M D S  code with r > q. 
I f  n = 2q + r + 1 then C is one o f  the following codes: 

q parameters description 

2 [7,4,31 
2 [8,4,41 
3 [10,6,41 
3 [11,6,51 
3 [12,6,6] 

Hamming code 
extended Hamming code 
punctured Golay code 
Golay code 
extended Golay code 
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If n = 2q + r then C is one of the following codes: 

q parameters description 

2 [6,3,31 
2 [7,3,4] 
3 [9,5,4] 
3 [10,5,5] 
3 [11,5,61 

punctured Hamming code 
Simplex code 
shortened punctured Golay code 
shortened Golay code 
dual Golay code 

Proof. From Theorem 12 we find that q = 2 or q = 3 in the case n = 2q + r + 1 and 
q = 2, 3, 4 or q = 5 in the case n = 2q + r (otherwise some A# would be negative). For 
the cases q ---- 2 and q = 3 note that the Golay and Hamming codes are uniquely determined 
by q, n, k and d. Since their automorphism groups are at least 2- (Golay code) respectively 
1-transitive (Hamming code), also the punctured and shortened codes are unique. 

Over F 4 the cases that have to be checked are: [12, 7, 5], [13, 7, 6] and [14, 7, 7]. By 
Theorem 10 the duals of  these codes have minimum distance 7. Applying Corollary 2 
shows that these codes cannot exist. This proves the q = 4 case. 

Over F5 the cases that have to be checked are: [15, 9, 6], [16, 9, 7], [17, 9, 8]. Again 
Corollary 2 together with Theorem 10 yields the nonexistence of  these codes. • 

Remark 5. Except for the cases mentioned in this section we have that Corollary 1 can be 
sharpened to/z(r ,  q) < 2q + r - 1. 

5. Quadratic Embedding of  a Plane 3-Arc 

In this section we show that the existence of  an [n, 3, n - 3] code implies the existence of  
an In, n - 6, 6] code. We use the following embedding: 

q~ : PG(2, q) > PG(5, q) 

~(X0 : Xl : X2) = (X 2 : XOXl  " X o X 2  : X 2 : X l X 2  ; X22). 

To prove the theorem we need the following lemma due to Ying and Ikeda [17]. They prove 
it using a more general theorem of Justesen, Larsen, Jensen, Havemose and Heholdt [11]. 
Pellikaan gave the following direct proof. 

LEMMA 3 ([17]) Any 5 points Pl, P2, P3, P4, P5 on a plane 3-arc are mapped by dp to 5 
independent points in PG(5, q). 

Proof. Suppose the points $ (Pi), i = 1 . . . . .  5, in PG(5, q) are dependent, so they lie in the 
intersection of  two hyperplanes. This means that the Pl, P2 . . . . .  P5 lie in the intersection 
of  two plane quadrics which implies that, by B6zout's teorem, the quadrics must have a line 
in common containing at least four of  the Pi, i = 1 . . . . .  5. This contradicts with Pi lying 
on a plane 3-arc. • 
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THEOREM 13 I f  there exists an [n, 3, n - 3] code over Fq, then there is an [n, n - 6, 6] 
code over Fq. 

Proof. The columns of the generator matrix of an [n, 3, n - 3] code over Fq form a plane 
3-arc in PG(2, q). Applying ~b to these columns yields n points in PG(5, q), every 5 of 
which are in general position by Lemma 3. The resulting matrix is hence a parity check 
matrix of an [n, n - 6, 6] AMDS code. • 

6. Lower  Bounds on/z(r ,  q) 

Using algebraic geometric codes we can construct an infinite class of AMDS codes. The 
following result by Tsfasman and Vl~idut was also used in [7]. 

THEOREM 14 ([16], Chapter 3.2) Letq = pro. Then, for  all r, 1 < r < 2q 

/ze(r,q) > { q +/2V/'ffJ i f p [  1 2 ~ / ~ J a n d m > 3 ,  m o d d  
- q + L2~/'qJ + 1 otherwise. 

Constructing other infinite classes of AMDS codes of considerable length appears to be 
hard. 

Apart from the infinite class of codes from elliptic curves, the quadratic residue codes 
are candidates (they include the maximal [8, 4, 4] over F2, [12, 6, 6] over F3 and [12, 6, 6] 
over F4). Using a computer to find the real minimum distances of quadratic residue codes 
over small fields we find the following almost MDS codes. 

THEOREM 15 The following QR codes are self dual AMDS codes. 

F2: [8, 4, 4] Fg: [20, 10, 10] 
F3: [12,6,6] Fll: [20,10,10] 
F4: [12, 6,6] F13: [18,9,9] 
F5: [12,6,6] F~7: [20, 10, 10] 

Remark 6. Over larger fields the construction of AMDS codes using quadratic residue 
codes gives codes of poor length. The QR construction gives no nice results in these cases. 

The next construction we will consider is a free construction using a computer. In PG(4, q) 
(yielding [n, n - 5 ,  5] codes) this gave the following results that improve on the constructions 
mentioned above. 

THEOREM 16 The following parity check matrices give AMDS codes: 

• PG(4, 5): [12, 7, 5] code: 

I 
1 0 0 1  1 0 0 0 1  1 1  1 
0 1 0 4 4 1  1 0 0 1  1 2  
0 0 1 0 2 0 1 0 1 2 4 1  
0 0 0 4 4 0 2 1 0 2 2 1  
0 0 0 4 1 3 1 0 4 3 4 2  
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• PG(4, 7): [16, 11, 5] code: 

1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1  
0 1 1 0 0 0 0 1 3 3 4 4 4 5 6 6  
0 0 0 1 3 5 1 6 5 4 2 2 6 0 0 6  
0 6 0 0 3 0 5 5 3 4 0 4 4 6 4 0  
0 5 0 0 0 3 4 2 2 4 2 6 3 6 2 4  

For small q the maximum sizes of plane 3-arcs are known (see the Ph.D. thesis by Ball [1]). 

THEOREM 17 ([1]) The maximal length of  a plane 3-arc is: 

q 3 4 5 7 8 9 
n 9 9 11 15 15 17 

For q = 11 the maximal length of  a plane 3-arc is bounded by 21 < n < 22 and for  q = 13 
we have 23 < n < 27. 

Rephrasing this result in terms of AMDS codes and using the embedding ~ of the previous 
section we find the following. 

COROLLARY 4 AMDS codes with the following parameters exist: 

Field plane 3-arc embedded code 

F3 [9, 3, 6] [9, 3, 6] 
F4 [9, 3, 6] [9, 3, 6] 
F5 [11,3,8] [11,5,6] 
F7 [15, 3, 12] [15, 9, 6] 
F8 [15, 3, 12] [15, 9, 6] 
F9 [17,3, 14] [17, 11,6] 
Fll [21, 3, 18] [21, 15, 6] 
F13 [23, 3, 20] [23, 17, 6] 

7. A Table of/z(r, q) 

In this section we will explicitely compute the upper bounds and compare them with the 
lower bounds by putting them in a table. We have chosen to make a table of/x(r, q) but 
we also could have taken Ize(r, q) (the upper bounds in the right upper corner would be 
considerably lower). 

Remark 7. The entries in the table below are implied by the following results: 

• For q = 2, 3 and 4 the results are well known [3]. 

• For r = 2 see Theorem 3, for r = 3 see Theorem 5. 
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• For r ---- 4 . . . . .  q - 1 the Hamming bound is used together with Lemma 1, except for 

(r, q) = (6, 7), (8, 9) and (10, 11) where Theorem 4 is used. 

• For r = q . . . . .  2q - 3 use Remark 4. 

• The cases r = 2q - 2 and 2q - 1 follow from Corollary 2. 

• The bound r < 2q is Theorem 7. 

• The codes giving the lower bounds for r = 4 . . . . .  2q - 3 are constructed in Section 6 

or are shortened versions of  these, except for the [16, 2, 14] and [15, 2, 13] codes over 

F7 whose existence follows from Theorem 9. 

q 

d r 2 3 4 5 7 8 9 11 

3 2 7 13 21 31 57 73 91 133 

4 3 8 10 17 26 50 65 82 122 

5 4 11 11 12-20 16-30 14-36 16-43 22-57 

6 5 12 12 12-14 15-31 15-37 17-44 23-58 

7 6 9 10-15 13-28 14-34 17-39 18-49 

8 7 10 11-16 13-20 14-35 18-40 18-50 

9 8 11 13-21 14-23 19-36 19-50 

10 9 12 13-22 14-24 20-26 20-51 

11 10 14-23 14-25 16-27 18-44 

12 11 15-24 15-26 16-28 18-32 

13 12 15 15-27 16-29 18-33 

14 13 16 16-28 17-30 18-34 
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