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Statistical quality control (SQC) is an effective tool that ensures quality products and 
services by means of control charts, the essence of SQC, and sampling plans. While the 
computation of sample statistics and the development of control charts are routine 
exercises, the interpretation of chart patterns, trends and the associated diagnosis of 
assignable causes requires expert knowledge. The present trend is to develop a quality 
control system and apply it throughout the company (company-wide quality control - 
CWQC or total quality control - TQC). This frequently means involvement of non-quality 
personnel in QC teams. Additionally, many companies are faced with a shortage of 
experienced quality controllers and individuals who can train and educate others on 
statistical quality control techniques. Quality control expert systems (QCESs) are 
considered as one way to alleviate these difficulties. In recent years, quality control expert 
systems have attracted the attention of both quality researchers and practitioners. This 
paper reviews existing quality control expert systems and recommends a set of quality 
engineering techniques that should be used to form a knowledge base, the heart of an 
expert system. 

Keywords: Knowledge-based expert systems, statistical process control, statistical quality 
control 

1. Introduction 

Minute variations or differences always exist in any 
production process, regardless of how well designed or 
carefully it is maintained. Most variations are essentially 
small and uncontrollable and are usually referred to as 
natural variability or ‘background noise’. When only 
background noises exist in a process, it is considered to 
be acceptable, or in statistical control. Other kinds of 
variability may also be occasionally present in the output 
of a process. The sources of such variability, which are 
generally large when compared to the background noise, 
are referred as ‘assignable causes’. A process that is 
operating in the presence of assignable causes is said to 
be out of control (Western Electric, 1956; Montgomery, 
198.5; Wadsworth et al., 1986; Banks, 1989). 

A typical control chart contains a center line, called 
the center line (CL), and two other horizontal lines, 
called the upper control limit (UCL) and the lower 
control limit (LCL). If all the sample values of a 
characteristic appear within the control limits, the pro- 

0956-5515 0 1993 Chapman & Hall 

cess is considered to be statistically in control. On the 
other hand, if a point falls outside the control limits or 
certain unnatural patterns exist, the process is inter- 
preted as out of control. Investigative and corrective 
actions are required to identify and eliminate the assign- 
able cause(s) responsible for this behavior. 

Montgomery (1985) cites five reasons for the long 
history of use of control charts: 

(1) A successful control chart program reduces scrap 
and rework, which increases productivity, decreases costs 
and increases production capacity; 

(2) Control charts are effective in preventing noncon- 
formity; 

(3) Control charts prevent unnecessary process adjust- 
ments by distinguishing between background noise and 
abnormal variations; 

(4) Control charts provide diagnostic information 
through the pattern of points plotted on the control 
charts; 

(5) Control charts provide information about process 
capability - an index of the process stability over time. 
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These advantages place an increased emphasis on 
statistical quality control. In addition, CWQC, or TQC, 
has become an essential requirement at the present. A 
shortage of experienced quality control experts (Evans and 
Lindsay, 1988), the need to train and educate non-quality 
experts, and the inclusion of non-quality personnel in the 
TQC team are resulting in the extensive use of com- 
puters in many areas. The applications of computers lie 
primarily in automated test facilities, data collection, 
storage and analysis, and QCES. Adding expert systems 
technology has become a necessity to enhance the 
computers’ capabilities, to provide more user friendli- 
ness, and to ensure that these ever more automated and 
integrated systems can be managed by responsible ex- 
perts and users. 

Traditionally, control charts are selected by quality 
engineers based on their experience, knowledge and 
standard procedural documents. Alternative charts might 
be available if certain system parameters change. For 
instance, the availability and capability of test equip- 
ment, software and operators will affect the quality plans 
differently. Owing to the availability of information on 
SQC and the process itself and/or the reluctance of 
people to change, the same charts are commonly used 
repeatedly (Alexander and Jagannathan, 1986). When 
the appropriate charts have been selected, the control 
chart parameters need to be set, i.e. the center line, 
upper limit, lower limit, subgroup size, and sampling 
interval. These parameters should be carefully evaluated 
with respect to statistical and economic aspects (Mont- 
gomery, 1985). The statistical approach is most often 
used in professional work. Empirical solutions for deter- 
mining control chart parameters are widely used and 
available from published literature, i.e. ANSI 21.3 and 
SQC textbooks. These solutions usually do not result in 
an optimal setting of the process. Unfortunately, the 
statistical approach is sufficiently flexible that explicit 
statistical and/or economic criteria are not usually con- 
sidered. Successful control chart implementation requires 
the persistent attention of quality control personnel to 
‘read’ control charts and monitor the patterns of plotted 
points regularly. Although many unnatural patterns can 
be recognized easily, some need experience and expertise 
(Nelson, 1984). 

In order to be competitive in the global market, all 
steps in the use of SQC should be carried out effectively. 
Therefore, more attention should be paid to extracting 
and formalizing global quality engineering knowledge in 
a systematic manner, i.e. information used by the quality 
engineer should be stored in computers and not in the 
engineer’s mind. Rules of thumb, thus, will be preserved 
for future usage. 

Expert systems are computer programs which mimic 
the behavior of human experts. From the viewpoint of 
users, availability, consistency and unlimited testability 

ahead of deployment are the major advantages of expert 
systems (Braun, 1990). From the viewpoint of pro- 
gramming, expert systems have two advantages over 
conventional computer programs - modularity and sym- 
bolic manipulation. Modularity means that the domain 
knowledge can easily be updated without having to 
modify other portions of the system. Symbolic manipula- 
tion enables expert systems to handle knowledge which 
cannot be cast easily into mathematical formulae, or, 
with all its details, into conventional algorithmic pro- 
grams (Barr and Feigenbaum, 1981). All of these charac- 
teristics and requirements ensure that quality control 
applications will benefit from the use of expert systems. 

Many existing industrial QCESs are one-of-a-kind 
systems that are not very likely to apply to other fields. 
QCESs developed in the academic environment suffer 
from insufficient knowledge and are experimental in 
nature; they lack practicality. This paper focuses on the 
components of a practical general-purpose knowledge 
base for QCESs, and reviews existing QCESs in that 
light. Functionally, the knowledge base of a QCES 
should at least include rules for selection of control 
charts, construction of control limits, economic design of 
control charts, interpretation of control charts and di- 
agnosis of assignable causes. Useful quality engineering 
techniques for these purposes are briefly discussed. 

2. Quality control expert systems (QCES) 
knowledge base 

Structurally, expert system programs consist of a know- 
ledge base, a working memory and an inference mechan- 
ism. The knowledge base contains facts and heuristics 
associated with the problem. The working memory is 
used for keeping track of input data for the particular 
problem, the problem status and what has been done. 
The inference mechanism controls how knowledge can 
be used to reach a solution (Alexander and Jagannathan, 
1986). 

2.1. Building-blocks of QCES knowledge base 

One of the essential components of a QCES is the 
knowledge base which accommodates expertise. The 
knowledge base plays a critical role in evaluating and 
comparing different expert systems. Based on the func- 
tions of the QCES, the knowledge base may be divided 
into several parts: (1) selection of control charts; (2) 
construction of control limits; (3) economic design of 
control charts; (4) interpretation of control charts; and 
(5) diagnosis of assignable causes. 

2.1.1 I Selection of control charts 
Control chart selection is based on several factors (Alex- 
ander and Jagannathan, 1986; Hosni and Elshennawy, 
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1988). These include: 

(1) Nature of quality characteristics - attributes versus 
variables; 

(2) Underlying distribution of quality characteristics; 
(3) Type of inspection - destructive versus non-des- 

tructive; 
(4) Cost of inspection; 
(5) Inspection time; 
(6) Bulk versus discrete production; 
(7) Type of defects; 
(8) Production rate; 
(9) Sensitivity on shift detection. 

The expert system should ask a sequence of questions 
regarding these factors from the user. The answers are 
then used to select at least one of the following control 
charts: x-bar and cr.-charts, x-bar and R-charts, c-charts, 
u-chart, median chart, individual chart, p-chart, np- 
chart, modified control chart, CUSUM chart, and mov- 
ing average chart. 

2.1.2. Construction of control limits 
Many iterative steps are involved before a process can be 
concluded to be in statistical control. First, data are 
collected in subgroups of 25 or more (ANWASQC 21.3, 
1985). It is a standard practice in the USA to use 3a 
control limits regardless of the distribution of the quality 
characteristic (lHontgomery, 1985). Based on the sample 
statistics, trial control limits are computed. The quality 
characteristic of interest is plotted against the trial limits. 
If all the subgroup points fall within the control limits 
and no apparent trends exist, the process is determined 
to be in statistical control for that period of 25 sub- 
groups. Otherwise, processes are out of control. Inves- 
tigative and corrective actions are taken to remove 
assignable causes Once these remedies are made, 
out-of-control sample data are discarded and new data 
are collected. New control limits are again computed, 
and the points are plotted. This process often iterates 
many times before statistical control is achieved. 

Precontrol is a simplified procedure for monitoring a 
process. To be correctly used, it requires three assump- 
tisns: first, that the quality characteristic of interest is 
normally distributed, and that the natural tolerance limits 
(p + 3~) and the specification limits exactly coincide; 
secondly, that l-3% non-conforming is acceptable; last- 
ly, that the process capability ratio is at least 1.15 
(Montgomery, 1985). Precontrol divides the specification 
limits (SL) into quartiles. Each quartile is coded as 
green, yellow or red from the center line to the specifica- 
tion limits (Fig. 1). The process is considered to be in 
control if five successive data points fall within the green 
region. If two consecutive yellows or a red appear, the 
process is out of control. In this case, actions for 
identifying and removing assignable causes are taken, the 

1 Green region 

Green region 
CL 

I 

11 LSL 

Fig. 1. Precontrol chart. 

process is reset and the procedure is restarted (MacKer- 
tich, 1990). 

2.1.3. Design of control charts 
The design of control charts includes selection of the 
sample size, the sample frequency and the control limits. 
Statistical designs usually consider the power of the test 
and the probability of the type I error which leads to the 
optimal settings. In many cases, general guidelines are 
available and widely used (i.e. ANSI 21.3). Economical 
designs often utilize operations research methods to 
minimize expected net cost or maximize expected net 
profit. The single assignable cause model developed by 
Duncan (1956) is ,widely used in optimization of control 
chart parameters. The assumption is that assignable 
causes occur according to a Poisson process with an 
intensity of A occurrences per hour. The expression 
E(L), representing the expected loss per hour incurred 
by the process, is minimized by determining optimal 
values of the control chart parameters (Montgomery, 
1985). 

llh+i(hll-P)-r+gn+D 
where: 

CY = probability of false alarm, LY = 2JL+(z) dz 
4(z) = standard normal density 
k = specified values of the upper and lower con- 

trol limits 
h = time interval for sampling 
7 = expected time of occurrence of single assign- 

able cause between jth and j + lth samples 
l/A = expected length of in-control period 
P = probability of type II error 
6 = magnitude of single assignable cause 
YI: = sample size 
g = time required to take a sample 
6) = time required to find the assignable cause 
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al 
a2 

a3 

a3 

a4 

= fixed cost of sampling and testing 
= variable cost of sampling and testing 
= cost of finding an assignable cause 
= cost of investigating a false alarm 
= hourly penalty cost associated with produc- 

tion in the out-of-control state. 

Rule 5 - C5 = 
Rule 6 - C6 = 
Rule 7 - C7 = 
Rule 8 - C8 = 

3.09)]; 

IT(2, 2, -3, -2), T(2, 2, 2, 3)l; 
:v, 5, -3, -1h T(5, 5, 1, 3)l; 
.T(l, 1, -@J, -3.09), T(1, 1,3.09, w)]; 

: [T(2, 3, -3.09, -1.96), T(2, 3, 1.96, 

Rule 9 - C9 = [T(8, 8, -3.09, 0), T(8,, 8, 0, 3.09)]. 

2.1.4. Interpretation of control charts 

Measurements of particular quality characteristics are 
recorded; sample statistics, such as the mean and range, 
are computed and plotted on a control chart. Control 
charts are then examined by an analyst for patterns and 
trends. A conclusion is reached as to whether or not the 
process is in statistical control. 

These rules increase the type I error. However, the 
type II error decreases. Montgomery (1985) provides the 
following expression for computing the overall probabil- 
ity of a false alarm when t separate rules are used to 
indicate an out-of-control situation: 

o! = 1 - fi (1- aJ (2) 
i=l 

assuming all rules are independent. 

2.1.4.1 Patterns on control charts: The most common 
signals on a control chart that indicate a change in the 
process are (Western Electric, 1956): 

Supplementary runs rules cause the Shewhart charts to 
be more sensitive to small shifts in the mean, but not as 
sensitive as the CUSUM chart (Champ and Woodall, 
1987). 

(1) Cycles; 
(2) Freaks; 
(3) Plotted points falling outside control limits; 
(4) Gradual changes in level; 
(5) Systematic variations; 
(6) Trends; 
(7) Mixtures; 

2.1.4.2. Process capability: The process capability index 
is used to show how control charts and other statistical 
techniques can be used to estimate the natural capability 
of a process, and determine how it will perform relative 
to specifications on the product. Two widely used indices 
are defined as following: 

(8) Abnormal fluctuations. 

Some of the unnatural patterns may be recognized 
easily. Others may need experience and expertise. Nel- 
son (1984) provides eight tests to interpret control charts 
on a uniform and scientific basis (Fig. 2): 

C = UCL-LCL 
P 6~ 

where LCL = lower control limit, UCL = upper control 
limit, (+ = standard deviation of the process population. 
Another measure of process capability is Cpk, defined as: 

Test 1 - one point beyond zone A; 
Test 2 - nine points in a row in zone C or beyond; 
Test 3 - six points in a row steadily increasing or 

decreasing; 

C,, = min 
l 

UCL-p /J-LCL 
3a ’ 3u 1 

(4) 

Test 4 - 14 points in a row alternating up and down; 
Test 5 - two out of three points in a row in zone A or 

beyond; 

where p = mean of the process. 

Test 6 - four out of five points in zone B or beyond; 
Test 7 - 15 points in a row in zone C, above and below 

the center line; 
Test 8 - eight points in a row on both sides of the 

center line with none in zone C. 

Zone A 
UCL 

Zone B 

Champ and Woodall (1987) provide another set of 
supplementary runs rules which use probability limits 
(a = 0.002). Th e runs rule, which signals whether k of 
the last m standardized sample means fall in the interval 
(a, b), a < b, is denoted by [t(k, m, a, b)]: 

Zone C 

Zone C 
CL 

Rule 1 -Cl = [T(l, 1, ---t(l) -3), T(1, 1, 3, a)]; 
Rule 2 - C2 = [T(2, 3, -3, -2), T(2, 3, 2, 3)]; 
Rule 3 - C3 = [T(4, 5, -3, -l), T(4, 5, 1, 3)]; 
Rule 4 - C4 = [T(8, 8, -3, 0), T(8, 8, 0, 3)]; 

bLCL 
Fig. 2. Control chart. 
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2.1.4.3. Regression: Control charts are used to monitor 
the process output which detects changes in inputs and 
brings the process back to the in-control state. The 
regression model that relates the influence of inputs to 
process output is helpful in determining the required 
magnitude of the adjustments (Brillhart and Wible, 
1989). Regression analysis provides a line of best fit, 
pi = U+b (Xi-T), to describe the relationship between 
inputs (xi) and outputs (yi). The unknown parameters, a 
and b, can be derived by minimizing the sum of the 
squares of the differences between computed jjjs and 
corresponding observed yis (Ott, 1975). 

XYi 
a=-..-=y 

II 

b = lf (-v$ oli-7) 
Ix (Xi - X)2 

(5) 

(6) 

2.1.4.4. Time-series analysis: Most methods used for 
interpreting control charts are primarily based on the 
assumption that the data are statistically independent or 
uncorrelated. Such methods are not directly applicable to 
data which are dependent. The nature of the dependence, 
or dynamics, distinguishes one model from another. 
Mathematical models - the autoregressive moving aver- 
age (ARMA) models - can be used to characterize the 
dynamics, or the ‘memory’, of this dependence. 

The ARMA model expresses the dependence between 
xf and x~-~, x,-~ and x,-~, and so on. Term X, denotes the 
observation at time t. The model may be written as: 

x, = @lx,-1 + Q2x,-2 -t- a, - &at-l (7) 

or 

x, - @IX,-1 - @2x,-2 = a, - @la,-1 (8) 

where @i, a2 and Oi are constants, a, - NID(0, 6,‘). 
This model expresses the dependence of x, on its two 

preceding values, x,-~ and xtd2, and has an ‘autoregres- 
sive dependence’ of order two. It also includes the 
dependence on preceding a, values of order one. This 
model is called the autoregressive moving average model 
of order two and one respectively. It is denoted as 
ARMA (2, 1). 

Every ARMA (2, 1) model has its own characteristic 
polynomial: 

a(x) = 1 - @ix- Q2X2 

and a corresponding characteristic equation 

l-$x-@~x2 = 0. 

(9) 

(10) 

Since a quadratic equation always has two roots (possibly stratification problem; 

complex), the roots of the equation can be easily found 
to be: 

h h = @lrt (@‘:+4@2)1’2 
17 2 -2@,2 (11) 

Terms Ai, A2 are then used to gain quantitative informa- 
tion about the process. The real roots represent con- 
stancy, growth or decay trends, and the complex roots 
represent seasonality with the period given by the 
imaginary part (Pandit and Wu, 1983). 

2.1.5. Diganosis of assignable causes 

If the process is concluded to be out of control, a 
determination must be made to identify the location and 
type of assignable cause for the quality deviation. Be- 
cause SQC techniques are generic and interpretation may 
be product specific, no universal knowledge exists for the 
diagnosis purpose. When a lack of control is detected, 
the usual recommendation is to ‘search for an assignable 
cause’, or ‘take remedial action’, etc., without any 
specific advice on how to proceed. However, some 
general guidelines available in the published literature 
help to start the diagnostic process (Ott, 1975; Montgom- 
ery, 1985; Nelson, 1985): 

Test 1 (one point beyond zone A) - 
a shift in the position of the mean; 
an increase in the standard deviation of the process; 

If a range chart is used and remains in control, an 
increase in variation can be ruled out; 

a mistake in calculation; 
an error in measurement; 
bad raw material; 
a breakdown of equipment; 

Test 2 (nine points in a row in zone C or beyond) - 
a shift in the process average; 

Test 3 (six points in a row steadily increasing or 
decreasing) - 

tool wear; 
depletion of chemical baths; 
deteriorating maintenance; 
improvement of skill; 

Test 4 (14 points in a row alternating up and down) - 
two machines, spindles, operators or vendors used 

alternately; 
Test 5 (two out of three points in a row in zone A or 

beyond) - 
a shift in the process average; 
an increase in variation. 

Test 6 (four out of five points in zone B or beyond) 
a shift in the process mean. 

Test 7 (15 points in a row in zone C, above and below 
the center line) - 
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control limits are too wide; 
an arithmetic mistake; 

Test 8 (eight points in a row on both sides of the center 
line with none in zone C) - 

stratification problem; 
control limits are too wide; 
an arithmetic mistake. 

Process capability indices may be used to monitor the 
process mean. Useful decision rules, combinations of Cp 
and Cpk, are listed below (Hosni and Elshennawy, 1988): 

- Cp<l, The process is not capable of 
meeting the specification 
limits; 

-c, = 1, -C,,<l Shift the process mean; 
-c,, = 1 The process is running very 

close to the specification 
limits; 

-C&=-l, -C,,<l The process is capable of 
meeting the specification 
limits, but the process mean 
needs to be shifted as its set- 
ting is incorrect; 

-q&A The process is meeting the 
specification. limits and there 
is some room for the natural 
variability of the in-control 
process. 

2.1.6. Concluding remarks 

Although SQC has proven to be a very effective tool to 
increase productivity and quality, most shop-floor 
applications are still practicing the f3a control limits 
with points falling outside the control limits as an action 
rule. The main reason for using this approach is simplic- 
ity, and techniques, such as expert systems, unfortunate- 
ly, have remained mainly of academic interest. 

With advances in computer technology, use of expert 
systems to monitor and enhance quality should receive a 
boost. Already data collection and analysis procedures, 
necessary to develop control charts, have witnessed a 
move toward automation. Furthermore, a real-time and 
on-line decision and corrective action can be accom- 
plished by expert system technology. This will lead to 
more effective, consistent and reliable control of quality 
in manufacturing and service industries. 

3. Features and capabilities of existing QCESs 

3.1. Alexander and Sagannathan (1986) 

The authors point out that the performance of different 
control charts can be varied in several ways, e.g.: type I 
and type II errors, sensitivity to detect changes in the 

process mean and/or variance, and the average run 
length. These factors have to be considered thoroughly in 
order to select appropriate control chart(s) for each 
potential application. An expert advisory system is de- 
veloped for appropriate control chart selection. 

Control chart selection rules are derived from the 
published literature. Rules for control chart selection are 
based on the nature of the quality characteristic, such as 
whether measurements are possible (visual inspection), 
whether measurements are practical (too expensive), or 
whether a 100% check is required. Other factors include 
type of defects, sensitivity requirement of shift, and type 
I error. The rules are divided into two categories: rules 
for attribute control charts and rules for variables charts. 

The rules to select an attribute chart are as follows: 

(1) If an attribute can be classified as defective or 
non-defective, then a p-chart is selected; 

(2) If (1) does not hold, then attribute data are defects- 
based; 

(3) If data are defects-based and the probability of 
defects occurring in all defect types is considered equal, a 
c-chart is recommended; 

(4) If a c-chart is recommended and the inspection 
unit is not the same as the production unit, then a u-chart 
is preferred; 

(5) If data are defects-based and defect types are not 
equally important, then a D-chart is preferred; 

(6) If a D-chart is recommended and the inspection 
unit is not the same as the production unit, then a u-chart 
is preferred. 

The rules to select a variables control chart are as 
follows: 

(1) If a variable chart is selected and the time required 
to obtain measurements is small and the capability to 
detect shift is not critical, then x-bar and R-charts are 
recommended; 

(2) If a variable chart is selected and the time required 
to obtain measurements is small and the capability to 
detect shift is critical, then a modified control chart with 
a warning limits chart is recommended; 

(3) If a variable chart is selected and the time required 
to obtain measurements and the capability to detect shift 
are critical, then a moving average chart is recommended; 

(4) If a moving average is recommended and the 
sensitivity to detect small shift is desired, then a geo- 
metric moving average chart is preferred; 

(5) If a variable chart is selected and the sensitivity to 
detect small shifts in average and variance is desired and 
allowed type I error is small, a CUSUM chart is 
recommended. 

Guidelines for the construction and interpretation of 
control charts can be obtained through a database query 
which is not performed by the expert system. Optimiza- 
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tion of control chart parameters is suggested as a possible 
future enhancement. 

Knowledge representation: production rule system. 
Shell used: GENIE (IQ LISP). 
Hardware: IBM PC/XT/AT or compatible. 

3.2. Gipe and Jasinski (1986) 

This Bell Communications Research Laboratory project 
proposes a three-level evolutionary approach to building 
expert systems. The first stage is to help the quality 
engineer in picking out the quality problems and deter- 
mining assignable cause(s). Stage two is to perform 
detailed analysis on the vast amounts of data looking for 
quality problems hidden from the standard analysis 
routines. The final stage is an integrated system that uses 
all available data to report on the overall quality effort. 
Based on a product’s previous performance and its 
component parts, this system is able to enhance standard 
analysis routines and even predict the field quality of 
products. 

The authors list the following goals: 
(I) Analyses of audit data - interpretation of control 

charts and location of out-of-control samples; 
(2) Definition of field performance study (FPS) action 

items - use of the collected data to identify significant 
quality problems; 

(3) Recommendations for QA activities - suggestions 
for quality programs for new products; 

(4) Discovery of hidden FPS test problems - examina- 
tion of large quantities of data to search for patterns; 

(5) An integrated system - study of products from 
manufacture through field performance; 

(6) An enhanced reliability prediction method - 
prediction of the performance of equipment; 

(7) Enhanced auditing procedures - suggestions for 
improvements to current auditing procedures. 

Hardware: Pyramid 90x super-minicomputer. 
Software: Operating system: OSx, a combination of 

AT&T system V Unix and BSD 4.2 Unix. 
Expert systems languages: OPS5 developed at 
Carnegie-Mellon University, based on LISP. B- 
EXPERT developed at Bellcore based on C. 
Database: Ingres database management system. 
Statistical software: ‘S’ statistical analysis package. 

3.3. Scott and Elgomayel(I987) 

This knowledge-based diagnosis system has two major 
goals: identification and interpretation of the random and 
assignable patterns on x-bar and R/s-charts. The source 

of knowledge is primarily Western Electric (1956). The 
knowledge base consists of five basic components: 

(1) x-Bar and R/s control limits determination - 
control limits are obtained by either previously estab- 
lished or calculation-based sample data statistics; 

(2) Basic control charts testing - control charts are 
first tested using the 30- limits rule which locates 
out-of-control sample(s). Further investigations of runs 
in the data are implemented for process instability. 

(3) Basic control charts interpretation - the R/s chart 
should be analyzed first and once the state of control is 
reached, then the x-bar may be analyzed (Western 
Electric, 1956). The presence of out-of-limits points, 
unnatural patterns or trends on the R/s-chart is 
evidence of increased process variability which is usually 
caused by inaccurate inspection procedures. Another 
important factor is the level of automation of the 
process: automated or manual operation. For an 
automated operation, process variability is a function of 
machine capability. An increased process variability 
indicates a fundamental breakdown in the machine. For 
a manual operation, it usually means an inconsistency in 
work method, or a lack of operator care or concentra- 
tion. An out-of-control signal in the x-bar chart reflects a 
fluctuation of the process average. Frequently, a shift 
indicates a tool wear problem which is an unavoidable 
part of the process. In such a case, the process should be 
allowed to operate until a maximum degree is reached. 
The interpretation system provides two measurements 
which further evaluate the state of control. With 
processes in statistical control, histograms are produced 
by a FORTRAN program in order to understand the 
underlying data distributions. Process performance is 
compared with engineering specifications to estimate the 
percentage of units which exceed specification. 

(4) Advanced control chart testing - the process is 
now further tested for out-of-control signals by the 
complete set of 15 patterns, identified by Western 
Electric (1956). These patterns are cycles, freaks, gradual 
change in level, grouping or bunching, instability, inter- 
action, mixtures, natural pattern, stable forms of 
mixture, stratification, sudden shift in level, systematic 
variables, tendency of one chart to follow another, 
trends, and unstable forms of mixture. 

(5) Comparison of process capability against 
engineering specifications - The process is determined to 
be capable of meeting specifications if the following two 
conditions hold true: 

(4 2 * 6% + 1) (T d upper specification - lower 
specification where Mr is the x-bar control limits 
multiplier, usually M, is 3. 

(b) the process is centered within c//3 of the nominal 
specification values. 
Knowledge representation: LISP. 
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3.4. Dagli and Stacey (1988) 

This expert system assists the quality engineer in the 
selection and design of the best control chart for a given 
application. During the consultation, the knowledge- 
based system asks questions to determine the type of 
attribute to be tracked, the resources available for chart 
calculation and the information needed from the control 
chart. The expert system then determines the best 
control chart for the situation and gives recommenda- 
tions as to the best application of the suggested chart. 

The reasoning process for control chart selection 
depends on chart type (variable or attribute). For the 
variable chart, the expert system determines the 
appropriate sample size depending on the nature of the 
quality control test (destructive or non-destructive) and 
the homogeneity of the sample population. It then 
recommends a control chart with a confidence factor 
based on the resources available for calculating the 
various values used in the control charts. Attribute charts 
are determined by the type of data to be tracked, either 
defects per unit or number of proportion defective items, 
and sample variability. Duncan’s formula (1956) is used 
to optimize control chart parameters: sample size, 
sample interval, and upper and lower control limits 
values. 

The expert system is currently structured to select at 
least one of the following control charts: p-chart, np- 
chart, x-bar and o-charts, x-bar and R-charts, x-bar and 
moving R-charts, c-chart, u-chart, and median chart. 

Knowledge representation: production rule system. 
Shell used: Ml. 
Hardware: IBM PC/XT/AT or compatible. 

3.5. Evans and Lindsay (1988) 

This expert system is designed for interpretation of x-bar 
and R-charts. The knowledge base is partitioned into 
three sets: analysis rules, interpretative rules and 
diagnostic rules. 

The analysis rule base consists of 36 rules for 
automatic determination of out-of-control conditions. 
These rules are derived from supplemental runs rules. 
The conclusion reached from the analysis rule base is one 
of the following: in control, out of control or suspected 
to be out of control. Lack of statistical control is con- 
cluded from the following rules: 

(1) A sample point lies outside the control limits; 
(2) Two or three consecutive points lie outside the 2a 

warning limits; 
(3) Four or five consecutive points lie outside the la 

warning limits; 
(4) Six or seven consecutive points lie on one side of 

the center line; 

(5) A run of six or seven consecutive points up or 
down exists; 

(6) Cyclical variation is observable. 

Suspect instability in the process is detected by the 
following rules: 

(I) Three consecutive points lie outside the lg 
warning limits; 

(2) Six or seven consecutive points lie on one side of 
the center line; 

(3) A run of five or six consecutive points up or down 
exists. 

If the process is lacking control, the interpretative rule 
base uses these conclusions along with a decision tree to 
determine the type of pattern in the chart. 

The diagnostic rule base uses the pattern found with 
specific process information to conclude assignable 
cause(s). Assignable causes include: points at or near 
control limits, patterns and trends, and cyclic variation. 
For x-bar charts, diagnosis could be one of these: change 
in process setting, change in material, minor part failure, 
tool wear, environmental factors, and rotation of 
operators. For R-charts, diagnosis includes operator 
error, poor material, operator fatigue, operator skill 
improvement, and maintenance cycles. 

Knowledge representation: production rule system. 
Shell used: EXSYS. 
Hardware: IBM PC/XT/AT or compatible. 

3.6. Hosni and Elshennawy (1988) 

This expert system is marketed by the Institute of 
Industrial Engineers as an IIE Microsoftware Statistical 
Quality Control package. The scope of application 
includes control charts selection, interpretation, and 
diagnosis. Through dialogue with the user and utilizing a 
decision tree, this system directs users to the appropriate 
chart(s). 

The decision to select a chart is made based on the 
following factors: qualitative versus quantitative, under- 
lying distribution, type of inspection, destructive versus 
non-destructive, cost of inspection, inspection time, 
availability of sampling during production, bulk versus 
discrete production, in-process versus preprocess inspec- 
tion, and lot size. Control charts are then selected from 
individual charts: x-bar and s-charts, x-bar and a-charts, 
x-bar and R-charts, p-chart, np-chart, u-chart, and c- 
chart. 

A decision matrix is provided which relates out-of-con- 
trol signals and possible assignable causes. The signals 
are: 

(1) One point lies beyond the control limits; 
(2) Two out of three consecutive points lie close to a 

control limit; 
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(3) Approximately two-thirds of the data lie in the 
middle third (mean +o-) of the control chart; 

ce!Z-Yine. 
tve consecutive points lie on the same side of the 

(5) A run of at least five consecutive points up or 
down; 

(6) An erratic, non-random pattern; 
(7) A series of five or more points lie close to the 

center line; 
(8) One point on the R- or g-chart lies above the 

upper control limit; 
(9) One point on the R- or a-chart lies below the 

lower control limit. 

Possible assignable causes are: 

(1) A shift in the process parameter of the chart (u, R, 
s, P or c); 

(2) An increase in the process variability (R, s); 
(3) A decrease in the process variability (R, s); 
(4) Unstable variability, lower precision (R, s); 
(5) A drift or trend in the process parameter of the 

chart ; 
(6) Increased precision in the process parameter of the 

chart ; 
(7) Cyclic or erratic shift; 
(8) Increased accuracy in the process parameter of the 

chart. 

The process capability indices cp and cpk are used to 
interpret the process performance. Sample size is 
determined from MIL-STD 414, Normal Inspection, 
Level IV. 

3.7. Love and Simaan (1988, 1989) 

This knowledge-based system is developed for the detec- 
tion and diagnosis of out-of-control events on an 
aluminum strip rolling mill operation. Automatic detec- 
tion and diagnosis is a comminatory application of 
statistical process control principles and process 
knowledge. Data from the manufacturing process are 
collected into a signal database. A signal of interest is 
chosen from the database and the system is initiated to 
produce reports of diagnosed problems in the process. 

Based on nonlinear filtering techniques, a two-level 
procedure for automatic process diagnosis is provided. 
At the first level, interpretation is carried out in the 
following steps. Using numerical-signal processing tech- 
niques, the raw signals are preprocessed to eliminate 
noise. A combination of nonlinear filters is then used 
to isolate particular primitive variations in the signal. 
These nonlinear filters are a median filter, a slope filter, 
a horizontal threshold filter, an integrator and an ampli- 
tude thresholder. Finally, input data are classified into 
three features: peaks (impulses), steps (mean-shift), 
ramps (linear trend). 

At the second level a rule-based program diagnoses 
special cause(s) of variation. The signal interpreter 
process is written in LISP. The filtered signals are 
segmented into pieces. A combination of the three 
features forms a data structure to represent the primitive 
variations. Combinations (events) are used to identify 
particular signal objects and transform the signals into 
their symbolic descriptions. The symbolic information is 
then used for interpretation. 

Each event has an associated rule set which contains 
the specific cause of variation of that event. Separate rule 
sets help both conceptual and software modularity which 
makes it easier to add knowledge when it becomes 
available. Diagnosis is reached by backward chaining on 
the appropriate rule set to a given event. Undefined 
events are automatically reported and new rules may be 
developed and added to rule sets later. 

Knowledge representation: production rule system. 
Shell used : FLAVORS. 
Hardware: SYMBOLICS (LISP machine). 

3.8. Brillhart and Wible (1989) 

Harris Semiconductor developed a real-time expert 
system (PREXPERT) for monitoring, characterizing and 
controlling a front-end photolithographic process for 
optimal product throughput, quality and yield. 
PREXPERT is not only capable of detecting out-of-con- 
trol products but also continuously improving the process 
aim and tightening the process variation. This application 
combines the concepts of real-time data acquisition, 
recency-weighted process characterization and automatic 
system tuning. 

Lot history and product information are stored in a 
COMETS (Consilium’s on-line manufacturing and 
engineering tracking system) database. The knowledge 
base of PREXPERT comprises the statistical process 
control techniques, the customer requirements and the 
engineering expertise of the photolithographic process. 
Process capabilities indices (cp and cpk) are utilized to 
aim the process mean and to reduce the variability. With 
the linear regression from exposure energy to the resist 
measurement and the regression model from the resist 
measurement to the final etched measurement, 
PREXPERT is able to predict the final etched dimension 
with a 95% confidence interval which eliminates the 
production pilot run. The adjusted R-square of the 
regression model is 0.95 indicating that 95% of the 
variability has been accounted for by this model. 

This plant is capable of producing over 220 different 
product types and over 2400 masks. At any given time, 
there are more than 50 active products and over 700 
masks in the line. Most of the products have their own 
unique process flow. To combine these products into a 
single control chart, the normalization z-control chart is 
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employed. Currently, run tests about the center line are 
the only non-random pattern detection; such as, eight 
points that fall on the same side of the center line on the 
x-bar chart or the range median of the R chart. Further 
analysis caused by the run detection is based on two 
parameters: slope and rms. A line is fitted through the 
subgroup points and the slope of this line is obtained. 
Then, the rms value of the detected run is calculated. A 
decision is made on whether or not to notify the engineer 
and to its prioritization (process shutdown, immediate 
notification or daily/weekly report). 

Hardware: CAM stations. 

3.9. Kuo (1989) 

This prototype expert system was developed for 
diagnosing continuous processes if the assumption of 
normality doesn’t exist. In the case of the existence of 
non-normality in the data, time series is very useful to 
describe the data dependency. Another advantage is that 
time series analysis gives precise information on the 
length of periodicity and the slope of the trend. This 
feature provides quantitative information which leads to 
more accurate interpretation and diagnosis. 

A two-step algorithm was developed to interpret the 
control charts. Supplemental runs rules (Nelson, 1984) 
are first employed to locate out-of-control conditions. If 
any out-of-control occurs, time-series analysis is then 
used to obtain quantitative information about the 
out-of-control process. Parameters for time-series 
analysis models are estimated by the FORTRAN 
program, developed by Pandit and Wu (1983). Estimated 
parameters are then entered manually into the expert 
system for analysis. Assignable causes are acquired by 
utilizing information from time-series analysis and 
generic information provided by Nelson (1985). 

The advantage of this two-step algorithm is that the 
substantial computational efforts required by time-series 
analysis are avoided, while quantitative information 
about the process is secured. 

Knowledge representation: production rule system. 
Shell used: Ml. 
Hardware: IBM PC/XT/AT or compatible. 

3.10. Rowan (1989) 

Du Pont has determined that process control systems are 
good for on-line real-time expert systems application in 
several ways: sensor validation, data reconciliation, 
process and equipment diagnosis, and model-based 
expert systems. Process control systems receive data 
primarily from on-line process sensors and respond in 
real time to process problems. Individual measurements 
from sensors are critical because they supply feedback 
and closed-loop control. The expert system is segmented 

into a monitoring component and a rule-base com- 
ponent. The monitoring segment continuously scans 
on-line data for suspicious behavior, including the signal 
stability of the measurement and reference signal, and 
the characteristics of internal signals, such as the 
automatic gain control. With a short-term history of 
process data, suspicious sensor behavior is detected by 
specially developed algorithms which compute the rate of 
change, moving average and standard deviation, and 
other variables. If a fault has occurred, the sensor 
validation expert system alerts the operator. The 
diagnostic expert system reads a ‘snapshot’ of informa- 
tion from the on-line scanner, processes the data and 
collects the additional information necessary to diagnose 
the problem. 

The objective of using expert systems for sensor 
validation is to improve the measurement system’s over- 
all reliability and to improve the overall availability of 
the process measurement. By providing trouble-shooting 
assistance to the maintenance technician, the mean time 
to repair is reduced. 

Drifting of individual sensors may occur over a long 
period. Although it may not be detectable by 
sensor-validation techniques, it can often be detected by 
data-reconciliation techniques. 

Model-based expert systems involve deep knowledge 
about the process. Models are derived from first- 
principle relationships of physics and chemical 
engineering and from empirical models based on 
statistical regression of process data. Incorporating this 
type of deep knowledge into an expert system allows for 
a very compact, precise system design. 

Hardware: DEC VAX 
Software: G2 (Gensym Corp.) 

3.11. Frerichs (1990) 

This is an application of SPC methods to continuous 
processes which integrates a real-time process diagnostic 
expert system with an on-line SPC package. The func- 
tionalities of SPC include determination of sample size 
and frequency, Pareto analysis, and pattern alarms 
(Nelson, 1984). Rules governing process operation are 
formulated and form the nucleus of the diagnostic expert 
system that can both advise the operator and take 
corrective action during a process change. 

Knowledge representation: production rule system. 
Shell: EXPERT 90. 
Hardware: distributed control system microprocessor. 

3.12. Pandelidis and Kao (1990) 

A knowledge-based system (DETECTOR) for injection 
modeling diagnostics has been developed and imple- 
mented in the field. For representing inexact and incom- 
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Table 1. Features of existing QCESs 

Selection Control 
limits 

Design Interp. Diagnosis 
- 

Stat. Econo. A B C D 

Alexander and Jagannathan 
Gipe and Jasinski 
Scott and Elgomayel 
Dagli and Stacey 
Evans and Lindsay 
Hosni and Elshennawy 
Love and Simaan 
Brillhart and Wible 
KU0 

Rowan 
Frerichs 
Pandelidis and Kao 

Y 

Y Y Y Y Y 
Y Y Y 

Y Y 
Y Y Y Y 

Y 
ir 

Y 
Y Y Y Y 
Y Y Y Y 

t Y 
Y Y 
* Y 

A: Runs rules. 
B: c,. 
C: Regression. 
D: Time-series analysis. 
+ Nonlinear filtering techniques (peaks, steps and ramps). 
t Closed-loop control systems (rate of change, moving average, U) 
$ Heuristic field knowledge. 

plete information, the authors show a general knowledge This expression means 
representation scheme which is based on fuzzy set Defect: short shot 
theory. All the defects are represented as dj, j = 1, 2, Category: molding 

Causes: mold temperature 
Description: low 
Initial weight: 0.5. 

. .n, where dj is one of the possible defects. All possible 
causes are represented as ci, i = 1, 2 . . . n, where Ci is 
one of the possible causes. The term <ci, d,> then 
represents ‘ci can cause dj’. Note that -CC;, dj> does not 
imply that ci always occurs when dj is present, but only 
that Ci may occur. Uncertain information is handled by 
fuzzy set theory which relates causes and defects to the 
grade of membership. The fuzzy relationship grade may 
range from 0 to 1. 

The first step in the diagnostic process is to accept the 
set of observed defects from the user, and associate 
appropriate weights for their respective severity. The 
second step is to determine the associated set of possible 
causes to the observed defects and obtain their associated 
weight in a matrix form. The minimum cover criterion is 
used to determine the smallest possible set of causes 
explaining the defects. The most obvious advantage of 
this is to narrow the search space in the specified domain 
and to produce the sequential problem-solving paradigm 
to seek further information for the human diagnostician. 

The DETECTOR knowledge base consists of five 
modules: a trouble-shooting guide, inference rules, the 
construction of plastic variables and machine variables, a 
material database, and a machine database. 

Knowledge representation: PROLOG. 
Hardware: IBM PS/2, IBM PC/XT, AT (compatible). 

3.13. Summary 

An example of the syntax of DETECTOR knowledge 
is given below: 

cause-of ([short, shot], modeling, [mold, temperature], 
low, 0.5) 

The features of existing QCESs are summarized in Table 
1. The abbreviated column headings are explained as 
follows: (1) selection, i.e. control charts selection; (2) 
control limits, i.e. capability to establish control limits 
from raw data for processes to be controlled; (3) design 
(i) Stat., i.e. capability to statistically design control chart 
parameters, such as control limits, sample size and 
sample frequency, (ii) Econo., i.e. economically design 
control chart parameters, and (4) Interp., i.e. interpreta- 
tion. The authors of each system are listed in the first 
column of each row. Entries in Table 1 indicate that the 
particular system has the corresponding feature. For 
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instance, Alexander’s system has the capability to select 
only the control chart. 

4. Illustration 

A typical QCES interactive consultation session is 
presented (system response is emboldened): 

Control Charts Interpretation System 

How many subgroups do you have for initial state? 
QC pattern > 25 
Please input data of sample group number 1. 
QC pattern: > [228.0, 224.0, 220.0, 231.01 
Please input data of sample group number 25. 
QC pattern > 1226.0, 225.0, 221.0, 233.01 
Ranges are out of control at initial state 
Please input coefficients of ARMA (2,l). 
QC pattern > [1.05, -0.05, 1.01 
A stochastic seasonality with period of 9 detected. 

Possible causes: 
1. Tool wear 
2. Depletion of chemical bath 
3. Deteriorating maintenance 
4. Improvement of skill 

5. Conclusions 

Expert systems can be an effective tool for quality 
control. However, for an expert system to be useful, it 
should at least have the following characteristics: 

(1) It should select suitable control chart(s) for the 
process of interest. For example, if the data collected 
from product manufacturing industries are statistically 
independently distributed, traditional Shewhart control 
charts might be a good choice. For industrial processes, 
however, data are probably statistically dependently 
distributed and, therefore, multivariate control charts 
should be considered. The same consideration should be 
given to interpretation and diagnosis; 

(2) The parameters of the selected control chart 
should be economically designed. It should also be 
possible to use the QCES to verify existing process 
parameters; 

(3) The QCES should act as an experienced quality 
control engineer to monitor the process and perform the 
diagnostics; 

(4) Training in quality control techniques should be 
possible if requested by the user; 

(5) The effort needed to fine tune an existing QCES 
should be minimized by providing an effective utility tool 
for the user. 
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