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The authors consider the problem of minimizing the duration of a project under fixed resource 
constraints. For the case that there are only minimal time lags between the start of successive 
activities and that therefore the project can be described by an acyclic network, a large number of 
exact and heuristic algorithms can be found in the literature. In this paper, the authors permit both 
minimal and maximal time lags between activities. The project can then be modelled by an activity- 
on-node network containing cycles. Efficient priority-rule heuristics are presented for solving the 
resource-constrained project-scheduling problem. Computational results are discussed for projects 
containing up to 1000 activities and several resources. 
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1. I n t r o d u c t i o n  

In this paper the following NP-hard problem is dealt with: 
minimization of the duration of a project subject to limited 
renewable resources, which are required for carrying out 
the individual activities of the project. Examples of 
renewable resources are labour force and machines. 

If there are only minimal time lags between activities, 
that is, the project can be modelled by an activity-on-arc 
network (or CPM network known from the 'critical path 
method') or an acyclic activity-on-node network, a large 
number of exact algorithms as well as heuristic procedures 
have been developed to solve the resource-constrained 
project-scheduling problem. 

The exact algorithms are generally of the branch-and- 
bound type, for example, the algorithms proposed by 
Talbot and Patterson (1978), Stinson et al. (1978), Patter- 
son (1984), Christofides et al. (1987), Patterson et al. 
(1989) and Demeulemeester and Herroelen (1992). How- 
ever, in general, only projects containing up to 50 activities 
and at most three resources can be treated efficiently using 
these methods. 
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Most heuristics represent so-called priority-rule meth- 
ods: priorities are assigned to all activities that can be 
scheduled at a certain point in time or in a time period. The 
activities are then carried out in the order of decreasing 
priorities if they cannot be performed simultaneously due to 
limited resources. This process of scheduling the activities 
proceeds from time point to time point (or respectively 
from time period to time period) in chronological order. 
References for such priority-rule methods are, for example, 
Davis (1975), Davis and Patterson (1975), Elsayed (1982), 
and Alvarez-Valdrs and Tamarit (1989). 

For the case in which there are minimal and maximal 
time lags between activities, that is, CPM networks are no 
longer applicable and, instead, cyclic activity-on-node 
networks have to be used to model the projects under 
consideration, Bartusch (1983) has developed a branch- 
and-bound method to solve the resource-constrained 
project-scheduling problem (see also Bartusch et al., 1988). 
If we truncate the evolution of that algorithm (for example, 
by omitting some or all backtracking steps), we obtain 
heuristic procedures. Those heuristics, however, generally 
require a large computational effort. 
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Zhan (1991) has investigated how to generalize the 
priority-rule methods to the case where maximal time lags 
are present. The heuristics obtained have turned out to be 
very successful. The procedures generally provide good 
approximate solutions. For projects with 1000 activities and 
one resource, the average computing time on a HP 
workstation of type 9000/360 is 30 s. If we have three 
resources, the average computation time amounts to 1 
min. bji = -Ti~ 

2. M P M  networks (activity-on-node networks) 

The so-called metra-potential method, abbreviated MPM, is 
a method for temporal analysis of projects, which uses 
cyclic activity-on-node networks. Thus, the latter project 
networks are also called MPM networks. Before dealing 
with resource-constrained project scheduling, let us touch 
upon the basic elements of MPM networks very briefly. 
The metra-potential method was proposed by Roy (1964); 
more recent references are Elmaghraby and Kamburowski 
(1992) and Neumann and Morlock (1993), Section 2.5. 

Suppose that the underlying project consists of n activ- 
ities numbered 1 to n. Activity 1 represents the beginning 
of the project and activity n its completion. The remaining 
activities correspond to real activities. Let Dje Z+ be the 
duration or processing time of activity j (all quantities used 
in what follows, in particular times and points in time, are 
assumed to be integers). The dummy activities 1 and n have 
duration zero: D 1 : = D, : = 0. Let STj be the start time of 
activity j (1 < j < n). 

The nodes 1 . . . . .  n of a directed graph are assigned to 
the activities 1 . . . . .  n (and the activities are identified with 
the nodes). If there is a minimal time lag/~/.}n > 0 between 
the start of two activities i and j, that is, 

s u  - sT,. --  jn, 

we introduce an arc (i,j) with weight bij : = T~/) n. If there is 
a maximal time lag T~  x between the start of two activities 
i and j,  that is, 

s -ST, -- 

we introduce an arc ~,i) with weight bji:= -T~,j x (see Fig. 
1). In case of a maximal time lag ~/jx, we assume that there 
is a sequence of activities i := Jo, Jl . . . . .  Jm := J and 
minimal time lags ~ji? . . . . .  T~j. i~ such that 

~n. !n + in ax 
Jd, ...'JcT~j,,_j°, ~ Z~t J 

In this way, we obtain a weakly connected weighted 
directed graph containing cycles, which we call an MPM 
network. Each arc with negative weight belongs to a cycle, 
and the length of any cycle is nonpositive. It is assumed 

Fig. 1. Arcs for minimal and maximal time lags. 

without loss of generality that each cycle contains at least 
one arc with positive weight. The node set of the MPM 
network N in question is denoted by V and the arc set by E 
where V : =  { 1 . . . . .  n}. Both the minimal and maximal 
time lags can be written in the form 

S T j -  ST i >- bij ((i,j)~E). 

Assume that the project begins at time zero, that is, 
ST1:= O. Then the project duration equals 

ST~ = max (ST, + Di) 
i= l , . . . ,n  

We note that prescribed release dates (also called ready 
times) and deadlines for activities can be expressed in 
terms of special minimal and maximal time lags. Let rj -> 0 
be a given release date of activity j, that is, activity j is 
available for performing at time ry. Then 

STy - ST 1 >- ry 

In other words, there is a minimal time lag T~I~ = r j  
between (the start of) activities 1 and j. Let dj > Dy be a 
given deadline for activity j, that is, activity j has to be 
completed by time dj. Then 

STj+DTST 1 < dj, 

that is, there is a maximal time lag T~I/x = di-D i between 
(the start of) activities 1 and j. 

In what follows, some additional concepts are needed. A 
strong component of an MPM network N (that is, a 
maximal subgraph where all nodes are reachable from each 
other) which contains at least one arc is called a cycle 
structure. A cycle structure represents, figuratively speak- 
ing, a maximal set of nested cycles. 

If node j is reachable from node i~ j ,  that is, there is a 
path from i to j,  then i is termed a predecessor of,j and j is 
a successor of i. Let i be a predecessor of j. The length of 
a longest path from i to j is denoted by liy. If there is an arc 
(i,j), then i is an immediate predecessor of j and j is an 
immediate successor of i. 
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-4 
Fig. 2. Real and fictitious predecessors of nodes. 

Node i is called a realpredecessor o f j  either if  lij > 0 or 
if lij : = 0 and every arc (e~,13)on a longest path from i to j 
has weight b ~  = 0. Node i is called afictitious predecessor 
o f j  either if lij < 0 or lij : = 0 and there is at least one arc 
(et,[3) with weight b ~  < 0 on every longest path from i to 
j. Analogously, real and fictitious successors as well as real 
and fictitious immediate predecessors and successors are 
defined. In Fig. 2, i is a real predecessor of  bo th j  and k, and 
k is a fictitious immediate predecessor of  j. A real 
immediate predecessor i of  an activity j has to be scheduled 
before j but not necessarily a fictitious immediate prede- 
cessor. 

A node i of  a cycle structure C is called an initial node 
of C if i does not have any real predecessor but has at least 
one real immediate successor in C. The first activity of  a 
cycle structure C to be scheduled corresponds to an initial 
node of C. In Fig. 3, nodes 1 and 2 are initial nodes of  the 
cycle structure. 

3. Resource-constrained scheduling 
Assume that the renewable resources 1 . . . . .  K are required 
for carrying out the project in question. Let R~ > 0 be the 
capacity of  resource K available and let ri~ >-- 0 be the 
capacity of resource K required for activity i (K := 1 . . . . .  
K; i~ V), where R~and ri~ are supposed to be constant 
(independent of  time). Of  course, rlK = rn~ = 0 for K = 1, 
. . . .  K. It is assumed that riK <-- R~ for i : = 2 . . . . .  n - 1 
and K = 1 . . . . .  K. Let 

-6 

~'~ 2 ~ ~  3 

1 ~ l l ~  3 

;[ 

Fig. 3. Initial nodes of a cycle structure. 

V(t) := { i c V I t - D  i < ST  i <-- t} 

be the set of  activities in execution at time t or in time 
interval [t,t + 1] respectively. Assuming that the activities 
cannot be interrupted (nonpre-emptive case), the resource- 
constrained project-scheduling problem for the MPM 
network N in question is then as follows: 

N) 

where 

min st n 

such that S T F S T  i > bij ((i~j)e E) 

riK<R K (K = 1 . . . . .  K ; t  = 0,1 . . . . .  T - l )  
i~ v(o 

ST 1 = 0 

STie Z+ ( i E V) 

activity splitting is not allowed 

T : = ~ max(D i, max bij ) 
i E V  (id) E E  

is an upper bound on the project duration. 
To formulate the above optimization problem in a 

different way, binary variables xit can be introduced 
where 

Xi t  ] = 

1, if  activity i is in execution in the time interval 
( t - l ,  t) 
0, otherwise. 

Then problem (N) can be rewritten as a linear optimization 
problem with binary variables xit (i : = 1 . . . . .  m; t : = 1, 
. . . .  D) and integer variable D representing the project 
duration to be minimized. 

Next, the resource-constraint project-scheduling problem 
is formulated for a cycle structure C of N with node set V c 
and arc set E c, where the 'partial project '  C is treated as a 
separate entity and is started at time 0: 

(c) 

min m a x  (sri+Di) 
i E V c  

such that STj-ST i > bij ((i,j)e Ec) 

" < R K (K = 1, ,K;t = 0,1, ,Tc-1 
i e V c ( t )  iK . . . . . . .  

ST,.e Z+ (ie Vc) 

activity splitting is not allowed 

where 

Vc(t ) "= { i e V c l t - D  i < ST, < t} 

T c : = ~ max (D i, max bij ) 
ie  V,. ( i j ) e  E,. 
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The following theorems can be proved (see also Bartusch 
et al., 1988): 

Theorem 1: the following problem is NP-hard: is there a 
feasible solution to (C) or respectively (N) and if yes, find 
a feasible solution. 

It can be shown that, for a specific cycle structure C, the 
decision problem corresponding to (C) is equivalent to the 
partition problem and thus NP-complete. Recall that for 
acyclic MPM networks and for CPM networks, a feasible 
solution to (N) can be found in polynomial time. 
Theorem 2: there is a feasible solution to (N) exactly if, for 
each cycle structure C of N, there is a feasible solution to 
(c). 
Sketch of proof 

Necessity: Trivial. 
Sufficiency: Later it will be shown how to find a feasible 

solution to (fir) given a feasible solution to (C) for every 
cycle structure C in a relatively easy way. Hence, the 
computation of a feasible solution to (C) is the centre of our 
attention and, as we will see, causes some difficulties. 

5. Detailed discussion of  the individual steps of 
algorithm AN 

5.1. Step 1 

It is well-known that EST~ is the length of a longest path 
from node 1 to node i. Moreover, if LST~:= EST n, then 
LSTn - L S T  i is the length of a longest path from node i to 
node n. Longest paths can be found, for example, by using 
a label-correcting method that can be implemented in time 
O(WllEI) (cf. Gallo and Pallottino, 1986). 

The times EST. and LST i are not needed for the following 
resource-constraint scheduling but only for static priority 
rules to sort the activities and, if schedulable, perform them 
observing the resource capacity available. 

5.2. Step 2 

To find the cycle structures, a well-known algorithm for 
determining the strong components in a digraph with time 
complexity O(IEI) may be employed, which uses a recur- 
sive depth-first search procedure (cf. Even, 1979, Section 
3.4). 

4. Algor i thm AN for solving (N) 

A heuristic procedure is presented which computes a 
feasible solution to (N). 

Step 1. (Temporal analysis for N). Find earliest and 
latest start times EST~ and LST i for all ie V without resource 
constraints; 

Step 2. Find all cycle structures of N; 
Step 3. (Temporal analysis for each cycle structure C). 

For each cycle structure C, compute earliest and latest start 
times E S ~  and L S ~  (ie Vc) without resource constraints; 

Step 4 (Resource-constrained scheduling for each cycle 
structure C). For each cycle structure C 

(1) Find a feasible solution {EST~ilieVc} to (C) with 
earliest possible times EST + (that is, maxi~ v,(ES~ + Di) as 
small as possible) using a heuristic. If no feasible solution 
is found, go to (2); 

(2) Find a feasible solution {ES~Ii~Vc} to (C) by an 
exact method (for example, by Bartusch's algorithm). If no 
feasible solution is found, stop. 

Step 5 (Resource-constrained scheduling for network N). 
Compute a feasible solution {ES~Ii~ V} to (N) using a 
heuristic. 

Concerning Step 4(2), it is noticed that in practice, a cycle 
structure C extremely rarely contains more than about 20 
nodes. Thus, the computation of a feasible solution to (C) 
using an exact method does not cause too much computa- 
tional effort. 

5.3. Step 3 

5.3.1. Computation of the earliest start times in a cycle 
structure C 

For this we need a node that represents the beginning of the 
partial project corresponding to C. This auxiliary node 
designated by 0 and, for all i~Vc, the arcs (0,i) with 
weights boi : = 0 are added to C. EST~i is equal to the length 
of a longest path from 0 to i in the 'extended' cycle 
structure C. 

Note: given the times ES~, the initial nodes of C 
(required for the following resource-constrained schedul- 
ing) can be found with relative ease. It can be shown that a 
node s in C without a real immediate predecessor and with 
at least one real immediate successor in C represents an 
initial node of C exactly if E S ~  = 0 (that is, the determina- 
tion of longest paths, which are needed for finding 
non-immediate predecessors, is not necessary). 

5.3.2. Computation of latest start times LST i in C 

Let s be an initial node of C and LST~ be the latest start time 
of activity i in C subject to LST~:= O. Note that for an 
activity i and different initial nodes s, the times LST~ may 
be distinct. LST~ can be computed as follows: let lis be again 
the length of a longest path from i to s in C. Since 
- lis - 0 is the maximal time lag between (the beginning 

of) activities s and i, it holds that LST~ -- - li, (compare 
Fig. 4). 
Let 

d s : = max (LST~ + Di) 
i~V, 
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Fig. 4. Maximal time lag between activities s and i. 

be the duration of partial project C starting with initial node 
or respectively initial activity s at time O. Let s* be an 
initial node s with maximum ds; s* is called an optimal 
initial node of  C, and we set 

LST i- := LST~f (is V~) 

The first activity to be scheduled within C corresponds to 
an optimal initial node s*. The time complexity of step 3 is 
O(IVcllEcl). 

5.4. Step 4 (Resource-constrained scheduling for cycle 
structure C) 

5.4.1. Priority rules for projects without maximal time 
lags 

The basic idea of a priority-rule method for acyclic MPM 
networks is the following: at the current point in time t, the 
set M of eligible activities is figured out. An activity j is 
called eligible at time t if: 

(1) j has not been scheduled yet by time t; 
(2) ST i + bij <-- t for all immediate predecessors i of j. 

By definition, the activities that have been in execution at 
time t -  1 but have not been completed yet and one thus 
has to go on performing them at time t (recall that activities 
must not be interrupted) are not called eligible. 

At first the latter activities are scheduled at time t. To 
decide upon which additional activities from set M are to be 
scheduled at time t (that is, their execution is to begin at 
time t), we introduce a total order <~ (a binary, reflexive, 
transitive and antisymmetric relation) on M. The activities 
from M are then scheduled at time t in that order as long as 
resource capacity is available. 

Such a total order can be defined as follows: we assign a 
sorting characteristic or priority Gj to each activity j. This 
sorting characteristic may depend on 

(1) The structure of the network (for example, the 
number of successors of node j,/S(j)/); 

(2) The temporal analysis (for example, the total float of 
activity j, LSTj - ESTj); 

(3) The activity duration Dj; 
(4) The resource requirements E x,= lrj, for activity j. 

More than 20 sorting characteristics have been examined in 
Zhan (1991). 

Then i ~< j ('i is scheduled before j ') exactly if 

(1) G i < Gj or 
(2) G i= Gj and i < j .  

For some sorting characteristics (for example, the resource 
requirements E,K=lrj,), ' < ' has to be replaced by ' > ' in 
(1). Moreover, instead of the activity number j, a different 
attribute may be used as secondary sorting characteristic 
in (2). 

5.4.2. Priority rules for projects with maximal time lags 

In cyclic MPM networks, an unscheduled activity j is not 
necessarily eligible at time t if ST, + bij-< t for all real 
immediate predecessors i o f j  due to maximal time lags. Let 
us look at two examples. 

Example 1. 
Suppose activity j belongs to a cycle structure C and 

does not have any real immediate predecessor in C, but has 
a real non-immediate predecessor i in C, that is, lij > 0 (see 
Fig. 5). Within C, activity j cannot be scheduled at time 0 
but at time 

at the earliest. 

MINSTj : = lij 

Example 2. 
If activity j has the fictitious immediate successor i, then 

j has to be scheduled at time 

b k j < 0 ;  ~ " "C " ~  

bik > - bkj 

lij = bik + bkj > 0 

Fig. 5. Example of positive lower bound MINSTj. 

~ . . .  ~ 1 ~ 1  

bji < 0 

Fig. 6. Example of upper bound MAXSTj. 
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MAXSTi := ST,. + Ibjil 

at the latest (maximal time lag!), cf. Fig. 6. In other words, 
activity j cannot be scheduled at time t if t > MAXSTj. To 
indicate that the latest start of activity j at time MAXSTj is 
caused by activity i, we write MAXj : = i. 

Note: in analogy, each real immediate predecessor k o f j  
has to be scheduled at time MAXST~ : = MAXSTj - lkj at the 
latest, and we put MAXg : = i. 

The exact specification and updating of the lower and 
upper bounds MINSTj and MAXSTj, respectively, on the 
start time of an activity j will be done in the course of the 
heuristic procedure. 

Taking the above considerations into account, an activity 
j is called eligible at time t if 

(1) j has not been scheduled yet by time t; 
(2) ST,.+ bij<--t for all real immediate predecessors 

i of j; 
(3) MINSTj <-- t <-- MAXSTj. 

The set of activities eligible at time t is again denoted by 
M. 

Now a total order on M is defined which, in addition to 
the above sorting characteristic G, takes into account the 
upper bound MAXST if meeting that bound is at risk due to 
limited resources. This total order is denoted by 
<~ IMAXST. The total order for acyclic MPM networks 

introduced above will be denoted by ~< IG in what 
follows. 

For jeV,  let AjeZ+ such that 0 <-- Aj <_ maxi~vi. Then 
i <~jlMAXST ('i is scheduled before j ' )  exactly if one of the 
four following conditions is satisfied: 

(1) t + A i > M A X S T  j, t+Aj>MAXST,., and MAXST~_ 
< MAXSTj; 

(2) t+Ag > MAXSTj, t+Aj > MAXST,., MAXST, = 
MAXSTj, and i<<,jlG; 

(3) t+A i <- MAXSTj and t+Aj > MAXST,.; 
(4) t+A i <- MAXSTj, t+Aj <_ MAXST,, and i <~jlG. 

t+Ag > MAXSTj says that scheduling activity i at time t 
possibly requires resources for activity i beyond time 
MAXSTj. Thus, the upper bound MAXSTj for activity j is at 
risk. Hence, the meaning of conditions (1) to (4) is as 
follows: 

(1) and (2) The upper bounds for both activities i and j 
are at risk, each bound by scheduling the other activity; 

(3) Only one upper bound is at risk by scheduling the 
other activity; 

(4) None of the two upper bounds is at risk. 

It can be shown that ~< IMAXST really represents a total 
order if the Aj's are equal for all j~M. Thus, it is 
recommended to choose 

Aj = A for a l l j ~ V w h e r e 0  -< A -< maxi~vDi 

For smaller A, the order in which the activities from M 
are scheduled more often depends only on the sorting 
characteristic G. If we choose Aj = Dj for every j ~ V, the 
relation ~< IMAXST is not necessarily transitive. 

5.4.3. Backward scheduling 

Scheduling the activities from M according to the total 
order ~< IMAXST as long as resource capacity is available 
does not guarantee that each activity j will be scheduled by 
time MAXSTj. 

If we find out at time t that t > MAXSTj for some 
unscheduled activity j and if MAXj = i (that is, the upper 
bound MAXSTj is due to activity i), scheduling of all 
activities between times ST,. and t is nullified and performed 
again. To assign a larger value to MAXSTj as required, we 
choose MINST i > ST,., in particular 

ST~ + 1 <-- MINST~ <-- ST i + (t - MAXSTj) 

Note: often MINST,. : = ST,. + 1 is chosen hoping that this 
suffices to schedule the real predecessors o f j  sooner due to 
available resources and to meet the deadline MAXSTj. 

5.4.4. Algorithm AC for step 4(1) 

Let L be the set of scheduled activities from cycle structure 
C. Then step 4(1) of algorithm AN corresponds to the 
following. 

(Determine {ES~[i~ Vc}, i.e. earliest start times in C with 
resource constraints) 

Input. 
ESTj- and LST j  for all j~ V C 
T := max LST i 

i~ V~ 

Step i (Initialization). Set t : = 0, L : = { s } (s optimal initial 
node), E S ~  := O, and E S ~  := -1, MINSTj := ESTj-, 
MAXSTj : = LST 7 , MAXj : = 0 for all j~ Vc\{ s } 
(A~B := {a~A[a~B} is the difference of sets A and B); 

Step ii (Eligible set M). If L = V o stop (all activities 
have been scheduled). If there is some j c Vc~L with 
MAXSTj < t, go to step vi (backward scheduling). Con- 
struct set M of activities eligible at time t. If M = 0 ,  go to 
step v (determine new time t); 

Step iii (Ordering of M). Order M according to 
<, IMAXST; 

Step iv (Construction of schedule). 
(a) Take the next j~M. If, for some resource K, 1)~ 

exceeds the remaining capacity, go to step v 
(b) Set L := Lu{j} ,  EST~j := t. Update MAXST i and 

MAXi for all i ~ VckL (i.e. if i E Vc~L is a fictitious 
predecessor of j with MAXST i > t - l  i j, then set 
MAXST, := t - lij and MAXi: =j). Go to (a) 
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Table 1. Earliest and latest times for the example of Fig. 7 

i EST7 LST7 MINST~ MAXST~ EST~ 

2 0 2 0 2 0 
3 2 4 2 4 3 
4 2 6 2 6,3 2 
5 6 8 6 8,7 7 

Step v (Determine a new time t). Let "r be the minimum 
of all EST~i + D i > t and ESTi+ + bij > t with is L and 
( i j )~E  c. Set t : =  "r. ff  t > T ,  stop (there is no feasible 
solution); otherwise go to step ii; 

Step vi (Backward scheduling). Set i ' =  MAXj. I f  i -- 0, 
stop (there is no feasible solution); otherwise reconstruct 
the state at time E S ~  (i.e. for all k~ L with E S ~  >- E S ~ ,  
set L : = L \ { k } ,  MINST k := EST , ,  MAXST k := L S ~ ,  
MAX k : = 0). Set MINST~ : = EST~i + 0 with 
1 <-- 0 <-- t - MAXSTj. Set t : = E S ~  and go to step ii. 

Algorithm AC without backward scheduling can be 
implemented to run in O(IEcllT"lloglEcl ) time. 

5.4.5. Example 
To illustrate algorithm AC the cycle structure shown in Fig. 
7 is considered, where there is a single resource of capacity 
5 available and r i is the amount of resource required by 
activity i. 

Node 2 is the only initial node of the cycle structure. By 
step 3 of algorithm AN, we obtain the quantities EST7 and 
L S T i  in Table 1. The initial values of MAXST,., which are 
equal to LST i ,  are given before the comma in column 5 of 
Table 1. The values of MAXST i after the comma and the 
q^uantities E S ~  are computed by algorithm AC. 
T = maxi~v, LST T = 81 is an upper bound on the start time 
of any activity. 

For the order ~< IMAXST, we choose A V 3. The first 
scheduling time is t = 0. 

t = 0. Activity 2 is scheduled, that is, ES~:  = 0. More- 
over, we set MAXST4:= 3 and MAX4 := 2 (compare step 
iv of algorithm AC). The next scheduling time is t = 2 (cf. 
step v of  algorithm AC); 

t = 2. The set of eligible activities is M = {3,4}. Since 
t + A  V 5 > MAXST 3 = 4, t + A > M A X S T  4 = 3, and 
MAXST 4 < MAXST 3, activity 4 is scheduled before activ- 
ity 3 (see condition (1) of  order ~< IMAXST). Because of 
D 2 = 3, activity 2 is still in execution at time 2. Thus, tile 
remaining capacity is 3 and from activities 3 and 4, only 
activity 4 can be scheduled at time 2:EST,4 := 2. The next 
scheduling time is t = 3; 

t = 3. Both activities 2 and 4 are completed at time 3. 
Thus, the eligible activity 3 can be scheduled at time 3: 
EST,3: = 3. Moreover, we set MAXSTs: = 7 and MAX 5 := 3. 
The next scheduling time is t = 4; 

t = 4. There is no eligible activity because the remaining 

F 
¢ 

-8 

-3  

-4 

Fig. 7. Example of a cycle structure. 

activity 5 can be scheduled at time E S ~  + T~3~ n = 7 at the 
earliest; 

t = 7: Activity 5 is scheduled: EST,5 = 7. 

5.5. Step 5 (Resource-constrained scheduling for 
network N) 

To determine a feasible solution for the whole MPM 
network N, each cycle structure in N is replaced by a single 
node or respectively activity and a feasible solution is 
computed for the resulting acyclic MPM network N'. This 
means that all activities of  a cycle structure are scheduled 
jointly. I f  we have found a feasible solution for each cycle 
structure of N, we also obtain a feasible solution for the 
whole network N. In detail, we proceed as follows: let C 1, 
. . . .  C,. be the cycle structures of N, and let {ESTi + li ~ Vco} 
be the feasible solution to the resource-constrained 
scheduling problem for cycle structure C o (p = 1 . . . . .  r). 
Moreover, let 

vC.= ~_J Vcp and EC.= ~ Ecp 
p=l 9=1 

be the sets of  all nodes and arcs, respectively, of  N that 
belong to some cycle. Each cycle structure Cp is replaced 
by a node or respectively activity c o with duration 

Dc~ :=  max(ESTi+ +Dli) 
i EVcp 

and resource requirements 

rco K :=  max ~ i~ (K = 1 . . . . .  K) 
O<t<Dc~ i E Vc.(t) 

where 
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Vc,(t) := {i ~ VcJt-Di<EST~i < t} 

Network N is then replaced by the acyclic network N' with 
node set 

V ' =  (V~V c) U {cl . . . . .  cr} 

and arc set E' which results from set EkE c by the following 
arc replacement (compare Fig. 8): 

i~ Vcp, j~ vkvc: replace (ij) by (cp,j) 
with weight bcp j := biffDco 

i~ Vc,j~ Vc:  replace (id') by (cp,%) 
with weight bc~:o := bij+Dc, 

i~ V'xW, j~ Vc : replace (i,j) by (i,%) 
with weight bic ° := bij. 

If parallel arcs result, the one with the largest weight is 
selected. 

A feasible solution {ST'iI~V'} for N' can then be 
computed using a priority-rule method for acyclic MPM 
networks (or for CPM networks) or a simplified version of 
algorithm AC (without the quantities MINST i, MAXST~, 
MAX i related to cycles). Finally, a feasible solution 
{STili~V} for the original network N is obtained as 
follows: 

/STi ' i f i  ~ V \ V  c 
STi : =  / 

[ST'~,+EST~i i f i  E Vc,(p = 1 . . . . .  r) 

5.6. Supplement 

Several modifications of steps 4 (problem (C) and 5 
(problem (iV) have been investigated in Zhan (1991). For 
example, we can try to postpone the earliest start times 
ES~ for i ~ V c as far as possible (that is, we determine 
corresponding latest start times LS~) and thus reduce the 
resource requirements per unit time of C. This may permit 

Fig. 8. Reduction of cycle structures. 

us to schedule several cycle structures jointly and possibly 
results in a 'better' feasible solution to (N). 

Instead of scheduling all activities of a cycle structure 
jointly, we may try to schedule these activities one after 
another. This may result in better exploitation of the 
resource capacities available. 

6. Numerical results 

Zhan (1991) has performed computational experiments to 
test the performance of the heuristic procedure AN with 26 
different sorting characteristics. The MPM networks have 
been generated randomly by a network generator. A 
Hewlett Packard workstation of type HP 9000]360 was 
used. Three classes of networks have been investigated: 

(1) Small networks containing up to 50 activities and 
requiring one resource; 

(2) Large networks with 100-1000 activities and one 
resource; 

(3) Small and medium-size networks containing up to 
300 activities and requiring three resources. 

For a fixed number of activities, 80 different networks have 
been studied. To find representative samples, the networks 
of given size and number of resources have been classified 
according to some network measures such as ratio of arcs 
to nodes, number of maximal time lags, number and size of 
cycle structures, and ratio of activity durations to minimal 
and maximal time lags (for details we refer to Zhan, 
1991). 

6.1. Results for class 1 

The priority-rule methods have been compared with Bar- 
tusch's exact algorithm. Often, Bartusch's method did not 
come up with an optimal solution within a running time of 
2 hours, in particular, for larger networks. The best 
heuristic procedures provided feasible solutions within 
about 2% of optimality (referring to the objective function 
value) requiring a few seconds of computation time. 

6.2. Results for classes 2 and 3 

Different heuristics using different priority rules (or respec- 
tively sorting characteristics) have been compared (by 
means of the Wilcoxon signed rank test, cf. Lawler et al., 
1985, Section 7.2). The following results were obtained: 

(1) In general, good priority rules (as far as the quality 
of the approximate solution is concerned) for CPM net- 
works (that is, projects without maximal time lags) 
represent good priority rules for cyclic MPM networks (that 
is, networks with maximal time lags), too. Good sorting 
characteristics are, for example: 
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Table 2. Computational results 

Average computing time (s) Average deviation (%) 

n MTS LFT BCH* LTS MTS LFT BCH LTS 

50 0.62 0.88 3.05 0.48 2.10 1.57 1.15 5.06 
100 2.71 3.11 12.0 1.83 2.10 1.00 0.33 7.95 
3C'3 3.45 18.5 60.0 2.21 1.81 0.73 0.05 13.9 

1000 16.8 26.0 102 10.4 1.19 0.45 0.07 14.4 

*BCH = best combined heuristic 

MTS ( 'most total successors' first: activities with largest 
number of successors have highest priority); 
LST ('latest start time' first: activities with smallest latest 
start time have highest priority); 
LFT ('latest finish time' first: activities with smallest 
latest finish time have highest priority); 
LFS ('least float per successor' first: activity j with 
smallest value of (1/IS(j)l)ZiEisq) (LSTi-ESTi)  has 
highest priority, where IS(j) is the set of the immediate 
successors of j); 
(2) Priority rules 'opposite' to good rules are generally 

poor, for example: 
LTS ('least total successors' first); 
EST ('earliest start time' first); 
EFT ('earliest finish time' first). 
The rules 

SPT ('shortest processing time' first) 
LPT ('longest processing time' first), 

which are often used in practice, have also turned out to be 
poor; 

(3) 'Combined' heuristics (using four different heu- 
ristics and selecting the best of the feasible solutions 
obtained) are much better than the individual heuristics. In 
particular, combined heuristics behave much better than 
single heuristics for specific 'pathological' networks, that 
is, there are much fewer 'runaways'; 

(4) As the number of activities increases, good heuristics 
provide better solutions (that is, solutions with project 
durations closer to the shortest project duration found by 
any heuristic) and poor heuristics provide worse solu- 
tions; 

(5) The computing time generally increases linearly with 
the number of activities, where the factor of proportionality 
is a little less than one. For networks with 1000 activities 
and one resource the average computing time (of a single 
heuristic) is less than 30 s; 

(6) For three resources, the average computing time is 
almost twice as large as for one resource if every activity 
requires two resources on the average. 

Table 2 shows some computational results for one 
resource, where for each number n of activities, 80 
problems have been solved (cf. Zhan, 1991). The deviation 
refers to the difference between the project duration for the 

solution in question and the shortest project duration found 
by any heuristic. Note that the rules MTS and LFT provide 
good heuristics whereas LTS yields a poor one. For three 
resources, the computational results are quite similar except 
that, as already mentioned, the average computing time is 
about twice as large as for one resource. 
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