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Abstract. Formal specification combined with mechanical verification is a promising approach for achieving 
the extremely high levels of assurance required of safety-critical digital systems. However, many questions remain 
regarding their use in practice: C an these techniques scale up to industrial systems, where are they likely to be useful, 
and how should industry go about incorporating them into practice? This paper discusses a project undertaken 
to answer some of these questions, the formal verification of the microcode in the AAMP5 microprocessor. This 
project consisted of formally specifying in the PVS language a Rockwell proprietary microprocessor at both the 
instruction-set and register-transfer levels and using the PVS theorem prover to show the microcode correctly 
implemented the instruction-level specification for a representative subset of instructions. Notable aspects of this 
project include the use of a formal specification language by practicing hardware and software engineers, the 
integration of traditional inspections with formal specifications, and the use of a mechanical theorem prover to 
verify a portion of a commercial, pipelined microprocessor that was not explicitly designed for formal verification. 
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I. Introduction 

It is becoming increasingly evident within the VLSI  design industry that the complexi ty 

of  hardware designs is outstripping the capabili ty of  traditional simulation-based tools to 

adequately verify them. This was illustrated by the recent floating point bug discovered in 

Intel 's  Pentium processor [13]. As a result, industry is beginning to look at formal verifica- 

tion as a means for obtaining higher assurance than is currently possible through simulation. 

Recently, SRI International and Collins Commercial  Avionics, a division of  Rockwell  
International, undertook a project to explore how formal techniques for specification and 

verification could be introduced into an industrial process [20]. This project, sponsored 
by the Systems Validation Branch of  NASA Langley and Collins Commercial  Avionics, 
consisted of specifying in the PVS language [21] a portion of  a Rockwell  proprietary 
microprocessor,  the AAMP5,  at both the instruction set and register-transfer levels and using 
the PVS interactive proof-checker [26] to show that the microcode correctly implemented 
the specified behavior for a representative subset of  instructions. 

* This work was supported by NASA Langley Research Center under contract NAS 1-20334 and NAS I-19704. 
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The main goal of the project was two-fold. First, to investigate the feasibility of formally 
specifying and verifying a complex commercial microprocessor that was not expressly 
designed for formal verification. Second, to explore effective ways to transfer the tech- 
nology to an industrial setting. The choice of the AAMP5 satisfied the first goal since the 
AAMP5 was not designed for formal verification, but to provide a more than threefold per- 
formance improvement while remaining object-code-compatible with the earlier AAMP2. 
The AAMP2 is used in numerous avionics applications, including the Boeing 737, 747, 
757, and 767 aircraft. 

To satisfy the technology transfer objective, we had to develop a formal infrastructure 
and verification methodology usable by practicing engineers. The infrastructure includes 
techniques for decomposing the microprocessor verification problem into a set of verifica- 
tion conditions that the engineers can formulate and strategies to automate the proof of the 
verification conditions. The development of the infrastructure was one of the key accom- 
plishments of the project. Most of the infrastructure and methodology are general enough to 
be reused for other microprocessors, particularly another member of the AAMP family. This 
approach was used to formally specify the entire microarchitecture, more than half of the in- 
struction set, and to verify a core set of eleven AAMP5 instructions representative of several 
instruction classes. The methodology and the formal machinery developed are adequate to 
cover all of the remaining AAMP5 instructions. Although PVS was the vehicle of the ex- 
periment, the approach could also be used with other sufficiently powerful theorem provers. 

Another key result of the project was the discovery of both actual and seeded errors. Two 
actual microcode errors were discovered during development of the formal specification, 
illustrating the value of simply creating a precise specification. Both were specific to 
the AAMP5 and were corrected before first fabrication. Two additional errors seeded by 
Collins in the microcode were systematically uncovered by SRI, who knew that bugs had 
been seeded but not their location or identity, while doing the correctness proofs. One of 
these was an actual error that had been discovered by Collins after first fabrication but left in 
the microcode provided to SRI. The other error was designed to be unlikely to be detected 
by walk-throughs, testing, or simulation. 

Several other technical issues emerged during the project that influenced the transfer of 
formal verification to practice. The first was the importance of choosing an appropriate 
problem for technology transfer. Microprocessor designs are a good candidate since their 
verification has been studied for a number of years and their requirements are usually 
well defined. Another important issue is the support available from the proof-checker 
to efficiently automate the construction of proofs. The PVS proof-checker is designed to 
make very heavy use of symbolic rewriting and a number of decision procedures, effectively 
automating most of the low-level inferences encountered during mechanical proofs. Even 
so, the PVS rewriting engine had to be optimized in a number of ways for the purpose of this 
project. Other issues included the need to select a style of specification that would support 
both efficient proving and review by the engineers, the need for libraries of general-purpose 
theories, and the need to engineer proof strategies for reuse. 

This paper discusses both the technical and technology transfer aspects of the project. 
Section 2 provides background information and discusses the scale of the project. Section 3 
describes the AAMP5 microprocessor at both the instruction set and register transfer levels. 
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Section 4 describes the project organization, metrics, and the working model used to ensure 
effective technology transfer from SRI to Collins. Sections 5 and 6 describe how the macro 
and micro architectures were specified. Section 7 describes the formalization of the correct- 
ness of the AAMP5 pipeline and the approach used to mechanize the proofs of correctness. 
Conclusions are presented in the last section. 

2. Background 

NASA Langley's research program in formal methods [6] was established to bring formal 
methods technology to a sufficiently mature level for use by the United States aerospace 
industry. Besides the inhouse development of a formally verified reliable computing plat- 
form RCP [10], NASA has sponsored a variety of demonstration projects to apply formal 
methods to critical subsystems of real aerospace computer systems. 

The Computer Science Laboratory of SRI International has been involved in the de- 
velopment and application of formal methods for more than twenty years. The formal 
verification systems EHDM and the more advanced PVS were both developed at SRI. Both 
EHDM and PVS have been used to perform several verifications of significant difficulty, 
most notably in the field of fault-tolerant architectures and hardware designs. Recently, SRI 
has been actively involved in investigating ways to transfer formal verification technology 
to industry. 

Collins Commercial Avionics is a division of Rockwell international and one of the largest 
suppliers of communications and avionics systems for commercial transport and general 
aviation aircraft. Collins' interest in formal methods dates from 1991 when it participated in 
the MCC Formal Methods Transition Study [ 12]. As a result of this study, Collins initiated 
several small pilot projects to explore the use of formal methods, with verification of the 
AAMP5 microcode being the latest and most ambitious in the series. 

2.1. AAMP family of microprocessors 

The Advanced Architecture Microprocessor (AAMP) consists of a Rockwell proprietary 
family of microprocessors based on the Collins Adaptive Processor System (CAPS) orig- 
inally developed in 1972 [1, 23]. The AAMP architecture is specifically designed for use 
with block-structured, high-level languages such as Ada in real-time embedded applica- 
tions. It is based on a stack architecture and provides hardware support for many features 
normally provided by the compiler run-time environment, such as procedure state saving, 
parameter passage, return linkage, and reentrancy. The AAMP also simplifies the real-time 
executive by implementing in hardware such functions as interrupt handling, task state 
saving, and context switching. Use of internal registers holding the top few elements of 
the stack provides the AAMP family with performance that rivals or exceeds that of most 
commercially available 16-bit microprocessors. 

The original CAPS architecture, a multiboard minicomputer, was developed in 1972 and 
was quickly followed by the CAPS-2 through CAPS-10. In 1981, the original AAMP 
consolidated all CAPS functions except memory on a single integrated circuit. It was 
followed by the AAMP2, AAMP3, and AAMP5. Members of the CAPS/AAMP family 
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have been used in an impressive variety of products including the Lockheed L-1011 Digital 
Flight Control System (DFCS) and Active Control System (ACS), the Boeing 757 and 767 
Autopilot Flight Director System (AFDS), the Boeing 747-400 Integrated Display System 
(IDS) and Central Maintenance Computer (CMC), the Boeing 757, 767, and 737-300 
Electronic Flight Instrumentation System (EFIS) and Engine Instrumentation/Crew Alerting 
System (EICAS), and Navstar Global Positioning System (GPS) receivers. 

The AAMP5 was designed as an object-code-compatible replacement for the earlier 
AAMP2 [23], with advanced implementation techniques such as pipelining providing a 
more than threefold performance improvement. The AAMP5 is designed for use in critical 
applications such as avionics displays, but is not intended for use in ultra-critical systems 
such as autoland or fly-by-wire. 

2.2. PVS 

PVS (Prototype Verification System) [26] is an environment for specification and verifi- 
cation that has been developed at SRI International's Computer Science Laboratory. In 
comparison to other widely used verification systems, such as HOL [15] and the Boyer- 
Moore prover [2], the distinguishing characteristic of PVS is that it combines a highly 
expressive specification language with a very effective interactive theorem prover in which 
most of the low-level proof steps are automated. The system consists of a specification 
language, a parser, a typechecker, and an interactive proof checker. The PVS specification 
language is based on higher-order logic with a richly expressive type system so that a num- 
ber of semantic errors in specification can be caught by the typechecker. The PVS prover 
consists of a powerful collection, of inference steps that can be used to reduce a proof goal 
to simpler subgoals that can be discharged automatically by the primitive proof steps of the 
prover. The primitive proof steps involve, among other things, the use of arithmetic and 
equality decision procedures, automatic rewriting, and BDD-based boolean simplification. 
PVS provides a simple language to compose the primitive proof steps into more complex 
proof strategies. 

3. The AAMP5 microprocessor: An informal description 

This section provides an informal discussion of the AAMP5 at both the instruction set 
(macroarehitecture) and register transfer (microarchitecture) levels. Since the members of 
the AAMP family share similar instruction sets, we will refer to the AAMP macroarchitec- 
ture and the AAMP5 microarchitecture. 

3.1. The macroarchitecture 

At the instruction set level, the main features that make the specification and verification 
of the AAMP challenging are its support for multi-tasking and error handling, the process 
stack, and the variety of its CISC-like instructions. We briefly discuss these features below. 
A more detailed discussion can be found in [1]. 
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The AAMP provides separate address spaces for code memory and data memory. While 
not required by the AAMP architecture, code memory is typically implemented in ROM. 
Both code and data memory are segmented, with code memory organized into 512 code 
environments, each containing 64 K 8-bit bytes of code. Data memory is organized into 
256 data environments, each containing 64 K 16-bit words of data. 

The process stack is central to the AAMP macroarchitecture, implementing in hardware 
many of the features needed to support high-level block structured languages and multi- 
tasking. Each task maintains a single process stack in the task's data environment. Many 
of the internal registers maintained by the AAMP are used to define the process stack. 
The DENV (data environment) register contains the pointer to the data environment of 
the current active task. The TOS (top of stack) register points to the topmost word in the 
process stack and the SKLM (stack limit) register points to the lower limit beyond which 
the stack is not allowed to grow (the stack grows downward in memory). The LENV 
(local environment) register points to the local environment of the current procedure and 
is used in addressing local variables. The CENV (code environment) and PC (program 
counter) registers point to the code environment and address of the next instruction to be 
executed. 

The AAMP instruction set (209 instructions) is large and CISC-like. It closely resem- 
bles the intermediate output of many compilers, directly supporting high-level language 
constructs such as procedure calls and returns. Instructions vary in length from 8 to 56 bits, 
although most are only 8 bits long, yielding improved throughput and code density. The 
instruction set supports a variety of data types, including 16- and 32-bit integer, 16- and 
32-bit fractional, 32- and 48-bit floating-point, and 16-bit logical variables. The floating- 
point formats, which were not considered in the verification, have an 8-bit, excess-128 
exponent and, respectively, 24 and 40 bits of fractional mantissa. Addition, subtraction, 
multiplication, division, and type conversions are provided for all of the arithmetic types. 
Computational exceptions, such as arithmetic overflow and divide-by-zero, are detected 
and handled automatically. 

3.2. The microarchitecture 

The internal microarchitecture of the AAMP5 employs four major, semiautonomous, func- 
tional units as shown in the block diagram of figure 1. 

The Data Processing Unit (DPU), where the microcode resides, provides the data manip- 
ulation and processing functions to execute the AAMP5 instruction set. Instruction fetching 
is performed by the Lookahead Fetch Unit (LFU) by maintaining a 4-byte-long instruction 
queue that it endeavors to keep full. In addition to prefetching into the instruction queue, 
the LFU parses the instruction stream, assembles immediate operands (IM), and provides 
the DPU with a microprogram entry point (EP) translated from the instruction opcode. The 
LFU also passes the program counter (DP) associated with the parsed instruction. The 
AAMP5 includes 1024 bytes of direct-mapped instruction cache. Because the operational 
details of ICU are hidden from the DPU, the LFU and the ICU are shown in figure 1 en- 
closed inside a shell with which the DPU interacts directly. The Bus Interface Unit (BIU) 
performs external fetchs for the LFU, as well as data reads and writes initiated by the DPU. 
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Figure 1. AAMP5 block diagram. 

The DPU provides the data manipulation and processing functions required to execute 
the AAMP5 instruction set. A block diagram of the DPU is shown in figure 2, which 
also includes the details of the LFU. The DPU has two main parts: the datapath and the 
microeontroller. 

3.2.1. The datapath. The datapath consists of the components that perform the required 
data manipulation for instruction execution. It includes a 10-word multi-port register file, 
a 48-bit ALU, shifters, multiplication support, and several registers. Some of the registers 
(R and W) are used to hold the operands of the ALU and some are used to hold the results 
(T, Q, and M triplets) after ALU and shift operations. 

The ALU and the Reg File (register file) are two of the most complex units in the DPU. 
The ALU supports a large number of logical and 2's complement and l 's complement 
arithmetic operations on 48-bit bit-vectors. Besides the two bit-vector operands, the ALU 
accepts a carry-in input and produces a carry-out. The ALU can, if necessary, bypass the 
operand registers (R and W) and get its operands directly from the result registers (T, Q, 
and M). 

The Reg File is a complex multi-port register file that can be read (and written) simul- 
taneously from (into) up to three registers relative to a read (write) index controlled by 
the microcode. It contains bypass logic to use the write value instead of the contents of a 
register during a read if there is a read-write clash. Six designated registers (STK0 through 
STK5) in the register file (along with the T registers) are used to implement the stack 
cache as described in Section 3.2.3. The remaining registers in the register file are used as 
pointers to the code and data memory such as the top-of-stack and data environment pointer 
(DENV). 

3.2.2. The microcontroller. The microcontroller generates the signals that control the 
movement of data within the datapath as well as the next microinstmction to be read from 
the ROM. It contains the microprogram store, the microsequencer, which computes the next 
microaddress, and the microinstruction control registers (MC0, MC1, and MC2). AAMP5 
instructions are executed in a 3-stage--fetch, setup, compute--pipeline (figure 2), where 
the fetch stage consists of the activities that take place prior to an instruction moving into the 
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DPU from the LFU. The pipeline and its stages are described in more detail in Section 7.2. 
The activities performed in the pipeline stages are controlled by a microinstruction as it 
moves from MC0 to MC2. The program counter DP is also pipelined using a sequence of 
registers so that DPC, DPC1, and DPC2 contain the program counters corresponding to the 
instructions in MCO, MC1, and MC2, respectively. 

3.2.3. The stack cache and stack adjustment. Conceptually, the process stack consists of 
an area of data memory, a stack limit (SKLM) register, and a logical top-of-stack (TOS) 
register. In actuality, the DPU holds up to nine words of the top of the process stack in a 
set of internal registers called the stack cache, with the rest being stored in memory. The 
T register-triplet always holds the latest data item, which can be one, two, or three words 
long, pushed on to the top of the stack. The rest of the stack cache elements are stored in 
the register file. The DPU maintains the physical top-of-stack (TOS) register marking the 
boundary between the portion of the stack implemented in data memory and the portion 
implemented in the cache and the stack cache occupancy information. Note that the logical 
top-of-stack is the sum of physical TOS and the stack cache occupancy. 

The occupancy state of the stack cache that would result if an instruction were completed 
is maintained in a pair of registers for each of the AAMP5 instructions being executed in 
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MC0 (SV and TV) and MC1 (SV1 and TV1). (The SV-TV register ensemble and the logic 
that maintains stack occupancy are not shown in figure 2.) TV contains the number of words 
that would be occupied in the T register triplet and SV contains the number of registers 
in the register file that are used for the stack cache. When an instruction to be executed 
requires more operands than are available in the cache, the processor automatically reads 
additional locations from memory to the stack cache. Similarly, when an instruction will 
place more operands on to the stack than there are empty spaces in the stack cache, the 
processor automatically writes the cache register contents to memory. 

The process of maintaining the proper number of operands in the stack cache is called 
a stack adjustment. Prior to loading into MC0 the first microinstruction of an instruction, 
the DPU compares the stack cache occupancy state corresponding to MC0 against the 
entry condition code of the instruction. This code, which is stored for every instruction in a 
read-only-memory, gives the stack cache requirements for the instruction. If the stack cache 
occupancy is not acceptable, the DPU automatically executes microcoded push or pop stack 
adjustments, causing a minimum number of 16-bit words to be written to or read from the 
active process stack area in memory to satisfy the entry condition of the instruction. 

4. Project organization 

Formal verification of the AAMP5 microcode was selected for this project for a number 
of reasons. Both Collins and SRI wanted to explore the usefulness of formal verification 
on an example that was large enough to provide realistic insight, yet small enough to 
be completed at reasonable cost, Verification of the AAMP5 microcode fit these criteria 
well. While the AAMP5 was one of the most complex microprocessors Collins had built, its 
requirements were well understood since it was to be object-code-compatible with the earlier 
AAMP2. This allowed the formal methods team to concentrate on formal specification and 
verification rather than on designing a new product. Also, much of the complexity of an 
AAMP microprocessor resides in the microcode, and past experience has shown that this 
is one of the most difficult parts of the microprocessor to get right. Success with formal 
verification in other significant projects suggested that this technology might be ready for 
application to an industrial microprocessor. 

Because oftheimportance of the AAMP5 to Collins' product line, the formal specification 
and verification of the AAMP5 were performed as a shadow project and did not replace 
any of the normal design and verification activities performed on a new microprocessor. 
This parallel approach also allowed us to relax some of the steps that would be required 
on a production project and focus instead on the application of formal methods. To fit the 
scope of the project to the time available, a core set of 13 instructions, each representative 
of a class of AAMP instructions, was identified to be specified and verified by SRI. An 
additional set of 11 instructions was identified to be specified and verified by Collins as 
time permitted. Even so, it was necessary to specify the entire AAMP5 architecture and 
develop the infrastructure needed to verify the entire instruction set since the core set 
contained at least one member from each of the major instruction classes. 

A summary of the level of effort is presented in Table 1. As shown, relatively little time 
was spent on training the Collins' engineers in PVS. The small amount of structured training 
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Table 1. Level of effort. 

Task Performed Start Stop Hours 

Project management 
Planning & monitoring Collins Jan 93 Aug 94 123 

Education 
PVS course Collins Feb 93 Feb 93 125 

SRI Feb 93 Feb 93 68 

Specification of the macroarchitecture (2,550 lines of PVS) 
Initial development Collins Mar 93 May 93 172 

SRI Mar 93 May 93 360 

Revision & extension Collins May 93 Sept 93 289 

SRI May 93 Sept 93 120 

Inspection Collins Sept 93 Feb 94 96 

Resolve inspection issues Collins Feb 94 May 94 6,1 

Revision to support proofs Collins Mar 94 Aug 94 54 

Specification of the microarchitecture (2,679 lines of PVS) 
Initial development Collins 

Revision 

Inspection 

Resolve inspection issues 

Translate microcode to PVS 

Revision to support proofs 

Proofs of correctness 
Development of correctness criteria 

Developing proof infrastructure 

Verification of core instructions 

May 93 Feb 94 137 

SRI May 93 Feb 94 520 

Collins Feb 94 Aug 94 160 

SRI Feb 94 Aug 94 120 

Collins Mar 94 Aug 94 83 

Collins Mar 94 Aug 94 66 

Collins Jun 94 Aug 94 21 

Collins Jun 94 Aug 94 12 

SRI Mar 94 Jun 94 320 

SRI May 94 Aug 94 240 

SRI Jun 94 Aug 94 240 

needed was one of  the surprises of  the project. Early on, SRI conducted a one-week course 
on the use of  PVS and formal specifications at the Collins Cedar Rapids facility for the five 

engineers who would be involved with the project. The course consisted of  five half-day 

lectures with related lab exercises in the afternoon. No additional formal training seemed 
necessary. When new team members jo ined the project, they were provided access to the 
PVS documentation and trained by inclusion in review of the PVS specifications. The most 
effective form of  education seemed to be hands-on development with frequent peer review. 

Aside  from overall management  and education, the project split naturally into three 
phases: specification of  the macroarchitecture (Section 5), specification of  the microarchi- 
tecture (Section 6), and proofs of  correctness of  the microcode (Section 7). The basic process 
followed in the first two phases was that Collins would provide design specifications to SRI, 

SRI would provide first drafts of  PVS specifications to Collins, and Collins would informally 
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review these specifications and return comments to SRI for revision. At some point, the 
Collins team would take the specifications, prepare them for formal inspections [11], con- 
duct the inspections, correct the defects found, and send the revised specifications back to 
SRI. This approach was chosen both to validate the correctness of the specifications and to 
ensure that Collins personnel became actively involved in developing the PVS specifications. 
A similar process was followed for performing proofs of correctness of the microcode. 

To reduce the potential for missing errors in the microcode due to errors in the PVS spec- 
ifications, independent teams were assigned to different portions of the project. While all 
early drafts of the specifications were produced by SRI, different individuals at Collins were 
assigned to review and revise the macroarchitecture and microarchitecture specifications. 
Different teams were also used to inspect the macroarchitecture and the microarchitecture. 
The microcode itself was produced by a member of the original AAMP5 team without any 
knowledge of the formal specifications and translated into PVS by yet another individual. 
As a result, the process of proving the microcode correct often revealed errors in the spec- 
ifications, but once a proof was completed, confidence in the correctness of the associated 
microcode was high. 

4.1. Development of the macroarchitecture specification 

The initial specification of the AAMP macroarchitecture was developed through gradual 
refinement by SRI and Collins and resulted in several iterations, each incorporating increas- 
ing amounts of detail. Since the AAMP5 was to be object-code compatible with the earlier 
AAMP2, this work was based on the AAMP2 Reference Manual [23]. Each iteration was 
reviewed via informal walkthroughs by Collins and the comments returned to SRI. This 
phase lasted approximately three month.s, took 532 man hours to complete, and resulted in 
a first draft of the specification consisting of 1,595 lines of PVS organized into 25 theories ! . 

Once SRI and Collins were satisfied with the overall structure of the specification, its 
completion was taken over by Collins. This was done for several reasons, the most pragmatic 
being to allow SRI to move on to the specification of the micro-architecture. Ownership by 
Collins also encouraged transfer of the formal methods technology. There was also growing 
concern whether the AAMP domain experts, who were not skilled in PVS, would be able 
and willing to read the PVS specification. It was felt the Collins team was best situated to 
facilitate this. 

Over the next five months, the roles of SRI and Collins on the macroarchitecture were 
reversed, with Collins revising and extending the specifications and SRI providing informal 
review. More of the executive service functions were specified and the number of instruc- 
tions specified was increased to 108 of the AAMP's 209 instructions. NASA Langley also 
took over completion and validation of the bit vector theories. To make the specifications 
more accessible to the AAMP domain experts, considerable effort was invested in improving 
their readability by choosing more meaningful names, adding general comments, adding 
comments tracing the specifications back to the AAMP2 Reference Manual, and ensuring 
that all functions were written as clearly as possible. Approximately 409 man hours were in- 
vested in this effort. At its conclusion, the macroarehitecture specification consisted of 2,550 
lines of PVS organized into 48 theories, not including the bit vectors library discussed earlier. 
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Formal inspection [ 11 ] of the macroarchitecture was felt to be essential, both to validate 
the correctness of the specification and to familiarize more engineers at Collins with PVS. 
In preparation for these inspections, an overview of the specifications was presented in four 
reviews of two hours each. At the end of these sessions, the engineers were divided into 
two teams, one that would review the macro-level specifications and one that would review 
the micro-level specifications. Checklists were drawn up for use in the inspections based on 
earlier checklists used in inspecting VDM [17] specifications, the RAISE Method Manual 
[3], and checklists used for code inspections at Collins. 

Eleven inspections were held of the macro level specification covering thirty-one of 
the most important theories. Inspectors were required to review the designated theories 
ahead of time, using the checklists as guides, and record all potential defects encountered. 
Defects were classified as trivial, minor, and major. Trivial defects were defined as those 
that did not affect correctness and for which an obvious solution existed, such as spelling 
errors. Minor defects included those that might affect clarity or maintenance but did not 
affect correctness. As a rule of thumb, a defect was classified as minor if two reasonable 
people could disagree on whether it was a defect. Major defects were defined as those that 
affected correctness and obviously should be corrected. Despite their name, most of the 
major defects were very limited in scope and could be corrected in a few minutes. Some 
of the errors were misunderstandings by SRI, some were errors in the original AAMP 
documentation, and some had been inserted by Collins during the revisions. During the 
inspections, each inspector presented the minor and major defects they had found. While 
consensus of the team was required for a defect to be officially recorded, the majority of 
issues raised were recorded as defects. Later, each defect recorded was corrected. Total 
time spent in preparation by all participants, time spent in inspection, and number of defects 
found are shown in Table 2. 

During the first inspection, team members were still uncomfortable with PVS, as indicated 
by the number of hours spent in preparation. This apprehension dissipated quickly and the 

Table 2. Macroarchitecture inspection results. 

# PVS Lines of Preparation Inspection Minor Major 
Inspection # theories PVS Inspectors (hours) (hours) defects defects 

1 3 203 3 12.0 0,8 6 1 

2 3 281 3 3.0 0,8 6 6 

3 4 216 3 4.0 0,8 12 3 

4 2 116 3 4.3 1.0 3 5 

5 2 195 3 3.5 1,0 5 6 

6 3 149 3 3.0 0.5 3 2 

7 4 147 3 2.7 0.4 6 2 

8 3 135 3 3.5 0.6 4 3 

9 3 332 3 1.5 0.5 5 0 

10 2 204 3 1.2 0.4 1 0 

11 2 079 3 0.9 0.3 2 0 

Total 31 2057 39.6 6.3 53 28 
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inspectors settled down to a rate of approximately 150 lines of PVS and comments per 
hour of preparation time (the inspection rate increased during inspections nine through 
eleven since these were of simple tables). This rate is probably somewhat high since the 
inspectors were well aware that this was a shadow project. On an actual project, more 
preparation time would have been required. Even so, 53 minor (style) defects and 28 major 
(substantive) defects were discovered in specifications that had been carefully prepared 
prior to inspection. As shown in Table 1, approximately 96 hours were spent conducting 
the inspections and 64 hours were spent correcting the defects found. 

4.2. Development of the microarchitecture specification 

Development of the microarchitecture specification mirrored that of the macroarchitecture. 
As indicated in Table 1, initial development of the microarchitecture specification by SRI 
took approximately 657 man hours over 10 months. The specification closely followed the 
block structure of the microarchitecture, usually with one theory per component. Surpris- 
ingly, the specification of the microarchitecture without the PVS version of the microcode 
was only slightly larger than the specification of the macroarchitecture, an indication how 
much of the complexity of the AAMP5 is contained within the microcode. 

To prepare the PVS specifications for inspection, the initial microarchitecture specifica- 
tions developed by SRI were informally reviewed by three Collins engineers familiar with 
both PVS and the AAMP5 and revised as was done for the macroarchitecture. Since the 
initial specifications covered the entire microarchitecture, there was no need for Collins 
to extend the specification. Most of the changes consisted of modifying names to reflect 
local conventions, adding comments tracing back to the design documents, and improving 
the clarity of the specifications. Even so, this was a sizeable effort, requiring 280 hours 
spread over seven months. When completed, the microarchitecture specification consisted 
of 2,679 lines of PVS and comments organized into 20 theories. 

Revisions were also made later to the microarchitecture specifications to facilitate proofs, 
but these were more technical in nature and not as significant as the ones made to the 
macroarchitecture specification. Most involved trading the use of an advanced and ex- 
pressive construct of the specification language for a more basic construct to improve the 
efficiency of proofs. 

Formal inspections of the microarchitecture were conducted just as for the macroarchi- 
tecture. To maximize the independence between the macro and micro specifications, only 
one participant from the macroarchitecture inspections was included in the microarchitec- 
ture inspection team. Ten inspections were held, including two reinspections, covering 15 
of the most important theories. The results are shown in Table 3. 

Again, the inspectors quickly adapted to PVS, reaching an average inspection rate of ap- 
proximately 290 lines of PVS and comments per hour. Interestingly enough, the designers 
of the AAMP5, who were the least familiar with the PVS language, found the specifica- 
tions the simplest to read, consistently turning in the most major defects and the lowest 
preparation times. This was a direct result of their detailed knowledge of the AAMP5 and 
the close correspondence between the AAMP5 design and the specifications. As with the 
maeroarchitecture specification, more preparation time would have been required on an 
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Table 3. Microarchitecture inspection results. 

# PVS Lines of Preparation Inspection Minor Major 
Inspection # theories PVS Inspectors (hours) (hours) defects defects 

1 3 357 5 8.3 1.5 15 6 

2 2 173 5 3.9 1.0 11 2 

3 1 146 4 3.2 0.4 7 1 

4 1 146 5 3.3 0.8 6 2 

5 i 152 5 4.2 0.3 3 4 

6* 1 160 4 1.3 0.5 1 0 

7 1 272 4 3.6 0,6 10 ! 

8* 1 423 5 4.6 0.8 4 2 

9 3 197 4 2.0 0.5 6 1 

10 3 256 4 1.6 0.5 1 0 

Total 17 2282 36.0 6.9 64 ! 9 

* Reinspection of previously inspected theory. 

actual project. Sixty-four minor (style) defects and 19 major (substantive) defects were 
discovered. As shown in Table 1, 83 hours were invested in conducting the inspections and 
66 hours were spent correcting the defects found. 

4.3. Development of the correctness proofs 

The correctness proofs were developed in much the same way as the micro and macroarchi- 
tecture specifications. SRI first formalized the basic notion of correctness for the AAMP5 
as described in Section 7 and explored how the proofs should be organized by proving 
the ADD instruction correct. Due to the complexity of the AAMP5, this was a significant 
effort, requiring approximately 320 hours of effort. 

It became clear during this phase that additional organization of the proof structure was 
necessary if the techniques were going to be successfully transferred to Collins, Conse- 
quently, SRI invested considerable effort into decomposing the proof process into two steps 
(Section 7). The first step establishes the correctness of the microcode at the microarchi- 
tecture level, breaking it down into general verification conditions that are the same for 
every macro instruction and instruction specific verification conditions that define how the 
microarchitecture state changes for a particular instruction. The second step relates these 
proofs to the macroarchitecture specification via the abstraction function. These steps were 
then captured as PVS strategies and packaged for reuse. This phase required approximately 
240 hours of effort. 

Finally, the proofs for 11 instructions were completed by SRI using the strategy outlined 
above. This phase required an additional 240 hours. As part of the technology transfer, a 
Collins engineer helped set up the verification conditions for one instruction and completed 
the proof of some of the verification conditions. Also, another engineer at Collins used the 
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PVS prover to develop the descriptive macro lemmas from the constructive specification of 
the macroarchitecture (Section 5). 

4.4. Observations 

Several trends became apparent during the development of the macro and microarchitecture 
specifications. First, as the specification grew in size, an ever increasing portion of it was 
devoted to defining the properties of bit vectors, i.e., sequences of bits such as words of 
memory and internal registers. Ultimately, these theories evolved into a reusable library of 
2,030 lines of PVS organized into 31 theories. Availability of this library at the start of the 
project would have greatly shortened this phase. 

Also, large parts of the specification were simply tables of attributes of the various 
AAMP instructions. While the PVS representation of this information was readable, a PVS 
construct explicitly designed to support the expression of tabular data would have improved 
their clarity. Such a construct has been added to the latest version of PVS. 

Completion of the microarchitecture specification took longer than the specification of 
the macroarchitecture for a number of reasons. The AAMP5 microarchitecture document, 
unlike the AAMP2 Reference Manual, is targeted for an audience that is familiar with the 
basic architecture of the AAMP processor family. As a result, SRI had to spend considerable 
time becoming familiar with the design. In particular, the interactions between the DPU 
and its environment were difficult to specify. Although the design of the LFU and the BIU 
were well documented, the interface conditions that the DPU has to obey to ensure proper 
LFU and BIU services were not explicitly stated. This information had to be extracted 
through reverse engineering of the detailed designs and extensive discussions with the 
Collins staff. The time spent on both these efforts could have been substantially reduced if 
formal specification activity were integrated earlier and more closely into the conventional 
design cycle. 

Perhaps the greatest surprize was the ease with which the inspectors became comfortable 
with PVS. This was particularly notable since very little formal training was provided. 
To a large extent, this was due to the gradual, stylistic, and example-oriented fashion in 
which the language was introduced and the time spent preparing the theories for inspection. 
PVS uses a syntax that is close to conventional set-theoretic notation and supports a type 
system that is similar to the one found in a modern high-level programming langauge. 
These features of PVS certainly helped in its acceptance since the enginers at Collins were 
sensitive about the presentation of the specification. The specification uses higher-order 
functions and some of the advanced features, such as dependent types, quite extensively. 
Every such unconventional feature was introduced only after carefully motivating its usage 
via examples. Once the fetaures were well-illustrated, the engineers did not have much 
difficulty in using them. 

While the purpose of the inspections was to validate the accuracy of the formal specifi- 
cations, issues of style and clarify could dominate an inspection if a theory was not well 
organized. On the few occasions that unprepared theories were submitted to inspection, 
the result was quick rejection by the inspection team. Clear organization, standard naming 
conventions, and meaningful comments were essential. 
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Also surprising was the extent to which formal specifications and inspections comple- 
mented each other. The inspections were improved by the use of a formal notation, greatly 
reducing the amount of debate over whether an issue really was a defect or a personal 
preference. In turn, the inspections served as a useful vehicle for education and arriving at 
consensus on the most effective styles of specification. This is reflected in Tables 2 and 3 
by the lower number of defects recorded in the later inspections. 

It was more difficult to transfer the verification technology to Collins than the formal 
specification technology. In large part, this was because the formal specifications were 
written early in the project while the approach for formal verification was developed towards 
the end when time and funds were running low leaving insufficient time to package the 
proof process as effectively as was done with the specification techniques for a nonexpert. 
In addition, the size of the combined micro and macroarchitecture specifications strained 
the automatic rewriting capabilities of the original version of PVS, Enhancements to PVS, 
especially optimizations to its rewriting engine, that were incorporated as a result of our 
experiments with the proofs of the first few instructions helped to relieve these problems. 
One of the engineers on the Collins team visited SRI for a week to study and learn about the 
proof process. During the visit, he was able to formulate and partially verify an instruction 
after studying a completed proof of a related instruction. Our idea is to package the proof 
process so that an engineer will be using the prover as anintelligent symbolic simulator. 

The AAMP5 experiment was typical of many large, industrial projects in that the same 
fundamental constructs appear over and over. While a substantial amount of groundwork 
was necessary to automate the verification of the microcode, once the basic framework was 
established it was possible to bring the costs down to a reasonable level and for practicing 
engineers to participate in the proof process. In our case the groundwork involved not 
only decomposing the verification problem into mangeable units, but also developing the 
formal infrastructure needed to define and automatically reason with bit-vectors. We believe 
most of this framework can be reused in the verification of another microprocessor. One 
of the primary goals of the follow-on project underway is to ensure the transfer of the 
formal verification technology and determine how much of the AAMP5 groundwork can 
be reused. 

5. Formal specification of the AAMP5 macroarchitecture 

Our approach to specifying the AAMP5 macroarchitecture is similar to the one used in most 
earlier microprocessor verification. The state of the macromachine is modeled as a record 
that includes external memory and the internal state that affects its observable behavior, such 
as the internal registers defining the process stack and the program counter. The AAMP5 
instructions are specified by defining a next-state function that characterizes the effect of 
executing the "current" instruction pointed to by the program counter. The behavior of all 
instructions in the absence of external interrupts can be specified in this fashion. 2 

The PVS specification of the macro state is shown in figure 3. Code memory and data 
memory are defined separately, since this is the conceptual model presented to a programmer. 
While it is possible for an external memory unit to implement code and data memory in the 
same address space, and even to overlap code and data memory, code memory is normally 
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Figure 3. The  A A M P 5  macrostate .  

implemented in ROM and is physically distinct from data memory. The remaining items 
in the macrostate define the CENV, PC, DENV, SKLM, LENV registers and the USER 
and INTE flags discussed in Section 3.1. The macrostate theory also defines a number of 
auxiliary functions that manipulate the macrostate to make later theories more readable. 
For example, p u s h  pushes a word on the current process stack. 

The next state function ( n e x t m a c r o _ s t a t e )  takes an arbitrary macrostate and returns 
the macrostate that would result after the current instruction is executed. The next state 
function is defined for each instruction class in an upda  t e theory for that class. For example, 
the next state function for for the arithmetic instructions is defined in the a r i t h _ u p d a t e  
theory, a portion of which is shown in figure 4. Arithmetic instructions perform a specific 
operation, such as addition or subtraction, on the top few elements of the accumulator stack 
and push the results onto the stack after consuming the operands. Two functions are used 
in the definition of the n e x t _ m a c r o s t a t e  function for the arithmetic operations. The 
exception_number function determines if the instruction will result in an exception 
given the current macrostate. The n o r m a l _ r e s u l t  function defines the change in state 
returned by the n e x t _ m a c r o _ s t a t e  function when an exception does not occur. If 
an exception does occur, this state and the exception number are given as parameters 
to the e x c e p t i o n _ m a c r o s t a t e  function, defined in the e x c e p t i o n s  theory, that 
pushes the exception number on top of the (erroneous) result and invokes the exception 
handler. 
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Figure 4. PVS specification of arithmetic instructions. 

Additional details on how the AAMP5 interrupts can be specified and verified can be 
found in [28]. Two issues, one general and the other specific to AAMP5, that arose in the 
development of macroarchitecture specification are discussed in the next two sections. 

5.1. Constructive vs. descriptive specifications 

One of the early choices to be made in specifying the macro-architecture was whether 
to specify the n e x t _ m a c r o _ s t a t e  function constructively, i.e., by explicitly defining 
how the result of the function is to be constructed, or descriptively, i.e., by stating a set of 
properties (axioms) that the function is to satisfy. The main advantage of a constructive style 
of specification is that the PVS language mechanisms will ensure that the function is not only 
well-defined but total. A disadvantage is that it is difficult to leave parts of the specification 
deliberately underspecified. A descriptive style is naturally suited for underspecification, but 
makes it possible to introduce inconsistent axioms. In addition, descriptive specifications are 
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often more difficult to understand than constructive specifications for an uninitiated reader. 
Most earlier processor verification efforts have used a constructive style of specification. 

We initially chose the constructive style since (besides the reasons given above) many 
of the AAMP instructions are similar enough (for example, a REFS and a REFSL differ 
only in the addressing mode) that they could be compactly specified using a constructive 
style. Also, much of the most complex behavior of the AAMP instructions was already 
specified at Collins using a procedural style (in the form of pseudo-code) that could be 
easily translated into a constructive specification. One result of this choice was to make the 
effort required to specify a single instruction quite high since most of the infrastructure for 
an entire class of instructions was required to complete the first instruction in that class. A 
benevolent side-effect was that this made it easy to specify far more instructions (108) than 
the 13 instructions originally planned. 

However, while doing the correctness proofs it became clear that a more descriptive style 
of specification in which the change in state was defined more directly would be helpful 
as an intermediate step in the proof. Fortunately, these could be stated as lemmas that 
could be proven from the original specification, preserving our investment in the original 
specification. As these lemmas were created, it became evident that they were in many ways 
a preferable style of specification. They were more readable, simpler to validate, and were 
closer to what a user wanted to know in the first place. They also made it possible to specify 
a small portion of the n e x t _ m a c r o _ s t a t e  funct ion,  i.e., to specify one instruction 
or part of an instruction at a time. An example of the descriptive style of specification is 
presented below for the ADD instruction for the case when the addition does not overflow. 
The other cases are characterized similarly by other lemmas. In the constructive style, all the 
cases were embedded inside a function definition in an algorithmic style as shown in figure 4. 
We believe that the advantages of the descriptive style outweigh its disadvantages enough 
to use it as the preferred style. The likelihood of inconsistency in the specification can be 
eliminated by using simple syntactic guidelines that keep the axioms from semantically 
overlapping each other. 
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5.2. The stack cache abstraction 

One of the most interesting issues pertaining to the use of abstraction in specification arose 
in modeling the process stack. Conceptually, it is desirable to hide the presence of the stack 
cache so that an application programmer does not have to be concerned with it. In actuality, 
effect of the stack cache is visible at the macro level in two ways. 
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For performance reasons, the AAMP does not check memory accesses to determine if the 
word being referenced lies in the vicinity of the stack cache. As a result, REF and ASSIGN 
instructions that access the region of memory between the physical TOS and the logical 
TOS may obtain values different from those held in the stack cache. In practice this does 
not pose a problem since well behaved applications do not directly access the process stack. 
Since applications seldom write assembly code for the AAMP (recall that it is designed for 
use with high order, block structured languages such as Ada), this is primarily a concern for 
the compiler writers. The second manifestation of the stack cache arises because the AAMP 
signals an overflow when the physical TOS exceeds the stack limit, rather than when the 
logical TOS exceeds the stack limit. In effect, the existence of the stack cache allows a few 
more words to be written to the process stack than should strictly be allowed. While benign, 
these two manifestations of the stack cache made it difficult to write a precise definition 
of the AAMP5's behavior without bringing the details of the stack cache into the macro 
level specification. To avoid this, two adjustments were made to the specification of the 
macroarchitecture. To reflect the constraint that memory accesses should not be made to the 
vicinity of the stack cache, we left the effect of such accesses unspecified as shown below. 

not_s tac] t_©ache_sddress(s t :au~cro_s t t te ,  b4uwe:deta_m:,v_pla') ( o f f l e t : d t t l L _ l ~ i l r . 1 4 ~ ) :  boo1 

dat  s_aemory_usi lp t  ( s t  : n u z o _ s t a t o  0 
h u e  : dsts_env_ptr ,  
o f f s e t  : ( n o t _ s . r ~ _ c e c h o _ t d d z . s  ( s t .  b u s ) ) ,  
w~ : WO~d): I~¢~o .s t& te  • s t  VI~1K [ (~MNm)(bue) (o f fse~)  : :  V~] 

dat  t_memozT_ze~ ( s t  : n a c ~ o _ . a t o ,  
base : datL_onv_ptz,  
o f f s e t  : (~o t_s t&ck .c lcbe_md~ess(s t ,  b u s ) ) )  : V01~ " d a e l ( s t )  (b&So) ( o f f s a )  

The functions data_memory_ref and data_memory_assign are used exclusively 
for direct data memory accesses at a given base (data environment pointer) and offset. 
These functions are constrained by defining them on an appropriate subtype of the type 
of all possible address offsets. The predicate n o t _ s t a c k _ c a c h e _ a d d r e s s  is used to 
define a subtype dependent 3 on s t  and b a s e  to restrict the offset to locations that are not 
overlaid by the stack cache. The exact definition of the n o t _ s t a c k _ c a c h e _ a d d r e s s  
predicate is left unspecified in the macroarchitecture since it varies with the specific AAMP 
microprocessor. One approach would be to be overly conservative and define it as the 
maximum number of words the stack cache can hold (nine for the AAMP5) above the 
logical TOS. Another approach is to define it as an abstraction of the micromachine state 
that contains information about the stack cache as shown below. Such a specification was 
used in the proofs of correctness relating the micro and macro levels. 

n o t _ n s c k _ c u h e _ s d d r e . C ~ S ( n i c ~ o _ s t u o ) ,  b u e ) ( o f f . ; )  - 
( b e e  /~ d o m v ( l ~ S ( ~ c r o _ s t a t o ) ) )  OK offse~ >" TOS(r ;czo_st&te)  
( o f f s e t  < T O S ( m ~ z o _ . u e )  - (SV(mtc:o_stete)  + TV(mac ro_ .a te ) )  

Using the physical TOS rather than the logical TOS to detect stack overflow was a 
more difficult problem to resolve. This is dealt with in the proofs by (1) showing the 
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correspondence between the two levels only as long as there is no stack overflow and 
(2) by proving a correctness statement about the behavior of the stack overflow condition 
as a separate property of the micromachine. In the AAMP5 a stack overflow can occur 
only during a procedure call or at the beginning of an instruction during the execution of 
a special-purpose micro subroutine that performs stack adjustment. The stack overflow 
correctness is proved as a property of the stack-adjustment micro-routine independent of 
the instruction being verified. 

The issues raised by the stack cache are an excellent illustration of the need for formal, 
or at least precise, specifications. While the need for speed makes it unlikely that the 
AAMP will be changed to prevent direct memory accesses in the region of the stack cache, 
explicitly capturing this conslxaint provides important documentation for the users of the 
AAMP, particularly the compiler writers. Using the logical TOS rather than the physical 
TOS to signal stack overflow is a relatively minor change that may well be incorporated 
into future AAMPs--this issue had simply never arose since it has such a benign effect. 
Both issues were brought forward by the requirement to create an abstract, yet precise, 
specification of the AAMP macroarchitecture. 

6. Formal specification of the AAMP5 microarchitecture 

The two main technical issues that had to be addressed in specifying the microarchitecture 
were: (1) the level of detail at which the different parts of the microarchitecture are to be 
specified and (2) the style of specification to be used to model the design. 

One of our objectives was to keep the abstraction level in the microarchitecture speci- 
fication as close to that used in the official microarchitecture document [24] as possible. 
The microarchitecture document describes the design approximately at the register-transfer 
level, with some of the components, such as ALU and the register file, being described 
as black boxes. The DPU, in which most of the data transformations initiated by the mi- 
crocode occurs, is specified at the register-transfer level. Since the internal details of LFU 
and BIU are not needed to verify the correctness of the microcode, the LFU and the BIU 
are specified more abstractly by formalizing the expected behavior of the interface between 
those blocks and the DPU. The LFU and BIU provide a set of services for the DPU that 
can be formalized as a set of safety and liveness properties. Given below are a few of the 
properties that specify the interface between the DPU and the LFU. 

KDTLnv: IZZ~! 
ILOT(t) -> 

olpcode - opcode_at(ClglYCt). DP(s), CDOFJi~MOILT(S)) 
~ ( t )  • P_lU]K(opcod.) k 

(hu_L~_dutaCo]pcode) -> ZK(t) = ~LrsS_wsit_o~_Lnu_dL~,u(S)) 

CUIL.IWT_n~t: //ZOX 
)lOT ltDT(t) k :o: .L l . fetcb~ml~(t)  k C'~L_lml~.(]fCO(t)) => 

(~ISTS (el  I Sl • ~):  
.says_smeCliCO(t))(t, i t )  => 

s~aT._ssse(it~T)Ct, '~1-1) & 1~T(~1) ~' 
~_ to ' l r . cb . t , n~ ( l : l )  k D P ( t l )  - DP(t)+loag'th_o'e.~aa'k:rg,©~ion(ol~:odo) ) 
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The first axiom (RDYinv) states a condition on the LFU outputs that the DPU can rely 
on whenever LFU is ready with a decoded instruction. It states that whenever RDY is true, 
EP and IM have the appropriate information pertaining to the instruction associated with 
the program counter DP. The second axiom specifies a possible response of the LFU for a 
request (CLR_RDY) by the DPU to consume an instruction from the LFU when the LFU 
is not ready with an instruction. The axiom states that the LFU will eventually present 
the DPU with a new instruction, provided DPU holds the NC0 line stable with CLR_RDY 
and that the LFU goes into a state n o r m a l _ f e t c h i n g  where it presents instructions 
sequentially. 

Formalizing the interface specification was one of the most time-consuming parts of 
specifying the microarchitecture since it had to be reverse engineered from the LFU/BIU 
design details and by consulting the design engineers. Nevertheless, abstracting the LFU and 
BIU provided a natural way of decomposing the verification task. The task of verifying that 
the LFU/BIU satisfies our interface specification is better-suited for finite-state enumeration 
tools, such as model-checkers, than theorem provers. To perform such a verification, it is 
necessary abstract appropriate parts of the LFU-BIU-DPU system to construct a finite-state 
machine for the model-checker. We have explored [22] this problem for a very simplified 
model of the AAMP5 using a prototype enhancement to PVS that provides the ability to 
invoke a model-checker as a decision procedure within PVS. 

The DPU is constructed by combining the specifications of the datapath and the mi- 
crocontroller. The datapath consists of the specification of the register file, the ALU, and 
the ALU input and output registers. The microcontroller contains the specification of the 
microsequencer, the stack occupancy logic, and pipelined microinstruction registers. 

In most applications of formal logic for the verification of register-transfer-level hardware, 
the design is modeled as a finite state machine with an implicit clock. The state of the 
machine consists of the states of the sequential components, such as registers, in the design. 
The next state function defines the new state value at the next cycle of the implicit clock. 
The exact style used to specify the state machine implemented by the design can vary. For 
the AAMP5, we used a functional style of specification. In this style, the inputs and outputs 
of every component are modeled as signals, where a signal is a function that maps time, 
i.e., number of cycles of the implicit clock, to a value of the appropriate type. Every signal 
that is an output of a component is specified as a function of the signals appearing at the 
inputs to the component. The signal definitions implicitly specify the connectivity between 
the components. As an illustration, a specification of the signal denoting the value of the 
microinstruction register MC0 in the DPU circuit is shown in below. 

RCOaz: AXIOM MCO(t+I) - IF DN.D(t) ~ I(CO(t) 
~ I P  abe:tO(t) ~ null_XCO 

Note that the multiplexor combinational logic that determines the next value for MC0 
and the inputs to the combinational logic are implicit in the if-then-else structure in the 
above definition. The explicit use of a discrete time parameter in the specification helps to 
express the temporal aspects of interrupt behavior more naturally than in a style which does 
not use time explicitly. 
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This style should be contrasted with the predicative style [14] that is commonly used 
in most HOL [15] applications. In the predicative style, every hardware component is 
specified as a predicate relating the input and output signals of the component and a design 
is specified as a conjunction of the component predicates, with signals on the internal wires 
used to connect the components hidden by existential quantification. We decided to use a 
functional style because proofs based on functional specifications tend to be more automatic 
than those involving predicative specifications. A proof of correctness for a predicative style 
of specification usually involves executing a few additional steps at the start of the proof 
to transform the predicative specification into an equivalent functional style. For a more 
detailed look at the two styles and their impact on proofs see [19]. 

7. Verification of the AAMP5 

This section describes the verification of the AAMP5. We first present a general correctness 
principle for microprocessor correctness. We then informally describe the AAMP5 pipeline 
and then formalize its correctness criterion. Then, we describe the mechanization of the 
proof of correctness. 

7.1. Pipelined microprocessor correctness 

Theorem proving approach has been used to verify a number of microprocessor designs 
since Hunt applied it to verify the FM8501 processor [16]. (For a more comprehensive bib- 
liography of microprocessor verification, see [28].) However, the AAMP5 is significantly 
more complex, at both the macro and micro-architecture levels, than any other processor 
for which formal verification has been attempted; it has a large, complex instruction set, 
multiple data types and addressing modes, and a microcoded, pipelined implementation. Of 
these, the pipeline and autonomous instruction and data fetching present special challenges. 
One measure of the complexity of a processor is the size of its implementation. In the case 
of the AAMP5, this is some 500,000 transistors. 

Recently, mechanical verification has been applied to a number of pipelined processors 
[4, 25, 27, 29, 30]. But, there has not been much work in developing a general framework 
for microprocessor correctness. In [31], Windley developed such a framework using the 
notion of generic interpreters, but it is not applicable to pipelined processors. We derived 
the AAMP5 correctness criterion using the general framework developed by David Cyrluk 
[9] for proving correspondence between state machines in PVS which has been shown to 
be applicable to pipelined processors. 

Formal microprocessor verification typically involves specifying the processor as a ma- 
chine that interprets the instructions in the instruction set at two levels--macro and micro. 
The macromachine gives the programmer's view of the processor, hiding internal details 
such as pipelining. The micromachine describes the processor at a lower level, such as the 
architecture or register-transfer level. 

The general correctness criterion for a microprocessor is expressed, as shown in figure 5, 
as a relationship between the execution traces of the macro and micromachines. In the 
figure, E and next_macro_state denote the micromachine and macromachine state 
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Figure 5. Pipelined microprocessor correctness. 

transition functions, respectively. The objective of the correctness criterion is to ensure 
that the micromachine does not introduce any behaviors not allowed by the macromachine. 
Since the micromachine usually takes a number of cycles to execute an instruction that is 
viewed atomically at the macro level, the two machine traces are required to correspond 
only at selected points (called visible states) in the micromachine trace. For example, one 
possible definition of a visible state is one in which an instruction gets completed and a 
new instruction begins. A visible state is indicated in figure 5 by placing the number of 
the current instruction in that state. Since the macrostate is an abstraction of microstate, it 
is necessary to define an abstraction function/~B$ (in figure 5, for now, read the vertical 
arrow labeled Abs_PC as ABS and ignore the Abs_Reg arrow) that returns the macrostate 
corresponding to the state of the micromachine for each visible state. 

Given the notions of ABS and visible state, the correctness criterion described by figure 5 
can be stated as follows4: "Every micromachine trace starting with an initial state (sO) 
that abstracts to a macrostate (s 0) must be abstractable to the macromachine trace starting 
with the initial state sO." To prove such a correspondence between two infinite traces, it is 
sufficient to prove the commuting property (stated formally below) that captures the corre- 
spondence between the traces for an arbitrary step of the macromachine, i.e., between two 
arbitrary but successive visible states. This property is stated using existential quantification 
since the distance between visible states can vary. In the formal statement shown below, 
ABS and other functions that take a time argument t implicitly operate on the micromachine 
state at t. Hence, the micromachine transition function E is implicit in the increment of 
time. 

vLsible_state(t) => F.][ZSTS ( tp :  t i m ,  I t p  • t ) :  
stayi_lov(t+1, tp-l)(vLslble_state) & 

v / s i b l e _ s t a t Q ( t p )  • £JSS(tp) = next_lnacro_stato(AB$(t)) 

The commuting property described in the previous paragraph can also be used for a 
pipelined processor if appropriate adjustments are made. First, in a pipelined proces- 
sor, a new instruction enters the pipeline before the results of the previous uncompleted 
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instructions are at their destination. This can be handled by allowing ABS to peek into 
future, possibly nonvisible, microstates (e.g., Abs_REG shown in figure 5) to get correct 
values for some of the macrostate components. Typically, the values for all but the program 
counter (Abs_PC in figure 5) must be obtained from the future state. We refer to the distance 
into the future from the current visible state where the information is to be obtained as the 
latency for the abstraction function. 

Second, some pipelined processors, typically RISC processors, do not inhibit all kinds 
of pipeline hazards. For example, they allow instructions following a conditional branch to 
execute, assuming the branch would not be taken, leaving the burden of generating correct 
code to the compilers. One way to handle this (as shown in [27]) is to either restrict the 
set of programs for which the two machines are related or expose some of the effects of 
pipelining in the macromachine. Further adjustment would be needed if pipelining allows 
out-of-order instruction completion. 

Although the AAMP5 was designed to be object-code compatible with its nonpipelined 
CISC-like predecessor, it's design employs a number of features commonly found in RISC 
processors. The AAMP5 pipeline exhibits both control and data hazards, but does not 
employ out-of-order execution. We handled the effect of latency on pipelined execution of 
instruction by suitably adjusting the ABS definition. Although the effect of pipelining is 
completely hidden from the programmer, the AAMP5 exposes the effect of stack caching. In 
the AAMP5 verification, the lack of transparency of stack caching had to be handled similar 
to the way in which exposing the effect of pipelining would be handled. The main challenges 
we faced in formalizing the correctness criterion for the AAMP5 and mechanizing its proof 
were the following. 

First, executing a large, complex and irregular instruction set in a pipeline creates a 
rather large number of conditions in which the pipeline is interrupted and extended. This 
irregularity makes characterizing a suitable visible state predicate hard and increases the 
number of special cases to be considered in the proof. Second, the caching of process stack 
in internal registers introduces a gap between the memory models at the micro and macro 
levels that is nontrivial to bridge. 

Third, in the AAMP5 instruction fetches and data transfers happen autonomously with 
respect to the interpretation of instructions in the pipeline. This design characteristic makes 
it hard to choose a reference point for characterizing the visible state since the distance 
between two consecutive visible states is indefinite and varying. If the definition of the 
visible state is not engineered carefully, the abstraction can become complicated. Burch 
and Dill [4] have proposed the idea of using a sequence of NOPs equal to the latency of 
the instruction to flush out the states of the desired internal registers to eliminate the need 
to explicitly define an abstraction function in some microprocessor verifications. This idea 
cannot applied for the AAMP5 because of the indefinite distance between visible states and 
also because of the nontrivial abstraction gap between the micro and macro levels. 

7.2. The AAMP5 pipeline 

The reader is advised to refer to figure 2 in Section 3.2.1 while reading this section. The 
AAMP5 executes its instructions in a three-stage pipeline: fetch, setup, and compute. The 
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fetch stage consists of the DPU activities that occur prior to the entry of the first microin- 
struction of an AAMP5 instruction into MC0. This includes reading the microinstruction at 
EP from the ROM and checking if the instruction requires a stack adjustment, and if so, per- 
forming the stack adjustment. The setup stage consists of the activities controlled while the 
microinstruction is in MC0, which includes computing the new stack cache occupancy state 
and reading the register file to determine the sources for the ALU input registers R and W. 
The compute stage consists of the activities determined by the part of the microinstruction 
that moves from MC0 to MC 1. It includes computing the results of the ALU, checking if 
there will be delayed jump and initiating writing of the ALU results. If a delayed jump is 
detected (as a function of the ALU outputs) in the second stage, then both MC0 and MC 1 are 
cleared to abort the operations normally performed by the MC0 and MC1 microinstructions 
and the jump-address field of MC1 is passed onto MC2, which will be used as the target 
microaddress of a potential delayed jump. A delayed jump is typically used to implement 
exceptions such as arithmetic overflow. Note that the register MC2 is used only for delayed 
jump execution and does not add a stage under normal instruction execution. 

7.2.1. Normalpipeline operation. The DPU logic is designed so that the DPC0 register 
always contains the program counter value associated with the macroinstruction that is being 
interpreted in MC0. A similar correspondence holds between DPC1 and MC1 as well as 
DPC2 and MC2. We use the macroinstruction associated with DPC0 as the reference 
point and refer to it as the current instruction. Under normal pipeline operation, i.e., when 
AAMP5 instructions are being completed at the rate of one per cycle, the DPU performs 
the setup stage of the current instruction along with the compute stage of the previous 
instruction and the fetch stage of the next instruction. 

The execution trace of the micromachine under normal pipeline operation is shown in 
figure 6(a). A state (square) in the execution trace (shown at the bottom of figure 6) with a 
number n in it denotes the visible state where instruction n is the current instruction. The 
column above a state transition arrow shows the instructions in the pipeline and the stages 
that are being performed in a given cycle. 

7.2.2. Pipeline stalling and delayed jumps. One of the challenges posed by the AAPM5, 
from the point of view of verification, is that its CISC instruction set is not as regular as a 
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Figure 6. Pipeline Execution Traces. 
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RISC instruction set for pipelined execution. As a result, the number of conditions under 
which the normal operation of the pipeline can be interrupted and/or extended is more 
than one would normally find in a RISC machine. Not only does this aspect make the 
formalization of a visible state harder, but also complicates verification because the proof 
of correctness under these conditions has to be handled in special ways. When the AAMP5 
pipeline is at a visible state, the pipeline operates normally (i.e., the distance to the next 
visible state is one cycle) only if the following conditions hold: (1) The current instruction, 
i.e., the one in the setup stage in the pipeline, is implemented by a single microinstruction. 
(2) The previous instruction, i.e., the one in the compute stage, (a) does not cause a delayed 
jump (nextDJMP, the value assigned to DJMP in the next cycle, is false), and (b) will not 
cause a data hold (DHLD is false). (3) The LFU is ready with the next instruction (RDY is 
true). (4) The next instruction will not need a stack adjustment (SADJcondn is false). 

If any of the conditions listed do not hold, the distance to the next visible state will be 
more than one cycle and its value will depend on which of the conditions in the list are 
violated. We classify these situations in which the next visible state is more than one cycle 
away from the present one as follows: The behavior resulting from violations of conditions 
2(b), 3, or 4 is referred to as pipeline stalling; in these situations, the micromachine performs 
a computation that has no visible effect on the macrostate. Violations of the other two cases 
(1, 2(a)) are referred to as pipeline extension. In a pipeline extension, the micromachine 
components that affect the macrostate are updated incrementally in two or more cycles. 
In all these situations, the compute stage of the previous incomplete instruction is always 
completed in the following cycle. 

For example, figure 6(b) shows the trace when the LFU is not ready with the next 
instruction. In this case, a jump is made to a special microroutine (MAP_WAIT) that 
implements a busy wait loop which is exited only when RDY becomes true again. The 
distance to the next visible state can be arbitrarily large depending on when RDY becomes 
true again. 

7.2.3. The AAMP5 pipeline correctness. The correctness of the AAMP5 pipeline is 
formalized by appropriately instantiating the general commuting property formalized in 
Section 7.1. For this, we first need to define g a s  and v i s i b l e _ s t a t e  for the AAMPS. 

The main issue to be considered in characterizing the visible state is which of the macroin- 
structions in the pipeline and what point of its execution is to be used as the reference point 
to relate the microstate to the macrostate. In principle, one can use any of the instructions 
in the pipeline, but the choice influences how complex the definition of the abstraction 
function will be. In most pipeline verifications, the instruction in the fetch stage is used 
as a reference point. This choice, however, is not suitable in the present case because 
variations in the latency of the pipeline due to pipeline stalling will be embedded in the 
definition of the abstraction function. For automating proofs, it is advisable to choose 
the reference point so that abstraction function need only look a fixed distance into the 
future. 

So, we define a visible state as one in which the first microinstruction of a new AAMP5 
instruction is in MC0 and is guaranteed to advance to MC 1 in the next cycle. That is, 
the left-over effects of the previous instruction are guaranteed to be completed in the next 
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cycle. Under this characterization of the visible state, the latency for the ABS function 
is exactly one cycle. During normal pipeline operation, the distance between consecutive 
visible states is exactly one cycle. A formal characterization of a visible state is given 
below. 

T i ~ i b l o _ , t a t o _ v i ~ h ( o p :  OlOCOdu)(~): ~.~ol - 
MCO(~) - ~O~(:ero_e~emd[8] (11) CEP_~ON(op) ( t ) )  ~ 

& I ~ ( D ~ O C t ) )  & ~OTCn~ztDJ~( t ) )  k entx'Jr.cond..mm~(op)(t) 

visiblo_,tsteCt): bool  - 
I!I~STS (op: opcodes): v L : i b l e . s t a t e _ w ~ t h ( o p ) ( t )  

Vi s i b l  e_ s t a t e_~zi ~h (op) ( ~ ) defines the condition that must be satisfied for a 
micromachine state to be visible with the opcode of the current instruction being op. The 
first condition in the conjunction ensures that MC0 contains the first microinstruction of 
the microcode corresponding to op. The remaining conditions ensure that the previous 
instruction will complete in the next cycle: DHLD being false ensures that the previous 
instruction will not be held due to data memory transfer; nextDONP(t)  (which is the 
value of the DJMP register one cycle later) being false ensures the previous instruction 
will not cause a delayed jump; e n t r y _ c o n d _ m e t  ensures that the entry conditions of the 
instruction in MC0 are met by the stack occupancy state determined by the SVI and TV1 
registers. 

The abstraction function gets the value for every field in the macrostate record, except 
ToS and dmem, directly from the state of a corresponding component in the micromachine. 
The definition of the abstraction function is divided into a separate function for each of the 
components in the macrostate. Given a time t ,  an abstraction function returns a component 
of the macrostate corresponding to the microstate at t .  The abstraction values for draem 
and the logical TOS are shown below. 

s t t c k _ c a c h e _ a i z e ( t )  : z.~t - bv2nat (SVl (~) )  + b~2~ac(TV l ( t ) )  

~ 8 ~ o s ( t ) :  vord - TOS(t41) - s t a c k _ c a c h e . s i c ( t + 1 )  

~: YLt  na~ 
ith.top_ot.eczcho: [ t ~  ->  [na~ -> vord l ]  
ith_top_of.acache: LI IO~ L < s t a c k . c a c h e _ s / z l ( ~ )  ->  

i t ~ . t op_o£_mcache ( t ) ( i )  • IF  i < b v 2 a a t ( ~ f l ( ~ ) )  ~ IF  i - 0 ~ TO(t )  
Et.qlF i - t ~ TtO:) 
m~SE 1"2Ct1 D~ZF 

ET..qE L ~ g C t ) ( s t a c k _ c a c h e _ s i z e ( t ) - i - t )  I~Q~ZF 

lBSdmem(C)(dptx: dzg~_env_ptr)(dsddr: vord): vord = 
IF  bv2na~(dsdd:)  < bv2nat(TOS(t÷t))  k 

b~nst~dsddz ' )  >m b v ~ a t ~ S ( t + l ) )  - s'Cack.cache_s~ce~t~-1) 
LET of fae~ m stack_cache_size(t+1) - (bv2nac(TO$( t+ l ) )  - bv2na~(dadd~)) 
I]1 ~ th . top_o t_sc&che( t÷ l )  (ot2:#' l ;) 

ELSE ] ) J~A_~qORT( t+ I ) (@t r  o daddr) ENDIF 

Since the elements of the stack cache are viewed as being in the data memory at the 
macro level, the macro TOS is smaller than the micro TOS by the size of the stack cache, 
i.e., (SV1 + TV1). The locations of dmem correspond to the locations in DATA_MEMORY 
except for those that range from the micromachine (TOS - 1) to (TOS - (SV1 + TV1)) 
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held in the stack cache. A formalization of the commuting property for the AAMP5 is given 
below. 

v~-sJ.ble_s~.at*(~.) k propQr_instrns J.n.pipe(t) k uo_logJ.ctl_s~ack_ovelrflov(l:) 
=> F.~XSTS (tp: ~ I t p  • t ) :  

uta?s_lo~(e,÷t, tp- t )(viJ ibl l .u~a*.a)  k 
v i s ib lo . J t a to ( tp )  k ,~S(~-I 0) = ~xt, .nacro.l~ate(A2S(t))  

The commuting property has two additional preconditions when compared to the general 
commuting diagram of Section 7.1 to handle the consequences, described in Section 5.2, 
of the hiding of the stack cache from the macro level. P r o p e r _ i n s t r n s _ i n _ p i p e  ( t )  
ensures that the memory address operands (if any) of every macroinstruction in the pipeline 
are not within the area overlaid by the stack cache; n e x t _ m a c r o _ s t a t e  is left undefined 
if this predicate were false. N o _ l o g i c a l _ s t a c k _ o v e r  f low ( t )  ensures that the logical 
process stack would not overflow as a result of executing the current instruction. 

Z3. Mechanizing the proof of correctness 

A common strategy used to prove the commuting property is to start from an arbitrary 
visible state at the lower left-hand corner of the box representing the community property 
in figure 5, traverse the two possible paths to the top right-hand corner of the box, then check 
whether the two states resulting from the traversals are equivalent. Traversing the top path, 
which entails applying the abstraction function followed by "running" the macromachine 
one step, results in the expected state. Traversing the bottom path, which consists of running 
the micromachine a multiple number of cycles followed by an application of the abstraction 
function, gives the actual state. 

In a proof, running the micro and the macromachines can be accomplished by rewriting, 
which consists of unfolding every occurrence of a defined function with its definition 
until all the functions have been simplified to primitive expressions. Checking whether the 
expected and actual states are equivalent is essentially a problem of checking the equivalence 
of boolean or bit-vector expressions since the state of most of the machine components is 
modeled as either boolean or bit-vector types. As discussed in Section 7.2, the number of 
cycles that the micromachine needs to be run depends on the type of current instruction and 
whether one or more of the stalling conditions apply. Hence, a proof typically consists of 
a case analysis on these conditions. 

Our main objective in deciding on a suitable approach for mechanization of the proof was 
two-fold. First, the verification method had to be automatic enough so that the Collins engi- 
neers could perform proofs of instructions after proofs of a few representative instructions 
were demonstrated to them. Second, the verification method should permit incremental and 
partial verification of instructions. The importance of automation cannot be overempha- 
sized since it is a pre-requisite for transfer of this technology to practice. We also wanted 
the ability to perform partial verification since that is a good way of getting early feedback 
from the verification process. 

In the present case, one of the main reasons a complete automation of the commuting 
property was not possible is that the number of cycles for completing the current instruction 
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can be indefinite due to pipeline stalling caused by memory wait states and stack adjustments. 
One way to facilitate automation, is to transform the verification problem into one of proving 
a set of properties each of which relates a pair of states of the micromachine that are a fixed 
and finite distance apart in time. 

As shown in [8], for register-transfer level designs specified in the functional style de- 
scribed in Section 6 such "finite distance" properties can be automatically proved using 
a core hardware strategy. The hardware strategy consists of repeatedly performing the 
following sequence of proof steps: (1) rewriting the property using the design specification, 
(2) lifting the boolean expression in if-then-else structures to the top-level, and (3) simpli- 
fication using PVS's BDD and other decision procedures. The special-purpose decision 
procedures for microprocessors proposed in [4, 7] are efficient methods for proving such 
properties under certain restrictions. Our hardware strategy is more powerful than the pro- 
cedures in [4, 7] because our strategy uses the arithmetic and equality decision procedures 
of PVS. 

To accomplish such a transformation of the verification problem, we decomposed the 
proof of the commuting property into three parts. 

1. A part that reasons exclusively about the stalling behavior of the pipeline at the micro- 
machine level. 

2. A part that reasons about the instruction correctness in the absence of stalling at the 
micromachine level. 

3. A part that combines the first two parts along with the task of relating the micromachine 
to the macromachine by applying the abstraction function. 

This decomposition was natural since pipeline stalling is implemented by a set of special- 
purpose microroutines that are invoked as a subroutine during an instruction execution. The 
correctness of pipeline stalling was characterized by a set of formulas called general verifi- 
cation conditions since they are common to all instructions. The correctness of instructions 
in the absence of stalling were formalized by a separate set called instruction-specific veri- 
fication conditions. 

This decomposition offered a number of advantages. First, it satisfied our goal of in- 
cremental verification since the proof of each part can be carried out in parallel once the 
verification conditions are formulated. It enhances the chance of early error detection be- 
cause microcode analysis is involved only in the first two parts. Second, it satisfied our 
goal of effective automation. Proofs in the first and the third parts were done using the 
core strategy with a few augmentations as described below. These proofs are automatic 
enough for a nonexpert to perform. Proofs in the general verification conditions involved 
combining the core strategy with induction. The two kinds of verification conditions are 
described below. 

7.3.1. General verification conditions. A general verification condition states a property 
of the following form: "if the pipeline is in a stalling state then it will eventually progress 
to an appropriate non-stalling state without affecting the externally visible parts of the 
micromachine state." Since the general verification conditions are not in the form of a 
property that relates states that are a finite distance apart, their proof is not as automatic as 
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that of the instruction-specific verification conditions. The proof involves induction on the 
length of the time taken by the memory to respond or the size of the stack adjustment needed 
and requires involvement by an expert. However, we only needed to formulate about half a 
dozen general verification conditions to characterize the three stalling situations discussed 
in Section 7.2.2. Since the general verification conditions are common to all instructions, 
their proof needed to be done once for all instructions. 

7.3.2. Instruction-specific verification conditions. In formulating the instruction-specific 
verification conditions, it was necessary to apply an additional decomposition step to handle 
the fact that even in the absence of pipeline stalling the length of execution of an instruction, 
although definite, can vary depending on the type of the current instruction and whether an 
instruction causes an exception or user-recoverable error. One way to handle the variation 
in the length of the execution time for different instructions is to define an "oracle" function 
that gives, a priori, the expected execution time for all instructions under different situations. 
Another possible approach is to partition the proof by hand into different instructions and 
conditions according to the execution times. We took the second approach since it was 
more amenable to incremental and partial verification. 

For example, shown below are two of the instruction-specific verification conditions for 
the ADD instruction under the condition that addition does not overflow. The overflow 
situation has a separate set of verification conditions, as does every situation that requires 
a distinct number of cycles to complete the ADD instruction execution. In the absence of 
an exception, the latency of ADD is 2 cycles., 

TO_¢ o~"'+'~II c t  I~I IIII : 
v i  si'a3.o, s t  a t  o_vi'r,h (ADD) ( t ) -> 

TO(t+2) - (sign_ezten4116] (48 ) ( i ' ~h_ top_o t_ l cuho ( t+ l )  (1))  

vis iblo_s~ate_vi thCADD)(t)  fir MOT Sovoz"tlov(t ÷ 1) ->  
D l ~ ( t + l )  - D ~ ( ~ )  + long th_o t_~ t re~ ion (op~ :odo_a t_DPC( t ) )  & 

v2slblo_a~a~o_vi th  (nozt_opcodo_a~_DPC ( t ) )  ( t + l ) )  

The first formula expresses constraints on the TO register, which holds the top element of 
the process stack. The second formula ensures that the expected next instruction moves into 
the pipeline. The verification conditions state the effect on the state of each of the microma- 
chine components relevant to the macrostate by the execution of an instruction, in this case 
ADD. It is important to note that the expected value for the state of a component is expressed 
only in terms of the initial values of the states of the macro-level relevant components. Thus, 
although the verification conditions do not relate the microstate to the macrostate, they are, 
in effect, making assertions about the intended changes to the macrostate. 

In our methodology, we envision the design engineer or the nonexpert's primary in- 
volvement in the verification phase to be to formulate and prove the instruction-specific 
verification conditions for the instructions in the instruction set. The design engineer would 
be able to formulate these conditions without much difficulty because these conditions are 
stated in terms of a model that the design engineer can readily understand. At the same time, 
the guidelines for formulating these conditions ensure the instruction behavior is completely 
covered. 
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Our core hardware strategy is directly applicable to the instruction-specific verification 
conditions since they are in the form of a "finite distance" property. Since the AAMP5 
datapath involves a significant amount of bit-vector manipulation outside the ALU, we 
had to augment our core hardware strategy with a capability to check equivalence on 
bit-vector expressions involving a set of commonly used bit-vector operations. The bit- 
vector equivalence checking was performed by formulating a set of rewrite rules that is 
automatically applied by our strategy to normalize a bit-vector expressions into a cannonical 
form in most cases. Even when the hardware strategy is unable to automatically prove a 
verification condition, it reduces the proof to one or more goals of equality on two bit-vector 
expressions. The bit-vector expressions in these unproved goals are simplified enough 
that the designer can inspect them to check if the expressions are really not equivalent or 
equivalent but the bit-vector normalization was not able to reduce them to a cannonical 
form. In the latter case, the designer has to manually invoke a special set of pre-defined 
rewrite rules to finish the proof. The former situation implies an error in the design or the 
specification that needs the designer's attention. 

The proof of combining the verification conditions to show the commuting property 
was also done using the core hardware strategy with a slight improvisation to suit the 
specific details involved in the definition of the abstraction function. By embedding the 
improvisation needed inside another special-purpose strategy, we believe this part can also 
be performed by a nonexpert. 

8. Conclusions 

The central goal of the AAMP5 project was to explore the technical feasibility of formally 
specifying and verifying a complex commercial microprocessor and develop a micropro- 
cessor verification methodology that could be used by practicing engineers who are not 
formal verification experts. This section discusses the lessons learned on this project and 
their implications for the industrial use of formal methods. 

Feasibility. A much larger fraction of the AAMP instruction set was specified than origi- 
nally planned, with 108 of the AAMP's 209 instructions completed. The portion completed 
is actually greater than this, since many of the instructions specified are representative of 
an entire family of instructions. All of the micro-architecture needed for formal verifica- 
tion of the microcode was formally specified. At this time, eleven instructions have been 
proven correct in the absence of interrupts. The methodology and the automatic strategy 
was applied by one of the Collins engineers to partially verify an additional instruction. 

Although the number of instructions verified was small, the verification methodology 
and the proof strategies developed for the effort are applicable to any instruction whose 
latency (ignoring the time consumed due to stalling) can be expressed as a function of its 
opcode attributes alone or as a simple condition, such as exceptions, overflow, or test for 
zero, etc., on its operands. This class covers about 70 percent of the AAMP5 instructions. 
Formalizing the verification conditions for a new instruction in this class and verifying 
it completely can typically be done in half a day to a day depending on how close the 
new instruction is to an already verified instruction. Rerunning the complete proof of 



184 SRIVAS AND MILLER 

a 3-cycle instruction takes about half an hour on a SPARC 10 machine. If the goal is 
to verify a large number of instructions completely, then a more effective approach than 
the incremental approach we adopted is to construct a single strategy that eliminates the 
intermediate step of formulating verification conditions specific to each instruction. For this 
combined approach to be successful for a large design, it is imperative to have an effective 
decision procedure for bit-vectors and a very efficient rewriting engine. 

Our strategy is not applicable to instructions, such as multiply and divide, whose latency 
is data dependent in a complex fashion. Verifying such instructions require sophisticated 
use of induction and invariants. We did not verify the behavior of interrupts although 
we specified the processor reset which is treated as an interrupt. The correctness of an 
interrupt can also be decomposed into a set of verification conditions similar in form to the 
instruction-specific verification conditions and, hence, our proof strategies are applicable 
for them. Finally, our verification was based on the assumption that the LFU and the BIU 
satisfied a set of postulated properties. While these protocol-like properties can be verified 
in PVS using induction, model-checking tools are better suited for such verification. In [22], 
we show how such properties can be effectively proved using a combination of theorem 
proving and model-checking techniques. 

Cost. The cost of developing and validating the macro and micro-architecture specifica- 
tions and developing the proofs of correctness were significant, but many of these expenses 
have to be attributed to the exploratory nature of the project. Reuse of specifications, such 
as the bit vector theories, proof strategies, and expertise should greatly reduce these costs 
in the future. A large portion of the time spent on the correctness proofs was invested in 
the development of reusable proof strategies rather than just proving the correctness of the 
core set of instructions. Even so, we feel that more effective and efficient automation of 
lower level proofs involving rewriting and bit-vectors are needed to make formal verifica- 
tion cost-effective. For example, some of the decompositions that we used to facilitate our 
proofs would not have been necessary if the hardware strategy could be implemented more 
efficiently. Toward this end, it would be interesting to explore integrating special purpose 
decision procedures, such as [4], into PVS. 

Benefits. While it is not hard to convince engineers that formal methods subject a design to 
a more thorough analysis than traditional methods can, these benefits must also be evaluated 
relative to their cost. Until technological advances reduce the cost of formal verification sig- 
nificantly below the present level, it will be necessary to apply formal verification prudently. 
One way to maximize the benefits is to apply it to well-understood problem domains, such 
as microprocessor designs. The ability to perform partial verification is crucial since that 
facilitates "looking in corners" and consideration of unusual cases early and independently. 
The incremental strategy was used to our advantage on this project. We planned the project 
so that we would get useful feedback from the formal analysis as quickly and as early as 
possible. The specification phase was designed to cover the architecture as completely as 
possible beyond the minimum required and the infrastructure for performing the proof of 
correctness was set up to construct proofs incrementally and as automatically as possible. 

Two errors were found while constructing the macroarchitecture specification. Both 
errors were found while trying to formally specify the behavior of the AAMP under unusual 
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circumstances that were not clearly specified in the AAMP2 Reference Manual, prompting 
a team member to examine the microcode in the AAMP5. The first was a logic error that 
allowed the top of stack register (TOS) to wrap around a data environment instead of raising 
a stack overflow. To result in a failure, this error required the very unlikely combination 
of an unusual system configuration, an improperly sized stack, and a specific sequence 
of instructions. The second error was made precisely because the reference manual was 
unclear on how the AAMP should update the local environment register (LENV) when a 
procedure call caused a stack overflow. This was implemented by setting the LENV to 
its "overflow" value, while the correct behavior was to leave the LENV unchanged. Both 
errors were unique to the AAMP5 and corrected before first fabrication. 

The proof of correctness phase revealed a number of errors. In the initial stages, most of 
the errors found were errors in our micromachine specification, although the specification 
had been subjected to formal inspections. Two of the errors revealed during the proof 
were actual errors in the microcode. Both of these errors were known to the AAMP5 
designers but were left in the microcode supplied to SRI for verification without divulging 
any information about the errors. One of the microcode errors was in the microcode for 
the REFBXU instruction, which loads data from memory to the top of process stack, while 
the other was in the ASNDXI instruction, which stores data in the process stack to a 
location in memory. While the second error was deliberately planted by Collins engineers 
in the microcode, the first one had escaped the the microcode traditional walk-throughs 
and simulations. The two errors were similar in that they occurred in the calculation of 
the memory address and are hard to spot during microcode walk-throughs because of the 
pipelining of microinstructions. More details are given in [28]. 

Technology transfer. It is very difficult to inject new methodologies into an industrial 
setting since one of the ways industry remains competitive is to use tried and tested ap- 
proaches within a well understood problem domain. Despite their name, formal methods 
provide remarkably little methodology to guide their use in a new setting. Given this, it 
seems prudent to plan for costs to be high the first time around and to expect most of the 
benefits to appear on subsequent projects of a similar nature. 

We did not feel that it was particularly difficult for the engineers at Collins to learn to 
use either the PVS language or the theorem prover. In fact, it was much easier for them to 
apply formal methods than it was for the formal methods experts to become knowledgeable 
about the AAMP5. The real problem was not how to use PVS, but how to build a precise 
mathematical model of our own microprocessor. Even so, widespread acceptance of a 
general purpose specification language such as PVS or Z [5] by practicing engineers is likely 
to be an uphill battle. A more productive approach may be to develop specialized notations 
or models that fit a specific problem domain and that can automatically be translated into 
an underlying formalism such as PVS. This would allow the domain experts to work in 
a familiar and natural notation while a small group of formal methods experts (and tools) 
check their work for consistency and completeness. 

Validation of formal specifications is essential to have confidence in the correctness 
proofs. We found inspections worked well with formal specifications, were quite inex- 
pensive, and provided a natural vehicle for training. Maximizing the independence of the 
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teams producing the specifications greatly increased our confidence in both the proofs and 
the specifications. When combined with proofs of correctness, this is a very powerful 
validation technique that should not be overlooked. Other forms of validation that could 
have been used more extensively in this project include early proof of the type correctness 
conditions generated by PVS and proving expected properties, or putative theorems, of the 
specification. Even our limited experience with proving putative theorems suggests that 
this is a useful validation technique. 

It is our belief that the groundwork performed on this project will greatly lower the cost 
of specifying and verifying another member of the AAMP family. To test this hypothesis 
we have begun a new project to use the methodology developed to verify another member 
of the AAMP family in its entirety. 
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No~s 

1. A theory is a logical unit of specification in PVS that consists of a collection definitions, and possibly statements 
of properties to be proved. 

2. Although formal analysis of the interrupt behavior of the AAMP5 was not included in this effort, the basic 
framework developed is adequate to allow it to be easily added. 

3. In PVS a subtype is declared by enclosing the predicate defining the subtype in parentheses. Dependent 
subtypes are an important PVS feature allowing a type component to depend on earlier components. 

4. We also need to ensure that processor resetting will always lead to an initial state in which the correspondence 
required by ~ s  holds. 
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