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Abstract. The concept of  strict proportional power is introduced, as a means  of formalizing a 
desire to avoid discrepancy between the seat distribution in a voting body and the actual voting 
power in that body, as measured by power indices in common use. Proportionality is obtained 
through use of a randomized decision rule (majority rule). Some technical problems which arise 
are discussed in te rms  of simplex geometry. Practical implications and problems in connection 
with randomized decision rules are indicated. 

1. Introduction 

At the very heart of the principle of representational democracy lies the idea 
that voters' preferences should be faithfully reflected in the decision making of 
representational bodies. However, it is widely known that the distribution of 
actual voting power seldom reflects the distribution of voting weights in a 
voting body, e.g,, the distribution of seats in a parliament. 

In designing a voting system (committee, parliament, etc), a major problem 
is the size of the representational body; how to represent a huge electorate 
through a rather small decision making unit. Numerical problems involved in 
this "reduction process" have received considerable attention in political 
science literature (see, e.g., Rokkan (1968), Rae et al. (1971), Lijphart and 
Gibbard (1977), Laakso and Taagepera (1978), and Laakso (1979)). Published 
analyses unanimously show that common electoral formulas, such as d 'Hondt,  
Imperial and St. LaguE, strongly influence the thresholds of representation, as 
well as the relationship between the proportion of votes received and the 
number of seats granted. 

In this paper we are not primarily concerned with distortions caused by a 
lack of agreement between vote shares in an electorate and the number of 
seats in an assembly. Instead we are interested in the distorting effects on a 
priori voting power which are directly attributable to a fixed decision rule, 
such as simple majority rule. 

The fact that the distribution of a priori voting power - as measured by 
power indices in common use - in representational bodies may deviate 
substantially from the distribution of seats, has been demonstrated by means 
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of empirical data (see, e.g., Shapley and Shubik (1954), Frey (1968), Holler 
and Kellerman (1977), Dreyer and Schotter (1980)), as well as with the aid of 
mathematical arguments (see, e.g., Brains (1975), Brams and Affuso (1976), 
Fisher and Schotter (1978), and Holler (1982a)). The results thus obtained are 
a challenge to a basic tenet of representational democracy. 

As a partial remedy for this shortcoming of voting systems having a fixed 
decision rule, Holler (1982b) recently proposed the adoption of randomized 
decision rules as a means of equating, on the average, the distribution of a 
priori voting power and the actual seat distribution within the voting body. 
The purpose of the present paper is to further discuss and formalize HoUer's 
approach. 

The paper is organized as follows. In section 2, notations and concepts used 
in modelling simple games are given, and the well-known Shapley-Shubik and 
Banzhaf indices are introduced as measures of a priori voting power. With a 
view to formalizing Holler's approach, the concept of a randomized voting 
game and that of strict proportional power are defined. Section 3 is devoted to 
the problem of obtaining strict proportional power in an n-member voting 
body. Starting from a numerical example given by Shapley and Shubik (1979), 
we examine certain problems in connection with strict proportional power, 
using arguments from simplex geometry. Finally, in section 4 we discuss 
certain practical implications of, and alternatives to randomized decision rules 
for voting bodies. 

2. Simple games, power measures and strict proportional power 

Assemblies or committees making decisions by means of voting and a majority 
rule - voting systems - are conveniently modelled using the concept of a 
simple game (cf. Shapley (1962), von Neumann and Morgenstern (1947)). 
Formally, a simple game is a set of players (members of the committee): 
N = (1, 2 , . . . ,  n }, together with the set of winning coalitions: W. This set is a 
collection of subsets of N, or coalitions, with the following properties: 

1. g[~ W 
2. N ~ W  
3. i f S ~ W a n d  S_cT,  then T ~ W .  

A simple game described by the pair [N, W] can also be given by its 
characteristic function p, defined for all subsets S of N, and such that 

p ( S ) = { 1  if S ~ W  [1] 
otherwise. 

For  a weighted voting game, the set W is determined by 
1. the distribution of voting weights w 1, w z , . . . ,  w , ,  Z w  i = 1; 

2. the decision rule, or quota, d ~ (0, 1). 
For  a weighted voting game, a subset S ~ W if and only if Y2i ~ s wi >~ d. 
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There are two well-known and widely used indices for measuring a priori 
power in voting systems, the B.anzhaf index and the Shapley-Shubik index (for 
a discussion and also modifications of these measures, see, e.g., Coleman 
(1971) and Packel and Deegan (1980)). Both indices make use of the difference 

A i ( S ) = p ( S ) - p ( S - i  ) [2] 

where S is an arbitrary coalition and i indexes the player whose power we 
wish to measure. If  the removal of player i turns a winning coalition S into a 
losing one, then the difference [2] is equal to 1, otherwise it will be equal to 0. 
the two indices differ with respect to how the differences [2] are weighted (see, 
e.g., Stenlund and Lane (1984)). 

The formula for the Shapley-Shubik index is 

% = s ( n -  s ) ! ( s -  1)! A i ( S )  i =  1,2, , n [3] 
n! ' "'" SeN  

where s is the cardinal number  of the subset S. The vector of players' indices 
will be written cp = (~1, q~ . . . . .  ~%). By its definition, the Shapley-Shubik 
index is normalized, i.e. E~o i = 1. The corresponding formula for the Banzhaf 
index is 

1 ~_, A i ( S ) ,  i =  1, 2 . . . . .  n [4] B, = 7 
ScN 

where the constant c is chosen so that the index is normalized, i.e. Efli = 1. 
The vector of Banzhaf indices will be denoted fl = (fix . . . . .  fin). 

Although the indices [3] and [4] have  a similar algebraic structure, they may 
be deduced using seemingly quite different arguments. To illustrate this, 
consider first a permutation of the set of players N: (~r(1), . . . ,  ~r(n)}. Now if 
coalitions are formed by starting with (rr(1)), and then successively adding 
new numbers in turn: (rr(1), rr(2)} and so forth, eventually a winning coali- 
tion will arise. The player who accomplishes this is called pivotal. It  is readily 
seen that the Shapley-Shubik index [3] is precisely equal to the number  of 
permutations in which player i is pivotal, divided by the total number  of 
permutations. The Banzhaf index [4], on the other hand, is based on the 
concept of a swing. When the difference [2] is equal to 1, we speak of a swing 
for player i. The sum in formula [4] is thus the number  of swings for player i, 
and the normalizing constant c is the total number  of swings. 

We note that for a given voting game, there is absolutely no need for a 
vector of power indices to coincide with, or even be roughly equal to the 
distribution of voting weights. This is clearly brought out by the following 
numerical example. Consider the voting game [ d =  0.55; w = (0.5, 0.4, 0.1)]. 
The Shapley-Shubik and Banzhaf index vectors are ~o = (2/3,  1 /6 ,  1 /6)  and 
fl = (3/5,  1 /5 ,  1/5),  respectively. 

When applied to actual voting bodies, the Shapley-Shubik and Banzhaf 
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indices often agree reasonably well. They tend to differ considerably, however, 
when applied to what is called nearly oceanic games, i.e. games with one or a 
few powerful players and a great number of weak players. 

Consider now a set of players N = (1, 2 . . . . .  n} with fixed weights w = 
(w 1,w 2 . . . . .  w,). Let D be a set of decision rules, D_c (0.5,1), and Q a 
probabili ty measure over D. Instead of assuming a fixed decision rule, we now 
let the decision rule vary at random over the interval (0.5, 1), or a subset 
thereof, according to the probabili ty measure Q. We will refer to the triplet 
[ d ~  D; w; Q] as a randomized voting game. 

For  a randomized voting game, the appropriate power measure is the 
average, or expected (a priori) voting power for player i. Thus using the 
Shapley-Shubik index [3], we would have 

~i = fD~pi(d)dQ, i= 1, 2,. . . ,  n [51 

as expected power for player i, where rpi (d )  is the voting power of player i in 
the game [d; w]. For a discrete set of decision rules, D = ( d l ,  d 2 . . . . .  dk), the 
expected power is simply the weighted average of Shapley-Shubik or Banzhaf 
indices: 

k 

%= E~(d~)qv ,  
u = l  

i = 1 , 2 , . . . , n  

where ql . . . . .  qk are the probabilities with which the games [dr; w], v = 1 . . . . .  k, 
are played. 

We are now in a position to give a precise definition of the concept of strict 
proportional power. Consider the randomized voting game [d ~ D; w; Q]. If  
the set D and the probabili ty measure Q are such that the expected a priori 
power [5] of each player is exactly equal to his voting weight, i.e. if ffi = wi for 
each i ~ N, then we have a case of strict proportional (Shapley-Shubik) power. 
For  a given pair [ d ~  D; w], it may be possible to find a measure Q to 
accomplish strict proportional power. This problem will be further discussed 
in the following section. 

Two further definitions will be useful in discussing some implications of 
strict proportional power in voting games. A decision rule d is a dictator rule 
if, for a given set of voting weights, it assigns power index = 1 to one o f  the 
players, while the others are given index = 0. A decision rule d, finally, is a 
veto rule if wi >/d for all i ~ N. This implies power index = 1/n for all n 
players. 

3. Methods for obtaining strict proportional power 

Shapley (1962) proved that what we call strict proportional power for a voting 
game is obtained if the decision rule d is a random variable, uniformly 
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Voting weights 

d= 1 2 3 4 

1, 10 1 1 1 1 
2, 9 0 2 2 2 
3, 8 1 1 3 3 
4, 7 1 1 3 5 
5, 6 1 3 3 5 

E 4 8 12 16 

distributed over the interval (0, 1), and if power is measured by the Shapley- 
Shubik index. In other words, the randomized voting game [d ~ (0, 1); w; Q], 
with Q uniform, is characterized by strict proportional power, as conceived 
here. More recently, Dubey and Shapley (1979) have shown that this property 
also holds when power is measured by the Banzhaf index. 

The following is a slightly simplified version of a numerical example 
discussed by  Dubey and Shapley (1979). Consider the class Of voting games 
[d; (1, 2, 3, 4)], where d = 1, 2 . . . . .  10. Table 1 shows the raw swing scores 
required for calculating the Banzhaf index. 

Following Dubey and Shapley, we note that choosing the games listed in 
Table 1 with equal probabili ty leads to an average power for the players equal 
to relative voting weight. More specifically, if we play one of the voting games 
[d; (1, 2, 3, 4)], where d = 6, 7, 8, 9 and 10, chosen with uniform probabili ty = 
1 /5 ,  then the expected Banzhaf indices will be 1/10,  2/10,  3 / 1 0  and 4/10,  
i.e., we have strict proportional power for the randomized voting game. 

It  is interesting to note, however, that in order to obtain expected voting 
power equal to relative voting weight, it suffices in this case to alternate 
between the games [6; (1, 2, 3, 4)] and [8; (1, 2, 3, 4)] with probabili ty 1 /2 .  
The point we wish to make here is that for a voting game with n players we do 
not need as many  as n(n  + 1) /2  games to achieve strict proportional power. 

Let us now briefly examine what occurs if we instead measure voting power 
by the Shapley-Shubik index. In Table 2 we have listed the same set of games 
as before, now with  entries proportional to Shapley-Shubik scores. Again, as 
the table shows, we can play the games listed with uniform probabili ty and 
have expected Shapley-Shubik power indices equal to relative voting weight. 

If  we look for a solution with fewer than 5 games, then we see that there is 
no probabili ty combination of just two voting games giving strict proportional 
power. Let us therefore try the four games [d; (1, 2, 3, 4)], d = 6, 7, 8, and 9, 
played with probabilities given by a vector q = ( q l ,  q2, q3, q4), Y'qi = 1. Al- 
though the corresponding four vectors of Shapley-Shubik indices are linearly 
independent, there is no solution in the form of a probabili ty vector, i.e. a 
vector with non-negative coordinates. If  we instead consider [d; (1, 2, 3, 4)], 
with d =  7, 8, 9 and 10, then i t  is easily confirmed that q = 
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Table 2. 

Voting weights 

1 2 3 4 

d = 12x ~o 1 ~2 ~3 q~ 

1, 10 3 3 3 3 
2, 9 0 4 4 4 
3, 8 1 1 5 5 
4, 7 1 1 3 7 
5, 6 1 3 3 5 

li2 6 12 18 24 

(0.30, 0.15, 0.30, 0.25) provides a solution, i.e. a randomized voting game with 
strict proportional expected voting power. 

Certain problems encountered in connection with voting games and strict 
proportional power are conveniently discussed using geometrical arguments. 
In particular, n-dimensional simplex arguments are useful. First, let S denote 
the 3-dimensional, ordered simplex 

s =  {x= (xl, x2, x3): Xl>~xg>--x3>--o, Xl+X2+X3=1} [51 

Geometrically, the simplex [5] corresponds t o  the triangle A B e  in Fig. 1 
below, where the coordinates of a point are the distances to the opposite sides 
of the larger triangle. Any voting game with weights w = (Wl, w 2, %)  ordered 
and summing to 1, can be represented by a point in S or, equivalently, by a 
point in the triangle ABC. Furthermore, players' power indices, when normal- 
ized, can be represented as points in the simplex. Thus in Fig. 1, the points on 
the boundary A, B, C and D represent the four possible Banzhaf index Vectors, 
namely (1/3,  1/3,  1/3),  (1/2,  1/2,  0), (1, 0, 0), and (3/5,  1/5,  1/5).  A and C 
correspond to the veto rule and the dictator rule, respectiVely. 

Consider a weighted voting game [d; w] with w in BCD. If we let the 
decision rule d vary from 0.5 to 1, the Banzhaf index points are A, B, C, and 
D. If equality, on the average; between relative weights and voting power is 
desired, then there are several possibilities. Thus, for example, we can choose 
three d-levels, d l ,  d 2 ,  d3 ,  such that the players' Banzhaf indices correspond to 
the points B, C, and D. The probabilities q = (q~, q2, q3) with which to play 
the voting games [di; w], i = 1, 2, 3, will be given by 

ql = 2(w2 - w3) 
q2 = wl - w2 - 2w3 
q3 = 5w3- 

Alternatively, we can take three d-levels corresponding to Banzhaf index 
points A, B, and C. However, there is no solution if we take d-levels 
generating Banzhaf points A, B, and D, since the point w we consider is 
exterior to the set of points forming the triangle ABD. This is what happened 
above in connection with Table 2: we had four different d-values giving four 
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Figure 1. 

(0,0,1) 
distinct .Banzhaf vectors. However, the vector of voting weights w was exterior 
to the simplex generated by the Banzhaf vectors. 

Suppose next we have a voting game with weights w in ABD, and strict 
proportional power is desired. We can then make use of the fact that the point 
w is interior to either of the two triangles ABC and ABD. We can thus achieve 
the desired proportionality without having to resort to the dictator rule. It is 
worth noticing that for any weight vector w in BED, we need not make the 
strongest player a dictator. Although, for points in BEC, w 1 is greater than 
1 /2  and simple majority voting thus would make player 1 dictato r, we can still 
attain strict proportional power through a linear (probability) combination of 
voting games, having the points A, B, and D as Banzhaf vectors. However, we 
would have to include the veto rule, since the point A must be used in the 
linear combination. 

More generally, if we extend the idea behind the triangle ABC in Fig. 1 to 
the n-dimensional case, we have a closed, ordered simplex: 

S (n)= (x=(x I .... , X n ) : X  1 >i . . .  >1 X,>~O, Y'~Xi= 1} [6] 

All linear combinations of points in the simplex [6] remain in the simplex, 
provided the coefficients are non-negative and sum to unity. Any vote distri- 
bution w = (w 1 . . . . .  w,) of a voting game, with weights ordered and normal- 
ized, corresponds to a point in S ("), as do the associated power index vectors. 

The extreme points, or corner points, of the simplex (6) are given by the 
vectors: a 1 = (1, 0 . . . . .  0), a 2 = (1/2, 1 /2 , . . .  ,0) . . . . .  a n = ( 1 / n ,  l / n  . . . . .  1 / n ) .  
This set of vectors spans the simplex (6) and forms a convenient basis for it. 
Hence for any point x ~ S ("~, there is a unique representation: 

x = q la l  + q2a2 + ...  + q ,a ,  [7] 
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In specific applications, the coefficients ql of [7] can be interpreted as 
probabilities, being non-negative and summing to unity. The coefficients are 
best determined recursively using the formulas: 

i ( x i - x i + l )  if i = 1 , 2  . . . . .  n - 1  
qi = n x , ,  if i = n. [8] 

Consider now the sequence of simple games on N = { 1, 2 . . . . .  n } for which we 
have the following sequence of minimal winning coalitions 

Wire = (1},  w2m= (1, 2} . . . . .  Wnm= (1, 2 . . . . .  /'/} [9] 

The reader will recognize what is called unanimity games, or pure bargaining 
games, with dummy players added. The corresponding power vectors, Banzhaf 
or Shapley-Shubik, are precisely the corner points of the simplex [6], i.e. the 
vectors a l , . . .  , a n. We note that it is always possible to obtain strict propor-  
tional power by resorting to a random mixture of the pure bargaining games 
defined by [9], with the mixing probabilities given by [8]. The number  of 
simple games on a fixed set of n players, N = {t, 2 . . . . .  n }, increases rapidly 
with increasing n, since we are dealing with sets of sets. Thus  there are 
numerous other ways of replacing a given weighted voting game by  a mixture 
of simple games, such that proportionality between voting weights and ex- 
pected voting power is obtained. 

If  a solution is desired in the form of a randomized voting game, we must 
find n d-levels: D = ( d  1, d z, . . . ,  dn} ,  with corresponding power vectors, say 
fl~l~, fl~/) . . . . .  fl~n~, which are linearly independent, and such that the vector of 
voting weights, w = (Wl, w 2 . . . . .  w,), is interior with respect t o  the simplex 
generated by the n power vectors. The voting weight vector being interior, 
guarantees the existence of a probability vector q = (ql ,  qz . . . . .  q,,), where qi, 
i = 1, 2 . . . . .  n, is the probabili ty with which to play the voting game [di; w]. 

4. Discussion 

The Banzhaf index has been applied to the representation of legislative 
districts i n  the State of New York (see Grofman and Scarrow (1979)). The 
New York State courts have in fact explicitly endorsed the use of the Banzhaf 
index as a measure o f  legislative power, whereas the US Supreme court has 
rejected this index as unsuitable for measuring voting power in the case of 
single and mult imember districts. However, let us for the moment  put aside 
the question of choice of an appropriate power index. Then, as our analysis 
shows, given a power measure there is always a way of accomplishing strict 
proportionality between a priori power and voting weight in a voting body, 
provided the majority rule is allowed to vary. However, objections to the 
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adoption of a randomized decision rule may be raised on technical or practical 
grounds, as well as on psychological grounds. Let us therefore take a closer 
look at some of the possible objections. 

It might be argued that simple majority voting possesses several appealing 
features, which we forego by admitting alternative decision rules in a probabil- 
ity mixture. If, for example, a two thirds majority is required, then a minority 
can block a decision. But the blocking of a motion could be regarded as a 
decision or a vote for s ta tus  quo,  or a vote for the continuation of a voting 
bargaining process. Furthermore, simple majority voting minimizes the ex- 
pected total disappointment of the voters, an appealing property which was 
shown by Curtis (1972). On the other hand, Buchanan and Tullock (1962, p. 
81) in their analysis of decision making costs in voting bodies find that: 

On a priori grounds there is nothing in the analysis that points to any 
uniqueness in the rule that requires simple majority to be decisive. The 
(N  + 1) /2  point seems, a priori, to represent nothing more than one among 
the many possible decision rules, and it would seem very improbable that 
this rule should be "ideally" chosen for more than a very limited set of 
collective activities. 

Buchanan and Tullock take into account the external costs for the individual 
and the fact that the voting body may vote against his preferences. However, 
in accordance with Curtis, they also show that under specific assumptions, 
simple majority voting minimizes the decision costs for the individual. 

Lastly, we may share the outlook of Grotius, the Father of Law (see Gough, 
1957, p. 81), who endeavored to make a natural law out of the right of the 
majority. According to this view, the majority should remain a majority and 
decisions must be made by majorities, regardless of what representational 
procedure we use; minorities should thus be prevented from having an 
influence on the outcome of law-making and governing. Of course, this view is 
incompatible with the use of decision rules not based on simple majority, and 
therefore also with the application of randomized decision rules, which do 
lend influence to minorities. The rationale behind the concept of a "sacred 
majority" is the idea that a larger number  of voters is more likely to choose the 
best of a limited set of alternatives than a smaller number of voters. However, 
to invoke a statistical likelihood principle to justify simple majority voting 
presupposes the existence of a truly best political decision which can be 
identified, or at least approximated by a majority decision. 

Political reality indicates that we do not always content ourselves with the 
" n a t u r a l  law" of simple majority; especially not when it involves amending a 
constitution. Indeed, some European parliaments make use of one, or even 
two qualified majority rules, in addition to simple majority rule. I n  general, 
t h e  adoption of alternative decision rules is motivated by the importance of 
the decision to be taken. Thus, to cite an example, in the Finnish parliament a 
bill on a constitutional law may be declared as urgent  by a 5 /6  majority, 'and 
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then be approved by a two thirds majority in the same parliament. Or, 
alternatively, the bill may be approved by a simple majority for being held. 
Then, after elections for a new parliament, the bill must be approved by a two 
thirds majority. Although in this example several different decision rules are 
used, one might hesitate to accept this as support for the idea of a randomized 
decision rule. In the Finnish example, this particular mixture of decision rules 
is based upon legal and institutional determinism, and no stochastic element is 
involved. 

A practical difficulty with the adoption of a randomized decision procedure 
concerns the stability and continuity of the decision making process. Decisions 
made by a voting body often form part of an integrated whole, a policy. Such 
continuity of policy is difficult to obtain if the coalition structure varies in an 
unpredictable fashion from one vote to the next. In theory, it would suffice to 
make the random choice of a decision rule at the beginning of an election 
period, when the seat distribution is determined. In practice, however, it might 
be preferable to change the decision rule at shorter intervals. Over a period of 
time, the voting power actually obtained by the players is then likely to be 
close to  the voting weights or seat distribution. Normally, as our analysis 
shows, it would be possible to avoid including decision rules, which might 
endanger the functioning of a political system, such as the veto rule. 
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