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The principles of fuzzy sets and their role in processing uncertain information will be 
discussed. The question of knowledge representation that is of significant importance in 
problems of system modelling will be formulated and considered at the level of fuzzy sets. 
Modelling and simulation realized with the aid of fuzzy sets are studied in a unified 
methodological framework. First a notion of the cognitive perspective is applied to 
articulate the problem in terms of specialized linguistic labels. Fuzzy models are 
constructed to capture logical relationships between the elements (linguistic labels) of the 
cognitive perspective. Several different classes of the models distinguished with regard to 
their structural dependencies will be analysed in depth. Finally a linguistic-numerical 
transformation constituting a type of model-environment interface will be studied. 
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1. Introductory remarks 

Uncertainty is an inherent component of real-life prob- 
lems. Human reasoning involves some general categories 
within which individual objects are ill-structured with 
imprecisely defined boundaries. Our abilities to carry out 
reasoning processes in the presence of incomplete and/or 
uncertain information are extraordinary. A vast number 
of tasks ranging from the almost trivial in our human 
sense (like driving a car, recognizing objects, avoiding 
obstacles), to the complex (e.g. managing manufacturing 
processes, scheduling, designing, etc.) still constitute a 
continuous challenge for computer algorithms. 

The reasoning processes of humans and those tradi- 
tionally implemented at the level of computers are 
realized at two essentially disjointed conceptual plat- 
forms. The former handle all pieces of information at a 
linguistic level in a symbolic-like fashion. The specific 
representation can be, and usually is, adjusted according 
to the problem at hand. The underlying concept on 
which all computer algorithms are based is that they 
almost exclusively process rigid and extremely 
non-modifiable numerical information. In order to pro- 
gress further one should look carefully at possible ways 
to narrow the existing gab. A possible alternative lies in 
the realm of soft computing. In its very essence this 
computational paradigm encapsulates diverse computa- 

0956-5515 0 1993 Chapman & Hall 

tional faculties including fuzzy sets, neurocomputations, 
genetic algorithms and genetic programming, to name 
just a few. The main objectives one strives to achieve in 
this area pertain to: 

(1) Processing information in linguistic form, coping 
with the incomplete and heterogeneous character of 
available knowledge; 

(2) Producing a user-friendly computing environment 
(both in terms of its customization meeting the needs of 
an individual user and in the sense of its increased 
interpretation capabilities). 

The aim of this paper is to study the principles of fuzzy 
sets as important concepts for knowledge representation, 
identify their role in system modelling and present an 
overview of relevant identification algorithms. 

The paper is structured as follows. First in Section 2 
we will look at the basic concept of a fuzzy set, analyse 
two groups of methods useful in membership function 
elicitation and refine differences between types of uncer- 
tainty that are appropriately conveyed by fuzzy sets and 
probability theory. In Section 3 we will consider basic 
calculus of fuzzy sets including logical operations realized 
for fuzzy sets and introduce the representation theorem 
erecting a bridge between fuzzy sets and set theory. We 
will then concentrate on transformations of fuzzy sets 
performed with the use of functions - this gives rise to 
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the extension principle. Section 4 will be devoted to the 
calculus of fuzzy relations. The methodological aspects of 
the use of fuzzy sets in modelling and simulation will be 
covered in Section 5. In this setting we will first address 
the notion of a cognitive perspective worked out on the 
basis of fuzzy sets being perceived as basic information 
granules. Different classes of fuzzy models will then be 
studied (Section 6) with a strong distinction made with 
regard to a level of structural relationships conveyed 
within the domain knowledge. Finally, a method for 
transforming the results of fuzzy modelling into numeric- 
al representatives will be studied in Section 7. 

2. An idea of fuzzy sets: origin and basic notions 

2.1. Sets versus fuzzy sets 

In order to introduce the idea of fuzzy sets it is worth 
starting from the formalism of two-valued logic. In this 
setting the notion of a set implies that considering any 
object, no matter how complex it is, we are compelled to 
assign it to one of the two complementary and exhaustive 
categories enumerated in advance (for instance, good- 
bad, normal-abnormal, odd-even, black-white, etc.). 
Sometimes this discrimination does make sense, in many 
other situations it could lead to some serious and evident 
dilemmas. For example, let us consider natural numbers 
and define two categories of elements (sets) such as odd 
and even numbers. Within this framework any natural 
number can be classified without any dawdling. On the 
other hand, in many tasks in engineering, manufacturing 
or management we are faced with classes that are 
ill-defined and do not retain clear and well-defined 
boundaries. Refer to the following statements (Zimmer- 
mann, 1992): 

length of the planning horizon is very long, 
computation time available in the system is short, 
demand variability is low. 

They contain terms without well-defined boundaries. 
Terms of the same nature could be found in rules 
(conditional statements) describing for example control 
policies. Two examples follow (Shin et al., 1992): 

if waiting time is long and slack time is critically short 
then date criteria are urgent, 
if process variable is too low then design variable is 
largely increase. 

Even in mathematics we may encounter some broadly 
accepted and used notions with gradual rather than 
abrupt boundaries. Refer to such well-known terms as: 
sparse matrix, a linear approximation of a function in a 
small neighbourhood of a point x0, an ill-conditioned 
matrix. We accept these notions as conveying useful 

information about the problem to be studied. Further- 
more they are not contemplated as essential defects in 
our everyday language but rather as their remunerative 
features indicating our ability to generalize and con- 
ceptualize knowledge. Nevertheless, we should stress 
that any of these notions is strongly context-dependent 
and by no means is its detailed definition universal. 
These predicates are meaningful and their semantics is 
obvious within a certain community (such as users, 
designers, programmers, etc.). 

An interesting example appeared in one of Borel’s 
works (Borel, 1950) where he is referring to the ancient 
Greek sophism of the pile of seeds, 

. . one seed does not constitute a pile nor two nor three 
. . . from the other side everybody will agree that 100 
million seeds constitute a pile. What therefore is the 
appropriate limit? Can we say that 325 647 seeds do not 
constitute a pile but 325 648 do?’ 

At a glance, it becomes evident that answers of the 
‘yes-no’ type cannot be viewed as a satisfactory solution 
to the problem. Clearly, each limit (border) point x0 used 
in the definition of the predicate pile (x) 

pile(x) = 1 1, if x3x0 
0 ifx<x 

> 0 

could contribute to an extremely simplified and unrealis- 
tic model of this concept. Any optimization of the limit 
value x0 standing in the above definition is therefore 
futile and does not bring us closer to an acceptable 
solution - the conceptual shortcoming of this Boolean 
model remains intact. The key issue of fuzzy sets is that 
one significantly extends the meaning of a set admitting 
different grades of belongingness (also known as mem- 
bership values) of an element in a set. This alleviates the 
previous problem by embracing all intermediate con- 
ceptual situations arising between complete (total) mem- 
bership and total non-membership. 

More formally, a fuzzy set A defined in a universe of 
discourse X is described by its membership function 
viewed as a mapping (Zadeh, 1965; 1973) 

A :X+ [OJ] 

The degree of membership A(x) expresses the extent to 
which x fulfils the category described by A. The condi- 
tion A(x) = 1 identifies elements of X which are fully 
compatible with A. The condition A(x) = 0 identifies all 
the elements which definitely do not belong to A. The 
higher the membership value at x, the higher the strength 
of adherence of x to A. Any physical experiment whose 
realization is a matter of energy or strength (e.g. pulling 
a rubber band) can serve as a metaphor for the notion of 
membership function (membership degree). 

Usually when discussing a fuzzy set we assume that 
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there exist elements with membership grades equal to 1. 
Sometimes one may not be able to assign any element 
with the highest degree of membership. To describe this 
situation we will introduce a notion of a height of a fuzzy 
set. 

By the height of a fuzzy set A, hgt(A), we mean a 
maximal value of its membership function, 

h@(A) = ~$4 

If hgt(A) = 1 then A is a normal fuzzy set, otherwise we 
will call it a subnormal fuzzy set. 

The support of A, supp (A), describes all elements of X 
with non-zero grades of membership in A, 

supp(A) = {x~XjA(x)>0} 

Before we proceed with further notions and a formal 
terminology of fuzzy sets, it is worth while summarizing 
some basic facts about set theory. In set theory all 
objects (sets) are fully described by so-called characteris- 
tic functions. The characteristic function of set A,,Y*, is 
defined as a two-valued mapping, 

XA :A%+ {o,lj 

taking its values in the set {O,l} such that 

xA@) = 
1, if xEA 

0, otherwise 

In fuzzy sets, the meaning of the fundamental predi- 
cate of set theory ‘E’ (element of) is significantly 
expanded by accepting partial membership of an element 
in a set. 

Identifying the universe of discourse X as a set of real 
numbers R, we can define fuzzy numbers. A fuzzy 
number A is a fuzzy set defined in R such that: 

(1) A is a normal 
one element of R for 

(2) A is convex 

v V A[h+ 
X~[O.l] x,yER 

fuzzy set, i.e. there exists at least 
which A(x) = I; 

(I- A)yl amin[A(x),A(y)]; 

(3) A is upper semi-continuous; 
(4) A has a bounded support. 

The collection of these conditions is modified quite often 
(usually some of the listed properties are dropped). In 
many situations it is worth restricting to piecewise linear 
membership functions. They give rise to a class of 
triangular and trapezoidal fuzzy numbers, see Fig. 1. 
This characterization of a fuzzy number is sufficient to 
capture uncertainty associated with the studied linguistic 
term. The triangular fuzzy number, denoted by 
A(xp,m,P) is uniquely characterized by its three para- 

a m 
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Fig. 1. Examples of (a) triangular and (b) trapezoidal mem- 
bership functions. 

meters, say m, CY and J3, where a < m<& see Fig. la. 
The first parameter embodies a so-called modal (typical) 
value of the term. The lower and the upper bounds are 
denoted by a and /3, respectively. For instance, a waiting 
time W in a queue where it typically takes 1.5 min to 
provide service while the bounds are 5 and 29 min, 
respectively, can be described as a triangular fuzzy 
number W( t;5,15,29). Since no additional information 
about the waiting time is available, the choice of the 
linear relationship is fully legitimate. If there is no 
uncertainty (fuzziness) then a = IZ = p and the fuzzy 
number reduces to a single pointwise quantity (real 
number). The trapezoidal fuzzy number admits an addi- 
tional degree of freedom that enables us to model a 
range of equally acceptable typical values. In this class of 
membership functions the modal value ‘m’ spreads into a 
closed interval [n,m], see Fig. lb. 

2.2. Membership function elicitation 

Two essential classes of methods of membership function 
elicitation can be distinguished: 

(1) Horizontal approach. The underlying idea of this 
method is to gather information about grades of mem- 
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bership of some elements of a universe of discourse in 
which a fuzzy set is to be defined. The process of 
elicitation of these membership functions can be con- 
cisely stated as follows, 

Consider a group of ‘M experts. Each of them is asked 
to answer the following question: 
can x0 be viewed as compatible with the concept 
represented by the fuzzy set A? 

where x0 is a fixed element of this universe of discourse 
and A is a fuzzy set to be determined. The answers are 
restricted to ‘yes’ or ‘no’ statements only. Then, counting 
the fraction of positive (‘yes’) responses n(xe) found in 
the experiment, the value of the membership function at 
this element of the universe of discourse is estimated as 

4x0) 
A(xo) = 7 

Thus the method is based on a straightforward counting 
of the responses of the experts and in this sense it 
reminds us of the procedure considered in the example 
cited by Bore1 (cf. Section 2.1). The evident advantage of 
this method lies in its simplicity. The experiment can be 
easily completed and new points of the universe of 
discourse added, if required. One can determine a 
standard deviation of the obtained estimates of the 
membership degrees. Its calculations follow an ele- 
mentary statistical analysis by noting that the ‘yes-no’ 
responses constitute realizations of a certain binomially 
distributed random variable. The standard deviation of 
A(xo) denoted by st-dev(A) (x0) is given by 

stdev(A) (x0) = [A (x0)/N] 112 

The derived values of the standard deviation of A can be 
utilized towards a simple acceptance criterion: accept 
A(xo) as a sound estimate of the grade of membership if 
its standard deviation [or a ratio of this deviation to the 
value of A( does not exceed a threshold level h. 

(2) Vertical approach. The main concept implemented 
in this approach is to fix a certain level of the mem- 
bership level (Y and ask a group of experts to identify a 
collection of elements in X satisfying the concept carried 
by A to a degree not lower than CL Denote a collection of 
the elements of X derived in this way by A,. We will be 
referring to this as an cw-cut of the fuzzy set A, see also 
Section 3.2. The experiment is repeated for several levels 
of CY. By virtue of the representation theorem (refer 
again to Section 3.2) the fuzzy set is ‘reconstructed’ by 
aggregating the obtained c-u-cuts. 

Comparing these two approaches we can conclude that 
they are conceptually simple. The factor of uncertainty 
reflected by the fuzzy boundaries of A is distributed 
either vertically (in the sense of the grades of mem- 

bership) or horizontally (absorbed by the limit points of 
the elicited a-cuts). The values of (Y or different elements 
of the universe of discourse should be selected randomly 
to avoid any potential bias furnished by the testees 
(experts). 

The evident shortcoming of these two methods resides 
within the ‘local’ nature of the experiments. This means 
that each grade of membership is estimated independent- 
ly from the others. The results may not then fully comply 
with a general tendency to maintain the form of a smooth 
transition from the full membership to the absolute 
exclusion that is so preponderant in fuzzy sets. In this 
situation, a pairwise comparison method as introduced 
by Saaty (1980) can be used to alleviate the inadequacy 
existent in the above methods. 

2.3. Fuzziness and randomness 

When referring to fuzziness and randomness, one some- 
times comes across statements in which fuzziness is 
viewed as a certain form of randomness. Without moving 
into mathematical formulae that are evidently distinct for 
fuzzy sets and probability theory (specifically, set theory 
and logics on one hand, and measure theory on the 
other) we can saddle on the following rationalization: 
‘Randomness has to do with uncertainty concerning 
membership or non-membership of an object in a non- 
fuzzy set, while fuzziness has to do with classes in which 
there may be grades of membership intermediate be- 
tween full membership and non-membership.’ 

Yet another argument may help to elucidate a philo- 
sophical dissimilitude between probability and fuzziness. 
Take a finite universe of discourse X and connote 

A(x) = a - the value of the membership 
function of A for a certain element 
of X is equal to a 

P{x E A) = u - probability of x belonging to A is 
equal to a 

Perform now an experiment in which we pick up this 
element x and observe the outcome, i.e. analyse a 
position of x with respect to A. The results obtained in 
this way can be interpreted in the two different ways as 
summarized in Table 1. Upon observation of x, the a 
priori probability P{X E A} = a becomes a posteriori and 

Table 1. 

Before experiment After experiment 

Fuzziness A(x) = a A(x) = a 
Randomness P{x E A} = a 1, ifxEA 

0, otherwise 
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is equal to either 1 if x EA or 0 otherwise. At the same 
time, A(x) being treated as a measure of the extent to 
which x belongs to A remains unchanged. 

In general, we can conclude that randomness deals 
with models of statistical inexactness emerging from the 
occurrence of random events, while fuzziness deals with 
models of inexactness arising from the perception proces- 
ses of the human being. 

3. Fuzzy sets calculus 

In this section we will depart from basic operations on 
fuzzy sets (such as union, intersection, negation), study 
their implementations with the aid of triangular norms 
and afterwards discuss transformations of fuzzy sets and 
fuzzy numbers in particular. We will also briefly look at 
the representation of fuzzy sets resolved in the language 
of set theory. 

3.1. Logical operations on fuzzy sets 

The basic operations (logical connectives) can be formal- 
ly defined by replacing the characteristic functions of sets 
by the membership functions of the fuzzy sets. This gives 
rise to the following expressions: 

(A U B)(x) = max[A(x), B(x)] 

(A II B)(x) = max[A (x) , B(x)] 

A(x) = l-A(x) 

XEX 

Since the grades of membership extend the two-element 
set of truth values {O,l} into the unit interval, it is worth 
recalling the collection of properties essential for set 
theory and investigating whether they are satisfied for 
fuzzy sets. 

The De Morgan law, which is valid for set theory, is 
preserved for fuzzy sets as well, namely 

(AflB) =kJB, (AUB)=AnB 

Distributivity laws are fulfilled and the properties of 
absorption and idempotency hold as well. However, the 
exclusion conditions are not satisfied, i.e. 

AUAfX (underlap property) 

AtlA#0 (overlap property) 

At a relatively early stage of the development of fuzzy 
sets it was recognized that the semantics of the logical 
connectives can be expressed in many ways while this 
choice is usually driven by a particular application. One 
of the examples used was the product operation, 
A(x) B(x), studied as a model used for logic intersection 

and the probabilistic sum, A (x) + B(x) - A (x) B(x), con- 
sidered for the union operation. In comparison to the 
lattice (max and min) operations, the computed degree 
of membership reflects both values of the membership 
functions A(x) and B(x). When pursuing these general 
models of logical connectives, it is justifiable to restrict 
ourselves to a class of binary operations satisfying a 
collection of the following sound assumptions: 

(1) Boundary conditions 

AuX=X,AnX=A 

AU0=A,An0=0 

(2) Commutativity 

AnB=BfIA,AUB= BUA 

(3) Associativity 

(AnB)nc = An(BnC), 

(AUB)UC=AU(BUC) 

Observe also that interpreting the grades of membership 
as truth values of the corresponding propositions, all the 
above conditions take on an intuitively clear interpreta- 
tion: for instance, the boundary conditions indicate that 
the logical connectives for fuzzy sets coincide with those 
applied in the two-valued logic. The property of com- 
mutativity states that the truth value of a composite 
expression does not depend on the order in which the 
predicates have been placed. 

By accepting the above conditions, a broad class of 
models for logical connectives (union and intersection) is 
formed by triangular norms, cf. Dubois and Prade, 1988. 
The triangular norms (Menger, 1942) (t- and s-norms) 
originated in the theory of probabilistic metric spaces can 
be introduced consequently. 

By a t-norm we mean a function of two arguments 

t: [O, l] x [O, l]+ [O, l] 

such that it is 

(1) Non-decreasing in each argument 

forxdy, wdz, xtwdytz 

(2) Commutative 

xty = ytx 

(3) Associative 

(xty)tz = xt(ytz) 

(4) Satisfies the set of boundary conditions 

xto = 0, xtl = x 

X,Y,Z,W E WI 
By virtue of the introduced definition all the properties 
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of the t-norm can be easily identified with the relevant 
characteristics of the intersection operation (logic AND). 

As n-norm is defined as a function of two arguments 

s: [O, l] x [O, l]+ [O, 11 

satisfying the following properties: 

(1) It is a non-decreasing function in each argument. 
(2) It is commutative. 
(3) It is associative. 
(4) It satisfies the boundary conditions. 

xs0=x,xs1= 1 

From this definition, we can deduce that (l)-(4) express 
the properties of the union operation. An interesting fact 
is that for each l-norm one can define an associated 
s-norm such that 

xsy = l-(l-x)t(l-y) 

The above relation is nothing but De Morgan law 
existing in set theory. 

Having an infinite family of triangular norms, one has 
a broad repertoire of formal models of logical con- 
nectives. The choice of a certain AND or OR operator 
can be influenced by the specificity of the problem itself. 

Some other operations on fuzzy sets encountered in 
various applications are briefly summarized below: 

(1) Normalization 

Norm(A)(x) = A (x)lhgt (A) 

(we assume that A is a non-empty fuzzy set, namely at 
least a single element of X belongs to A with a non-zero 
degree of membership, hgt(A) # 0). This operation 
converts a subnormal fuzzy set A into its normal counter- 
part; 

(2) The two successive operations called concentration 
and dilution 

CON(A)(x) = A’(x) 

DIL(A)(x) = Al”(x) 

yield new fuzzy sets with suppressed or elevated grades 
of membership. These operations are frequently utilized 
in linguistic approximation for modelling linguistic 
hedges (e.g. more or less, very, etc.). In general, one can 
introduce a pth power of a fuzzy set AP. Values of the 
parameter p less than 1 produce a dilution effect, powers 
greater than 1 cause concentration. An operation called 
contrast intensification, INT(A), affects an original fuzzy 
set more selectively than the two others. It suppresses 
the grades of membership lower than 4 and elevates 
those values that are above this threshqld. 

INT(A) (x) = 
2A*(x), if A(x) <i 
1 - 2[1 - A(x)]~, otherwise 

Parameterization of this definition by adding an extra 
parameter p, p> 1, makes the intensification more 
radical, 

IWA,p)(x) = 
2Pm1Ap(x), if A(x) <$ 
1 - 2C1[ 1 - A (x)12P, otherwise 

3.2. Representation theorem 

A direct and essential relationship forming a bridge 
between fuzzy sets and sets is formulated by the 
representation theorem (Zadeh, 1973; Zimmermann, 
1987). Firstly, we have to introduce the notion of an 
a-cut. By an a-cut, A,, we mean a set of elements of A 
belonging to it with degrees of membership not less than 
a. 

A, = {xEXjA(x)3a}, aE[O,l] 

Sometimes it is convenient to distinguish a strong cr-cut 
formed by a collection of elements 

{xEXjA(x) >a} 

The a-cut operation selectively converts a fuzzy set into 
its Boolean version. The elements with the grades of 
membership above or equal to the threshold (Y are 
elevated to 1, whereas the remainder are eliminated from 
the set. 

The representation theorem states that any fuzzy set A 
can be represented by a union of its a-cuts, namely, 

This relationship is also referred to as a resolution 
identity. It is used quite frequently in situations where a 
fuzzy set needs to be translated into a collection of sets. 
These sets in turn facilitate further use of some standard 
optimization methods in processing fuzzy sets (like linear 
programming). 

3.3. Transformation of fuzzy sets and fuzzy numbers 

An important issue arises when one transforms fuzzy sets 
defined in a certain space X through a mapping f acting 
from X into Y. The resulting fuzzy set Y = f(X) takes on 
a membership function computed as 

[f (x)lcY> = sup [X(x)1 x EX:y =f(x) (1) 

where the supremum is taken over all xs for which 
y = f(x) holds. B definition, we accept that the supre- y 
mum over an empty set gives a zero membership value. 
We can refer to Equation 1 as the extension principle 
(Zadeh, 1973). 
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This basic definition can be naturally expanded to cope 
with functions of many variables, say Y = f(X, 2, IV) etc. 
The supremum standing in Equation 1 is now taken with 
respect to all the elements for which the constraint 
f(x, z, w) = y holds for y fixed. More precisely, one gets 

One can look at Equation 2 as an optimization task 
involving constraints formed by ‘f’. 

For transformations applied to fuzzy numbers we will 
follow the same route. When fuzzy numbers A and B are 
given and transformed by the function f we derive 

C = F(A,B) 

such that 

C(Z)~it~:LfP=f({~[A(x),BCV)l} x, 

where z E R and f: R x R+ R is a function induced by F 
such that 

F(M-> Cvl) = f(x>r) 

The arithmetic operations (addition, subtraction, 
multiplication and division) will be of special interest as 
they are frequently employed in constructing rela- 
tionships between a system’s variables. The formal nota- 
tion is the same as before; however for these specific 
situations one can derive more simplified expressions. 
Take, for instance, addition 

C=A+B 

The membership function of C is computed as 

C(z) = sup {min[A(x), %)I> 
x,yER:z=x+y 

The above constraint can be incorporated into the 
membership function of A or B so that computations of 
C(z) are converted into a problem of unconstraint 
optimization 

C(z) = ,s~p, hinP(z -Y), Bb)l> 

The determination of the membership function of the 
fuzzy number could be a rather tedious task requiring a 
significant number of computations. To lower the com- 
putational burden we will introduce a parametric 
representation of fuzzy numbers contemplating L (left 
side) and R (right side) fuzzy numbers. By an L-fuzzy 
number, we mean a fuzzy number with the following 
membership function (Dubois and Prade, 1988): 

(1) L(-x) = L(x). 
(2) L(0) = 1. 
(3) L is increasing in [0, +a]. 
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Some frequently used forms of the 
include 

L-fuzzy numbers 

L(x) = max[O, (1- I.+) 1 

1 
L(x) = ~ 

1+ IXIP 

P>O 

The same definition holds for R-fuzzy numbers. 
An L-R fuzzy number is defined by means of the 

following membership function: 

, ifxam 
A(x) = 

, ifx>m 

where cy, p > 0 are parameters controlling ‘fuzziness’ of 
the fuzzy number. For a degenerated case, (Y = p = 0, 
one gets a genuine real number. For such an L-R 
representation, all the basic algebraic operations can be 
performed making use of the respective parameters of 
the representation. For instance, for addition and 
subtraction, we arrive at the following results for the 
fuzzy numbers A (m, (Y, p) and B(n, 6, y) 

addition: A+B = (m+n,a+a,p+y) 
subtraction: A-B = (m-n,a+S,p+y) 

The relevant expressions for multiplication and division 
are more complicated and the results do not preserve the 
piecewise linear character of the original membership 
functions even though the arguments might be expressed 
in this way. 

3.4. Linguistic variable and linguistic approximation 

The term ‘linguistic variable’ coined by Zadeh (1978a) 
denotes a variable defined in a given universe of dis- 
course taking on some linguistic values such as smaZl, 
medium, large, etc. These values are modelled by fuzzy 
sets. Each linguistic variable involves a finite, usually 
very small, collection of generic linguistic terms (they are 
sometimes called primary terms). Syntactic and semantic 
rules describe how to process linguistic variables. With 
the use of syntactic rules one builds well-formed sent- 
ences and constructs non-primary terms. The semantic 
rules specify the way in which the meaning (membership 
functions) of the term can be encompassed. 

More formally, let us consider a linguistic variable of 
pressure defined over the range of pressure values of 
interest. We will first recognize generic terms such as 
small, medium, large and admit a collection of hedges 
(modifiers) such as slightly, very, more or less, etc. 
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Well-formed sentences (wfs) will be constructed using 
these terms being combined according to the syntax 
rules. For example, a compound term very high con- 
sisting of the hedge very and the generic linguistic value 
high is a wfs. 

The semantics describes how the membership function 
of this wfs is computed. In particular, we have already 
defined semantics of the three basic logic operators 
(AND, OR, NOT). Quite frequently the semantics of 
the hedges admits a somewhat powering effect on the 
membership function. Selected cases are summarized 
below: 

very A = A2, plus A = A’.25, more or less A = A112, 
minta A = A3’4 

or in general 

h(A) = AP, [h(A)](x) = AP(x) 

where h denotes a hedge. Hedges with p > 1 imply a 
concentration type of operation (plus, very, etc.). For 
p < 1 the corresponding hedges ‘dilute’ the fuzzy set on 
which they operate (more or less, minus, etc.). The 
semantics of the hedges has been extensively studied in 
Lakoff (1973). It has been noted that this model can be 
generalized by incorporating some translation of the 
generic term along the universe of discourse, say 

[h(A)](x) = Ap(x - T) 

where r is used to denote a shift of the original 
membership function. The need for this shift has been 
discussed in Martin-Clouaire (1987). 

The notion of linguistic approximation is used to 
express the process of matching (approximation) of a 
given fuzzy set by a collection of fuzzy sets (linguistic 
terms) Al, A2, . . ., A, and a group of hedges hI, h2, 
. . ., hp. The approximation procedure for the fuzzy set 
B leads to its expression in terms of the most suitable AI, 
s and his. The straightforward approach one can propose 
here consists of two steps: 

(1) We approximate B by one of the A+. This 
selection is guided by the obtained results of matching 
achieved for B and Ai. B is then approximated by the Aio 
for which 

max [Match(Ai, B)] = Match(AiO, B) 
i=1,2,. ., n 

where Match( . , . ) denotes the matching operation per- 
formed for these two fuzzy sets; 

(2) We determine the best hedge which, applied to Ajo, 
enhances this approximation: 

max {Match[h;(A&, B]} = Match[hjO(Aio), B] 
j=1,2, . . ..p 

As a result of this two-step approximation the fuzzy set B 
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is represented as a single properly modified generic 
fuzzy set. 

4. Calculus of fuzzy relations 

As fuzzy sets constitute a conceptual extension of set 
theory so do fuzzy relations. Let us remind ourselves that 
relations in set theory are treated as 
Cartesian products of the spaces in 
defined. By a fuzzy relation R defined 
product X x Y we mean a mapping 

R: Xx Y+ [OJ] 

elements of the 
which they are 
in the Cartesian 

The fuzzy relation assigns a grade of membership R(x, y) 
to each pair (x, y) of the elements of the above Cartesian 
product of the universes. The interpretation of the fuzzy 
relation is analogous to that provided for fuzzy sets. One 
can think about those membership values as representing 
strengths of connections (ties) occurring between ele- 
ments x and y. The closer the value of membership 
R(x,y) to 1, the stronger the link between x and y. 

The relation ‘x is similar to y’ where x and y are two 
real numbers, x, y E R, is an example of a fuzzy relation. 
Its membership function can be of the following form, 

1 
1+(x-y)4 ’ 

if ly-x1<5 
%Y) = 

0, otherwise 

Fuzzy relations can be composed. Two main types of the 
composition operations are defined below: 

(1) Supmin composition of two fuzzy relations R: 
XX Z+ [O,l] and S: 2 x Y+ [O,l] generates another 
fuzzy relation denoted by R x S such that 

(RxS)(x,y) = ;“~pz bWGz),%~)ll 

(2) Inf-max composition of R and S, R@S 

(RC~S)(X,Y) = j:‘, {m4R(~,z),%y)lI 

These operations are dual, that is, 

RxS=k@ 

The supmin composition has the following properties 
that result from the relevant operations (max and min) 
used there: 

(1) Distribution with respect to union 

(RuT)xS= RxSuTxS 
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(2) Preservation of the inclusion property, i.e. 

ifR1CR2, then RlxSCR2xS 

RI, Rz, R, T:X x Z+ [OJ], S:Z x Y-+ [OJ] 

However, no distributivity with respect to intersection 
holds, 

(Rfl7’,)xSc(RxS)fl(TxS) 

R, T:X x Z+[O,l], S:Z x Y--+ [OJ] 

A generalization of the above compositions can be 
obtained by taking t- and s-norms. This yields: 

(1) Sup-t composition 

@ 0 9 (x, Y) = Z”“EPZ [R(x, z)Wz,y)l 

(2) Inf-s composition 

(ROWx,y) = 2;; [WvbW,~)l 

Let us discuss the supmin composition performed for 
fuzzy set X and a particular fuzzy relation R of the 
following form 

R(x, y) = 
1, iff(x) = y 
0, otherwise 

(viz. R is a function). We immediately derive 

(X 0 R) 0) = ;g binLG>, R(~y)l) = 

sup [X(x> A I] v sup [X(x) A 01 x E X:f(n)=y x E X:f(x)=y 

= sup X(x) 
xEx:f(x)=y 

This gives another viewpoint of the derivation of the 
extension principle. 

5. Methodological aspects of the use of fuzzy sets in 
modelling and simulation 

As underlined in the previous sections, fuzzy sets deal 
with collections of objects with varying degrees of 
membership. As such they allow us to handle more complex 
concepts effectively. First we will concentrate on the 
main aspects of knowledge representation that are pro- 
vided by fuzzy sets. A notion of a cognitive perspective 
emerging in this context will be utilized to select the most 
suitable granularity of information to be captured in the 
modelling process. The general three-phase scheme con- 
sists of the level of knowledge representation and know- 
ledge processing carried out at the linguistic level. The 

Linguistic 

Numerical 

Environment 

Fig. 2. Linguistic and numerical levels in fuzzy modelling: 
knowledge representation and knowledge processing. 

models built with the aid of fuzzy sets (specifically fuzzy 
models) will be organized according to the level of their 
structural relationships and correspond directly with the 
amount of knowledge existing about the system. Finally, 
we will concentrate on the transformation of the results 
of simulation from the elements of the cognitive perspec- 
tive to the numerical level. The entire scheme viewed as 
essential to the methodology of fuzzy modelling and 
simulation is visualized in Fig. 2. 

The functional blocks of the scheme relate phenomena 
occurring at a numerical level with their models (as they 
are perceived by the user or model developer) formed at 
the level of the linguistic labels (fuzzy sets). The input 
interface realizes processes of knowledge representation 
by transforming all available data into coherent pieces of 
information that are afterwards used for building detailed 
model relationships. At this stage a cognitive perspective 
(called also a frame of cognition) plays a primordial role. 
The processing activity concentrates on the conceptual 
level within which all the essential relationships between 
the variables of the fuzzy models are constructed. The 
fuzzy models can take on various forms. Their detailed 
estimation algorithms can also be very distinct. Finally, 
the third conceptual block of the discussed scheme 
converts the outcomes of the processing realized at the 
conceptual level into the detailed numerical results. 

5.1. Frame of cognition 

Knowledge about the system as well as the perspective 
from which one is interested in taking a look at it is 
articulated with the aid of linguistic labels. These are 
generic pieces of knowledge which are deemed by the 
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user as being essential in describing and understanding 
the system. The linguistic labels are represented by fuzzy 
sets. As demonstrated in Zadeh (1979) they can also be 
viewed as elastic constraints defined over a universe of 
discourse and identifying regions with the highest degree 
of compatibility of elements with the given linguistic 
term. Sometimes the linguistic labels are also referred to 
as information granules. All the information granules 
defined in a certain space constitute a frame of cognition 
of the variable (Pedrycz, 199Ob; 1992a). More formally, the 
family of fuzzy sets 

(where Ai:X+ [OJ]) constitutes a frame of cognition A 
if the following two properties are satisfied: 

(1) A ‘covers’ the universe X, namely each element of 
the universe is assigned to at least one granule with a 
non-zero degree of membership. It means that 

This property assures that any piece of information 
defined in X is properly represented (described) by Ais; 

(2) The elements of A are unimodal fuzzy sets (uni- 
modal membership functions). By stating that, we iden- 
tify several regions of X as (one for each Ai) highly 
compatible with the labels. 

The frame of cognition can be developed either on a fully 
experimental basis or in an algorithmic way. In the first 
instance the linguistic labels can be specified by studying 
the problem and recognizing basic relevant information 
granules as being accepted as necessary in describing and 
handling it. In this way the subjective evaluation of the 
membership functions completed by the user of the 
model becomes a key factor. It is the user who provides 
relevant membership functions for the variables of the 
system and therefore creates his own individual cognitive 
perspective. In this regard the standard methods of 
membership function estimation discussed in Section 2.2 
can be directly utilized. 

The second approach which could be helpful when 
some records of numerical data are available relies on a 
suitable utilization of fuzzy clustering techniques. Fuzzy 
clustering (Bezdek, 1981) enables us to discover and 
conveniently visualize the structure existing in the data 
set. With the aid of it the numerical data are structured 
into a number of groups (clusters) according to a 
predefined proximity measure between data points. The 
number of clusters is also defined in advance so that they 
correspond to the linguistic labels constituting the frame 
of cognition. The algorithm generates grades of mem- 
bership of the elements of the data set in the given 
clusters. If necessary, these grades can be also converted 

into an analytical form of the final membership functions. 
The frame of cognition A can be also referred to as a 

fuzzy partition of X. * 
We list three essential features of A: 

(1) Specificity of the frame of cognition. The frame of 
cognition A’ is more specific than A if all the elements of 
A’ are more specific (with specificity defined for example 
in the sense of Yager, 1980) than the elements of A. 
Usually the number of elements of A’ is greater than the 
number of the labels in A. 

For example, the frame 

A = {Negative, Zero, Positive} 

is less specific than the frame 

A’ = {Negative Large, Negative Medium, Negative Small, 
Zero, Positive Small, Positive Medium, Positive 
Large} 

where now the variable takes on more levels of this 
linguistic quantification. The partition A’ is less general 
than the previous one. The information granularity of A’ 
is finer than that conveyed by A. 

(2) Information hiding of the frame of cognition refers 
to each element of A. This feature means that some 
elements of X are made non-distinguishable by associat- 
ing them with the same level of membership (usually 
equal to 1.0). For instance, the fuzzy set Al with the 
membership function defined as 

A,(x) = 

1 

exponentially increasing over (-a, x’) 
such that A1(--00) = 0, A,(x’) = 1 

1, if xE [x’, x”] 

exponentially decreasing over (x”, ~0) 
such that A,(x”) = 1, A,(a) = 0 

makes all elements from [x’, x”] equivalent. By defining 
this membership function we selectively hide the 
information about the elements situated within the inter- 
val. In other words there is no distinction (at the level of 
specificity defined by the label A,) between elements al 
and a2, al, a2 E X, in as far as both of them are included 
in the above interval. 

Information hiding is completed on purpose so that all 
computational processes following this stage will not be 
carried out below this predefined conceptual level. We 
have already learned that this is an inherent property of 
set theory. Fuzzy sets allow us to add an extra flexibility 
to this term by parameterizing it along allowable grades 
of membership. In other words, h-cuts are sets com- 

*The fuzzy partition has an additional property: 
A,(x) +A,(x) + +A,@) = 1 which holds for every x; this con- 
straint is automatically satisfied by most of the clustering algorithms but 
is usually not satisfied by the first method. 
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pleting information hiding at this specified level. Particu- 
larly, for the above trapezoidal fuzzy number used to 
construct the frame of cognition, the A-cuts with h = 1 
imply that the information hiding is performed at its 
highest level. 

For a fixed number of labels, the information hiding 
can be additionally accomplished by enhancing regions of 
X associated with higher grades of membership. For 
instance, the operation of contrast intensification applied 
to A amplifies ‘high’ membership values (greater than 
0.5) and suppresses those which have already been 
viewed as insignificant. 

(3) Robustness. Fuzzy sets constituting the frame A 
exhibit an interesting property of robustness. Due to 
smooth transitions in the membership functions of fuzzy 
sets they allow to a relatively high extent imprecision in 
the input information. Consider the input numerical 
datum x E R which being exposed to the existing noises is 
received as x’ and as such is mapped onto the frame A. 
This mapping describes the levels of activation of AI, AZ, 
. . .) A, EA which become numbers from the unit 
interval. The noisy version of x induces 

AI( A&‘), . . ., A,(4 

instead of 

A,(x), &(x1, . . ., A,(x) 

Usually Ai [or Ai( . 1s used as input information to 
be processed in the course of fuzzy modelling. The lower 
the difference between A,(x) and A&‘), the higher the 
robustness of the frame (its ability to tolerate noise). 
Thus the overall sum of absolute differences 

4x1 = IAd4 - AI(X’) / + bM-4 
- A,(x’) 1 + . . . + IA,(x) - 

can be viewed as a suitable indicator 
property of A. 

A&‘) 1 (31 
of the robustness 

The overall measure of robustness can be defined by 
completing standard averaging over the universe of 
discourse, say 

I 
44 h 

x 

(4) 

(We assume that this integral does make sense.) 
It is also obvious that Equation 3 can attain low values 

since x and x’ can generate relatively similar values of the 
membership function (for relatively low values of dis- 
turbances). In the case of sets, Ai and Ai could 
have distinct values of membership even for some very 
close values of x and x’ , say 

x I- x’ but Ai = 0 and Ai = 1 

For more details on the robustness problem refer to 
Pedrycz (1993). 
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It is worth indicating that the fuzzy partition leads to a 
homogeneous form of information. To elaborate a bit on 
this issue let us note that input information can be 
uniquely expressed in terms of linguistic labels. The 
converse is not true; knowing the representative of the 
input information at the level of the information granules 
one cannot reconstruct it in a unique manner. This 
phenomenon is due to the level of generality introduced 
by fuzzy sets. The relevant scheme of transformation can 
be portrayed qualitatively as follows: 

input information + frame of cognition + x 

where the input information could be given in a numeric- 
al, interval, or fuzzy set format. The derived output x 
expresses this input information by providing degrees of 
matching (activation) of the elements in the fuzzy parti- 
tion. Thus x becomes associated with the fuzzy partition 
and its semantics directly reflects the semantics of the 
linguistic labels. In a simple example where the input 
information is given precisely as a single numerical 
quantity x0, the vector x E [O,l]” can be developed by 
taking the values of the possibility measure (Zadeh, 
1978b) of x0 expressed with respect to Al, AZ, . . ., A,, 
namely 

x = [A,(xo)A&o) . . . AA~o)l 
For interval-valued information [xi, x2] the resulting 
vector x is expressed as 

X= 
[ 

sup A,(x) supAz(x) . . supA, 
*t[m,xz] XE [Xl ,x2] xE[wl,xz] 

I 

The character of this input information results in higher 
values of most of the entries of x. Apparently 

sup Ai 3Aj(xo) 
XE[YI,XZ] 

for any x0 E [xi, x2]. 

6. The paradigm of fuzzy modelling 

The basic idea of fuzzy models and fuzzy modelling is to 
model or represent a problem at the level of linguistic 
labels. Models of this class are not used to represent 
relationships between variables at a numerical, pointwise 
level. The role of fuzzy modelling is to look at the system 
from a ‘distance’ by accepting a suitable cognitive pers- 
pective. The fuzzy partition constructed for each variable 
can be adjusted separately to meet the requirements of 
the modelling and simulation. Some details can be then 
selectively hidden and will not increase unnecessarily the 
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computational burden of model building.$ If more details 
are required one can formulate another more detailed 
fuzzy partition and re-design the fuzzy model. The fuzzy 
models developed in this way concur with the principle of 
incompatibility formulated by Zadeh (1978a); a similar 
formulation can be found in Puccia and Levins (1985). 
This principle states that any model building calls for a 
rational trade-off between significance (relevance) and 
precision achievable within the model. It should be 
stressed that one should sacrifice (to a certain degree) 
precision to reach an acceptable level of generality. 
Overall, the properties of the frame of cognition applied 
to modelling are inherited and afterwards become inbuilt 
into the models. For instance, the increase in robustness 
of the frame A implies higher robustness of the fuzzy 
model. Through the frame of cognition one can easily 
process heterogeneous pieces of data and provide inter- 
pretation of the results of modelling in the same linguistic 
categories. The core part of the identification activity will 
be therefore concentrated on expressing links between 
the linguistic labels. In the sequel we will be concerned 
with deriving these formal relationships. We will review 
several classes of fuzzy models, highlight their essentials 
and briefly look at the level of their structural dependen- 
cies. The models will be discussed starting from those 
with the lowest level of imposed structural relationships 
and proceeding with more structured classes of models 
such as relational, neural network-oriented and those 
based on the concepts arising from fuzzy arithmetic. 

6.1. Constraint propagation 

The model based on the principle of constraint propaga- 
tion does not assume any particular structure as this is 
conveyed by the data set. The frame of cognition is 
formed for the input variables and all the fuzzy sets 
involved there are propagated through the data. For 
some combinations of the labels the data support the 
generic input fuzzy sets, and generate a corresponding 
fuzzy set in the output space. In some others, the input 
combination does not get enough numerical support and 
is filtered out by the data. 

As a concise illustration let us consider a system with 
two input variables and a single output. For the first 
input variable we assume the linguistic label given by the 
fuzzy set A; the label for the second variable we will 
denote by B. The data set used for identification pur- 
poses makes up a collection of N-triples of data: (input 
variableI, input variable*, output). We accept non-fuzzy 
data i.e. pointwise values (xk, zk, yk), k = 1, 2, . . . , N. 

*In a so-called qualitative modelling all relationships are defined 
between symbolic quantities, cf. De Kleer and Brown (1984); the 
extension including linguistic variables is reported in D’Ambrosio 
(1989). 

Let us construct a-cuts of fuzzy sets A and B, A, and 
B,. They play the role of constraints imposed on the 
structure of the system. At the same time they direct a 
focused search through the data. A, and B, ‘covers’ 
some portion of the data viz. all xk and yk such that 
xk E A,, yk E B,. The induced subsets of the output yk 
denoted symbolically by (bk} IA), will be formally put 
down as 

(tYk} 1 Ah = b’k 1% E&x) 

Similarly one gets the induced subsets for the second 
variable, 

We jointly propagate the constraints A and B (more 
exactly their a-cuts) across the data. This is stated as an 
intersection of the induced subsets, 

(tJ’/c)lA & B), = ijk(~k~&~~~k~=k-a) (5) 
The results of this propagation can be reconstructed as 

a fuzzy set C defined in the output variable. The general 
idea of constraint propagation is displayed as below: 

A, B - propagation through - C 
the data 

Equation 5 describes a-cuts of the fuzzy set C which, due 
to the representation theorem, is reconstructed by taking 
their union. 

where rr stands for the highest value of the membership 
function of C (height of C) 

7~ = hgt(C) 

and this corresponds to the highest value of (Y yielding a 
non-empty intersection, 

jj’,&&&}n~kIZ,&&} = 0 for ff>QT 

The height of the generated fuzzy set 7~ can be used as a 
performance measure expressing the coincidence of the 
labels with the data. This type of possibility-based 
criterion can be accompanied by the probabilistic type of 
the performance criterion with which one expresses the 
following probability 

P(a) = 
number of data included in C, 

total number of data (N) 

Since C,, C Cm, for CY~ > a2 then I is a non-increasing 
function of (Y. Again the constraints A and B with a low 
value of the probability p(a) should be discarded as 
being a meaningless combination of the labels. 
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In the case of ‘n’ input variables and several linguistic 
labels, the procedure of constraint propagation should be 
repeated separately for each of them. The combinations 
with the highest value of 7r will be used as allowable 
components (descriptions) of the model. 

For n variables with m linguistic labels (fuzzy sets) 
we have m” possible combinations. Usually a significant 
portion of them are ruled out by the data. The choice 
of labels is based on analysis of the derived fuzzy sets of 
the output variable and involves analysis of their overlap 
as well as their heights or associated probabilities. The 
trade-off exists between the overlap of these fuzzy sets 
(which calls for more specific labels for the input 
variables) and a lack of complete coverage (‘explana- 
tion’) of all the data provided by the constraints. The 
latter phenomenon suggests the use of coarser constraints 
(of lower granularity) with a higher overlap. 

equations) are summarized below. The fuzzy set y results 
from x and R as 

y=xoR 

R E [O,llnxm. The composition operator ‘0’ involves 
triangular norms (t- and s-norms) 

yj = j, [XitYij] 
i=l 

j = 1, 2, . . . , m. 
Depending on the combination of triangular norms 

with which one is faced is a well-known max-min 
composition used in most of the existing constructs in 
fuzzy sets. 

The relational structure can be treated as a relational 
equation with the two generic problems formulated 
accordingly: 

6.2. Relational calculus and relational models 

Models based on relational calculus express links be- 
tween linguistic labels in terms of relations. In other 
words, the statements about a system’s variables read as 

(1) x and y are given, determine R; 
(2) y and R are given, determine x. 

‘there is a relationship between A and B’ 
(A and B are related) 

or more formally 

ARB 

where A and B are the linguistic labels in the two 
universes of discourse in which these variables are 
defined. Models of this class capture dependencies be- 
tween the linguistic labels and express them as fuzzy 
relations. Fuzzy sets, fuzzy relations, and the calculus of 
these objects are put together into a form of fuzzy 
relational equations. These equations, originally de- 
veloped outside fuzzy sets as a branch of relational 
calculus and applied vigorously to problems of operations 
research (cf. Rudeanu, 1974), were reformulated and 
generalized in Sanchez (1976). Some interesting links 
with multivalued logic have been underlined in Ledley 
(1968). Since then many theoretical results have been 
obtained and the methodology of their use followed by a 
series of specific applications has been formulated. 

For the max-min and max-t composition there are 
analytical solutions available. Furthermore the non-emp- 
ty family of solutions contains more than a single 
solution. The extremal solutions (maximal ones) are 
determined with the use of the residuation operation 
(p-operator, Pedrycz, 1985; Di Nola et al., 1989) associ- 
ated with the t-norm standing in the equation. The 
fundamental results are then concisely summarized. For 
problem (1): if the family of solutions R # 4 then the 
maximal element of R, R = max R is determined through 
applying the p-operation applied pointwise to x and y. 

i.e. 

i;, = xcpy 

Pjj = Xi’pyi 

where acpb = sup{c E [0, l]/atc d b}. For (2): assuming 
that the family of solution X is non-empty, its maximal 
element is calculated as 

i! = Rqy 

We will be concerned with discrete versions of fuzzy 
relational equations, namely the equations defined in 
finite universes of discourse. The fuzzy sets x and y 
include levels of activation of the frames in which input 
and output variables are expressed, thus xE [O,l]“, 
y E [O,llm. The general statement 

or 

pi zz min 
j=l,Z ,...,m 

The dual class of the fuzzy 
the t-s composition. Now 

trij (pyi) 

relational equations involves 

y = xAR 

x and y are related (R) 
Yj = F (XiSrij) 

i=l 
can be translated in many ways, The main classes of 
relational structures (and subsequently fuzzy relational j=l,2 7 . . .> m. 
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Again the two more specialized families of the com- 
position operators include the min-max and min-s 
aggregation. The analytical solutions are available in 
these two cases. The character of the results is dual to 
those reported previously. Briefly, the obtained solutions 
are minimal in the family of solutions: for (1) 

# = X@Y rij = XipY, 

for (2) 

X = RPy Xi = max[rq@j] 
i 

where the definition of the p-operator uses the s-norm 
standing in the equation 

a@ = inf{cE[O,l]]ascBb} 

6.3. Fuzzy neural networks 

In this section we will take another look at a more 
structured family of fuzzy models by studying fuzzy 
neural networks. By this class of networks we mean 
distributed and parallel computing structures employing 
extensively the logical operations existing in the theory of 
fuzzy sets. As opposed to standard neural networks, the 
networks emerging within this framework are usually 
heterogeneous i.e. they consist of neurons of a different 
conceptual and numerical character. When put together 
they exhibit diverse functional characteristics and play 
quite distinct roles in the network. Fuzzy neural net- 
works originated as a natural extension of the fuzzy 
relational models, which, in this context, are simple 
two-layer neural networks. Studies of these models have 
been initiated in Pedrycz (1990a; 1991); refer also to 
some application-oriented studies (Pedrycz, 1993). 

First we will discuss basic models of neurons (aggrega- 
tive and reference ones) and afterwards concentrate on 
logical processors constituting a generic architecture of 
the fuzzy neural networks. In the sequel, learning 
algorithms will be studied. 

6.3.1. Aggregative and matching functions of logical 
neurons 

The logic-based neurons aggregate input signals x1, x2, 
. . .) x, E [O,l] using some basic logic operations. The 
two basic logical connectives (AND and OR) give rise to 
so-called AND and OR neurons. The AND neuron 
ANDs the input signals 

y=x1ANDx2AND...ANDx, (6) 

For the OR neuron we obtain 

y=x10Rx20R...0Rx, (7) 

Both the AND and OR connectives are represented as 
triangular norms (t- and s-norms). A straightforward 

extension of the above formulas is to include weights 
(connections) associated with the inputs. In this way 
Equations 6 and 7 are translated into the following 
formulas: 

AND neuron 

y = (x1 OR wi) AND (x2 OR w2) AND 
. . . AND (x, OR w,) 

OR neuron 

“8) 

y = (x1 AND wi) OR (x2 AND w2) OR 
. . . OR (x, AND w,) (9) 

wiE[O,l], i = 1, 2, . . ., n. 
The weights are used to enhance or eliminate the 

influence of xis on the output y: 

(1) The lower the value of wi the more evident the 
influence of Xi on y (AND neuron); 

(2) Higher values of wi enhance the importance of xi 
(OR neuron). 

The AND (OR) neuron can be enhanced functionally in 
two different ways: 

(1) The complemented input signals, Xi = 1 -Xi. This 
allows us to realize the inhibitory performance of the 
neuron while still preserving the unit interval as a 
suitable range of coding for the connections. By choosing 
appropriate values of the connections in the neuron it 
can easily exhibit inhibitory and excitatory characteris- 
tics. 

(2) The second modification involves the inclusion of a 
non-linear transformation following the AND (OR) 
neuron. Its role is to modify (calibrate) the obtained 
grades of membership. This functional block does not 
affect the logical properties of the neuron. The standard 
two-parametric sigmoid function 

1 
‘= 1+exp(-(y-m)2/a) 

can serve as one of the possible instances. The para- 
meters m E [O,l] and (Y > 0 are adjusted to arrive at an 
appropriate calibration. 

The standard s-t composition operator applied to the 
fuzzy set x and the fuzzy relation R has an equivalent 
representation in terms of m OR neurons where each of 
them possesses n inputs. Recall that the basic relational 
equation can be rewritten as a series of m expressions 

Yj = i (Xitrij) 
i=l 

j = 1, 2, . . . , m. 
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6.3.2. Logical processors as basic processing units 

The AND and OR neurons can be put together to form a 
so-called logic processor (LP). Roughly speaking, the 
aim of the LPs is to approximate any function with the 
use of logic-based neurons. This form of approximation 
reveals logical characteristics of the approximated func- 
tion (or a collection of experimental data). Essentially 
there are two structures of the logic processor: 

(1) The first one consisting of three layers can be 
viewed as a sum of products (SOM). The input layer 
consists of 2n nodes and includes both xis as well as 
their complements (xi). The hidden layer includes p 
AND nodes. The output layer is built with a single OR 
node. 

(i) the hidden layer forms p minterms Zj 

2n 

zi = T (wiisxf) j = 1, 2, . . .,p 
i=l 

where x’ is an extended vector of the 2n inputs including 
complemented values of all X~S, 

x’ = [Xl x2 . . x, Xl x2 . . . X,] 

(ii) output layer. The minterms are combined by 
taking the OR operation on Zjs 

Y = g (VjtZj) 
j=l 

(2) The dual structure of the logical processor com- 
putes y by considering a product of minterms and 
combining the results of the hidden layer by AND-ing 
them. We will refer to this structure as a product of 
maxterms (POM). Its formal model is given accordingly. 

(i) hidden layer 

Zj = ‘;: (wijtXf) j= 1,2, , . .) P 
i=l 

(ii) output layer 

Y = 5 (VjSZj) 
j=l 

6.3.3. Learning 

The discussed neural networks require learning. The 
basic learning procedures are mainly of a parametric 
nature and deal with a series of suitable adjustments of 
the weights (connections) of the network. The supervised 
learning is carried out on the basis of a so-called learning 
set of input-output patterns (xk,yk), k = 1, 2, . ., N, 

and is driven by a specified performance index Q. 
Usually Q is given as the sum of squared errors measur- 
ing distances between yks and the values at the output of 
the network while driven by xk, say N(x,J, 

N 

Q = x bk - N(Xk)12 
k=l 

where N(o) stands for a general notation of the output 
of the network obtained for xk. The adjustments of the 
connections are made according to a standard Newton- 
like method. The abbreviated form of the scheme looks 
as follows 

(connections),,, = (connections) - (Y 8Q 
a (connections) 

while CY specifies a rate of learning. This rate implies a 
suitable speed of learning. Too high values of (Y could 
result in oscillations in learning, too small values could 
cause a very slow learning. 

The general learning formula can be applied to diffe- 
rent networks upon specification of all details (such as 
e.g. triangular norms and the topology of the network). 

In the logic processor the size of the hidden layer 
determines its representation capabilities, i.e. uniquely 
specifies a number of the generalized minterms (max- 
terms) of the hidden layer that are used to approximate 
the data (function). The determination of the size of p 
is out of the stream of the parametric learning. Its choice 
should be directed by the values of Q. Two basic 
strategies are worth considering in this regard: 

(1) Successive expansions: the values of Q are used to 
guide a growth of the network. Starting from some small 
values of p we successively increase the size of the 
hidden layer. This process is terminated once Q viewed 
as a function of p tends to stabilize; 

(2) Successive reductions: starting from a large num- 
ber of nodes in the hidden layer it is successively reduced 
up to a point at which the values of the performance 
index Q incline to increase significantly. 

6.4. Fuzzy regression models 

The essential concept used in fuzzy regression models is 
to describe relationships between input-output data us- 
ing parameters viewed as fuzzy numbers (Tanaka et al., 
1982; Heshmaty and Kandel, 1985; Tanaka, 1987; Savic 
and Pedrycz, 1991), 

Y = Alxl + A2x2 + . . . + A,x, 

where x1, x2, . . . , x, E R are independent variables and 
the parameters Al, A2, . ., A, are fuzzy numbers. In 
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fact, we usually treat Aj as symmetrical triangular fuzzy 
numbers such that 

Aj(a) = 
0 otherwise 

a E R. Note that ~j is a modal value of the jth parameter 
whereas cj becomes its spread. The spread characterizes 
the precision of the model parameter. The values of cjs 
are used in order to absorb deficiencies of the con- 
structed model, as well as to incorporate (‘neutralize’) 
noise existing in the data set. 

The fuzzy regression models are characterized by a 
higher level of structural linkage: they utilize extensively 
the linear type of input-output relationships (even 
though they are expressed in terms of fuzzy numbers). 
The identification algorithms are well defined and com- 
putationally efficient. It has been shown that they reduce 
to standard schemes of linear programming. 

6.5. Local regression models 

The idea behind this class of fuzzy models, introduced in 
Takagi and Sugeno (1983, is to replace a single ‘global’ 
model by a series of ‘local’ models. These are usually 
easier to construct and verify. Each of these models is 
valid in a certain local and fairly limited region of the 
input variables xE R”. The resulting global model is 
aggregated with the aid of the conditional statements 
about the local models constructed so far, 

if xERr then Y = 41(x, al> 
if xEfIR2 then Y = $dx, 4 

if XELR, then Y = ~&, ap> 

The conditional parts of the above rules specify regions 
5 of the input variables, namely flj C R X R X . . . X R 
specific for the individual local models. The conclusion 
parts include linear or non-linear relationships +j(X, aj) 
pertaining to the local models. 

To make the model complete, the family 1Rr, &, . . ., 
In, should form a Boolean partition of the n-fold 
Cartesian product of R. The replacement of the Boolean 
regions by their fuzzy-set-based versions enables us to 
avoid eventual discontinuities occurring when moving 
from one local model to another - in this way the fuzzy 
partition preserves a highly desired property of ‘con- 
tinuity’ of the global model. The method described in 
Takagi and Sugeno (1985) allows us to determine the 
parameters of the linear local models, tii(x, ai) = xTai 
through the use of standard regression techniques. 

7. Linguistic-numerical conversion in fuzzy models 

Fuzzy models, as emphasized at the beginning of the 
discussion, are constructed at the level of linguistic 
labels. The output variable y summarizes a distribution of 
the activation levels of the fuzzy sets forming the frame 
of cognition. In some applications it might be also 
desirable to translate this linguistic information into its 
equivalent numerical form. This process of transforma- 
tion occurs quite often in fuzzy controllers (or some 
classes of expert systems) where a final non-fuzzy control 
or decision value has to be inferred. The standard route 
(being a relative of the centre-of-gravity method) 
followed can be described accordingly. Let y be defined 
over a space of the fuzzy sets (linguistic labels) Al, AZ, 
. . ., A, : R-+ [O,l]. Assume that each Ai also has a 
non-fuzzy (viz. numerical) representative (this could be 
viewed as e.g. a modal or a mean value of its mem- 
bership function). Denote these representatives by Xl, Y&, 
. . .) X,, respectively. The vector y = Lyr, y2, . . ., yn] is 
converted into a single numerical quantity x0 by con- 
sidering a weighted sum of ‘Y@ 

x0 = 
Fly1 + Y&y2 + . . . + x,y, 

Yl+Y2+. . .+yn 

In limit cases one derives: 

(1) If only a single label becomes active i.e. y contains 
all the entries but one (namely jo) equal to zero, then the 
resulting x0 is equal to the non-fuzzy representative of 
the joth linguistic label, x0 = Yja; 

(2) If all the entries of y are equal, say y = p, then ~0 
happens to be an average of the numerical representa- 
tives of Ais (ZJ; 

x,p+x,p+. . +x,p x,+x,+. . .+x, x0 = = p+p+. . .+p n 

This transformation from the level of fuzzy sets to 
numbers could constitute a potential source of errors 
which is, in any case, unavoidable and caused by the 
transition realized between the two distinct conceptual 
levels of information processing. 

8. Conclusions 

We have investigated fuzzy sets as a formalism capable of 
representing and processing the uncertainty visible in 
many systems, particularly those where a factor of 
human interaction with the environment plays a central 
role. The methodology of fuzzy sets in developing fuzzy 
models has been discussed in depth. A particular emph- 
asis put on distinguishing between the linguistic (con- 
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ceptual) and numerical (real-world) levels makes it 
possible to comprehend the role of fuzzy sets in develop- 
ing fuzzy models. The models discussed in the paper 
have been arranged according to the levels of their 
structural dependencies. By considering an amount of 
initial knowledge available about the system to be 
modelled one can select the most suitable class of 
models. Subsequently, the straightforward adjustment of 
the cognitive perspective (easily accomplished by chang- 
ing the number as well as the form of the corresponding 
fuzzy sets) allows the fuzzy models to be customized to 
meet the requirements of the individual user. The 
flexibility of the customized models achieved in this way 
is significant. While studying several types of fuzzy 
models the discussion has been kept at a general level. 
The intention was that the level of the structural rela- 
tionships to be grasped in order to work with a specific 
class of models should be made clear. Based on this 
global selection criterion the chosen model can be 
effectively constructed through the use of one of the 
discussed methods. Fuzzy sets realize subsymbolic com- 
putations; the linguistic terms can be thus either treated 
as pure symbols or could include membership functions 
reflecting the semantics residing within the terms. This 
feature is of special value in constructing links between 
the architectures of artificial intelligence (e.g. know- 
ledge-based systems) and purely numerical structures 
such as neural networks. 
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