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1. Introduction 

A universal observation about democratic political processes is that a significant fraction of 

eligible voters turns out to vote. A controversial and important question in the modern 

theory of electoral processes is "Why do voters vote?" 

Before the advent of  modern political economy, voters might have been thought 

to vote instrumentally, thus affecting the direct outcome of the election. Political 

economists, however, concluded, erroneously in our view, that the probability that 

a given voter would be the decisive voter in a large electorate was miniscule, so miniscule 

in effect that a rational citizen would never find it in his interest to vote on instru- 

mental grounds. Consequently, a variety of  explanations for voting has been offered. 
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These include citizen duty (socialization), minimax regret, private consumption value, the 

monitoring of  voting and sanctions for nonvoting, and individual voter utility depending 

on the margin of  victory as well as victory itself. We deliberately eschew any of these 

explanations of voting and indicate that substantial voter turnout may occur even in a 

totally instrumental, outcome-oriented polity. 

We present a game-theoretic model of  voter turnout. Our model features voting 

over two fixed alternatives as in a two-candidate election or in a referendum or initiative 

vote between a proposal and a status quo. Voters are narrowly self-interested. Their moti- 

vation for voting relates solely to the fact that they are better off  if  their "side" wins. They 

attach no sense of citizen duty or private consumption value to the act of voting. While, 

in equilibrium, it is possible that there is substantial voter turnout, multiple equilibria 

proliferate. As a consequence, with small numbers of voters there are not strong predictions 

about the size of voter turnout. However, for large electorates we have discovered only 

two types of equilibria. In one type, turnout approaches zero per cent. In the other, 

percentage turnout approaches twice the minority side's percentage of the electorate. 

The modern theory of turnout began with the observation by Downs (1957), 

Tullock (1967), Piker and Ordeshook (1968) and others that the act of  voting itself is 

costly. Citizens, then, must weigh the cost of  voting against its potential benefits. In 

decision-theoretic terms, a "rational" voter will vote if and only if the potential benefit 

of voting exceeds the cots. 

A next assumption commonly made is that the benefits are determined by two 

components: p, the probability that one's vote is decisive (i.e., makes a difference in the 

outcome), and B, the increase in utility to the voter when his vote is in fact decisive. If the 

cost of  voting is relatively high and the probability of  casting a decisive vote is very low, 

then a rational citizen may choose not to vote even if the citizen has strong preferences 

between the two alternatives. 

This decision-theory model can be summarized by the familiar inequalities: 

Vote i f  pB ~ c 

Abstain i f p B  < c  

(1) 



The argument continues by observing that i f  there are many citizens voting, the 

probability that a citizen is decisive must be incredibly small. 1 Hence the conclusion, often 

referred to (we feel inappropriately) as the paradox of  not voting: significant turnout in 

elections with many eligible voters is inconsistent with rational behavior. 

There have been several proposed explanations for the purported "paradox." One 

approach was to suppose that citizens derive direct benefits from voting, D, regardless of  

the outcome. If  this direct benefit, sometimes called "citizen duty," is greater than the cost 

of  voting, then voting is not irrational and in fact is rational even if the citizen does not 

care what the outcome of the election is. 

A second approach, adopted by Ferejohn and Fiorina (1974), was to suppose that 

citizens are not concerned with the probability that they are decisive. Voters vote simply 

to avoid the possibility that i f  they abstain but the election ends in a tie or one vote short 

of  a tie, they will suffer substantial regret since their vote would have been decisive. 

Both of  these avenues of  rationalization suffer weaknesses. Clearly, assuming pB  = O, 

many observations are inconsistent with the proposition that a given individual's net cost 

of  voting, c - D, is anywhere near constant. The greater turnout in presidential than in 

off-year elections and the greater turnout in contested than in uncontested elections belie 

any simple citizen-duty story. Of course, citizen duty could be rescued by arguing that 

there is a greater sense of  duty in presidential and contested elections, but such logic is 

difficult i f  not impossible to test. 

As to the regret approach, it has been subject to a series of  theoretical challenges 

in an exchange between Ferejohn and Fiorina (1975) and their critics. More importantly, 

much empirical evidence suggests that probabilities matter. Presidential turnout was low, 

even among whites, in the old one-party South. 2 Southerners in fact were often more 

likely to vote in the decisive primaries than in the general elections. Rosenthat and Sen 

(1973) present extensive evidence for French legislative elections showing that turnout 

] .  Chamberlain and Rothschild (1981)  develop the probability that an election results in a tie when all voters vote 
and when any randomly chosen voter votes "Yes"  with some fixed probability. Acceptance o f  the idea that the probability 
of  casting a decisive vote is very close to zero also finds its way into the lead article of  a major political science journal. 

See Meehl (1977). 
2. Wolfinger and Rosenstone (1980)  show persistence of  low presidential turnout in the South, even when race, 

education, and registration laws have been controlled. 
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varies significantly with a simple ex ante measure of the closeness of the election. Romer 

and Rosenthal (forthcoming), using observations from over 2,000 school-district referenda in 

Oregon, show that turnout varies strongly with community size, which, in a ceteris paribus 

decision-theoretic argument, determines the probability of being decisive. A desire to 

explain these findings and to develop a theory of participation based on utility maxi- 

mization has led us to a third approach. 

In our approach, we investigate how the probability of being decisive, p, is de- 

termined. If everyone else votes, p can readily be very small. But if no one else votes, the 

probability of being decisive would be 1. Clearly, if citizens are rational, the voting proba- 

bilities and the turnout decisions are simultaneously determined. 3 Models which consider 

the turnout question under the assumption that citizens vote and then discover citizens 

should not vote ignore the simultaneity of the problem. The conclusion from these simple 

models is not a true paradox, it is a logical fallacy. 

In an important paper, Ledyard (1981) observed this fallacy and modelled the 

simultaneity. In his model, when citizens have "rational expectations" of the probability 

of being decisive, some rational citizens will vote, and some will not. In Ledyard's model 

each voter knows the size of the electorate, the spatial positions of the alternatives, and his 

own preferences. However, a voter's information about other citizens is limited to the 

knowledge that their spatial preferences are drawn from a continuous probability distri- 

bution, the distribution being common knowledge. Ledyard is able to make only limited 

conclusions about turnout. His major result is that turnout is positive when, for some 

citizens, B is sufficiently large relative to c. Under these conditions, existence of a sym- 

metric rquilibrium is proved, but the possibility of multiple symmetric equilibria or 

asymmetric equilibria is not investigated. 

We adopt a similar approach in which turnout decisions and the probability of 

decisiveness are simultaneously determined, but our model differs from his in important 

respects. First, there are only two types (teams) of citizens, each with identical preferences. 

Each citizen knows the number of members and the preferences of each team. We assume 

3. Downs (1957) takes note of this simultaneity problem or "maze of  conjectural variation" (p. 267) as he calls it. 
The well-known citizen duty story rescues democracy on p, 268. 
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that the teams have opposite preferences over the alternatives. The alternatives are deter- 

mined exogenously. Our model is thus a partial equilibrium model, but it applies well to the 

restricted game where alternatives are fixed and distinct, as is the case for referenda and 

initiatives. Analysis of  this simple model permits us to obtain closed-form solutions of 

equilibria, to show that the amount of  voting can be significant, and to explore the de- 

pendence of  turnout upon costs, the size of  the electorate, the distribution of  voters' 

preferences, and the rule used to resolve a tie vote. 

Our specific model is game-theoretic. It is also of  interest, simply from a theoretical 

point of  view, because the game we analyze is one of an important class of  games which to 

our knowledge has never been systematically analyzed. 4 This type of  game, which we call 

a team game,  combines features of  asymmetric and symmetric games. There are two (or 

more) groups of  players called teams, and the players on a given team are identical and have 

common interests. Players on different teams, however, have different interests. Each 

player chooses a level of  action. Cost to the player is increasing in his own action. Payoff 

to a player is an increasing function of  the actions by all players on his team and is a de- 

creasing function of  the actions by all players on the opposing teams. Net of  cost, all players 

on the same team receive the same payoff. 

A special case of  team games, part ic ipat ion games,  involves binary decisions by all 

players. Each player has a choice of  two actions, which we refer to as part ic ipat ion  and 

nonpart ic ipat ion .  Participation is costly while nonparticipation is not. 

2. Participation games 

Let I = [ 1 . . . . .  M, M + 1 . . . . .  M + N] index the players. There are two teams, one, denoted 

T 1, consisting of  the first M players and the other denoted T 2, consisting of  the last N 

players. The action set for any player on any team is {0, 1}, where 0 is referred to as  non- 

participation, and ] is referred to as participation. An action for player i is denoted s i. A 

mixed strategy for a voter is just a probability of voting. We denote these probabilities by 

4. Some discussion of  games of  this sort, which involve elements of  both conflict and coordination, appears in 
ScheUing (1960, p. 85). 
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qi, for player i in T 1 and r] for player ] in T 2. The payoff for any player i in T 1 is given by 

~r i = F I( Z s i, ~ s]) - sic ? The payoff for any p l a y e r j i n T  2 i s g i v e n b y ~ r ] = F 2 ( Z  s i, 
ieT 1 j e T  2 ieT 1 

Y. s]) - s]e]. Furthermore, F 1 is nondecreasing (nonincreasing) in its first (second) argu- 
l e T  2 

ment and F 2 is nondecreasing (nonincreasing) in its second (first) argument. We here restrict 

analysis to the situation where all strategy choices must be exercised independently (e.g., 

simultaneously). 

In our analysis of voting as a participation game, the strategy, s i, is referred to as 

i's voting decision, and e i is referred to as i~s cost of voting. The payoff functions F 1 and F 2 

constitute the voting rules. 

We make the following assumptions hereafter: 

1. Identical Cost to A l l  Citizens 

c l = . . . = c g = c M +  1 ... CM+N=Ce(O ,  1) 

2. S y m m e t r i c  Payof fs  to the Teams 

F 2 (.,.) = 1 -FI( . , . )  

We investigate the following two payoff rules: 

R 1. Coin Toss (S imply  Plurality Rule,  Ties Broken R a n d o m l y )  

F I (  Y~ s i, ~ s])= 0 if Z s i < ~ s] 
leT  1 [eT 2 l eT  1 j e T  2 

1 if  ~ si> ~ s] 
leT  1 j e T  2 

1/2i f  ~ si= ~ s] 
leT  1 j e T  2 



R2. Status Quo (Simple Plurality Rule, Ties Broken in Favor o f  Team 2) 
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F I (  Z s i, ~ ,sj) = 0 if  Y, si<~ ~ s] 
leT 1 ]eT 2 leT 1 leT 2 

1 i f  Z s i > ~ s] 
leT 1 leT 2 

We interpret  the outcome favored by team 2 as the status quo in the sense tha t  it is imple- 

mented  as the default in case of  a tie election. 5 

Our assumptions thus model a two candidate (or proposal) election with members  

of  T 1 each getting a payoff  of  1 i f  its candidate (or proposal) wins 0 and i f  the  other  candi- 

date (proposal) wins. The payoffs to voters in T 2 are the  opposite. 

3. Basic characteristics of equil ibrium in part icipation games: the  chickens '  di lemma 

Having described the formal structure of  a participation game, our next  task is to investigate 

equilibrium in the game. Play of  the game reflects a basic tension between a mot ivat ion to 

vote in order to obtain the winners '  payoff  and a motivat ion to abstain in order to  free-ride 

on the voting of  o ther  members  of  one's own team. These two effects can be succinctly 

il lustrated in the context  of  two well-known games. 

First, we illustrate the competi t ive element  by  considering M = N = 1 for the coin- 

toss rule and c < 1/2. Since there is only one player on each team, there is no oppor tuni ty  

for free-riding. The b ima tdx  form of  the game is: 

Player 2 

not vote vote 

1/2 ] 1 - c 

I 
0 

0 I /2  - c 

l 
112 -c  

I 

not 

vote 
1/2 

vote 

1 - c  

Player 1 

5. Rule R2 is found in practice. The status quo wins in Oregon referenda. The oldest candidate wins in tied elections 
in France. In addition, analysis is usually more ~actable for R2 than for R I .  
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Readers will quickly recognize this game as a Prisoners' Dilemma. The competitive aspect 

of the game induces voting. Of course, the game's unique Nash equilibrium is Pareto domi- 

nated by just tossing a coin without incurring the deadweight loss of voting. 

Second, we show the cooperative aspect by considering M = 2, N = 0 for the coin- 

toss, again for c < 1/2. Since there is no opposition, we have a pure public goods problem 

where free riding is the paramount consideration. The bimatrix form is: 

not 

vote 
1]2 -c 

1 - c  

Player 2 

not vote vote 

vote 

Player 2 

1/2 -c I l - c  

I 1 

1 - c  
I 

The game is a version of "chicken." There are two pure strategy equilibria, each 

with one player voting and the other abstaining, and there is a mixed-strategy equilibrium, 

with both players voting with probability 1 - 2c. 

Chicken demonstrates that mixed strategy equilibria and multiple equilibria are 

inherent in participation games. It also shows that symmetry is not a compelling criterion 

in "choosing" among equilibria. Although the mixed strategy equilibrium in chicken is 

symmetric in the players' strategies while the pure strategy equilibria are not, it is difficult 

to argue that the symmetric equilibrium is the "more reasonable" one. In fact, the 

asymmetric equilibria weakly Pareto dominate the symmetric equilibrium. Readers might 

heed this example when evaluating the various asymmetric equilibria that follow. 

The more interesting participation games arise when M, N > O, M+N > 2. As they 

combine the competition and coordination features of the above games, these situations 

might be labelled "chickens' dilemmas." 

By Nash's theorem, every participation game has a Nash equilibrium, possibly in 

mixed strategies. The study of equilibria begins with a description of the best responses 

of a player given the strategies used by other players: 

EV~ and EFiNV denote the expected payoffs to player i from voting Let and 

abstaining, respectively, given the strategies of other players. 
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Then: 

Voting (qi = 1) is a best response if  

A mixed strategy qi e (0, 1) is a best response if 

Abstention (qi = 0) is a best response if 

i>~ i 
E V v ~  EVNv  

i i 
EV V = EWNV 

i i 
EV V <~ EVNv  

We denote by m(n) the total number of actual voters in T I ( T  2) and by mi(n j) the 

total number of  actual voters in T 1 (T 2) other than iq). The expected payoffs can be ex- 

pressed as follows. 

For T 1 and R2 (status quo): 

EVv= 1" prob[mi + 1 > n ]  + 0  -prob[mi  + 1 ~< n] - e  

i EV'Nv= 1" p r o b [ m i > n ]  + 0 .  p r o b [ m i ~  < nl 

i i 
and EV V =EVNv iff c ; prob[m i = nl 

For  T 2 and R2: 

EV] V = 1 • prob[n] + 1 >~ ml + 0" prob[r~ + 1 < m ]  e 

EVJNv = 1 • prob[r~>~ m] + 0  "prob[n] < m ]  

and EV] V = EV]Nv iff c = prob[ n i -- m-1 ] 

For T 1 and R 1 (coin-toss): 

EViv = 1 • prob[mi + 1 > n ]  + 1/2 p rob[mi+  1 --n] + 0 "  prob[mi + 1 < n ]  - c  

i EVNv  = 1 • prob[mi > nl + 1/2 prob[mi = nl + 0 "  prob[m i < n ]  

i i 
and EV V = EVNv  iff 2c = prob[m i = nl + prob[m i = n-1 ] 

Symmetric expressioL~s exist for T 2 under R 1. 

Using these best-response relationships, we have succeeded in identifying the 

following equilibria: 

(1) All pure strategy equilibria. Necessary and sufficient conditions for the existence of  

pure strategy equilibria, indicated in Section 4, show that pure strategy equilibria 

arise only in degenerate cases where c = 0 or c is very large or in limiting cases where 

M = 0 o r N =  0 o r M  ; N .  

The interesting equilibria involve some use of  mixed strategies. 
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(2) Quasi-symmetric mixed strategy equilibria. 

Definition: An equilibrium is quasi-symmetric if  

i 

i l ,  i 2 e T l ~ q i  l = q i 2 i f q i  1 e (0 ,1)  a n d / 1 , j  2 e T2=~r/l=r]2ifr]l e (0,1).  

In other words, if  any member of a team is mixing, everyone on the team is mixing 

with the same probability. This paper focuses on quasi-symmetric equilibria. They first 

occur in Section 5 which contains detailed analysis of  the "mixed-pure" case where all 

the members of  one team use pure strategies and all the members of  the other team use 

mixed strategies. 

Definition: An equilibrium is totally quasi-symmetric if  the equilibrium is both 

totally mixed 6 and quasi-symmetric. The equilibrium is denoted as (q, r). 

We have been able to analyze some totally quasi-symmetric equilibria. Section 6 

covers two cases. First, in the very special case when M = N and (R 1), we examine the 

symmetric equilibrium where r = q, i.e., (q, q). Second, in general, we analyze equilibria 

of  the form r = 1 - q, i.e., (q, 1 - q). We conjecture that the class of all totally quasi- 

symmetric equilibria is much larger than those we have been able to investigate. 

After presenting the various equilibria, we introduce a numerical example in Section 

7. Analysis of  how equilibrium changes when M, N, and c change and results concerning 

expected turnout and plurality are presented in Section 8. 

4. Pure strategy voting equilibria 

Proposition 1. An exhaustive description of  equilibria where all voters use pure strategies 

is given by: 

R 1. (We omit the laborious but trivial case of  c = 1/2.) 

1. If  c > 1/2, the only Nash equilibrium has no one voting. 

6.  S t ra t eg ies  axe t o t a l l y  m i x e d  w h e n  n o  p l aye r  uses  a pure strategy. 
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2. If c < 1/2, M /> 1, N = 0, the set of  all pure strategy equilibria contains the M 

asymmetric equilibria in which exactly one of  the players of  team T 1 votes and 

everyone else abstains. Similar equilibria exist for N >/1, M = 0. 

3. Ire < 1/2, M = N  ~> 1, there exists a unique pure strategy equilibrium with everyone 

voting. 

R2. 

4. I f M / >  1, N = 0, the condition is identical to case 2. 

5. I fM = 0, N>~ 1, no voting is the only Nash equilibrium. 

Proof: Proof of  statements 1-5 is trivial. It remains to show that there are no other totally 

pure strategy equilibria. 

If  c > 1/2 the proof  is obvious for R1. Suppose c < 1 / 2  for R1, and that there is 

a Nash equilibrium with exactly m players in T 1 voting and n voters in T 2. We must show 

that if  M 1> 1, N / >  1, and if it is not the case that rn = M = N = n, a pure strategy Nash 

equilibria does not exist. There are five possibilities: 

(1) m > n + 1. In this case no individual's decision can be decisive, so all players have 

an incentive to abstain. 

(2) m + 1 <n .  Same argument as in (1). 

(3) m = n. Since M # N we know there is some nonvoter. Every nonvoter is decisive 

and can increase his payoff  by 1/2 - c by voting. Hence nonvoters will have an 

incentive to vote. 

(4) rn = n - 1. If there are any nonvoters in T 1, then the argument in (3) applies to 

them. If there are no nonvoters in T 1, then m = M i> 1, so there are some voters 

in T 1. These voters get - c by voting and 0 by not voting, so they are better  off  

not  voting. 

(5) m = n + 1. Same argument as in (4), applied to T 2. The proof  f o r R 2  follows an 

identical line of  argument to the above. 

The conclusion is that pure strategy equilibria fail to exist except for a few very 

special cases. We therefore turn to equilibria involving mixed strategies. 
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5. Mixed-pure strategy equilibria 

This section characterizes and demonstrates the general existence of  equilibria in which all 

players on one team vote with an identical probability strictly between 0 and 1, k players 

on the other team vote with probability 1, and the remaining players vote with probability 

0. They are denoted by (q; k) and (k; r), depending upon which team uses mixed strategies. 

These equilibria exist in abundance. Nonetheless, they share a number of common proper- 

ties, which will be discussed at the end of the paper. 

We now develop the "k equilibria" by considering seven exhaustive cases. We begin 

with rule R2 and then turn to rule R 1. 

The status quo rule, pure strategies for T 2 

Casel.  R2, k = 0 f o r T  2. 

We begin with N = 0, a generalized chicken game for the status quo rule. Consider 

the necessary and sufficient condition for q to be a best response for voter i in T 1 when 

N = 0. We must have ( forM > 1): 

c = prob[m i = 01 = (1 -q)M-1 

1 

q(c ) = 1 -c M" 1 

(2) 

Thus, for every c there is a unique symmetric mixed strategy equilibrium in addition 

to the M pure strategy equilibria with one person voting. 

Now when N > 0, for k = 0 to be an equilibrium we must, in addition to (2), satisfy 

the necessary and sufficient condition for nonvoting to be a best response for voters in T 2. 

This condition is: 

c~> prob[m = 1] =Mq(1 _q)M-1 (3) 

c M'0 such that an equilibrium of  this From these two conditions, we obtain a rnin 

variety exists for all e /> cM~ O. Solving the equations, one obtains mtn 



1 M-1 
cM"Omm = (1 - ~ )  
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M,O 1 
q(c . ) = - -  

mzn M 

1 
M-1 q(c) = 1 - c 

The (q;0) equilibrium for N > 0 is illustrated in Figure 1. For eachM in the figure, 

an equilibrium graph is formed by two distinct curves which intersect at cM~ O. The (q;0) 
mzn 

graph is the portion of  the graph to the right of  c M'0.. The other portion of  the graph is 
mm 

discussed later. 

Several interesting properties of  this equilibrium can be noted immediately. There 

is low turnout; and the equilibrium exists only when substantial costs are present. When the 

equilibrium exists, turnout is decreasing in the cost of voting, as would be expected by the 

conventional decision-theory approach (eq. 1). The equilibrium is independent of  N. 

As an example, consider M = 2, c = 1/2. In this case, q = 1/2; expected turnout is 

1 voter; expected plurality is one in favor of  T 1, and T 1 wins with probability 3/4 no matter 

how large N becomes. 

Case 2. R2, 0 < k  ~< min[M - 1, N] for T 2. 

(2) to: 

For  an equilibrium to result in which k members of  T 2 vote, we must modify 

c = prob[m i = k] = I k  1) qk(1-q)M-k-1  

Non-voters in T 2 must satisfy: 

c i> p r o b [ m = k + l ]  =(kM++l)qk(1-q) M - k ' l  

An additional equilibrium condition must be satisfied by voters in T2; 

(4) 

(5) 



20 

. m  

~ O z  E 
; o -.=_ 

I-- "B 
I -  LIJ 
(,/') 

E 

I-- 

03 

d 

O,J 

OJ 
II  

I !  

I I I 

o d (5 

~u!,tOA J.o ,~4.!l!qDqoJcl 

0 

d 

¢0 

d 

d 

• t- 

O ,. 
0 

0 o 

o 
d o 

d 

OJ 

d 

m 

0 

0 



21 

c ~< prob[m = k] - (1-q)M-k (6) 

Now since (4) and (5) require q < k + l  but (4) and (6) require: 
M 

k 
q ~< "77, (7) 

M 

(5) is redundant, and (4), (7) characterize these equilibria. 

The (q;k) equilibria for k 1> 1 are shown in Figure 2, M = 20. The illustrations 

indicate that the equilibrium for k > 0 is totally opposite in character to that for k = 0. 

It is easily verified that for each k, c and q are now positively rather than negatively related 

[i.e., c'(q) > 0 if 0 ~< q ~< ~ ] .  We now obtain a cM'kmax such that an equilibrium of this 

variety exists for all c <~ c M'k . 
max 

Specifically, evaluating (4) at q = k/M shows 

cM, k = (34.11 kk(M_k) M-k-1 

max \ k ] M M- 1 

Note that at c M'k expected turnout is 2k and expected plurality is 0, and for c <c  M'k 
max max 

expected turnout is between k and 2k and expected plurality is not zero, but always favors 

T 2. Contrary to the conventional model, expected turnout is an increasing function of  

voting cost. 

Of particular interest is k = 1. One finds readily that c M'O = c M' 1, which establishes 
min max 

the existence of mixed-pure strategy equilibria for all values of  c. 

Proposition 2. Mixed-pure strategy equilibria exist for all values of  c e (0,1) i f  M, N >1 2. 

In the k = 1 equilibrium at c M'I , T 2 wins with probability [2-  l /M](1 - I/M) M-1. 
max 

This equals .75 for M = 2 and has a limit of  2e -1 = .736 as M * ~. T 2 is even more likely to 

win for c <Cma x. Thus, in the k = 1 equilibrium, T 2 is always more likely to win regardless 

of  its size relative to T 1 . 
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Another interesting case is k=M-1.  We again readily find that c M'M-1 = c M' I  = 
max max 

c M'O. . Together with proposition 2, this establishes: 
m l n  

Proposition 3. For c ~< c M' I  , M 1> 3, N / >  2, mixed-pure strategy equilibria exist for at 
max 

least two values of  k. 

M,M-1 
At Cma x , q = (M-1)/M and expected turnout is 2(M-l)  which can be very 

substantial! The probability that T 2 wins is 1 - ( I - I /M)  M. As M,N enlarge (providing M-1 

~< N), this probability approaches 1-e "1 = .632. As with the k = 1 equilibrium, for all 

c, T 2 is more likely to win in this equilibrium. 

The status quo rule, pure strategies for T 1 

Case 3. R2, k = 0 o r l f o r T  1. 

Proposition 4. There is no mixed-pure equilibrium with k = 0 or 1 for T 1 . 

Proof." a. If  k = 0, abstention is a unique best response for all members of T 2. 

b. If k = 1, r must satisfy 

(i) r e (0, 1) 

(ii) c = Prob[n] = 01 = (1 -r) N- 1 

(iii) c ~< Prob[n=0] = ( l - r )  N 

These conditions cannot be satisfied for c e (0, 1). 

Case4. R2, 2 < k ~ < m i n  [ M , N ]  f o r T  1. 

The analogous conditions to Case 2 are: 

U - l )  rk .  1 (1.r)N_ k 
C = k .  1 (4') 

c > ~ ( N )  r k ( 1 - r )  N - k  (5') 
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I N ) rk-l(1-r) N-k+l (6') c--.< 1 

Once again, (5') is redundant while (4') and (6') yield 

k-1 
r~< ~ (7') 

N 

Equilibria are thus characterized by (4') and (7'). As before, it is easily verified that 

c and r are positively related [c'(r) > 0 when 0 ~< r ~< k-1 - ~ - ]  and 

N,k 
C 

max 
=Ok'-l) ( k - 1 ) k - 1 -  1 NN-I(N'k+I)N-k 

Note that expected turnout at Cma x is 2k-1 and expected plurality is 1 (in favor of  T 1) 

at Cma x, and for c < Cma x expected turnout is between k and 2k- 1 and expected plurality 

always favors T 1 by more than 1 vote. Expected turnout is an increasing function of  voting 

cost, for c ~< c M'k . 
max 

Another result parallel to Case 2 is: 

N,2 N,N 
¢ = C max max 

Results concerning the probability of winning, the existence of  multiple equilibria, and 

turnout also parallel Case 2, except T 1 is now more likely to win than T 2. In particular at 

U,N 
, expected turnout is ZN-1. Note that when M=N, at c M'M- 1 and c N'N, nearly 

max max max 

everyone votes! 

Coin-toss rule 

Our mixed-pure strategy results for the coin-toss rule are limited. Without loss of  generality, 

we assume the pure strategies are employed by T 2. 

Case5. R I ,  k=0. 

With N = 0, we obtain results similar to Case 1, with expected turnout decreasing 
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in cost. In equilibrium, 

2c = Prob[m i =  0] = (1-q)M-1 (8) 

1 

q(c) = 1 - (2c )  M - l ,  0 < c ~ <  1/2 

One can easily see that each player's probability of voting goes to 0 for any fixed c, 

as M becomes large. A somewhat more interesting question is how expected total turnout 

changes as there are more players. Expected turnout is: 

1 

Mq = M-M(2c) M-1 

By a simple limiting argument, one can show that 

1 

lim[M-M(2c) M-l] = £ n ( 1 )  andlim(1-q)M=2c 
M+~ M+~ 

Consequently, turnout is very small, even for very small c. For example, ~n(1/2c) = 13.12 

for c = 10-6. 

For N > 0, we obtain a result similar to Case 3. 

Proposition 5. There is no equilibrium for k = 0, N > 0, R 1. 

Proof: Equilibrium would require (8) and 

2c t> Prob[rn=l]  +Prob[m=0]  

= mq(1 _q)M-1 + (1 _q)M 

Taken together, (8) and (9) imply 

(9) 

o >  ( U -  1)q 

which contradicts q e (0,1). This establishes the desired result. 
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Case6. R1 ,  l <~k<~M-1. 

The equilibrium conditions that must hold are: 

2c = P r o b [ m i = k  - 1] + P r o b [ m i = k ]  

2c ~> Prob[m = k + 1] + Prob[m = k] 

2c ~< Prob[m =k]  + P r o b [ m = k -  1] 

(8') 

(9') 

(lO') 

Note that (10') and (9') imply 

Prob[m = k - 1 ] / > P r o b [ m = k + l ]  

By the properties of the binomial distribution, this condition implies (Feller, 1957, 

Theorem 1, p. 140). 

k + l  
q < ~  (7") 

M+I  

k + l  
Moreover, at q = k /M <" 

M+I  

M,k 
c(k/M) = c = c(k/M) forR2 

max 

These results suggest that R1 gives results similar to R2, although we have not 

analyzed (8') - (10') fully. 

Case 7. R I , k = M ,  M <~N. 

The equilibrium conditions here are 

2c = Prob[m i =M - 1] = qM-1 (8") 

2c /> Prob[m =M] =qM (9") 

2c <~ Prob[m =M] +Prob[rn = M -  1] 

= qM +MqM-I(1 .q) (10") 

Constraints (9") and (10") are nonbinding so this equilibrium exists for all values 

1 

of c < 1/2. Members of T 1 vote with probability q = (2c) M- 1 which approaches 1 as M ÷ -.  
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Furthermore,  the election approaches a tie. The probabil i ty tha t  the "commit ted"  side, 
1 N 

T 2, wins is 1-2 M ' I  e M-1 which approaches 1-c as M, N become large. Thus T 2 is always 

more likely to win. Turnout  is once again increasing in cost and may be substantial. 

6. Totally quasi-symmetric equilinria 

A. Coin-toss  rule 

Since we are looking at totally mixed strategy equilibria, q e (0,1) and r e (0,1). In order 

for (q,r) to be an equilibrium, q must  be a best response for any player on T 1 and r must  

be a best response for any player on T 2. A necessary and sufficient condit ion for this is 

tha t  in equilibrium each player is indifferent  between voting and not  voting. Recall that ,  

for T1, indifference implies 

2c = p rob[m i =  n] + prob[m i = n -  1]. 

If  o ther  members  of  T 1 use strategy q and members  of  T 2 use strategy r, then 

prob[mi=n] = 
min[M-l'N]~'ll(Nk) 

k I qk(l'q)M-l-krk(l'r)N-k 
k=0  

and 

min[M-1,N-1] 
prob[m i=n- 1 ] = Z 

k=O 

(51) 

Therefore, the necessary and sufficient condit ion for q to be a best response is: 

2 C  = qk (1.q )M- l -krk (1.r ) N-k 

l qk (1.q ~ -  l -krk + l ( l _r )N- l-k 

(11) 
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Similarly, we can derive the necessary and sufficient condi t ion for a member  of T 2 to have 

a best response r, given that  members  of  T 1 use q and all o ther  members  of T 2 use r. This 

condit ion is: 

2C = qk + 1 ( 1-q )M" l'kr k( l-r#" 1 -k 

min[M-1,N-1] 
Z 

k=0 

(12) 

Together,  (11 ) and (12) characterize all (q,r) equilibria. 

We now examine two special cases of  totally mixed strategy equilibria. 

Case 8: (q,q) equilibria f o rM = N > 1. 

Recall that  when M = N > 1, there is a pure strategy equilibrium with everyone 

voting, generalizing the result of  the basic Prisoners' Dilemma. However, players may also 

consider strategies that  allow them to free ride on the voting of  o ther  members  of their  

team. In particular, we can construct  a symmetric,  total ly mixed equilibrium with q = r 

or (q,q), for some values 7 of c < 1/2. Condit ions (11) and (12) are the same, and reduce to 

2C = 

M-1 
+ 

k=O 
IM'kl)(k+M1)q2k+l(1-q) 2M-2k-2 (13) 

This expression determines the voting cost c(q), associated with every possible (q,q) equili- 

brium. One might suspect at first tha t  for every c < 1/2 (i.e., as long as voting is not  a 

dominated strategy), there is at least one symmetric equilibrium q. This is not  the case. 

For  sufficiently small c, there is no (q,q) equilibrium. In other  words, these equilibria exist 

only if  c is large enough! 

7. We again omit the knife-edga case of  c ffi ! / 2 .  
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As an example, consider M = N = 2. Then for c < 3/8,  there is no symmetric  equili- 

brium. In this case, c(q) is shown as the right curve in Figure 3. The left curve is discussed 

later. Note that ,  for 3/8 < e < 1/2, there are two mixed strategy equilibria. Note further  

tha t  there is a min imum cost, c2tZ.n = 3/8, at which q = 1/2. In general, we can show: 

Proposit ion 6: 

(a) 

(b) for large M, c (1 /2)  '~ 

(c) a sM + ~, c (1 /2 )+  0. 

~ /Tr (2M-1)  

(d) In eq. (13), c(q) has a local min imum at q = 1/2. 

Proof." The proof  uses a well-known conbinatorial  ident i ty  (Tucker, 1980, p. 64): 

k=O r+k ~A+r]" 

For  details, see the Appendix.  

(14) 

Con/ecture: For  each integer A such that  M = N = A > 1, there exists a min imum voting 
A,A 

cost, denoted by c such that :  
rain 

A ~ A  , 
(1) The unique symmetric equilibria at c is q = 1/2. 

min 
A A  

(2) c(q)=c(1-q)>~c '. f o r q e ( 0 , 1 ) .  
m l n  

(3) For every e e (0, 1/2) and every e > 0, there exists an A e, such that  for all 

A >~ A e there exist exactly two equilibria, qA(e), q'A(e), such that  

0 <qA(e)  < e a n d  1 - e  < q~4(e) < 1. 
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The last part of this conjecture would be particularly interesting since it implies that with 

large numbers of voters there are exactly two (q,q) equilibria, one with essentially everyone 

voting and one with essentially no voting. Numerical calculation supports this conjecture. 

Figure 4 shows the computed graph of the (q,q) equilibrium correspondence for values of 

M = 2, 5, 15, 50, 125. 

Case 9. Equilibria in which r = 1 - q, R 1. 

In this case, equations (11 ) and (12) reduce to 

2c=qN(1.q)M. 1 Irnin[Mk~=':, N] (M£1) (N) + 

k=O +1 

and 

2c = qN(1.q)M_ 1 [min[~N-1] 
L k=O 

(M) (~1)__+l-qq min[M-1,N-1]k=OZ (k 41IV-I) 1 +  k 

By using (14) and other identities, one can show that the two equations are equivalent and 

reduce to: 

I c(q)= 1/2 

Calculating c'(q ) gives: 

)qN.l a.q,  2C =/M_I [ qN(1-q)M-1 + M N'I 

As before, one can analyze properties of these (q, 1- q) equilibria by examining 

qN(1-q)M-I+(M+MN-I)qN-I(1-q)M 1 

SO 

l {M+N-11 c'(q)= "~ ~ M-1 ] qN'2(l-q)M-2[N(N-1)(1-q)2-M(M-l)q2] 

> < 
e'(q) ~ 0 iff q = q* = 

> ~ )  + v/~(N-1) 

(15) 
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In addition, c(0) = 0, c(1) = 0, so that c(q) in general appears as the left curve in Figure 3. 

The actual curve in that figure represents the equilibrium strategies of  one team in the 

(q, 1 -q) equilibria when M = N = 2. 

Solving for Cma x = c(q* ), yields: 

M , N  _- 

m a x  

(M+N-1)! ( ~ )  + ~ ) )  

M!NI x / (M-1 ) (N-  1) 

[N(N- 1 )1N/2[M(M-1 )]M/2 

Observe that, as in Figure 3, for all c < Cmax, there are two equilibria of this variety, one 

with q > q* and one with q < q * .  WhenM =N,  we have 

q * =  1/2 

Cma x = = Cmi n 

Assuming our earlier conjecture about the M = N case is true, we have equilibria 

for all values of  c < 1/2, with q = r for c > c M'M <c M'M 1/2 max' q = 1 - r fo rc  a n d q  = r =  max 

for c = c M'M. This is illustrated in Figure 3. max 

B. Status quo rule 

By methods similar to those used in the analysis of  the coin-toss rule, one can obtain two 

necessary and sufficient conditions for (q,r) to be a totally quasi-symmetric equilibrium 

in the status quo rule game. These are given below: 

c = Y~ qk(1-q)M-l'krk(1-r)N-k (16) 
k=0 

min[M-l'N-1] ( M ) (N-kl ) qk+l(l q)M-l-krk(l r)N'l"k (17) 
c = ~ k+l " - 

k=0 
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Case 10. Equilibria in which r = 1 - q, R 2. 

We concentrate  a t ten t ion  on "r = 1 - q"  equilibria. In this case, (16) and (17) reduce 

to 

c = qN(1 _q)M-1 y., , (16 ' )  
k=O 

c = qN(1 .q)M-1 Z (17 ' )  
k=0 k+l  

Again, using combinatorial  identities, 8 (16 ' )  and (17 ')  are equivalent and reduce to: 

(18) 

Once again, we can analyze the relationship between c and the equilibrium value(s) of  

q and r. It can be shown that  c(q) is single-peaked as was the  case for the coin-toss rule 

and that  

N q* = 
M + N  - 1 

c = c(q*) = 
max ( M + N -  1 ) M + N -  1 

M , N  N 
At c , expected plurality is 

max M + N - 1 
in favor of  T 1 and expected tu rnout  is 

(2M - 1)N/(M + N -1 ). Both sides vote with probabil i ty 1/2 if  

8. Note that )(:) (=1 [ M 1 M Mq N M M 1 M÷N.I -1 

k.=o k+l = ~- ~ k+1 = ~ "= k~o ~M-I I=~ N f 
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The (q, l-q) equilibria are illustrated in Figures 1 and 3. In Figure 1, the (q, l-q) 

equilibria are to the left of  the intersection. In Figure 4, the curve to the left of  the 

tangency represents the (q, l-q) equilibrium. 

7. A numerical  example 

At this point,  we have found so many equilibria tha t  it may be helpful to recapitulate via 

a numerical example where c = 20/81,  M = N = 3, and the coin-toss rule is in effect. In this 

case, we have found 11 equilibria. 

The obvious equilibrium is the one with every citizen voting. The parallel mixed 

strategy equilibrium of  (q,q) fails to exist for the assumed cost. By Proposit ion 6, c(1/2)  = 

5/6 > 20/81;  consistent with our earlier conjecture, numerical analysis reveals that  (13) 

has no real roots for c = 20/81. 

There are, however, two totally mixed quasi-symmetric equilibria found by algebraic 

manipulat ion of  (15). They are: 

q = 2/3, r = 1/3 

q = 1/3, r = 2/3 

A fourth  equilibrium results from solving (8")  with k = 3, c = 20/81, and M = 3. 

The solution is q = 2vtT-o-/9. There is, of  course, another  mixed-pure equilibrium with 

k = 3 and r = 2 lx/T-0-~. 

With k = 2, c = 20/81,  M = N = 3, using (8 ' )  - (10 ' )  one can show there is an equili- 

br ium with all members  of one team voting with probabil i ty 1 -v/-4T/9 and exactly two 

members  of  the other  team voting. In fact there are six such equilibria, since there are two 

teams and three ways to have exactly two members  of  one team voting. 

It is easily verified tha t  there are no (k,q) equilibria for either k = 1 or k = 0. 

The fact that  we constructed only very special varieties of  equilibria suggests tha t  
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the multiple equilibria problem may be even more pervasive than we show in this paper. 

We conjecture that generally there are even more equilibria than we have found. 

8. Analysis of equilibrium behavior 

In this section we examine the effects of  the cost of  voting, the size of  the electorate and 

the election rule on equilibrium expected turnout, expected plurality, and probability of  

winning. In addition we make some observations about the efficiency or welfare properties 

of equilibrium outcomes. 

Of the many equilibria, not all share similar properties. When the electorate is small 

the multiple equilibria problem is particularly severe, and for this reason we are hesitant 

to make strong claims for small electorates. However, with larger electorates all equilibria 

seem to be of  only two types which have interesting and intuitively plausible properties. 

For this reason, in this section, we stress asymptotic results that apply to large electorates. 

Effect of the size of the electorate on equilibrium turnout 

The paradox of not voting basically reduces to asking why does anyone vote when either 

M or N is large or when M/(M+N) deviates substantially from 1/2. Since the primary moti- 

vation for this paper is to reexamine the "paradox of not voting" in a game-theoretic 

context, a natural place to begin is to examine limiting properties of  the equilibria. 

There are a number of different ways one can develop an analysis of limiting 

behavior. First, keep M = aN constant and allow M, N to grow. Second, fix M - N = A 

constant and allow M, N to grow. Finally, fix M(or N) and allow the magnitude of A to 

grow. The basic difference of  these three approaches is that, when M+N goes to infinity, 

M/(M+N) approaches a/(l+a), 1/2, and 0 (or 1), respectively, depending on the relative 

rates at which M or N grow. 

When we first considered pure strategy equilibria, the only equilibrium with sub- 

stantial voting occurred with M = N. There was a full turnout equilibrium that held for any 

value of M, no matter how large. We first believed this to be a knife-edge case and, for large 

electorates, turnout as a percentage of  the electorate might approach zero as a deviated 
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slightly from 1.0. After all, Chamberlain and Rothschild (1981) had shown conclusively 

that, for a fixed level of turnout, the probability of  being decisive approaches 0 very rapidly 

when the binomial probability of  voting for T 1 deviates even slightly from .5. 

Upon further analysis, the full turnout, M = N equilibrium now appears as a limiting 

rather than a knife-edge case. Note, first, that the conjecture about limiting behavior of the 

(q,q) equilibrium where a = 1 states that there are essentially two equilibria for large elector- 

ates, one where nearly everyone votes and one where nearly no one votes. 

Thus, when M = N, as the electorate gets large, for almost all values of  c, there will 

be exactly two (q,q) equilibria, one close to 100% turnout and one close to 0% turnout. 

We further conjecture that if  a = 1 there are similarly two (q,r) equilibria, one with high 

turnout and one with low turnout. 

A second reason for regarding large turnout as a limiting case emerges from an 

analysis of mixed-pure equilibria. Once again, as M and N get large, there are "essentially" 

two equilibria. In one type of  equilibrium, turnout approaches twice the size of  the minori- 

ty and in the other type turnout approaches 0%. This is stated more formally in the 

following proposition: 

Proposition 7: Le tM > 2. Then with (R2) for all integer k 

lim l i m c  M ' k  = lim lim e M ' M - k -  ( k / e ) k  
M ÷ ~ N - ~  max  M÷ ® N÷ ~ max  k! 

The intuition behind this result is the following. The probability of  obtaining k 

successes in M-1 binomial trials with success probability k / M  is c M" k. As M -~ ~, k / M  + O, 
max  

and the result follows directly from the Poisson approximation (Feller, 1957, p. 143). 

The formal proof  is in the Appendix. This convergence process is illustrated in Figure 5. 

That figure graphs the locus of  Cm x points, k = 1, ..., M- 1 for M = 7, 20, 50, 200. To 

make the graph easier to read, a smooth curve has been drawn through each set of  (M-1) 

points. 



38 

I 

W " 0 
_.I " 0 

fY  i i  

I.I- :~) 

I-- o ~ 

o 
_J 

f 

d 

- o  

d .= 
0 

o 

0 o 

0 

I I I I 
OD CO ~ OJ 

o o o o 

5u!J,0A ~0 ,~J,!l!qDqO~cl 

0 
0 



39 

Corollary: Fix/3 e (0,1) and M > 2. Let k(M) be the least integer greater than or equal to 

3(M- 1). Then lira lira c M' k(M) = O. 
max 

M÷" N +® 

Proof: Trivial 

Corresponding results for c N' k equilibria are easily obtained by reversing the order in which 

limits are taken. We conjecture a similar result holds for R 1. 

Proposition 7 and the corollary sharply restrict the types of mixed-pure equilibria 

that exist for large M and N. Indeed, almost all mixed-pure equilibria disappear, in the 

sense that they are not supported by positive costs of voting in the limit. Those that remain 

have k "close" to the size of the minority or k "close" to 0. In the latter type of equi- 

librium, expected turnout converges to 0% of the electorate. In the large k type of equi- 

libria, expected turnout as a proportion of the electorate converges to 2min(M,N) 
M+N 

Summarizing the limiting results so far, we find that all equilibria have either 0% 

turnout or a percentage equal to twice the minority percentage in the electorate (note that 

for M---N, this is 100%). These results support the notion that turnout should decline as the 

majority gets large relative to the minority, but they do not support the proposition that 

voting turnout will become infinitesimal in large jurisdictions. 

In contrast to the (q,q) and (q,k) equilibria, the (q, l-q) equilibria completely 

disappear in large electorates. Recall that 

Cmax = (M+N- 1 ~ + N -  1 

for the status quo rule. This is just the central term of the binomial distribution with 

M+N-1 trials and success probability N/(M+N-1). Its asymptotic approximate is 

"~, / (M+N-1)  

%ax -7 N) 

Now ifM = aN 
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% .(1~ a) 
Cmax -~ 2zw.N a s N ÷ -  

while i fM = N + A 

Cma x -~ asN -~- (19) 

Thus, the (q, 1 -q) disappear in large jurisdictions. 

When the coin-toss rule is in effect, results are similar to those for the status quo 

rule. Note that when M=N, 

Cmax/coin-toss Cmax/status quo 

and for all M, N 

c(ll/coin_toss - 12Ii+-~ c(1)/statusqu o 

when a solution exists for q = 1/2. 

A t  this point, it is worthwhile to pause to note that much of the past argument 

that voting is irrational in large electorates has been founded on the belief that the relative 

size of  c had to be on the order of  the very small costs implied by (15) and (18), the equi- 

librium conditions for the (q, 1 -q) equilibria. Uncovering the mixed-pure equilibria indicates 

that, quite the contrary, large turnout can exist even with substantial costs. 

Expected plurality and the probability of winning 

There are two natural intuitive conjectures about expected plurality and the probability of  

winning. A naive view is that the majority will win. A somewhat more sophisticated view 

is that, in trading off  the cost of voting against the probability of being decisive, the 

minority will have incentives to vote more heavily than the majority, forcing ex- 

pected plurality to zero. Neither of  these conjectures holds for all the types of equi- 
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latter phenomenon appears more pervasive than the 

A .  ( q , q )  equilibria 

In the pure strategy, M = N  equilibrium of Proposition I, everyone votes and the outcome 

is a tie. In the corresponding (q,q) equilibria, expected plurality remains zero but, due to 

the mixing, the election ends in a tie only "on average". 

B. Mixed-pure equilibria 

The mixed strategies, however, also induce what might be termed a bias. Compare the 

mixed-strategy equilibria for M=0 or N = 0  with the pure strategy equilibria identified in 

Proposition 1. With large numbers of  voters, expected plurality changes from exactly one 

voter in the pure strategy case to l - I n ( c )  or 1-ln(2c).  More importantly, the unopposed 

majority wins only with probability 1-c (for the status quo) and 1-2c (for the coin-toss). 

The effects of  mixed strategies can also be seen in the more general mixed-pure 

• M k  M O  
equilibria. At the various c ' or at c '. , expected turnout by the mixers is just enough to 

max m m  

counterbalance the k pure strategy voters and expected plurality is zero or one vote. But 

as one moves away from Cma x,  expected plurality increases to k voters and always favors 

the team that is "commit ted" to pure strategy voting. This bias in favor of  the pure strategy 

team holds whether that team is the majority or the minority. 

Although computation of  the probability of winning is complex in the case of  

mixed-pure equilibria, insight into the bias favoring the pure strategy team is available 

from considering the asymptotic results for (q;k) at c = 1/e when k = l  or k = M - 1 .  
max 

Section 5 has already established that the probabilities of  winning for the committed team 

in these two situations are 2e-1 and 1-e - l ,  respectively. In the k= 1 case, the mixers pay 

the cost of  voting with a probability that approaches zero. Their expected payoff, therefore 

is 1 -2e ' l  = 0.264. The nonvoters on the other team have an expected payoff  of  0.736 

while the single voter gets 0.368. In the k=M-  1 case, the mixers pay the cost with a proba- 

bility that approaches one, leading their expected payoff  to approach zero. The M-1 voters 

on the other team have an expected payoff  of  0.264 and the nonvoters obtain 0.632. Thus, 

in both cases, even the committed voters obtain a higher expected payoff  than the mixers. 
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We also note, for later reference, that every k=M-1 equilibrium at Cma x is Pareto dominated 

by several k = 1 equilibria. 

C. (q, l -q)  equilibria 

Finally, the behavior of plurality is only partly similar in the totally mixed (q, l -q)  equi- 

libria to what it was in the mixed-pure situation. At Cma x, each team votes in proportion 

to the other team's strength, and expected plurality is zero. In the neighborhood of Cma x, 

the minority always votes more heavily than the majority. But as there are always two 

equilibria for c < Cmax, there is always one equilibrium with the expected plurality favoring 

the majority and one with expected plurality favoring the minority. And for c sufficiently 

low, there are always equilibria with the majority voting more heavily than the minority. 

Effect of ti~e cost of voting 

As with the size of pluralities, there is some "common sense" intuition about the cost of 

voting and turnout that is inconsistent with our results. Common sense (that is, equation 

(1)), would hold that turnout should be decreasing in c. For the totally mixed equilibria, 

however, there are always two types of equilibria (except at Cma x or Cmin). In one type, 

turnout is decreasing in cost, but  in the other it is increasing. 

~ he mixed-pure equilibria have an unambiguous relationship to voting cost; for 

k/> 2, all equilibria have the voting probability increasing in cost. 

That voting can increase with cost seems counterintuitive from the viewpoint of 

the older decision-theory approach. When the probability that a voter is pivotal is fixed 

exogenously and held constant, it is apparent that turnout should decline as the cost of 

voting is increased. But in our model, the equilibrium condition for mixed strategies is that 

a voter must be indifferent between voting and abstaining. For this to hold, the cost of 

voting must be equated to  the probability that the voter is pivotal (equations 2, 41 8, 1 1, 

12, 16, and 17). As the cost of voting increases, this probability must also increase, 

endogenously. For certain equilibria and cost values, all voters on a team must increase 

their probabilities in order for the probability of being pivotal to increase and offset the 

increase in cost. 
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Another counterintuitive result concerning cost is that, asymptotically, turnout is 

very insensitive to changes in cost. Thus, for (q,q) equilibria under the coin-toss rule, turn- 

out approaches 0% or 100% of the electorate for all costs below 1/2. For (q;k) or (k;r) 

equilibria under the status quo rule, turnout approaches 0% of the electorate for all costs 

above 0-1, and either 0% or twice the minority's percentage for costs at or below e-1. We 

have already given an explanation for these results: turnout probabilities approach zero or 

one in large electorates. 

The voting rules 

As expected, the two voting rules induce strong differences in behavior for M or N small 

but become essentially identical as M and N grow large together. (In contrast, the Ferejohn 

and Fiorina (1974) model would hold that for allM, N, voting would occur under the coin- 

toss rule for c < 1/4 but under the status quo rule for c < 1/2). The differential effect of  

being the status quo team can be seen by comparing Figures 1 and 6. In Figure 1, we show 

the (q, l -q )  equilibrium when N= 1; Figure 6 presents the corresponding picture fo rM= 1. 

The right-hand part of  Figure 1 occurs when the one status quo voter has an equilibrium 

strategy of  not voting. It can be seen that there are strong differences in equilibrium proba- 

bilities as a function of  cost. 

In contrast to the above two polar cases, Figure 7 shows the status quo equilibria 

for M=N. It can be seen that, for small M, the centering point OfCma x is distorted from .5 

by the status quo rule but t h a t  as M, N grow, the (q, l -q )  approach the centered curves 

that one would obtain with the coin-toss rule. The figure also shows how the (q, l -q )  

equilibria vanish as M and N become large. 

Efficiency of voting equilibria 

The welfare measure we use to evaluate efficiency is the sum of expected payoffs to all 

players. In the coin-toss rule, the most efficient outcome generally occurs if  one voter on 

the majority team votes and all other voters abstain. Clearly this is never an equilibrium 

unless M=0  or N=0.  In the status quo rule, the efficient outcome is either no one voting 

(if N / >  M) or m= 1, n=0 (if M > N). This is never an equilibrium unless M=0 or N=0.  
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Thus equilibria are generally inefficient unless there is "only one team." This 

suggests that it is the competition between teams, rather than the free-rider problem within 

a team which is the source of inefficiency of majority voting equilibria. (Recall the 

Prisoners' Dilemma example, M = N  = 1 .) This is not surprising, since the act of voting results 

in deadweight loss. In fact, as we saw with the (q;1) and (q; M - l )  equilibria, high turnout 

equilibria are not only inefficient; they can even be Pareto dominated by low turnout 

equilibria. Similarly, in the pure strategy M = N  equilibria for the coin-toss, everyone votes 

even though the most efficient outcome has no one at all voting. However, there are 

generally two (q ,q )  equilibria for most values of cost, and one of these has almost no one 

voting. In other words, in our model free-riding (abstention) is generally "good." 

There is, however, a type of inefficiency that is caused by the free-rider problem: 

the minority may win. In our model, majorities will frequently free-ride more than 

minorities. This is consistent with the stylized fact that majorities tend to be "silent" and 

minorities active. On the other hand, it means that minorities may frequently win, even if 

they are very small relative to the population. Consider the mixed-pure (q; 1)equilibria 

with M > >  N and c close to 1/e. In these elections, this equilibrium is extremely inefficient, 

since the intense minority will win with probability 2(1-e-1) = .732. 

9. Conclusion 

There are several major insights which this game theoretic analysis has produced. First, 

we have shown that equilibria exist with substantial turnout even when both the majority 

is much larger than the minority and the costs of voting are exceptionally high. For 

example, in large electorates using the status quo rule, we show mixed-pure equilibria 

with turnout roughly equal to twice the size of the minority when the cost is nearly equal 

to 37% (e-1 x 100) of the reward (B). Second, with large electorates the many equilibria 

appear to reduce to just two types, the type just mentioned and a type with almost no 

turnout.  Third, we have shown that turnout may rise as the costs of voting rise. This results 

when all members of a team "adjust" their turnout probabilities so that the probability 
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of  being pivotal increases to match the increased cost of  voting. We have also shown that 

turnout is nearly invariant with costs in large electorates where turnout probabilities 

approach one or zero. Fourth, the actual split of  the vote is likely to be a biased measure 

of  the actual distribution of preferences in the electorate. Because majorities have greater 

incentives to free-ride, they will turn out less heavily than minorities. Elections can be 

relatively close, even when one alternative is supported by a substantial majority of the 

electorate. The probability that the majority will win does not seem to be closely related 

to the size of  the electorate or its size relative to the minority. However, turnout is quite 

strongly correlated with the relative sizes of  the minority and the majority. 
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Appendix 

P r o o f  of Proposition 6. We first prove two additional combinatorial identities. 

Lemma 

Y,A (A)( = A[ A+B'I~ 
, --  ] (14') 

A (;)(  B ) f A [A+B-21 [A+B-1)I 
Z k 2 = A -1) / A+r ] + ~ A+r 

k=0 k+r 
(14") 

Proof" 

k=G k k+r A (k-1)!(A-k)! +r k__Zl 

= A Z ~ 
]=0 ~.(A-]-I)! ]+r+l 

A+ B-11 
= A ~ A+r ] by (14) 

Similarly, 

k2 B = A ]+1) 
k=O +r j j!(A-j-1)! (=1)1 

The result (14") then follows by applying (14) and (14'). 

We now turn to the proposition. 
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(a) With q = 1/2, we use (14) to simplify (13) to 

M~I (M-X)(M) Mil (M-1)(M) 2c = (1/2) 2M'l + 
k=0 k k 0 k+l 

hence 

£ / "L c ~l~2j 2M-1 since M-1 

(b) Part (b) follows from recognizing that c(1/2) is the central term of a binomial 

distribution. The approximation is given by Feller (1957, p. 140). 

(c) Part (c) follows directly from part (b). 

dc 
(d) -7- , evaluated at q = 1/2 is given by: aq 

M-1 (M.lk) ( g )  M,1 (M~I) (M) 
(i) E (12-SM+16k) + Z (4-8M+16k) 

k=0 k+l k=0 

(ii) = I12_8M+4_8M+[16(M_I)(M+M_I)/(2M_I)]I 2_2M_ 1 (2~-1) 

(iii) = 0 

" d2c 
dq 2 , evaluated at q= 1/2 is given by: 

(iv) 2; (32M 2 - l12M- 128Mk+ 192k+ 128k2+80) 
k =0 k+ 1 
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+ Z (32M2- 48M - 128Mk+64k+ 128k2 + 16) 
k=O 

(v) = 

(vi) 

I (192-128M)(M-1) + (64-128M)M 
64M 2 - 160M + 96 + (M-l) 2M-1 

F(M-2)[(M-1)(M-2)+M(M-1), M + M-I~t2M-1//22M+1 
+ 128 (M-l) L ~ ~  + ~ JJt M / /  

= (16M-16)(2M-I) ( 2~M' l ) / 2M+l  

(vii) = > 0 for M >~ 2 
22(114-2) 

Steps (i), (iii), (iv), (vi), were produced by MACSYMA. 

Steps (ii), and (v) resulted from using (14') and (14") to eliminate the summations. 

Step (vii) is direct. 

Proof o f  Proposition 7. 

First recall that for M < N 

k = 1 .... ,M-1 

= 0 k = M , M +  I, . . .  

Fix M. Then lim c M'k = c M'k since c M'k 
max max max 

Simple algebraic manipulation shows that 

is independent o f N  forN >M. 
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M~I) kk(M-k) M'k'l 

MM-1 

k k k M-k-1 k " 
k! ( 1 - ~ )  ]__r 1 (1- M)  

( Since lim l -  = e -k 
m-).. 

and lim ~" 1-  =1 
M+- /=1 

we have 

M k lim lim c "'~' - max 
M+- M+- 

(k/e) k 
k! 

Finally, observe that cM'M'k =( M-k (M'k~-kkk-lMM-1 

M-k-1 MM-1 

M,k 
= C 

m a x  

Q.E.D. 
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