
Journal of Intelligent Manufacturing (1995) 6, 145-154

Heuristics for the minimum project-
duration problem with minimal and
maximal time lags under fixed resource
constraints

K. N E U M A N N and J. Z H A N

Institut fiir Wirtschaftstheorie und Operations Research, University of Karlsruhe, D-76128
Karlsruhe, Germany

The authors consider the problem of minimizing the duration of a project under fixed resource
constraints. For the case that there are only minimal time lags between the start of successive
activities and that therefore the project can be described by an acyclic network, a large number of
exact and heuristic algorithms can be found in the literature. In this paper, the authors permit both
minimal and maximal time lags between activities. The project can then be modelled by an activity-
on-node network containing cycles. Efficient priority-rule heuristics are presented for solving the
resource-constrained project-scheduling problem. Computational results are discussed for projects
containing up to 1000 activities and several resources.

Keywords: Project scheduling, resource constraints, activity-on-node networks, heuristic
procedures, priority-rule methods

1. I n t r o d u c t i o n

In this paper the following NP-hard problem is dealt with:
minimization of the duration of a project subject to limited
renewable resources, which are required for carrying out
the individual activities of the project. Examples of
renewable resources are labour force and machines.

If there are only minimal time lags between activities,
that is, the project can be modelled by an activity-on-arc
network (or CPM network known from the 'critical path
method') or an acyclic activity-on-node network, a large
number of exact algorithms as well as heuristic procedures
have been developed to solve the resource-constrained
project-scheduling problem.

The exact algorithms are generally of the branch-and-
bound type, for example, the algorithms proposed by
Talbot and Patterson (1978), Stinson et al. (1978), Patter-
son (1984), Christofides et al. (1987), Patterson et al.
(1989) and Demeulemeester and Herroelen (1992). How-
ever, in general, only projects containing up to 50 activities
and at most three resources can be treated efficiently using
these methods.

0956-5515 © 1995 Chapman & Hall

Most heuristics represent so-called priority-rule meth-
ods: priorities are assigned to all activities that can be
scheduled at a certain point in time or in a time period. The
activities are then carried out in the order of decreasing
priorities if they cannot be performed simultaneously due to
limited resources. This process of scheduling the activities
proceeds from time point to time point (or respectively
from time period to time period) in chronological order.
References for such priority-rule methods are, for example,
Davis (1975), Davis and Patterson (1975), Elsayed (1982),
and Alvarez-Valdrs and Tamarit (1989).

For the case in which there are minimal and maximal
time lags between activities, that is, CPM networks are no
longer applicable and, instead, cyclic activity-on-node
networks have to be used to model the projects under
consideration, Bartusch (1983) has developed a branch-
and-bound method to solve the resource-constrained
project-scheduling problem (see also Bartusch et al., 1988).
If we truncate the evolution of that algorithm (for example,
by omitting some or all backtracking steps), we obtain
heuristic procedures. Those heuristics, however, generally
require a large computational effort.

146 Neumann and Zhan

Zhan (1991) has investigated how to generalize the
priority-rule methods to the case where maximal time lags
are present. The heuristics obtained have turned out to be
very successful. The procedures generally provide good
approximate solutions. For projects with 1000 activities and
one resource, the average computing time on a HP
workstation of type 9000/360 is 30 s. If we have three
resources, the average computation time amounts to 1
min. bji = -Ti~

2. M P M networks (activity-on-node networks)

The so-called metra-potential method, abbreviated MPM, is
a method for temporal analysis of projects, which uses
cyclic activity-on-node networks. Thus, the latter project
networks are also called MPM networks. Before dealing
with resource-constrained project scheduling, let us touch
upon the basic elements of MPM networks very briefly.
The metra-potential method was proposed by Roy (1964);
more recent references are Elmaghraby and Kamburowski
(1992) and Neumann and Morlock (1993), Section 2.5.

Suppose that the underlying project consists of n activ-
ities numbered 1 to n. Activity 1 represents the beginning
of the project and activity n its completion. The remaining
activities correspond to real activities. Let Dje Z+ be the
duration or processing time of activity j (all quantities used
in what follows, in particular times and points in time, are
assumed to be integers). The dummy activities 1 and n have
duration zero: D 1 : = D, : = 0. Let STj be the start time of
activity j (1 < j < n).

The nodes 1 n of a directed graph are assigned to
the activities 1 n (and the activities are identified with
the nodes). If there is a minimal time lag/~/.}n > 0 between
the start of two activities i and j, that is,

s u - sT,. -- jn,

we introduce an arc (i,j) with weight bij : = T~/) n. If there is
a maximal time lag T~ x between the start of two activities
i and j, that is,

s -ST, --

we introduce an arc ~,i) with weight bji:= -T~,j x (see Fig.
1). In case of a maximal time lag ~/jx, we assume that there
is a sequence of activities i := Jo, Jl Jm := J and
minimal time lags ~ji? T~j. i~ such that

~n. !n + in ax
Jd, ...'JcT~j,,_j°, ~ Z~t J

In this way, we obtain a weakly connected weighted
directed graph containing cycles, which we call an MPM
network. Each arc with negative weight belongs to a cycle,
and the length of any cycle is nonpositive. It is assumed

Fig. 1. Arcs for minimal and maximal time lags.

without loss of generality that each cycle contains at least
one arc with positive weight. The node set of the MPM
network N in question is denoted by V and the arc set by E
where V : = { 1 n}. Both the minimal and maximal
time lags can be written in the form

S T j - ST i >- bij ((i,j)~E).

Assume that the project begins at time zero, that is,
ST1:= O. Then the project duration equals

ST~ = max (ST, + Di)
i= l , . . . ,n

We note that prescribed release dates (also called ready
times) and deadlines for activities can be expressed in
terms of special minimal and maximal time lags. Let rj -> 0
be a given release date of activity j, that is, activity j is
available for performing at time ry. Then

STy - ST 1 >- ry

In other words, there is a minimal time lag T~I~ = r j
between (the start of) activities 1 and j. Let dj > Dy be a
given deadline for activity j, that is, activity j has to be
completed by time dj. Then

STj+DTST 1 < dj,

that is, there is a maximal time lag T~I/x = di-D i between
(the start of) activities 1 and j.

In what follows, some additional concepts are needed. A
strong component of an MPM network N (that is, a
maximal subgraph where all nodes are reachable from each
other) which contains at least one arc is called a cycle
structure. A cycle structure represents, figuratively speak-
ing, a maximal set of nested cycles.

If node j is reachable from node i~ j , that is, there is a
path from i to j, then i is termed a predecessor of,j and j is
a successor of i. Let i be a predecessor of j. The length of
a longest path from i to j is denoted by liy. If there is an arc
(i,j), then i is an immediate predecessor of j and j is an
immediate successor of i.

Heuris t ics f o r the m in imum project -durat ion prob lem 147

3

-4
Fig. 2. Real and fictitious predecessors of nodes.

Node i is called a realpredecessor o f j either if lij > 0 or
if lij : = 0 and every arc (e~,13)on a longest path from i to j
has weight b ~ = 0. Node i is called afictitious predecessor
o f j either if lij < 0 or lij : = 0 and there is at least one arc
(et,[3) with weight b ~ < 0 on every longest path from i to
j. Analogously, real and fictitious successors as well as real
and fictitious immediate predecessors and successors are
defined. In Fig. 2, i is a real predecessor of bo th j and k, and
k is a fictitious immediate predecessor of j. A real
immediate predecessor i of an activity j has to be scheduled
before j but not necessarily a fictitious immediate prede-
cessor.

A node i of a cycle structure C is called an initial node
of C if i does not have any real predecessor but has at least
one real immediate successor in C. The first activity of a
cycle structure C to be scheduled corresponds to an initial
node of C. In Fig. 3, nodes 1 and 2 are initial nodes of the
cycle structure.

3. Resource-constrained scheduling
Assume that the renewable resources 1 K are required
for carrying out the project in question. Let R~ > 0 be the
capacity of resource K available and let ri~ >-- 0 be the
capacity of resource K required for activity i (K := 1
K; i~ V), where R~and ri~ are supposed to be constant
(independent of time). Of course, rlK = rn~ = 0 for K = 1,
. . . . K. It is assumed that riK <-- R~ for i : = 2 n - 1
and K = 1 K. Let

-6

~'~ 2 ~ ~ 3

1 ~ l l ~ 3

;[

Fig. 3. Initial nodes of a cycle structure.

V(t) := { i c V I t - D i < ST i <-- t}

be the set of activities in execution at time t or in time
interval [t,t + 1] respectively. Assuming that the activities
cannot be interrupted (nonpre-emptive case), the resource-
constrained project-scheduling problem for the MPM
network N in question is then as follows:

N)

where

min st n

such that S T F S T i > bij ((i~j)e E)

riK<R K (K = 1 K ; t = 0,1 T - l)
i~ v(o

ST 1 = 0

STie Z+ (i E V)

activity splitting is not allowed

T : = ~ max(D i, max bij)
i E V (id) E E

is an upper bound on the project duration.
To formulate the above optimization problem in a

different way, binary variables xit can be introduced
where

Xi t] =

1, if activity i is in execution in the time interval
(t - l , t)
0, otherwise.

Then problem (N) can be rewritten as a linear optimization
problem with binary variables xit (i : = 1 m; t : = 1,
. . . . D) and integer variable D representing the project
duration to be minimized.

Next, the resource-constraint project-scheduling problem
is formulated for a cycle structure C of N with node set V c
and arc set E c, where the 'partial project ' C is treated as a
separate entity and is started at time 0:

(c)

min m a x (sri+Di)
i E V c

such that STj-ST i > bij ((i,j)e Ec)

" < R K (K = 1, ,K;t = 0,1, ,Tc-1
i e V c (t) iK

ST,.e Z+ (ie Vc)

activity splitting is not allowed

where

Vc(t) "= { i e V c l t - D i < ST, < t}

T c : = ~ max (D i, max bij)
ie V,. (i j) e E,.

148 Neumann and Zhan

The following theorems can be proved (see also Bartusch
et al., 1988):

Theorem 1: the following problem is NP-hard: is there a
feasible solution to (C) or respectively (N) and if yes, find
a feasible solution.

It can be shown that, for a specific cycle structure C, the
decision problem corresponding to (C) is equivalent to the
partition problem and thus NP-complete. Recall that for
acyclic MPM networks and for CPM networks, a feasible
solution to (N) can be found in polynomial time.
Theorem 2: there is a feasible solution to (N) exactly if, for
each cycle structure C of N, there is a feasible solution to
(c).
Sketch of proof

Necessity: Trivial.
Sufficiency: Later it will be shown how to find a feasible

solution to (fir) given a feasible solution to (C) for every
cycle structure C in a relatively easy way. Hence, the
computation of a feasible solution to (C) is the centre of our
attention and, as we will see, causes some difficulties.

5. Detailed discussion of the individual steps of
algorithm AN

5.1. Step 1

It is well-known that EST~ is the length of a longest path
from node 1 to node i. Moreover, if LST~:= EST n, then
LSTn - L S T i is the length of a longest path from node i to
node n. Longest paths can be found, for example, by using
a label-correcting method that can be implemented in time
O(WllEI) (cf. Gallo and Pallottino, 1986).

The times EST. and LST i are not needed for the following
resource-constraint scheduling but only for static priority
rules to sort the activities and, if schedulable, perform them
observing the resource capacity available.

5.2. Step 2

To find the cycle structures, a well-known algorithm for
determining the strong components in a digraph with time
complexity O(IEI) may be employed, which uses a recur-
sive depth-first search procedure (cf. Even, 1979, Section
3.4).

4. Algor i thm AN for solving (N)

A heuristic procedure is presented which computes a
feasible solution to (N).

Step 1. (Temporal analysis for N). Find earliest and
latest start times EST~ and LST i for all ie V without resource
constraints;

Step 2. Find all cycle structures of N;
Step 3. (Temporal analysis for each cycle structure C).

For each cycle structure C, compute earliest and latest start
times E S ~ and L S ~ (ie Vc) without resource constraints;

Step 4 (Resource-constrained scheduling for each cycle
structure C). For each cycle structure C

(1) Find a feasible solution {EST~ilieVc} to (C) with
earliest possible times EST + (that is, maxi~ v,(ES~ + Di) as
small as possible) using a heuristic. If no feasible solution
is found, go to (2);

(2) Find a feasible solution {ES~Ii~Vc} to (C) by an
exact method (for example, by Bartusch's algorithm). If no
feasible solution is found, stop.

Step 5 (Resource-constrained scheduling for network N).
Compute a feasible solution {ES~Ii~ V} to (N) using a
heuristic.

Concerning Step 4(2), it is noticed that in practice, a cycle
structure C extremely rarely contains more than about 20
nodes. Thus, the computation of a feasible solution to (C)
using an exact method does not cause too much computa-
tional effort.

5.3. Step 3

5.3.1. Computation of the earliest start times in a cycle
structure C

For this we need a node that represents the beginning of the
partial project corresponding to C. This auxiliary node
designated by 0 and, for all i~Vc, the arcs (0,i) with
weights boi : = 0 are added to C. EST~i is equal to the length
of a longest path from 0 to i in the 'extended' cycle
structure C.

Note: given the times ES~, the initial nodes of C
(required for the following resource-constrained schedul-
ing) can be found with relative ease. It can be shown that a
node s in C without a real immediate predecessor and with
at least one real immediate successor in C represents an
initial node of C exactly if E S ~ = 0 (that is, the determina-
tion of longest paths, which are needed for finding
non-immediate predecessors, is not necessary).

5.3.2. Computation of latest start times LST i in C

Let s be an initial node of C and LST~ be the latest start time
of activity i in C subject to LST~:= O. Note that for an
activity i and different initial nodes s, the times LST~ may
be distinct. LST~ can be computed as follows: let lis be again
the length of a longest path from i to s in C. Since
- lis - 0 is the maximal time lag between (the beginning

of) activities s and i, it holds that LST~ -- - li, (compare
Fig. 4).
Let

d s : = max (LST~ + Di)
i~V,

Heuristics for the minimum project-duration problem 149

I

:;s 6 -

Fig. 4. Maximal time lag between activities s and i.

be the duration of partial project C starting with initial node
or respectively initial activity s at time O. Let s* be an
initial node s with maximum ds; s* is called an optimal
initial node of C, and we set

LST i- := LST~f (is V~)

The first activity to be scheduled within C corresponds to
an optimal initial node s*. The time complexity of step 3 is
O(IVcllEcl).

5.4. Step 4 (Resource-constrained scheduling for cycle
structure C)

5.4.1. Priority rules for projects without maximal time
lags

The basic idea of a priority-rule method for acyclic MPM
networks is the following: at the current point in time t, the
set M of eligible activities is figured out. An activity j is
called eligible at time t if:

(1) j has not been scheduled yet by time t;
(2) ST i + bij <-- t for all immediate predecessors i of j.

By definition, the activities that have been in execution at
time t - 1 but have not been completed yet and one thus
has to go on performing them at time t (recall that activities
must not be interrupted) are not called eligible.

At first the latter activities are scheduled at time t. To
decide upon which additional activities from set M are to be
scheduled at time t (that is, their execution is to begin at
time t), we introduce a total order <~ (a binary, reflexive,
transitive and antisymmetric relation) on M. The activities
from M are then scheduled at time t in that order as long as
resource capacity is available.

Such a total order can be defined as follows: we assign a
sorting characteristic or priority Gj to each activity j. This
sorting characteristic may depend on

(1) The structure of the network (for example, the
number of successors of node j,/S(j)/);

(2) The temporal analysis (for example, the total float of
activity j, LSTj - ESTj);

(3) The activity duration Dj;
(4) The resource requirements E x,= lrj, for activity j.

More than 20 sorting characteristics have been examined in
Zhan (1991).

Then i ~< j ('i is scheduled before j ') exactly if

(1) G i < Gj or
(2) G i= Gj and i < j .

For some sorting characteristics (for example, the resource
requirements E,K=lrj,), ' < ' has to be replaced by ' > ' in
(1). Moreover, instead of the activity number j, a different
attribute may be used as secondary sorting characteristic
in (2).

5.4.2. Priority rules for projects with maximal time lags

In cyclic MPM networks, an unscheduled activity j is not
necessarily eligible at time t if ST, + bij-< t for all real
immediate predecessors i o f j due to maximal time lags. Let
us look at two examples.

Example 1.
Suppose activity j belongs to a cycle structure C and

does not have any real immediate predecessor in C, but has
a real non-immediate predecessor i in C, that is, lij > 0 (see
Fig. 5). Within C, activity j cannot be scheduled at time 0
but at time

at the earliest.

MINSTj : = lij

Example 2.
If activity j has the fictitious immediate successor i, then

j has to be scheduled at time

b k j < 0 ; ~ " "C " ~

bik > - bkj

lij = bik + bkj > 0

Fig. 5. Example of positive lower bound MINSTj.

~ . . . ~ 1 ~ 1

bji < 0

Fig. 6. Example of upper bound MAXSTj.

150 Neumann and Zhan

MAXSTi := ST,. + Ibjil

at the latest (maximal time lag!), cf. Fig. 6. In other words,
activity j cannot be scheduled at time t if t > MAXSTj. To
indicate that the latest start of activity j at time MAXSTj is
caused by activity i, we write MAXj : = i.

Note: in analogy, each real immediate predecessor k o f j
has to be scheduled at time MAXST~ : = MAXSTj - lkj at the
latest, and we put MAXg : = i.

The exact specification and updating of the lower and
upper bounds MINSTj and MAXSTj, respectively, on the
start time of an activity j will be done in the course of the
heuristic procedure.

Taking the above considerations into account, an activity
j is called eligible at time t if

(1) j has not been scheduled yet by time t;
(2) ST,.+ bij<--t for all real immediate predecessors

i of j;
(3) MINSTj <-- t <-- MAXSTj.

The set of activities eligible at time t is again denoted by
M.

Now a total order on M is defined which, in addition to
the above sorting characteristic G, takes into account the
upper bound MAXST if meeting that bound is at risk due to
limited resources. This total order is denoted by
<~ IMAXST. The total order for acyclic MPM networks

introduced above will be denoted by ~< IG in what
follows.

For jeV, let AjeZ+ such that 0 <-- Aj <_ maxi~vi. Then
i <~jlMAXST ('i is scheduled before j ') exactly if one of the
four following conditions is satisfied:

(1) t + A i > M A X S T j, t+Aj>MAXST,., and MAXST~_
< MAXSTj;

(2) t+Ag > MAXSTj, t+Aj > MAXST,., MAXST, =
MAXSTj, and i<<,jlG;

(3) t+A i <- MAXSTj and t+Aj > MAXST,.;
(4) t+A i <- MAXSTj, t+Aj <_ MAXST,, and i <~jlG.

t+Ag > MAXSTj says that scheduling activity i at time t
possibly requires resources for activity i beyond time
MAXSTj. Thus, the upper bound MAXSTj for activity j is at
risk. Hence, the meaning of conditions (1) to (4) is as
follows:

(1) and (2) The upper bounds for both activities i and j
are at risk, each bound by scheduling the other activity;

(3) Only one upper bound is at risk by scheduling the
other activity;

(4) None of the two upper bounds is at risk.

It can be shown that ~< IMAXST really represents a total
order if the Aj's are equal for all j~M. Thus, it is
recommended to choose

Aj = A for a l l j ~ V w h e r e 0 -< A -< maxi~vDi

For smaller A, the order in which the activities from M
are scheduled more often depends only on the sorting
characteristic G. If we choose Aj = Dj for every j ~ V, the
relation ~< IMAXST is not necessarily transitive.

5.4.3. Backward scheduling

Scheduling the activities from M according to the total
order ~< IMAXST as long as resource capacity is available
does not guarantee that each activity j will be scheduled by
time MAXSTj.

If we find out at time t that t > MAXSTj for some
unscheduled activity j and if MAXj = i (that is, the upper
bound MAXSTj is due to activity i), scheduling of all
activities between times ST,. and t is nullified and performed
again. To assign a larger value to MAXSTj as required, we
choose MINST i > ST,., in particular

ST~ + 1 <-- MINST~ <-- ST i + (t - MAXSTj)

Note: often MINST,. : = ST,. + 1 is chosen hoping that this
suffices to schedule the real predecessors o f j sooner due to
available resources and to meet the deadline MAXSTj.

5.4.4. Algorithm AC for step 4(1)

Let L be the set of scheduled activities from cycle structure
C. Then step 4(1) of algorithm AN corresponds to the
following.

(Determine {ES~[i~ Vc}, i.e. earliest start times in C with
resource constraints)

Input.
ESTj- and LST j for all j~ V C
T := max LST i

i~ V~

Step i (Initialization). Set t : = 0, L : = { s } (s optimal initial
node), E S ~ := O, and E S ~ := -1, MINSTj := ESTj-,
MAXSTj : = LST 7 , MAXj : = 0 for all j~ Vc\{ s }
(A~B := {a~A[a~B} is the difference of sets A and B);

Step ii (Eligible set M). If L = V o stop (all activities
have been scheduled). If there is some j c Vc~L with
MAXSTj < t, go to step vi (backward scheduling). Con-
struct set M of activities eligible at time t. If M = 0 , go to
step v (determine new time t);

Step iii (Ordering of M). Order M according to
<, IMAXST;

Step iv (Construction of schedule).
(a) Take the next j~M. If, for some resource K, 1)~

exceeds the remaining capacity, go to step v
(b) Set L := Lu{j} , EST~j := t. Update MAXST i and

MAXi for all i ~ VckL (i.e. if i E Vc~L is a fictitious
predecessor of j with MAXST i > t - l i j, then set
MAXST, := t - lij and MAXi: =j). Go to (a)

Heuristics for the minimum project-duration problem 151

Table 1. Earliest and latest times for the example of Fig. 7

i EST7 LST7 MINST~ MAXST~ EST~

2 0 2 0 2 0
3 2 4 2 4 3
4 2 6 2 6,3 2
5 6 8 6 8,7 7

Step v (Determine a new time t). Let "r be the minimum
of all EST~i + D i > t and ESTi+ + bij > t with is L and
(i j)~E c. Set t : = "r. ff t > T , stop (there is no feasible
solution); otherwise go to step ii;

Step vi (Backward scheduling). Set i ' = MAXj. I f i -- 0,
stop (there is no feasible solution); otherwise reconstruct
the state at time E S ~ (i.e. for all k~ L with E S ~ >- E S ~ ,
set L : = L \ { k } , MINST k := EST , , MAXST k := L S ~ ,
MAX k : = 0). Set MINST~ : = EST~i + 0 with
1 <-- 0 <-- t - MAXSTj. Set t : = E S ~ and go to step ii.

Algorithm AC without backward scheduling can be
implemented to run in O(IEcllT"lloglEcl) time.

5.4.5. Example
To illustrate algorithm AC the cycle structure shown in Fig.
7 is considered, where there is a single resource of capacity
5 available and r i is the amount of resource required by
activity i.

Node 2 is the only initial node of the cycle structure. By
step 3 of algorithm AN, we obtain the quantities EST7 and
L S T i in Table 1. The initial values of MAXST,., which are
equal to LST i , are given before the comma in column 5 of
Table 1. The values of MAXST i after the comma and the
q^uantities E S ~ are computed by algorithm AC.
T = maxi~v, LST T = 81 is an upper bound on the start time
of any activity.

For the order ~< IMAXST, we choose A V 3. The first
scheduling time is t = 0.

t = 0. Activity 2 is scheduled, that is, ES~: = 0. More-
over, we set MAXST4:= 3 and MAX4 := 2 (compare step
iv of algorithm AC). The next scheduling time is t = 2 (cf.
step v of algorithm AC);

t = 2. The set of eligible activities is M = {3,4}. Since
t + A V 5 > MAXST 3 = 4, t + A > M A X S T 4 = 3, and
MAXST 4 < MAXST 3, activity 4 is scheduled before activ-
ity 3 (see condition (1) of order ~< IMAXST). Because of
D 2 = 3, activity 2 is still in execution at time 2. Thus, tile
remaining capacity is 3 and from activities 3 and 4, only
activity 4 can be scheduled at time 2:EST,4 := 2. The next
scheduling time is t = 3;

t = 3. Both activities 2 and 4 are completed at time 3.
Thus, the eligible activity 3 can be scheduled at time 3:
EST,3: = 3. Moreover, we set MAXSTs: = 7 and MAX 5 := 3.
The next scheduling time is t = 4;

t = 4. There is no eligible activity because the remaining

F
¢

-8

-3

-4

Fig. 7. Example of a cycle structure.

activity 5 can be scheduled at time E S ~ + T~3~ n = 7 at the
earliest;

t = 7: Activity 5 is scheduled: EST,5 = 7.

5.5. Step 5 (Resource-constrained scheduling for
network N)

To determine a feasible solution for the whole MPM
network N, each cycle structure in N is replaced by a single
node or respectively activity and a feasible solution is
computed for the resulting acyclic MPM network N'. This
means that all activities of a cycle structure are scheduled
jointly. I f we have found a feasible solution for each cycle
structure of N, we also obtain a feasible solution for the
whole network N. In detail, we proceed as follows: let C 1,
. . . . C,. be the cycle structures of N, and let {ESTi + li ~ Vco}
be the feasible solution to the resource-constrained
scheduling problem for cycle structure C o (p = 1 r).
Moreover, let

vC.= ~_J Vcp and EC.= ~ Ecp
p=l 9=1

be the sets of all nodes and arcs, respectively, of N that
belong to some cycle. Each cycle structure Cp is replaced
by a node or respectively activity c o with duration

Dc~ := max(ESTi+ +Dli)
i EVcp

and resource requirements

rco K := max ~ i~ (K = 1 K)
O<t<Dc~ i E Vc.(t)

where

152 Neumann and Zhan

Vc,(t) := {i ~ VcJt-Di<EST~i < t}

Network N is then replaced by the acyclic network N' with
node set

V ' = (V~V c) U {cl cr}

and arc set E' which results from set EkE c by the following
arc replacement (compare Fig. 8):

i~ Vcp, j~ vkvc: replace (ij) by (cp,j)
with weight bcp j := biffDco

i~ Vc,j~ Vc: replace (id') by (cp,%)
with weight bc~:o := bij+Dc,

i~ V'xW, j~ Vc : replace (i,j) by (i,%)
with weight bic ° := bij.

If parallel arcs result, the one with the largest weight is
selected.

A feasible solution {ST'iI~V'} for N' can then be
computed using a priority-rule method for acyclic MPM
networks (or for CPM networks) or a simplified version of
algorithm AC (without the quantities MINST i, MAXST~,
MAX i related to cycles). Finally, a feasible solution
{STili~V} for the original network N is obtained as
follows:

/STi ' i f i ~ V \ V c
STi : = /

[ST'~,+EST~i i f i E Vc,(p = 1 r)

5.6. Supplement

Several modifications of steps 4 (problem (C) and 5
(problem (iV) have been investigated in Zhan (1991). For
example, we can try to postpone the earliest start times
ES~ for i ~ V c as far as possible (that is, we determine
corresponding latest start times LS~) and thus reduce the
resource requirements per unit time of C. This may permit

Fig. 8. Reduction of cycle structures.

us to schedule several cycle structures jointly and possibly
results in a 'better' feasible solution to (N).

Instead of scheduling all activities of a cycle structure
jointly, we may try to schedule these activities one after
another. This may result in better exploitation of the
resource capacities available.

6. Numerical results

Zhan (1991) has performed computational experiments to
test the performance of the heuristic procedure AN with 26
different sorting characteristics. The MPM networks have
been generated randomly by a network generator. A
Hewlett Packard workstation of type HP 9000]360 was
used. Three classes of networks have been investigated:

(1) Small networks containing up to 50 activities and
requiring one resource;

(2) Large networks with 100-1000 activities and one
resource;

(3) Small and medium-size networks containing up to
300 activities and requiring three resources.

For a fixed number of activities, 80 different networks have
been studied. To find representative samples, the networks
of given size and number of resources have been classified
according to some network measures such as ratio of arcs
to nodes, number of maximal time lags, number and size of
cycle structures, and ratio of activity durations to minimal
and maximal time lags (for details we refer to Zhan,
1991).

6.1. Results for class 1

The priority-rule methods have been compared with Bar-
tusch's exact algorithm. Often, Bartusch's method did not
come up with an optimal solution within a running time of
2 hours, in particular, for larger networks. The best
heuristic procedures provided feasible solutions within
about 2% of optimality (referring to the objective function
value) requiring a few seconds of computation time.

6.2. Results for classes 2 and 3

Different heuristics using different priority rules (or respec-
tively sorting characteristics) have been compared (by
means of the Wilcoxon signed rank test, cf. Lawler et al.,
1985, Section 7.2). The following results were obtained:

(1) In general, good priority rules (as far as the quality
of the approximate solution is concerned) for CPM net-
works (that is, projects without maximal time lags)
represent good priority rules for cyclic MPM networks (that
is, networks with maximal time lags), too. Good sorting
characteristics are, for example:

Heuristics for the minimum project-duration problem 153

Table 2. Computational results

Average computing time (s) Average deviation (%)

n MTS LFT BCH* LTS MTS LFT BCH LTS

50 0.62 0.88 3.05 0.48 2.10 1.57 1.15 5.06
100 2.71 3.11 12.0 1.83 2.10 1.00 0.33 7.95
3C'3 3.45 18.5 60.0 2.21 1.81 0.73 0.05 13.9

1000 16.8 26.0 102 10.4 1.19 0.45 0.07 14.4

*BCH = best combined heuristic

MTS ('most total successors' first: activities with largest
number of successors have highest priority);
LST ('latest start time' first: activities with smallest latest
start time have highest priority);
LFT ('latest finish time' first: activities with smallest
latest finish time have highest priority);
LFS ('least float per successor' first: activity j with
smallest value of (1/IS(j)l)ZiEisq) (LSTi-ESTi) has
highest priority, where IS(j) is the set of the immediate
successors of j);
(2) Priority rules 'opposite' to good rules are generally

poor, for example:
LTS ('least total successors' first);
EST ('earliest start time' first);
EFT ('earliest finish time' first).
The rules

SPT ('shortest processing time' first)
LPT ('longest processing time' first),

which are often used in practice, have also turned out to be
poor;

(3) 'Combined' heuristics (using four different heu-
ristics and selecting the best of the feasible solutions
obtained) are much better than the individual heuristics. In
particular, combined heuristics behave much better than
single heuristics for specific 'pathological' networks, that
is, there are much fewer 'runaways';

(4) As the number of activities increases, good heuristics
provide better solutions (that is, solutions with project
durations closer to the shortest project duration found by
any heuristic) and poor heuristics provide worse solu-
tions;

(5) The computing time generally increases linearly with
the number of activities, where the factor of proportionality
is a little less than one. For networks with 1000 activities
and one resource the average computing time (of a single
heuristic) is less than 30 s;

(6) For three resources, the average computing time is
almost twice as large as for one resource if every activity
requires two resources on the average.

Table 2 shows some computational results for one
resource, where for each number n of activities, 80
problems have been solved (cf. Zhan, 1991). The deviation
refers to the difference between the project duration for the

solution in question and the shortest project duration found
by any heuristic. Note that the rules MTS and LFT provide
good heuristics whereas LTS yields a poor one. For three
resources, the computational results are quite similar except
that, as already mentioned, the average computing time is
about twice as large as for one resource.

References

Alvarez-Vald6s, R. and Tamarit, J. M. (1989) Heurisitic algo-
rithms for resource-constrained project scheduling: a review
and an empirical analysis, in Advances in Project Scheduling,
Slowinski, R. and Weglarz, J. (eds), Elsevier, Amsterdam,
pp. 113-134.

Bartusch, M. (1983) Optimierung von Netzpl~inen mit Anord-
nungsbeziehungen bei knappen Betriebsmitteln, Ph. D.
Thesis, RWTH Aachen, Germany.

Bartusch, M., M6hring, R. H. and Radermacher, F. J. (1988)
Scheduling project networks with resource constraints and
time windows. Annals of Operations Research, 16,
201-240.

Christofides, N., Alvarez-Vald6s, R. and Tamarit, J. M. (1987)
Project scheduling with resource constraints: a branch and
bound approach. European Journal of Operational Research,
29, 262-273.

Davis, E. W. (1975) Project network summary measures con-
strained-resource scheduling. AIIE Transactions, 7,
132-142.

Davis, E. W. and Patterson, J. H. (1975) A comparison of
heuristic and optimum solutions in resource-constrained
project scheduling. Management Science, 21, 944-955.

Demeulemeester, E. and Herroelen, W. (1992) A branch-and-
bound procedure for the multiple resource-constrained
project scheduling problem. Management Science, 38,
1803-1818.

Elmaghraby, S. E. and Kamburowski, J. (1992) The analysis of
activity networks under generalized precedence relations.
Management Science, 38, 1245-1263.

Elsayed, E. A. (1982) Algorithms for project scheduling with
resource constraints. International Journal of Production
Research, 20, 95-103.

Even, S. (1979) Graph Algorithms, Pitman, London.
Gallo, G. and Pallottino, S. (1986) Shortest path methods: a

unifying approach. Mathematical Programming Study, 26,
38-64.

154 Neumann and Zhan

Lawler, E. L., Lenstra, J. K., Rinnooy Karl, A. H. G. and Shmoys,
D. B. (eds) (1985) The Traveling Salesman Problem, John
Wiley, New York.

Neumann, K. and Morlock, M. (1993) Operations Research, Carl
Hanser, Manchen.

Patterson, J. H. (1984) A comparison of exact approaches for
solving the multiple constrained resource project scheduling
problem. Management Science, 30, 854-867.

Patterson, J. H., Slowinski, R., Talbot, F. B. and Weglarz, J.
(1989) An algorithm for a general class of precedence and
resource constrained scheduling problems, in Advances in
Project Scheduling, Slowinski, R. and Weglarz, J. (eds),
Elsevier, Amsterdam, pp. 3-28.

Roy, B. (1964) Les problOmes d'ordonnancement, Dunod,
Paris.

Stinson, J. P., Davis, E. W. and Khumawala, B. M. (1978)
Multiple resource-constrained scheduling using branch and
bound. AIIE Transactions, 10, 252-259.

Talbot, F. B. and Patterson, J. H. (1978) An efficient integer
programming algorithm with network cuts for solving
resource-constrained scheduling problems. Management
Science, 24, 1163-1174.

Zhan, J. (1991), Heuristische Ressourcenplanung in MPM-
Netzplanen mit beschr~inkter Kapazit~it, Ph. D. Thesis,
University of Karlsruhe, Germany.

