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Abstract. This paper describes a theoretical and experimental study of penetrative convection within an 
initially thermally stably stratified fluid heated from below. Emphasis is placed on the experimental 
investigation of the growth of the mixed layer and the entrainment at its boundary. Both processes play an 
important role in density-induced geophysical phenomena such as the lifting of an inversion layer during 
the morning and the deepening of a thermocline in a lake during the fall. 

Many laboratory experiments with water as the experimental fluid were performed, in which the 
convection process was generated and visuahsed. The height of the mixed layer, heat transfer across the 
bottom interface and temperature profiles were measured as functions of time. 

Theoretically-based analytical equations are given, which predict the thickness and temperature of the 
mixed layer. The equations involve one empirical factor characterising the entrainment rate at the 
interface between the mixed and the upper stable layer. 

The experimental results confirm the theoretical equations and show that the empirical factor is a 
constant. From this, an entrainment rate is calculated which agrees well with values presented in the 
meteorological literature. 

1. Introduction 

An initially stagnant, linearly thermally stratified fluid with the temperature gradient 
y = constant is heated from below (Figure 1). Above a critical Rayleigh number of 
the order of magnitude 1000, instabilities in the form of mushroom-like convective 
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Fig. 1. Idealised three-layer model demonstrating the formation of temperature profiles in a stable 
stratification due to bottom heating. The height n of the unstable layer is independent of time. The 
temperature P(r) of the convection layer is independent of the height z. The temperature discontinuity - 

AT(r) between the stable and convection layers results in a heat flux in the z-direction. 
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elements penetrate the overlying stable layer. The elements or thermals form a 
nearly homogeneous mixed layer of temperature F(t) and height h(t), both of which 
increase with time. 

The initially stably stratified fluid separates into three regions: a thin unstable layer 
of thickness n near the bottom, a mixed layer of height h(t) and temperature F(t), 
and the stable layer above, which is bombarded and eroded from below by the 
thermals. 

The entrainment process can be described using the following simple physical 
model. Within the mixed layer, the ascending thermals have nearly the same 
temperature T(t). The mass transport, produced by the thermals from the mixed 
layer into the stable layer, which has a temperature greater than F(t), must be 
balanced by an equal mass flux from the stable layer downward. At the height h(t), 
this results in a net heat flux H(h, t) which is directed downward. 

In the atmosphere, a stable stratification is often observed at night. Sun irradiation 
warms the soil during the morning and creates a sensible heat flux which produces a 
mixed layer of several hundred to two thousand metres. (The temperature distribu- 
tion is the same as the one described above if actual temperatures are replaced by 
potential temperatures.) 

During the fall, the water surface of a stably stratified lake or reservoir is cooled 
mostly by radiation and evaporation. This generates negative buoyancy forces which 
initiate a penetrative convection process. The developing mixed layer is called the 
epilimnion and is separated from the underlying stable layer, the hypolimnion, by the 
thermocline. The corresponding fields of temperature and velocity are of great 
importance for the distribution of oxygen and nutrients within the lake. Some aspects 
of this problem are considered in the papers of Okubo (1953), Spangenberg and 
Rowland (1961), Foster (1965) and Farmer (1975). 

The influence of surface heating on the height of the inversion layer was first 
discussed by Ball (1960) assuming H(h, t) = -H(O, t). Lilly (1968) discussed the 
alternate assumptions H(h, t) = 0 and H(h, t) = -H(O, t). Carson (1973) described a 
theoretical model of the development of an inversion-capped unstable boundary 
layer, which implies 

H(h, t)= -AH(O, t), (1.1) 

where A is an entrainment parameter varying between 0 and 1. Comparing his 
theory with the O’Neill data (Lettau and Davidson, 1957), he showed that A seems 
to fall between 0 and 0.5. 

A different approach can be obtained by invoking a similarity assumption for the 
shape of the temperature profile, in assuming that the temperature deviation Aqr) 
from the stable initial profile is described by a law of the form AT- h (Figure 1). This 
latter model corresponds to the approximation assumed by Plate (1971) for the 
distribution of potential temperature: 

t?(t) = &, + ah(t) (1.2) 
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where & is the initial potential temperature at the bottom of the fluid and (Y is a 
proportionality constant as yet unknown. In the case of zero entrainment, this 
constant becomes equal to y. With entrainment, (Y is less than y (Figure 2). 

This paper describes the time-dependent behaviour of the height h(t) and 
temperature F(t) of the mixed layer and identifies the quantities which determine 
these values. They can be determined from the fluid properties, the initial tempera- 
ture gradient 3/, and the heat flux H(0, t), all of which affect the entrainment process 
at the interface between the mixed and stable layers. 

The experiment was performed in the laboratory in a glass tank, which was filled 
with initially linearly thermally-stratified water. The tank was heated from below and 
the developing mixed layer visualised using shadowgraphs. The initial temperature 
gradient y, the bottom heat flux H(0, t), the height of the mixed layer h(t) and 
vertical temperature profiles T(z, t) were simultaneously measured. 

Laboratory experiments were performed in order to test the different closure 
assumptions mentioned above and to provide a data base for the calculation of the 
values of A or (Y. Twenty-two experiments were performed over the range of 0.29 to 
0.89 “C cm-’ for the initial temperature gradient y and 0.16 to 1.36 W cm-* for the 
initial heat flux at the bottom surface. 

The initial results have been reported at the Euromech Kolloquium 51 (see: 
Linden and Turner, 1975). Similar laboratory experiments have been described 
earlier by Deardorff er al. (1969) and by Willis and Deardorff (1974). Nevertheless, 
there exist some differences in the measuring techniques and the evaluation of the 
experimental data. 
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Fig. 2. Geometrical description of Plate’s closure equation f?(t) e &, + ah(f) (1.2) for the development of 
temperature profiles. 

2. Theoretical Considerations 

The theoretical treatment presented here begins with the same basic equations as 
used by Plate (1971) Betts (1973), Tennekes (1973) Carson (1973) and Stull 
(1973). Special attention is given to Plate’s closure Equation (1.2). 
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The equations apply to the case of the atmosphere, i.e., temperatures Fpresented 
in Figure 1 are replaced by the corresponding potential temperatures g The bars 
indicate horizontal averages. 

The conservation of energy equation at elevation z at any time t is: 

d#(z t) 
PC, dt 

---=--$(z, t), (2.1) 

where p and c, are the density and specific heat at constant pressure, @z, t) and 
H(z, t) are the potential temperature and heat flux, respectively (horizontal means). 
The partial differential Equation (2.1) for H(z, t) can be integrated over z’ if de/dt is 
independent of z. This is valid within the limits n I z 5 h(t) according to the 
assumption of a spatially constant temperature $(z, t) inside the mixed layer at any 
time t. n is the height of the unstable layer and is assumed to be constant. The time 
origin t = 0 is given as the beginning of the heating phase, when the stable stratifica- 
tion can be described as 8(z) = & + ‘yz. This implies that the assumption concerning 
t?(t) is valid only after a critical time tc, where h(t)> n and t > t,. Integration of 
Equation (2.1) from n to z then leads to a linear decrease of heat flux with elevation 
z: 

de(t) d&(t) 
wz, t> = mrl, t> + WPdt - WPTZ . (2.2) 

This property of the heat flux has been confirmed by the field measurements of 
Telford and Warner (1964) as well as by the laboratory measurements of Deardqrff 
et al. (1969). Writing Equation (2.2) at the inversion height h(t) gives: 

(2.3) 

H(h, t) may have a negative value as discussed in the introduction of this paper. 
If the height of the unstable layer, n, is assumed to be small, the first two terms of 

Equation (2.3) can be replaced by the heat flux H(0, t) at the bottom of the fluid. 
Nevertheless, these two terms are taken into account so that the influence of n on the 
results remains quantifiable. The temperature profile between the constant bottom 
temperature 8,. and the temperature of the mixed layer 8(t) is assumed to be linear 
(Figure 1). Therefore, the heat balance at any time t is: f f 

H(0, t’) dt’ - H(q t’) dt’ = pc,n 
e(t)-(e,+yl))+&& 

2 
0 0 

Differentiation with respect to time t gives: 

H(q, f)fpcpq+p=H(O, t)+qJ T. 

A second way of theoretically representing the heat flux H(h, t) is obtained from an 
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idealisation of the time-dependent temperature profile @z, t). Figure 1 illustrates 
the assumed form of the temperature profile, in which a temperature discontinuity 
A@(t) = &+ yh(t)- e(t) exists at z = h(t). 

This discontinuity implies a negative heat flux towards the mixed layer: 

H(h, I)=-pc,$%,+yh-g(f)]. 

Equations (2.3) to (2.5) can be combined, resulting in two equations for the three 
unknown functions h(t), e(t) and H(h, t). Therefore, a third closure equation is 
needed. If as closure the well-known relationship: 

is introduced, where w is the vertical velocity and A is the thermal conductivity of the 
fluid, detailed information about f3(x, y, h, t) and w (x, y, ,h, t) would be necessary. In 
addition, the problem of the determination of h(t), g(f) and H(h, t) would be coupled 
with the solution of the general equations of free convection. This method would be 
very difficult and would exclude analytical solutions. Therefore, it is preferred to set 
up a heuristic method of closure, which makes use of empirical constants to be 
experimentally determined. 

Since & is a constant (d&/dt = 0), elimination of H(h, t)in Equations (2.3) to (2.5) 
yields: 

- - 
~=~[h(s-e,)]-,ld(ed~eo’-~~. 

P 

Equation (2.7) contains two unknowns h(t) and e(t), where the surface heat flux 
H(0, t) as well as go, y and 71 are assumed to be known. 

Plate’s closure Equation (1.2): e(t) = go+ ah(t) introduces an unknown positive 
constant (Y, and postulates as a first-order approximation a linear relationship 
between e(t) and h(t). This relationship is justified by the marginal case of zero 
entrainment, where e(t) = eo+ yh(t) with LY = y. Elsewhere, the temperature g(t) 
increases with increasing h(t) for LY G y. The geometrical representation of Equation 
(1.2) showing the development of the temperature profiles is illustrated in Figure 2. 
Henceforth, the parameter will be presented in a dimensionless way by introducing: 

& =cY/y. 

From Equations (1.2), (2.7) and (2.8) it follows that: 

w3) 

2~~;f)=[2(2.-l)h(r)-~~]~=(2cl)~-~e$ (2.9) 
P 

Since LY c y and since the last term in Equation (2.9) can be neglected as a first 
approximation, it follows that E must lie between 0.5 and 1. Equation (2.9) is a 
nonlinear differential equation for h(t), and can be integrated over time. Two 
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alternatives are discussed: with and without inclusion of r,r, the height of the unstable 
layer. Omission of n implies ne << 2(2c - 1)/z(t), a condition which can be shown to 
be correct. With n c 0.5 cm, h(t)2 10 cm and E = 0.87, it follows that the omission of 
the height of the unstable layer results in an error of less than 3%. Setting q = 0 and 
integrating Equation (2.9) over time yields: 

(28 - l)h’(t)=Z, 
P 

where 

E(t) = j- H(0, t’) dt’ 

(2.10) 

(2.11) 

E(t) is the heat transfer from the ground to the atmosphere within the time interval r. 
Consideration of the height of the unstable layer, n, implies that Equation (2.9) 

cannot be integrated from t’ = 0, because the equation is valid only after a critical 
time t > t,. Therefore, the integration leads to: 

2Ett) (2.5-1)/z’(t)-n&(t)+const.=pc, (2.12) 
P 

where the constant cannot be determined theoretically because the values of t, and n 
are unknown. 

The most striking difference between the equations with and without inclusion of 
the height of the unstable layer is found by comparing Equations (2.10) and (2.12). 
Equation (2.10) postulates a quadratic dependence between the heat transfer E(t) 
and the height h(t) of the inversion layer, whereas Equation (2.10) describes a 
general parabolic dependence. Equation (2.10) includes only one empirical parame- 
ter E, which is introduced by using Equation (2.8) or (1.2). This parameter can be 
determined from a linear regression of the experimental results of E(t) and h2(t). On 
the other hand, Equation (2.12) involves three unknown parameters E, 77 and a 
constant. Basically these parameters can also be determined experimentally by a 
least-square method, which correlates E(t) and h(t). Nevertheless, the evaluation of 
the experimental results has been performed by using Equation (2.10), which has, in 
addition to simplicity, the advantage of being directly comparable with the results of 
Carson (1973). 

The rise of the inversion height h(t) is given by Equation (2.10). Equations (1.2) 
and (2.8) define the temperature g(t): 

t?(t)= &+eyh(t). (2.13) 

Equations (2.5) (2.10) and (2.13) can be combined to determine the heat flux at 
elevation z = h(t): 

H(h, t) = -G H(0, t) = -AH(O, t) . (2.14) 
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This result shows that H(h, t) is directed towards the mixed layer and is a fraction A 
of the surface heat flux H(0, t), where 

A=l--E 
2&-l’ 

(2.15) 

Equations (2.14) and (2.15) g a ree with Carson’s hypothesis (1.1). Therefore, it can 
be concluded that the closure Equations (1.1) and (1.2) are equivalent. For this 
reason, the parameter A can be determined from the experimentally evaluated value 
of E, and vice versa. 

3. Experimental Equipment and Procedure 

The main objective of the experimental work was the simulation of a free convection 
process beneath stably stratified water within a tank, by means of heating from 
below. The experiments enabled the testing of assumptions concerning the tempera- 
ture profiles described already as well as comparison of the measured and theoretical 
values for h(t) and e(t). From this comparison, the empirical parameters E and A 
could be determined using Equations (2.10) and (2.15). 

The experiments were performed in a glass tank, 50 cm wide, 40 cm high and 
10 cm deep (Figure 3). A stable stratification was established by allowing water to 
flow slowly into the tank with constantly increasing temperature. Inside the tank a 
thermocouple rake permitted measurements of the resulting vertical temperature 
gradient y and the floor temperature & At the bottom of the tank, a warm water 
heat exchanger, capable of producing a constant temperature TH, was placed. The 
increase in height h(t) of the mixing layer was perceived using shadowgraphs (Figure 
4) and its horizontally averaged values were evaluated from pictures (Figures 5 and 
6). 

Fig. 3. Elevation and plan views of the experimental tank and heat exchanger. (Dimensions in mm.) The 
photograph shows the tank during filling operation. The white layer consists of Styrofoam spheres, onto 

which water of constantly increasing temperature is allowed to flow. 
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camera screen tank lenses halogen lamp 
heat exchanger optical bench 

Fig. 4. Components of the visualisation technique. 

Fig. 5. Shadowgraph of the convection layer, which is identified by ‘Schlieren’ activity, produced by the 
simultaneous rise of several thermals. The upper boundary of this layer is nearly horizontal. 

Vertical temperature profiles in a fixed location of the tank were measured by the 
above-mentioned thermocouple rake, which held 3 1 sensors spaced I cm on centre. 
Due to the transient nature of the heat-transfer process the sensors were connected 
with a quick recording system, consisting of a selector switch, clock, printer and 
XY-recorder. Measurement of a temperature profile needed approximaely 45 s. 
Therefore a numerical procedure was provided for correcting the measured profile to 
get a simultaneous profile. 
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Fig. 6. Photograph of a dyed convection layer. The entrainment process at the boundary of the stable 
layer is demonstrated by means of the light regions within the dark convection zone. 

The time-dependent heat flux H(0, t) at the bottom of the tank was determined 
from the measured values of the flow-rate Q of water through the heat exchanger 
and the temperature difference AT(t) between the inlet and outlet. Flow-meter 
measurements of Q showed almost constant values during an experiment. The 
temperature difference AT(t) was continuously measured by two Fe-Constantan- 
thermocouples and was recorded on a XT-recorder. AT(t) always exhibited a time 
dependence similar to that of a decaying exponential function. The evaluation of 
H(0, t) was performed as follows. 

Initially, the temperature difference between the two ends of the heat exchanger 
was: 

T(t=O)= TH-Tw, (3.1) 

where TH is the constant temperature of warm water running through the heat 
exchanger and Tw is the temperature of the heat exchanger before heating. Later, 
the increasing water temperature of the mixed layer above the heat exchanger 
diminished the heat flux H(0, t) and therefore the temperature difference AT(t). A 
detailed analysis given by Heidt (1975) shows that the heat capacity W, volume V 
and the heat exchanging surface S of the heat exchanger are relevant for the 
determination of heat flux H(0, t) : 

dAT(t) 
H(0, t)=;[pcQAT(t)+(W+pcV),- 1 , (3.2) 

where p and c are density and specific heat of water, respectively, and r is a 
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calibration constant of the heat exchanger which must be determined experimentally 
and which reflects heat losses through the insulation. Calibrations resulted in 
r = 0.90. The other constants were: S = 500 cm2, W= 150 cal K-l and V= 335 cm3. 

The heat transfer per unit surface area E(t) is calculated by integration of 
Equation (3.2) with respect to time; making use of Equations (2.11) and (3.1) yields: 

E(t)=$[peQ j- AZ+‘)dr’-(W+pcV)(r,-T,-AT(t))]. (3.3) 
0 

The calculation of E(t) involves the time integral of the temperature difference 
AT(t), which was measured using an A/D-converter and a digital counter with a time 
base. All of the experiments were performed in such a way that TW was very close to 
the bottom temperature 80 of the stably stratified water (Tw = go = 20 "C). 

Determination of go, y, h(t), 8(z, t), E(t) and t was sufficient to give the complete 
set of variables which are necessary for testing the theoretical results. Twenty-two 
experiments were performed for various values of the initial temperature gradient y 
and the initial temperature gap TH - TW of the heat exchanger. The range of values is 
given in Figure 7. 

The evaluation and representation of the measured data were carried out using 
computer programs developed for the UNIVAC 1108 of the University of 
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Fig. 7. Summary of the data observed in the experimental program. Each point in the diagram 
corresponds to the initial conditions of a given experiment. 
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Karlsruhe. Each experiment included up to 600 input data points, which can be 
divided into four groups: 

(1) experimental constants; 
(2) heights of the mixed layer and corresponding time data; 
(3) heat transfer data; 
(4) temperature profile data. 

4. Evaluation and Results 

Only sample results of the 22 experiments are shown here. Nevertheless, Table I 
includes all the data necessary for the verification of Equation (2.10). A more 
detailed presentation can be found in Heidt (1975). 

Figures 8 and 9 show, for three experiments, the heat transfer and the height of the 
mixed layer as functions of time, respectively. The numbers 7 and 8 refer to two 
experiments, whose operating conditions were very similar and which can, therefore, 
be regarded as nearly identical and a test of reproducibility. The time-dependent 
behaviour of h(t) and E(t) agrees within the error limits of rt3%. Comparison with 
experiment No. 18 shows that increasing the heat transfer E(t) increases h(t), but 
that the functional correlation between h(t) and E(t) is less than linear. 

TABLE I 

Listing of the experimental parameters and results 

No. TH-Tw Q 
“CXL’ “C 

a b R 
cm3 X s-l J x cm-’ J x cm-’ lnpcxs- ” - 

1 0.292 12.8 94.8 653.2 632.6 7.69 0.93 0.998 
2 0.297 7.3 125.3 280.8 258.2 6.42 0.84 0.992 
3 0.340 14.4 75.3 534.9 527.0 10.6 0.90 0.997 
4 0.383 12.4 91.3 564.3 534.9 7.62 0.89 0.995 
5 0.397 7.6 125.3 173.0 158.7 12.2 0.83 0.994 
6 0.475 10.3 106.6 305.2 286.2 11.6 0.88 0.999 
7 0.479 18.6 76.1 1073.9 1044.5 7.11 0.91 0.997 
8 0.490 18.3 76.1 1022.1 991.1 6.84 0.90 0.998 
9 0.508 13.6 93.1 431.6 425.5 9.23 0.84 0.999 

10 0.539 23.6 64.3 1130.0 1101.7 7.50 0.85 0.999 
11 0.550 19.6 75.5 779.7 737.1 8.30 0.86 0.998 
12 0.552 16.2 77.0 453.5 433.0 10.2 0.84 0.999 
13 0.574 13.0 94.8 367.6 347.8 11.95 0.87 0.997 
14 0.654 16.6 76.1 507.4 468.1 11.2 0.87 0.997 
1.5 0.675 22.4 64.3 1168.6 1140.3 6.64 0.86 0.998 
16 0.692 17.8 72.8 612.3 589.5 11.8 0.84 0.995 
17 0.766 29.3 55.8 1876.6 1823.7 6.25 0.87 0.999 
18 0.789 32.8 64.3 1931.6 1904.1 7.18 0.87 0.998 
19 0.796 27.4 54.1 1501.9 1468.3 7.16 0.87 0.998 
20 0.815 27.9 54.1 1621.8 1580.1 6.79 0.93 0.999 
21 0.877 34.4 47.3 1529.8 1574.0 7.42 0.87 0.998 
22 0.887 19.9 69.3 642.2 605.1 10.27 0.79 0.997 
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Fig. 8. Time-dependent increase of the heat transfer per unit surface area E(t) according to Equation 
(3.3) in various experiments. Experiments No. 7 and 8 have approximately the same initial conditions. 
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Fig. 9. Time-dependent increase of the convection layer height h(f) in various experiments. 

The time-dependent heat transfer function E(t) is determined from measurements 
using Equation (3.3) at about 12 different times. In all the experiments, however, it 
was possible to fit these values to an empirical function: 

E(t) = a -b exp (-cl), (4.1) 

where a, b and c are adjustable constants. Neglecting times close to the onset of the 
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experiment, the deviation of measured from empirically predicted values is less than 
0.8%. Therefore, the heat transfer E(t) will be represented by Equation (4.1) whose 
values can be obtained for the same times as those when the heights of the mixed 
layer, h(t), were measured. 

Figure 10 shows the time-dependent development of temperatures at various 
elevations measured by the thermocouple rake. At the start of the experiment, 
temperatures were different at different heights, according to the initial stratification. 

27 

25 ! t 
0 200 100 600 800 1000 set 

Fig. 10. Time-dependent development of temperatures at selected elevations in experiment No. 18. 

At constant elevations, temperatures remained constant or decreased only slightly 
because of small heat losses to the surroundings. When the convection layer reached 
these heights, temperatures began to increase. A short time before the arrival of the 
convection layer a typical temperature decay was generally observed, indicating a net 
heat flux from the stable layer towards the mixed layer. The increase of temperatures 
within the mixed layer as well as the increase of height of the mixed layer obey similar 
time-dependent functions. This is the experimental foundation of the hypothesis for 
the form of the closure Equation (1.2). 

The initial temperature profile for the stable stratification was approximated by a 
least-square linear regression resulting in values for the floor temperature &, and the 
stable temperature gradient y. During the heating phase, simultaneous temperature 
profiles could not be obtained by measurements with the thermocouple rake without 
corrections due to the finite time difference between the values at the bottom and at 
the top of the rake. This time difference is known from measurements. Assuming 
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equidistant time intervals between subsequent profile data, each temperature meas- 
urement can be associated with its corresponding time. As the temperature is 
measured at each elevation for nearly 10 to 15 different times (cf. Figure lo), 
temperatures at a given time can be calculated by means of linear interpolation. 

A typical example of temperature profiles calculated in this way is shown in Figure 
11, where the temperature sensors were mounted with a slope towards the bottom of 
the tank. The slope of the sensor rake avoids falsifying fluid currents which could 
occur with a vertical rake. Temperatures were found to be homogeneous within the 
convection layer. Furthermore, it was found that the bottom unstable layer does not 
protrude upward as far as the lowest sensor, i.e. to a height of nearly 0.5 cm. 

Fig. 11. Time-dependent development of the temperature profiles in experiment No. 20. The tempera- 
ture sensors were held in a non-vertical orientation. Measurements taken in this manner illustrate the 

spatial temperature homogeneity in the convection layer. 

The shape of the measured temperature profiles justifies the idealisation of 
temperature profiles presented in Figure 1. The idealised profiles are fitted to the 
measured profiles in such a way that the sum of areas between the two curves is a 
minimum. The resulting calculated temperature profiles thus define the height h=(t) 
and the temperature 6$,(t) of the convection layer. The notation L indicates that 
these values describe local variables, whereas h(t) and g(t) are horizontally averaged 
variables. The differences between hL(t) and h(t) reflect the convolutions of the 
interface between the mixed layer and the stable layer as illustrated in Figures 5 and 
6. 
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The measurements of the temperature field #(t, t)can be used to calculate the heat 
flux H(z, t). Integration of the conservation of heat Equation (2.1) between elevation 
z and the maximum depth of water, h,,,, yields: 

h rnPX 

W, t) = H(hn,x, t) + PC 
de@‘, 0 dz, 

dt ’ (4.2) 

Since the heat flux at height h max is only by conduction, it can be omitted, so that 
h ma* 

H(z, t) = pc 
I 

d6-C t> dz, 
dt * (4.3) 

L 

The heat flux H(z, t) can then be determined numerically from measurements by 
substituting a finite-difference quotient for the derivative of @z, t) with respect to 
time. Typical results are shown in Figure 12, where the linear decrease of heat flux 
with height was found to be a valid approximation. 

H 1z.t) 
Watt x cme2 

Fig. 12. Time-dependent development of the heat flux profiles according to Equation (4.3) in experi- 
ment No. 7. 

The experimental confirmation of the assumptions concerning the shape of the 
temperature profile and the experimentally-determined correlation between h(t) 
and 8(t) justify the theoretical assumptions presented in Section 2. The validity of 
Equations (2.10) and (2.13) and the calculation of the values of the parameter E were 
also determined from the experimental results. 
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Equation (2.10) correlates linearly the values of h2(t) and E(t). Both variables are 
horizontally averaged. Equation (2.13) includes the temperature 8(t) which is 
measured only locally. 

Figure 13 shows the experimentally-determined linear correlation between h2(t) 
and E(t), which is (approximately) in all of the experiments: 

h2(t)+ s = mE(t) ) (4.4) 

600- linear least 

experiment IW. 18 

0.789 ‘Txcm“ 
E= 0.87 

E ttl 
Joule x cm-2 Joule x cm-2 

Fig. 13. Experimental relationship between the square of the convection-layer height h*(f) and the heat 
transfer per unit surface area E(r). A linear least-square fit of the form h’(t) = m X E(t)- 6 approximates 
the experimental data represented by the points (+). Substitution of -y = 0.789 “C cm-’ into Equation 

(4S)yields E = 0.87. 

where m is the slope and -8 is the intersection of the h2-axis at E = 0, which 
normally can be assumed to be zero. Comparing Equations (4.4) and (2.10) and 
neglecting 6 gives: 

2 1 
m =pc,y(2B -1) 

or E=++- 
w,ym ’ 

(4.5) 

This confirms that the dimensionless parameter E is greater than 0.5 and can be 
determined from the experimental values of y and m. The results are listed in Table I, 
which also contains the correlation coefficients R between h2(t) and E(t), which test 
linearity and which were greater than 0.99. 



THE GROWTH OF THE MIXED LAYER IN A STRATIFIED FLUID 455 

Figure 14 shows the histogram of the measured values of E which is nearly a 
constant having a mean value of 

E = 0.87 

and a total range: 

0.79C& so.93. 

Absolute A 
frequency 
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3 
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1 

0 1 
77 
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n 
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60 
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Fig. 14. Histogram of the values of F determined from all of the experiments. 

More than 75% of the experimental results cover the range: 

0.84s~ s0.90. (4.8) 

Within the calculated values of E, no systematic dependence on the variables y, 
TH - Tw and Q could be found. Thus, it seems justified to ascribe the scattering of 
values of E to the measurement errors associated with the determination of y and m 
or E(t) and h2(t). 

The results in Equations (4.6) to (4.8) were introduced into the theory and 
compared with the laboratory measurements. Figure 15 shows very good agreement 
between the heights of the mixed layer calculated according to Equation (2.10) and 
its measured values. The agreement between calculated and measured temperatures 
of the convection layer is not as good (Figure 16). This is not surprising since 
horizontally averaged values from theory are compared with temperature values 
which were measured only locally. In summary, a value of 0.87 for the dimensionless 
parameter E and the theoretical relationship given in Equations (2.10) and (2.13) 
provide a good model for the data measured in the laboratory. 
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Fig. 15. Comparison of measured and predicted values (Equation (2.10)) of the convection layer 
height in experiment No. 18. 
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Fig, 16. Comparison of the calculated average convection-layer temperature (Equation (2.13)) and 
point measurements in experiment No. 18. 
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5. Applications of the Results and Discussion 

A comparison of the results for the parameter E given in Equations (4.6) to (4.8) with 
published values can be made only indirectly by calculating the corresponding 
parameter A from Equation (2.15). Concerning A, various authors assume values 
which are not very consistent. Nevertheless, some recent values are grouped more 
closely together. All of the reported results are listed in Table II, including the values 
of this paper. 

TABLE II 

Survey of the values of the parameters E and A as given in the literature 
including the experimental results of this paper 

Author Year A E 

Ball 
Lilly 
Betts 
Carson 
Lenschow 
Tennekes 
Deardortf 
Heidt 
Mean value 
Mean value f one 

standard deviation 
Total range of the 

calculated values 

1960 1 0.67 
1968 O-I 0.67-l 
1973 0.25 0.83 
1973 O-O.5 0.75-l 
1973 0.08 0.93 
1973 0.2 0.86 
1974 0.14-0.21 0.85-0.89 
1976 

0.18 0.87 
0.12-0.24 0.84-0.90 

0.08-0.36 0.79-0.93 

Ball (1960) and Lilly (1968) obtained values of A using a rough simplification of 
the averaged equation of turbulent kinetic energy. Lilly also considered the case of 
minimum entrainment A = 0 (or E = 1). Tennekes (1973) took a value of A from 
meteorological field data (VIMHEX); Carson (1973) from the O’Neill data; and 
Lenschow (1973) from measurements over the Great Lakes. Deardorff (1974) 
numerically simulated the data for day 33 of the Wangara experiments and thereby 
calculated the quotients A of the heat fluxes at the ground and at z = h. 

Although the values reported in the literature relate to the atmospheric case, 
whereas the values presented in this paper relate to laboratory experiments in water, 
there exists satisfactory agreement, especially when only the recently reported values 
are considered. The mean value of the laboratory experiments is approximately the 
same as that reported by Tennekes (1973); the interval defined by the mean value f 
one standard deviation coincides with the range of values calculated by Deardorff 
(1974). The value of A stated in Lenschow (1973) is the lowest of the experimental 
results. The value of the dominant frequency of the experimental results is the same 
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as the mean value of E = 0.87 or A = 0.18 (Figure 14). The laboratory experiments 
therefore define more closely the limits of E or A reported by Carson (1973). 

Of course, the use of a model is justified only when the corresponding physical 
processes are identical or at least similar. For the prediction of the lifting of the 
inversion layer in the atmosphere or the deepening of the thermocline in a lake, this 
requirement is partially violated. 

In the atmosphere pure windless convection is rather scarce. Usually, wind shear 
exists, creating mechanical turbulence near the ground. In that case, buoyancy- 
induced turbulence dominates only at some distance above the ground. In addition, a 
velocity field often exists in the stable layer, which probably increases shear stresses 
at the base of the inversion. The influences of humidity and solar radiation may also 
be important. Furthermore, often a general subsidence of the convective layer is 
observed, which counteracts the increase of thickness of this layer, making the stable 
temperature gradient, y, time dependent (Carson, 1973). 

Thermally-stratified lakes or reservoirs are generally affected by fluid currents, 
which are caused by advection currents, wind, the Earth’s rotation or seiches. The 
effects of wind-shear stress at the water surface produce mechanical turbulence, 
which leads to the formation of a time-dependent mixed layer. Investigations in this 
field are described, for example, by Kato and Phillips (1969) and Linden (1975). 
Furthermore, heat transfer into the water is not a simple boundary condition. 
Absorption of radiation produces heat sources within the upper layers. Linear 
temperature profiles beginning at the water surface are therefore rather exceptional. 

The various perturbations of the convective process in the atmosphere and in 
stagnant water are too complex to be investigated in this paper. For testing the 
applicability of the simple convection model, it would therefore be useful to compare 
the theoretical results with field data, particularly those which contain an initially 
linear temperature profile and which include time-dependent values of temperature 
profiles and heat fluxes. Simultaneous data of this type have been evaluated by Heidt 
(1976). ln all of these cases, the comparisons result in a satisfactory agreement 
between measured and predicted temperature values. 

Only rough calculations using typical values valid for the atmosphere and for lakes 
have been given in this paper. However, the experimental values are of the same 
order of magnitude as the theoretical ones. 

Warner and Telford (1967) presented atmospheric temperature profiles at various 
times (Figure 17), from which the heights h(t) and the initial temperature gradient y 
can be approximated. While information about the heat transfer E(t) is lacking, it is 
assumed that the heat flux H(0, t) was sinusoidal, with a time period of 12 h 
beginning at 07:OO and with a maximum value of 200 W m-’ (Priestley, 1959). From 
Figure 17, y was found to be approximately 3.7 “C km-l. Calculating h(r) according 
toEquation (2.lO)resultsin h = 623 mat 09:46,706 mat lo:17 and845 mat 10:50. 
The observed values of the cloud base were 557, 700 and 928 m, respectively. 

In the case of a lake, substitution of an average temperature gradient y = 1 “C m-’ 
and an average heat tlux H(0. t) = 50 W mm2 into Equation (2.10) yields a height of 
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Fig. 17. Field measurements of the time-dependent development of the temperature profiles and the 
cloud base (after Warner and Telford, 1967). 

the epilimnion of 9.2 m after one month. After the second month, the calculated 
height is 13 m. These values are quite comparable with those observed in nature. 

Finally, two points should be mentioned in order to show the limitations and 
possible refinements of the convection model. 

The model is basically a two-layer model assuming homogeneous temperatures 
8(t) within the mixed layer and height-dependent temperatures &z) = & + 3/z within 
the stable layer above. 

The model collapses, if the temperature gradient y tends to zero, i.e., h(t) becomes 
infinite according to Equation (2.10). Thus, it is important to determine the smallest 
allowable gradient 3/, for which the model still applies. A possible lower limitation 
may be given by the reasonable requirement that the Brunt-VPisala period, r = 
27r/&& should be significantly smaller than the duration of bottom heating, where 
g is the gravity constant and p is the thermal expansion coefficient of the fluid. 

Another feature of the two-layer convection model is the discontinuity between 
the temperature of the mixed layer and that of the stable layer. This is a rather strong 
idealisation of experimentally found temperature profiles. In reality, there exists a 
finite transition zone within which the temperature gradient changes from infinity to 
the constant y. This fact could be modelled, for example, by the addition of a gaussian 
bell-shaped curve (rotated by 90”) at the top of the mixed layer, joining it to the stable 
layer in a continuous way. This refinement of the theory has the advantage of better 
describing the temperature profiles. Furthermore, a diffusion constant D can be 
derived from the gaussian distribution which can then be used to determine the heat 
flux at the inversion height. The diffusion constant is of the form 

D=kV,h, (5.1) 
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where V, is the entrainment velocity: 

The factor of proportionality, k, dependson the shape of the temperature profile and 
has an approximate value: 

k = 0.02 . (5.3) 

Through such a transition zone, it seems possible to combine the studies of the mixed 
layer with turbulent shear-layer models and to improve the simple profile assump- 
tions for the closure of Equation (2.7). 
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