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Abstract. In the so called E - E turbulence model, an eddy viscosity is evaluated from turbulent kinetic energy 
E and energy dissipation E. Although still a first-order closure method in its simpler form, the E- E model 
yields eddy viscosity for complex turbulent flows without a prior prescription of a length scale needed in 
so-called mixing-length models. The E - E model has been successfully applied to many flow problems in 
engineering applications for non-rotating boundary layers. In this paper, the E - E method is extended to 
the atmospheric boundary layer for which a modification of the dissipation equation is found to be necessary 
in order to give results comparable with observational data. 

1. Introduction 

In recent years modelling of mesoscale phenomena has received growing interest not 
only among research scientists but also from applications in meteorology (Pielke, 1984). 
Especially in the mesoscale /I and y ranges which cover atmospheric phenomena with 
horizontal extensions less than 200 km, mesoscale models may be more or less regarded 
as two- or three-dimensional boundary-layer models applied to irregular terrain or 
non-homogeneous surface conditions (Orlanski, 1975). Hence one problem common to 
all mesoscale models is the parameterization of turbulent fluxes of momentum, heat, 
moisture or air contaminants. This so-called closure problem has been treated 
intensively for horizontal homogeneous boundary layers leading to numerous proposals 
of closure approximations; see, e.g., Bodin (1980) or Wyngaard (1982) for examples. 

With respect to mesoscale models, no specific closure has been proposed so far but 
parameterization methods found for homogeneous boundary layers have also been 
applied. For the sake of simplicity, most models make use of a simple gradient transfer 
hypothesis where only a turbulent exchange coefficient has to be defined. This coefficient 
is often evaluated by a mixing-length hypothesis, where the mixing length is taken as a 
height-dependent function as proposed, e.g., by Blackadar (1962). Especially for flows 
over highly irregular terrain, e.g., steep hills or valleys (Hunt, 1980), it is not always 
obvious how to apply a mixing-length with respect to a varying underlying surface. 

A few models have tried to circumvent this problem by use of a second-order closure 
model (Lewellen et al., 1980; Yamada, 1978). This is a rather time consuming approach 
due to the many additional equations needed for second-order turbulence modelling and 
is not practicable for most mesoscale modellers at present. A compromise has been 
proposed by Mellor and Yamada (1974, 1982), called a level-25mode1, and has been 
applied to mesoscale modelling by Yamada (1983). It takes the simple gradient transfer 
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approach but uses a prognostic equation for the mixing length in connection with the 
turbulent energy equation. This results in an eddy viscosity coefficient variable in time 
and space due to mesoscale flow modifications. With this approach Yamada obtained 
better results compared to observations than with the usual mixing-length method. 

A similar approach makes use of a prognostic equation for the energy dissipation E 
instead of a length-scale equation. From this and the turbulent kinetic energy E, an eddy 
viscosity may also be calculated, as will be explained shortly. This method, originally 
proposed among others by Hanjalic and Launder (1972), called the E - E model, has 
become very popular in the field of fluid engineering in recent years. Numerous examples 
using the E - E method for numerical simulation of free shear flows, recirculating and 
separating flows, hydraulic and channel flows etc. can be found in Durst et al. (1979) 
or Rodi (1980). Most of these flows are highly inhomogeneous and some of them have 
similarities with atmospheric flows over irregular terrain. 

The popularity of the E - E closure method in engineering applications raises the 
question of whether it could also be used for mesoscale modelling in the atmospheric 
boundary layer, especially for flows over irregular terrain, where a simple definition of 
a mixing length like that of Blackadar may not always be justified. We are aware of only 
a few applications of the E - E method for atmospheric (Lee and Kao, 1979) and oceanic 
boundary layers (Marchuk et al., 1977; Svennsson, 1979). But as is shown later, 
applying the standard E - E model used in engineering applications to atmospheric flows 
yields unrealistic results compared to other frequently used closure methods. Hence a 
modification of the E - E method is proposed in this paper, which can be applied to 
modelling of mesoscale flows or atmospheric boundary-layer problems. The modified 
E - E model is presented for a one-dimensional homogeneous 
layer, but can be extended easily to two- or three-dimensional 

and neutral boundary 
stratified flows. 

2. Basic Equations 

Let us for simplicity consider the well known equations of motion for a horizontally 
homogeneous turbulent boundary layer which may be written in standard notation: 

(lb) 

Velocity components of the geostrophic wind un and vg as well as coriolis parameter f 
are as usual. 

For the Reynolds stress, a simple gradient transfer approach (first-order closure) is 
taken : 

aii w’u’ = -K- 
az 

Pa) 
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wIu)= -K!? 
az’ 

(2b) 

The eddy viscosity coefficient for momentum K will be evaluated using the Prandtl-Kol- 
mogorov hypothesis: 

K = c,lE"*. (3) 

The turbulent kinetic energy is denoted as E = (u’* + p + w’*)/2, I is a turbulence length 
scale or mixing length and c0 is a constant. A prognostic equation for turbulent kinetic 
energy E can be derived easily (Busch, 1973) which is for a neutrally stratified boundary 
layer: 

In (4) first-order closure has been used for the production term and for turbulent 
transport of kinetic energy and pressure. The constant CC, links eddy viscosity 
coefficients for energy and momentum by K, = a& 

The energy-dissipation E is modelled by the generally accepted Kolmogorov relation: 

~312 

&=C,-. 

I 

As in (3) I is a mixing length or characteristic turbulent length scale and c, is a constant. 
In the following, we shall adopt the commonly made assumption that the length scales 
in (3) and (5) are equal, although for stratified boundary layers there are some 
indications (Therry and Lacarrere, 1983) that different length scales should be used for 
dissipation and mixing length. 

First-order closure (2a, b) with eddy viscosity (3) in connection with turbulent energy 
equation (5) is frequently used in boundary-layer and mesoscale models (Bodin, 1980, 
Wyngaard, 1982). The main difference between the models is in the definition of the 
length scale 1. Due to its simplicity, a simple functional form for l(z) is adopted by most 
modellers. The well known mixing length introduced by Blackadar (1962) is widely 
used : 

l(z) = z. 
1 + KZ/A 

(6) 

This mixing length yields a linear variation in the surface layer and approaches a 
constant value in the upper part of the boundary layer. Several methods for evaluating 
the maximum value of the mixing length I have been proposed but will not be discussed 
here further. 

Instead of (6), prognostic equations for a length scale have been developed in 
connection with second-order modelling of atmospheric boundary layers by Shir (1973), 
Lewellen and Teske (1973) and others or, for a combination of E and 1, by Mellor and 
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Yamada (1982). Still another form of a length scale equation can be obtained by 
changing the Kolmogorov relation (5) to: 

1 = c, E3j2 
(7) 

E 

Using (7), an additional prognostic equation for the energy dissipation E is needed; this 
is given below. If we insert (7) into the mixing-length relation for eddy viscosity (3) we 
obtain 

with ck = cOc,. 
Eddy viscosity relation (8) is the central part of what is called the E - E closure method 

in the literature*. A prognostic equation for energy dissipation E may be derived from 
the equations of motion or from an equation for the turbulent vortex intensity (Tennekes 
and Lumley, 1972). This equation can only be used for modelling purposes after some 
approximations and parameterizations; these will not be repeated here. Instead we refer 
to papers by Hanjalic and Launder (1972) Lumley (1978) or Marchuck et al. (1977) for 
a derivation. The resulting equation which may be referred to as the standard form can 
be written as: 

a.2 a a& 
- = c,cP - c,h + ~ cx,K---. 
at E E aZ aZ 

In (9) the abbreviation p for the production term of the kinetic energy equation is used: 

P=K[(Er+(t>‘] (10) 

where cr, c2, and c(, are constants to be determined; u, links eddy viscosity for 
dissipation transport to that for momentum, i.e., K, = a,K. A somewhat more compli- 
cated form of (9), which takes non-isotropic turbulence into account, has been given by 
Zeman and Lumley (1979), but we will restrict ourselves to the more widely used 
notation as in (9). 

Eddy viscosity formulation (8) together with energy equation (4) and dissipation 
equation (9) constitute the boundary-layer approximation of the E - E closure method. 
It should be recalled that this is still a first-order closure method, because a simple 
gradient approach (2a, b) is taken for Reynolds stress. It differs from the more frequently 

* It is quite standard to denote turbulent kinetic energy by 4, q2 or k in engineering science and elsewhere. 
Hence, in most cases one will find the E - E model referred to as k - E closure model. But since we have 
reserved K for the eddy viscosity coefficient, as is common practice in meteorology, the model will be 
referred to as the E - E model here. 
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used Z-E closure, consisting of (2a, b), (3), (4) and a form of mixing-length approach like 
(6), in that the eddy viscosity is evaluated from two prognostic variables, E and E, hence 
leaving one more degree of freedom for K being a property of turbulent flow structure. 
It may be noted that an equation for energy-dissipation E is also needed in most 
second-order closure methods (Lumley and Khajeh-Nouri, 1974; Wyngaard etal., 
1974; Launder et al., 1975), because in these models the triple correlations of turbulent 
quantities are usually parameterized using a turbulent timescale ‘t N E/E. 

The E - E method is quite similar to the q2 - 1 closure model (E - 1 in our notation) 
used by Yamada (1983) for simulation of mesoscale drainage flows. But as pointed out 
by Mellor and Herring (1973) or Rodi (1980), all methods using a prognostic equation 
for a length scale 1, a combination of energy E and 1, or a dissipation equation, are more 
or less equivalent and need some approximations for their derivation. It is sometimes 
argued that the dissipation equation is more physically based than some form of a length 
scale equation. However, the result is more or less a type of closure method for turbulent 
flows, which needs some justification anyway. Here the objective is simply to investigate 
whether the widely used E - E model in simulating engineering turbulent flows can also 
be applied to the atmospheric boundary layer. 

3. Evaluation of Constants and Boundary Conditions 

As in every closure method, there are some constants to be determined. In the equation 
for turbulent kinetic energy, only one constant is needed, cr, = KJK, which is a kind of 
an inverse Prandtl-number, because it is often assumed that eddy diffusivities for 
turbulent kinetic energy K, and heat K,, are the same. Hence a value of a, = 1.3 may 
be taken for neutrally stratified boundary layers. 

The constants cO, ci , c2 and c, will be evaluated from the consideration that relations 
(3), (5), and (8) should also be valid in the surface layer, i.e., in the lowest 10 m of the 
atmospheric boundary layer. Within the surface layer (constant-flux layer) instead of (3) 
and (5), we have respectively (Tennekes, 1973): 

K = JCU*Z (11) 

3 

E,u* 

KZ 
WI 

where K is Karman’s constant and u* is the friction velocity. Combining eddy viscosities 
(3) with (11) one gets for the constant c,, : 

co = w/Eli2 (134 

which gives a relation between Reynolds stress and turbulent kinetic energy in the 
surface layer, i.e., u$ = cg E. The dissipation forms (5) and (12) yield for constant c,: 

c, = c;. W) 
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Consequently one has for the constants in the eddy viscosity form (8): 
4 

Ck = c(Jc, = co. (13c) 

Finally the constants in the dissipation equation have to be determined. This is usually 
done (Rodi, 1980) by assuming that (9) should also be valid in the equilibrium layer near 
the lower solid boundary (law of the wall or Prandtl-layer). Here one has approximately 
P = E since turbulent kinetic energy E is nearly constant and leads to a vanishing 
diffusion term in Equation (4). The diffusion term in the dissipation equation (9) does 
not vanish, but has to be evaluated from (11) and (12) in the surface layer. Since friction 
velocity u* is assumed to be constant within the surface layer, one finally obtains from 
(9): 

(14) 

The constant c2, which is connected with the dissipation term in (9), is the only constant 
which has been determined by experiments so far. For decaying grid turbulence, it was 
found to lie in the range 1.8-2.0 (Launder and Spalding, 1972). Once the fundamental 
constant c0 relating Reynolds stress to turbulent kinetic energy in the surface layer has 
been obtained from measurements, constants cr and a, in (14) are usually found through 
‘computer optimizing’ by comparing simulated flow profiles with data from laboratory 
measurements. The constant cc has been evaluated from channel, pipe or boundary-layer 
flows or from atmospheric field observations. A mean value collected from laboratory 
data (Mellor and Yamada, 1982) is given by c0 = 0.55 (u’, = 0.3E). This is widely used 
in application of the E - E model to engineering flow problems. For the atmospheric 
boundary layer, measurements indicate c0 = 0.40 (us = 0.16E) (Panofsky et al., 1977). 
Most E - E models have been applied using some standard values for constants as given, 
e.g., by Launder and Spalding (1974). These may be written in our notation as: 
c0 = 0.55, c, = 1.44, c2 = 1.92, a, = 1.0, CI, = 0.77. The values for these constants to be 
used in atmospheric boundary-layer calculations will be given later. 

With regard to boundary conditions, it is assumed that an undisturbed geostrophic 
flow is reached above a certain height zg which should be at some distance from the 
actual boundary-layer height. Hence we have: 

Upper boundary conditions : 

z=z g: u = I.$.’ v = I& (154 

E = 0, E = 0. (15b) 

The lower boundary conditions are applied at some height zp within the surface 
(constant stress) layer. This is necessary for practical applications because due to 
computer storage and execution time it is not always possible to resolve the lower part 
of the boundary layer with a fine resolution grid. Therefore, nearly all boundary-layer 
or mesoscale models apply a law of the wall, where the height of the surface layer zp 
is taken as between 10 and 50 m. This is particularly necessary for the E - E model due 
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to the rapid variation of dissipation E in the lower part of the boundary layer. Hence, 
well-known surface-layer laws will be applied at z = zp as lower boundary conditions: 

~(2,) = 4fiF_ ln(zJz,) cos oc, 
lc 

(164 

II = u* ln(z,/z,) sin a, 
K 

Pb) 

E(z,) = Id/c; (16~) 

&(ZJ = U$/K zp WV 

or, = arctan (u/ u is the cross-isobar angle at z = zp and z, is the surface roughness ) 
length. 

With these boundary conditions, it follows from (8) and (13~) that K(z,) = ICU*Z, for 
the neutral surface layer. 

4. Standard E - e Model Applied to the Atmospheric Boundary Layer 

Closure method (8) with energy and dissipation equations in the form of (4) and (9) may 
be called the ‘standard E - E model’. This method, as applied to atmospheric boundary- 
layer equations (la, b), has been used so far, to our knowledge, only by Mason and 
Sykes (1980) and in a somewhat different form by Lee and Kao (1979). We will refer 
to these papers shortly. 

Regarding the constants as given in Section 3, the constant co, relating turbulent 
energy to surface stress, will be taken from atmospheric surface-layer observations 
(Panofsky etal., 1977) for neutral stratification. A value of 0.4 for von Karman’s 
constant is used. All other constants are as used in engineering applications (Rodi, 
1980). Relation (14) finally yields the following set: 

co = 0.40, c, = 1.13, c* = 1.90, !xe = 1.35, CI, = 0.77. 

For comparison of model results with atmospheric data, boundary equations, closed 
with the E - E method, have been solved numerically using a finite difference scheme 
with a vertically stretched grid to yield better resolution in the lower part of the boundary 
layer. A time-dependent problem was run from an initial state to a final steady state, 
and was compared to the well known Leipzig wind profile (Lettau, 1962). Since 
numerical methods are now quite standard, we only note that because we used centered 
time differencing (leap-frog), diffusion and dissipation terms in Equations (la, b), (4), 
and (9) have to be evaluated at times t - At and that all other terms are taken at the usual 
centre time t in order to yield stable results. 

For comparison with a more common mixing-length model, all cases were also run 
with the eddy viscosity hypotheses (3) and with energy equation (4) but dissipation 
evaluated from the Kolmogorov relation (5). The mixing length was calculated using (6) 
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where the maximum value 1 was evaluated according to 

1 = bu*/f (17) 

where b = 0.0063 is Blackadar’s constant. 
In order to run the boundary-layer model, two external parameters - geostrophic wind 

v, and roughness length z0 -have to be prescribed. For the Leipzig wind profile, Lettau 
gives /vgl = 17.5 m s-l (u, = 17.5 m s-j, uI: = 0 m s-’ for the coordinate system 
chosen here) and z0 = 0.3 m. 

Model results and observations are shown for the velocity components in Figure 1. 

t 
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Fig. 1. Observed and simulated wind components ii(z) and a(z). (0 l l 0) Leipzig data; ( -) mixing- 
length model; (----) E - E model (standard); (, ‘) E-E model (modified constants). 

(The coordinate is chosen with the u-component in the direction of the surface 
geostrophic wind.) Whereas the mixing-length model simulates the observed wind 
profile quite reasonably, the standard E - E model exhibits a very different behaviour. 
The u-component does not reach the free-stream value of un within the lowest 3 km of 
the boundary layer and also the cross-wind component v becomes zero only near the 
top of the model atmosphere, i.e., at about 12 km. The flattened v-profile in the lower 
boundary layer also yields a rather small cross-isobar angle tiO = 14,2” compared to 
26.1’ as obtained from the observations. Friction velocity u* was overestimated by the 
E - E model with u* = 0.80 m s- ’ compared to observed 0.65 m s - ‘. The reason for 
this discrepancy becomes clear if the results for the turbulent kinetic energy and eddy 
viscosity coefficient in Figure 2a, b are compared. The eddy viscosity from the mixing- 
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Fig. 2a. Profile of eddy viscosity coefficient K(z) as obtained from model calculations and observations, 
Designation of curves as in Figure 1. 
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Fig. 2b. Same as Fig. 2a but for the turbulent kinetic energy E(z). 
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length model and from observations show a variation with height typical for atmospheric 
boundary layers, a more or less linear increase near the surface, a maximum value in 
the lower boundary layer and decreasing magnitudes above. The E - E model yields an 
eddy viscosity K increasing to very large values (note the logarithmic axis) even well 
above the observed boundary-layer height. This large eddy viscosity causes a very deep 
boundary layer to develop as can be also seen from the velocity-profiles in Figure 1. This 
effect is also observed in the calculated profile of the turbulent kinetic energy E, shown 
in Figure 2b. In the mixing-length model, kinetic energy E vanishes at a height of about 
1600 m, whereas in the E - E model, E slowly decreases with height with non-zero values 
even in the upper part of the model atmosphere. In addition, the surface magnitudes 
of E are larger from the E - E model due to the larger friction velocity u* (E = u$/cjJ,). 

In summary, the standard E - E model, when applied to the atmospheric boundary 
layer, yields a very deep boundary layer, large eddy viscosity, large friction velocity and 
small cross-isobar angle compared to observations or mixing-length models. The same 
effect was recognized by Mason and Sykes (1980) in a two-dimensional model for 
simulating vortex roll development due to inflection point instability. Using the standard 
E - E method for parameterisation, they found the boundary layer to be completely 
stable with respect to two-dimensional perturbations, whereas vortex roll developed for 
a mixing-length type of parameterisation. The reason for this behaviour may be 
explained from the eddy viscosity coefficients obtained by E - e closure models as 
shown in Figure 2a. The large values of K result in a dynamical interpretation of a low 
(turbulent) Reynolds-number flow, which is stable for an inflection point instability 
mode; see Brown (1970). 

Similar results (too large u* and K, too small ~0) were also obtained by Lee and Kao 
(1979) for a related E - E model and by Shir (1973) using a length-scale equation. 
Deviations in these models were not as great as those presented here, presumably due 
to a rather limited model height (z, = 0.4&/f) used in their calculations. 

A possible reason for this behaviour of the E - E model, when applied to the 
atmospheric boundary layer, may be deduced by comparing a mixing length reevaluated 
after (7) with the Blackadar mixing length (6). This is shown in Figure 3 where scales 
have been normalized with respect to a boundary-layer height H evaluated from mean 
wind profiles. For the Blackadar mixing length, one gets the typical behaviour found for 
the atmospheric boundary layer, a linear increase with height near the surface and a 
rapid transition to a near constant value with a maximum mixing length Z, of approxi- 
mately 1, = 0.03H. 

The mixing length reevaluated from the E - E model departs from the linear profile 
only slowly, reaching very large values with a maximum mixing length Z, = 0.16H. It 
resembles closely the well known Nikuradse formula for mixing length in pipe and 
channel flows (see e.g., Launder and Spalding, 1972) which is also plotted in Figure 3. 
This fact may be understood by recalling that the constants used in the standard E - E 
model have been tuned using (14) by comparing model results with observations from 
non-rotating turbulent boundary layers, such as wall or channel flows, for which 
Nikuradse’s formula or similar functional forms of a mixing length hold. Hence one 
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Fig. 3. Normalized mixing length profiles. ( -) after Blackadar (Equation (6)); (----) E - E model 
(Equation (7)); (----) Nikuradse’s mixing length. 

cannot expect that rotating turbulent boundary layers, as found in atmosphere and 
ocean, can be modelled appropriately with a turbulence model adjusted to observations 
in non-rotating boundary layers. 

This experience might have led Marchuk et al. (1977) to a simple modification of a 
standard E - E model for use in simulation of the oceanic boundary layer. Although they 
developed a relation for the constants in the dissipation equation (9) similar to (14) 
leading to a constants c, = 1.38 and c2 = 1.9, using our notation, the actual calculations 
were carried out with c2 = 1.4, leading to a difference c2 - c1 = 0.02 instead of 0.52 
according to (14). 

Some experimentation with varying constants for the standard E - E model used in 
our calculations led to the following conclusions: If relation (14) is used for fixing 
constants in the dissipation equation (9), results are only very slightly dependent on the 
fundamental constant co for velocity and viscosity profiles and also for friction velocity 
U* and cross-isobar angle cl,. Only profiles of turbulent kinetic energy E are different 
in magnitude due to relation (13a) used in boundary condition (16~). However, if all 
constants were kept fixed except ci or c2 (as has been done by Marchuk et al. 1977) 
results for all variables were very sensitive with respect to variations of either c, or c2. 
(Increasing c1 and hence the production term in (9), and leaving c2, hence the dissipation 
term, fixed has the same effect as fixing ci and varying cZ.) 

Having recognized this behaviour of the E - E method with respect to constants to 
be used, we decided to keep c2 fixed because this is the only constant evaluated from 
measurements of decaying turbulence. We then varied c1 in such a way that the resulting 
profile for the eddy viscosity K was on the order of observed magnitudes and thus 
approximately in agreement with mixing-length model results (Figure 2a). 

The resulting constant ci keeping all other constants as given before, was c, = 1.83, 
yielding c2 - ci = 0.07. This model version will be called ‘modified E - E model’. The 
results obtained are also shown in Figures 1 and 2a, b. The velocity profiles in Figure 1 
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still did not agree with those obtained by a mixing-length model, but were far closer to 
observations than those from the standard E - E model. The resulting eddy viscosity 
profile was near observed values, but the maximum was found at a height of 700 m 
compared to about 240 m from observations and mixing-length model. Also there was 
not such a rapid decrease above that maximum as in the other profiles, indicating a still 
larger boundary-layer height. This can be estimated from the turbulent kinetic energy 
profile (Figure 2b) as zg = 2600 m compared to 1600 m in the mixing-length model. 
Values for friction velocity U* and cross-isobar anagle c(~ were 0.58 m s ’ and 22.2”, 
respectively, and hence closer to observations as can be seen from Table I. 

TABLE I 

Friction velocity u* and cross-isobar angle cb for the Leipzig data 
(Obs.) and different model results 

Obs. 1 2 3 4 

u*(ms-‘) 0.65 0.64 0.66 0.58 0.80 
%I(“) 26.1 26.3 26.6 22.2 14.2 

1 mixing length model. 
2 E-E model using Equation (20). 
3 E - E model, standard with modified constants. 
4 E - E model, standard, Equation (9). 

5. Modified Dissipation Equation 

The failure of a standard E - E model to predict atmospheric boundary-layer profiles 
correctly is not surprising if one looks into the literature concerning application of the 
E - E method to real flow problems. As Rodi (1980) pointed out, universality of 
constants used in the E - E model could not be expected for all kinds of turbulent flows. 
Indeed there are many examples (see also Rodi’s paper) where the E - E method had 
been successfully applied only after modification of constants involved in the dissipation 
equation. It has turned out that the standard E - e model predicts well for strong shear 
flows near solid boundaries, but gives poor results for weak shear flows as in the outer 
part of a free jet. In the latter case, for example, Rodi (1980) proposed the constant ck 
in eddy viscosity form (8) to be a function of P/s. Since ck = ci also enters relation (14) 
it has the effect of increasing the constant c1 in the dissipation equation in weak shear 
regions, where dissipation is larger than production in the turbulent energy equation. 
Predictions of weak shear flows have been improved using this correction method (see 
also Gibson and Launder, 1976). 

In the atmospheric boundary layer, a region of strong shear can be found near the 
lower boundary (surface layer), whereas the middle and upper parts of the boundary 
layer are dominated by weak shear. Hence it seemed to be appropriate to modify model 
constants for regions above the surface layer. This modification was not done with 
respect to the basic constant c,, or ck as proposed by Rodi because mixing-length models 



APPLICATION OF THE E - & TURBULENCE MODEL 125 

with eddy viscosity according to (3) have been applied successfully in many models of 
the atmospheric boundary layer with fixed cO. Also the constant c2 in dissipation 
equation (9) was not changed since its value is generally derived from measurements 
in decaying turbulence. 

Experience made with changing the constant c1 in the modified E - E model, as 
described before, led to the conclusion that increasing c, , hence decreasing the 
difference cz - c,, with height, should improve the results for the E - E model with 
respect to the atmospheric boundary layer. Some trial and error calculations indeed 
showed very good agreement for a linear increase of c, with height. But as the E - E 
method is proposed also for flows over highly irregular terrain, a purely geometric 
correction term was not easy to justify in general. Here it should be pointed out that 
Yamada (1983) also used a correction term in his length-scale equation, but for the 
constant cq (in our notation) connected with a dissipation term. The correction was 
correlated to the relation of l/m, where (is the length scale and z the vertical coordinate. 
Because I approaches a limited value in the upper boundary layer (with z increasing), 
the correction term effectively reduces dissipation in comparison to production (con- 
stant CJ and hence the difference c2 - ci with height. Although Yamada’s length scale 
equation is not exactly comparable to the dissipation equation (9) used here, his 
correction method is equivalent to our choice of increasing constant ci as the upper 
boundary layer is approached. 

The correction method proposed here is based on the assumption that the constant 
ci related to the production term in the dissipation equation (9) should depend on 
characteristic length scales of the turbulent flow considered. Hence it is proposed to 
modify c, into c; as follows: 

c; = c,l/h (17) 

where I is a turbulent length scale and h is a characteristic scale for the atmospheric 
boundary layer, which is taken as: 

h = c+,c/J (18) 

The length h is proportional to the depth of the atmospheric boundary layer which may 
be defmed as H = au*lffor near neutral stratification, where the constant a is accepted 
to range from 0.2 to 0.45. 

If the length scale I is evaluated after the Kolmogorov relation (7) the constant c; 
becomes : 

c; = Cl 
c,E3” 

(19) 
C/,&E 

Replacing the constant ci in (9) by the constant c; as given by (19) a modified dissipation 
equation is obtained as: 

a& cef a a& 
-=c,-E~‘~P-c,~E+-~~K-. 
at c,, u* E 8Z aZ 
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Although there is no convincing argument for choosing (17) as a correction term, it yields 
the desired result: with I increasing with distance from the earth’s surface (as suggested 
by observations and other mixing-length models proposed), the constant c; connected 
with the production term on the right-hand side of (20) increases too. There is no 
geometric dependence of this constant with respect to a lower boundary because the 
length scale I is evaluated from local values of E and E. 

It might be added in this context that a recent numerical simulation of isotropic 
turbulence in rotating fluids (Aupoix et al., 1983) has led to a correction of the constant 
c2 in the dissipation equation (9) of a form c2 - fEI.s, which is similar in structure to 
(17) if use of (7) and (18) is made. 

The additional constant c,, in (18) and (20) still has to be determined. This has been 
done by leaving all other constants fixed for the standard E - E model given in the 
previous section and running the boundary-layer model for different values of ch. The 
results were compared to observations (Leipzig wind profile) as already done for the 
standard E - s model. The ‘optimum’ value of ch chosen as best fit between model results 
and observations, was found as ch = 0.0015. 

Given a typical value for the friction velocity U* = 0.4 m s - ‘, one obtains for the 
characteristic length h z 6 m which is of the order of a surface-layer thickness. Hence 
the proposed relation (17) modifies the constant c, , related to the production term of 
the dissipation equation, with the ratio between a turbulence length scale and a surface- 
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Fig. 4. Observed and simulated wind components U(z) and C(z). (0 l l l 0) Leipzig Data; ( -) mixing- 
length model; (- -) E - E model with Equation (20). 
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layer scale. This is, in principle, similar to the modification of the constant cZ in the 
length-scale equation by Mellor and Yamada (1982). 

Results of the model simulations using the modified dissipation equation (20) but 
leaving ah other equations as before, are shown for the mean wind profiles in Figure 4. 
Results obtained from both the modified &-equation and the 1 - E mixing-length model 
agree quite well with observations. Boundary-layer height, as indicated by the vanishing 
cross-isobar component u, was approximately 1600 m, corresponding to 0.38 u*/’ 

Also the friction velocity u* and the cross-isobar angle q were predicted well 
compared to observations by the modified E - E closure model, as can be seen from 
Table I. The eddy viscosity coefficient obtained according to (8) is shown in Figure 5a 
together with results from the usual Kolmogorov relation (3). Both methods give values 
in fair agreement with the eddy viscosity derived from observed wind profiles. A mixing 
length evaluated for the E - E model from (7) is shown in Figure 5b. It shows similar 
behaviour to a mixing length obtained from (6) near the surface and the middle part of 
the boundary layer. The decrease of mixing length above a certain height has also been 
found in the models of Shir (1973) and Lee and Kao (1979). But is is not clear whether 
the mixing length should approach a constant value or decrease to zero when geostro- 
phic equilibrium is reached. 

Another possible test for boundary-layer models is the use of Rossby-number 
similarity and resistance laws for boundary-layer parameterisation (Blackadar and 
Tennekes, 1968; Wippermann, 1972). According to those theories, the geostrophic drag 
coefficient cg = u*/lv,l and the cross-isobar angle cr, should be functions of the surface 
Rossby number only (for neutral stratification), defined by Ro, = iv,l/fi, as usual. 
Results for model calculations of cg and cr, for different values of Ro, are shown in 
Figure 6a, b and compared to the resistance law and data from the Leipzig measure- 
ments. Results for the modified E - E model and 1 - E closure are quite similar to the 
resistence law as given by Wippermann (1972), but the standard E - E model (Chapter 4) 
yields too low a cross-isobar angle and higher drag coefficients as compared to other 
results. 

Results for varying surface Rossby number have been obtained for fixed geographic 
latitude (5 lo for the Leipzig data) and hence fixed coriolis parameter J The Rossby- 
number similarity should yield the same results regardless of whether Ro, is varied with 
changing Iv,l, z, or f: To test this, we made two additional calculations for the E - E 
model with fixed geostrophic wind and surface roughness for latitudes 70’ N and 20’ N. 
The resulting values of cg and cr, fell well onto the line in Figure 6a, b valid for the E - E 
model. If we varied the coriolis parameter in the equation of motion but not in the 
modified constant c; (19) of the dissipation equation (20) (simply taking a value for 5 lo 
as fixed in c;), we obtained the results marked by open crosses in Figure 6a, b. It is 
obvious that in this case the model does not give results as required by Rossby-number 
similarity. Thus the inclusion of a characteristic length scale h = chu*/f in the dissipation 

equation of modified form (20) seems to be necessary for application of the E - E method 
to rotating boundary layers, such as found in atmosphere and oceans. Therefore the 
standard E - E model using (9) instead of (20) would also fail with respect to variation 
of coriolis parameter in Rossby-number similarity. 
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Fig. Sa. Same as Figure 4 but for the eddy viscosity K(z). 
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Fig. 5b. Same as Figure 5a but for the mixing length I(z). 
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6. Conclusions 

A modified E - E closure method, replacing the standard dissipation equation of form 
(9) by a modified version (20), has been applied for simulation of atmospheric profiles 
in a neutrally stratified boundary layer. The results compare well with observations and 
results obtained with a more generally used mixing-length closure. Although the 
modification of the production term cannot be justified from first principles, it yields the 
desired results, including Rossby-number similarity. The modification as proposed in 
(20) is no less arbitrary than the standard dissipation equation (9) where the production 
term has been derived only after considerable manipulations of the full dissipation 
equation as mentioned before. From the results presented here, one can conclude that 
the E - E closure model can be used for rotating boundary layers only after modification 
of production or dissipation terms in the dissipation equation (9) which has been 
applied to many problems of non-rotating turbulent flows with considerable success. 
The modification as proposed in (17)-(20) is one possible way of adjusting the E - E 
model to the atmospheric boundary layer. 

As already pointed out, the standard E - F model has been successfully applied to 
complex engineering flow problems such as flow around obstacles, recirculating flows, 
etc. To make use of the modified E - E model, as proposed here, for complex atmos- 
pheric flows, the energy and dissipation equations, (4) and (20) have to be extended 
to two- or three-dimensional forms. 

This can be done easily by adding an advection term to these equations and expanding 
the production term to a standard two- or three-dimensional form. The resulting eddy 
viscosity (8) will then be calculated locally at any point of the flow under consideration 
leading, for example, to a two- or three-dimensional field of eddy diffusivities. 

A two-dimensional version of the (standard) E - E model has been applied for flow 
simulations over hills with regard to air quality problems by Lee (1979). An eddy 
diffusivity evaluated after (8) was used in a diffusion equation for air contaminants. 
Recently, there has been some application of the E - E model to dispersion of heavy 
gases in the vicinity of surface obstacles by Deaves (1984). With respect to atmospheric 
dispersion problems from ground-level or elevated sources, the modified E - c: model 
might provide some useful estimates for diffusion coefficients especially if applied to flow 
over complex terrain. 

For application of the E - E model to real atmospheric flow problems, one has, of 
course, to consider buoyancy effects too, which have been neglected in our analysis so 
far. Extension of the standard E - E model to stratified flows may be found, among 
others, in the papers by Gibson and Launder (1976) or Svennson (1980). Although the 
appropriate form of a stratified dissipation equation of form (9) is still a matter of 
discussion, an extension to stratified flows has been proposed simply by adding a 
thermal production term to energy and dissipation equations (4) and (9) respectively. 
This term results from the Boussinesque-approximation in the well known form: 
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where a* = K,/K is an inverse turbulent Prandtl number and 8 is the potential tempera- 
ture. 

This thermal production term P, is added to the right-hand side of equation (4) for 
turbulent kinetic energy and also to the dissipation equation (9) or (20). Hence the 
production term P is replaced in (9) or (20) by P = Pm + c,P,, where Pm is the 
mechanical production term as defined in (10). The additional constant cj is not as 
standard in the literature as are the others for non-stratified flows. Hence for turbulence 
modelling of stratifled flows with the aid of the E - E closure model, some adjustment 
to the thermal production term c3Pt has to be made. 

With respect to the atmospheric boundary layer, many methods have been proposed 
for taking into account stratification into turbulence parameterisation even for simple 
mixing-length models. Although well known Monin-Obukov similarity laws exist for 
surface-layer turbulence, the influence of stratification on turbulence in the middle and 
upper part of the atmospheric boundary layer is not as easy to determine. The same 
problem exists for extension of the modified E - E model to stratified boundary layers. 
Work is currently in progress to extend this model to stably stratified boundary layers, 
where even less observational data are available. Here again modifications of the E - E 
model with respect to thermal stratification have to be verilied against observational 
data, as has been done for neutral boundary layers in the paper presented here. 

Finally a critical remark on the use of a dissipation equation like (9) for turbulence 
parameterisation by Hasse (1978) should also be mentioned. He questions whether the 
dissipation equation is a separate equation at all, and not dependent on the energy 
equation. Indeed the structure of both equations is quite similar, but this is also true for 
other length-scale equations, which have been used for turbulence modelling so far. As 
pointed out by Mellor and Yamada (1982), the weakest point in even higher-order 
closure methods is perhaps the length-scale equation, independant of the different forms 
chosen by different authors. This is also true for the use of a dissipation equation instead 
of a length-scale equation. Hence one might regard the modified E - E model as a closure 
method which gives similar results to other methods in use, but can be easily applied 
to complex atmospheric flow problems. 
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