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Abstract. This paper is about formal development methods for concurrent programs. Interference is the bane 
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1. Introduction 

Researchers have long sought to exploit parallelism in computers in order to obtain solu- 
tions to problems in shorter time than is possible on single processors. 'Speed-up' work 
which has relied on data parallelism--as in SIMD architectures---has been relatively suc- 
cessful. The reasons for this success are at least in part attributable to the relative ease of 
programming SIMD applications. The design of successful MIMD machine architectures 
has proved more difficult and the hunt for programming methods suitable for such ma- 
chines has proved far more elusive. As well as those systems where parallelism is sought 
as a way of obtaining speed-up, there are applications whose external behaviour requires 
concurrency because many users are allowed to interact with the systems at the same time 
(e.g., airline reservation systems, bank teller systems). In the design of such applications 
the overall system specification has to address the issue of potential interference between 
the different users. This paper advocates the handling of concurrency by design methods 
which create concurrent object-oriented programs; it is essentially about shared variable 
(MIMD) concurrency. Two approaches to the design of such programs are described below. 

This paper should then be judged as a contribution to ways of developing a class of 
concurrent programs (it is unlikely that any single method will be able to realistically claim to 
cover the myriad forms of concurrency which are required in systems design). In particular, 
this paper offers two compositional development approaches for shared-variable programs. 
It is based on the general argument that some concepts of object-oriented programming 
appear to offer useful control of the interference which is inherent with concurrency. 

In order to understand the notion of compositionality, it is necessary to say something 
about the way in which the design of a system can be recorded in a top-down presentation. 
All components--from the overall system itself to the lowest level of detail--should be 
defined by specifications. A design step should provide a way of satisfying a specification 
which is not yet at a level where it can be directly programmed; in general, such design 
steps introduce new components. A development method is said to be compositional if the 
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fact that a design step satisfies its specification can be proved solely on the basis of the 
specifications of any constituent components. The most important technical consequence 
of compositionality is that reasoning can be local: the proof of correctness of one design 
step should be possible without knowledge of the eventual internal structure of its new 
components. A key practical consequence is that errors can be detected early in development 
rather than lurking until encountered after much further work has been expended on a 
flawed design. To some extent, compositionality also facilitates separate development of 
components; but poorly chosen interfaces will always result in difficulties of separating 
concerns and unrealisable specifications will cause reconsideration of interfaces whatever 
formalism is applied. 

For sequential--as opposed to concurrent--computer systems, compositional develop- 
ment methods like VDM have achieved some success. It is the interference which is inherent 
with concurrency which has made it difficult to find compositional development methods 
for programs which run in parallel. Furthermore, it is an unfortunate corollary of inter- 
ference that the developer needs to be concerned with the issue of granularity. A further 
claim for the approaches described in this paper is that the control of granularity is left in 
the hands of the designer rather than being dictated by the development method itself. 

Section 2 describes a design approach which is appropriate in cases where interference 
is limited. The approach involves the use of features from object-oriented languages to 
show how recursive data structures can be represented by families of objects. The overall 
approach is to develop first a sequential program and then to show that an equivalent 
concurrent program can be found. 

More troublesome forms of interferen.ce are considered in Section 3. Earlier papers pro- 
pose using rely/guarantee-conditions to document and reason about intimate interference 
between shared-variable programs; the second development approach shows how these 
ideas can be used for concurrent object-oriented languages. (The task undertaken in Sec- 
tion 3 is also a speed-up application because systems where interference is exhibited at the 
outermost level tend to be large.) 

Both approaches can be considered to be in the 'posit and prove' school in which formal- 
ism is intended to support the verification of design steps which a developer might anyway 
wish to make. There is here---however--a greater use of transformation ideas than can be 
found in earlier work on sequential development in VDM. 

Section 4 relates this paper to other research and describes the status of work which 
justifies the two design approaches by providing a formal semantics. 

This paper unifies material from two earlier conference papers [22, 23] but this amal- 
gamation and work on the semantics of the design language have resulted in a number of 
changes. These range from different keywords in the language to simplifications of the 
approaches in both major sections below: Section 2 presents a more transformational view 
of the design of data structures than was the case in [22] where invariants on object graphs 
were seen as the main tool for controlling interference; in Section 3 there is a direct use of 
rely/guarantee-conditions in contrast to the special logic of [23]. The same applications as 
were used in the earlier papers are retained as examples: this affords comparison also with 
the wider literature. 

The notation used in the designs below is known as zro/~. (pronounced 'Pobble' as in 
Edward Lear's poem!) to mark its debt both to POOL and to the 7r-calculus. It is intended 
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P r i m e s  class 

vars max: N; s r :  unique ref(Sift) 
init (n: N) 

begin 
wars  ctr: N 

max 4 -  n; 

s r  4 -  new Sift; 
c tr  4 -  2; 

whi le  c tr  < m a x  d o  sr .setup(ctr);  c t r  +-  c t r  + 1 o d  

end 
test(n: N) method res: 

r e t u r n  sr . test(n)  

end Primes 

S/ft class 
wars m: N 4- O; 1: unique ref(Sift) 4-  nil 
setup(n: N) method 

begin 
return ; 
if I = nil then (l 4 -  new Sift;  m 4 -  n )  

e l s e  if ~ m div n t h e n  l . s e tup(n)  fi 

fi 
end 

test(n: N) m e t h o d  res :B  

if I = nil v n < m t h e n  r e t u r n  f a l s e  

el if  m = n t h e n  r e t u r n  t r u e  

else delegate l.test(n) 
fi 

end Sift 

Figure  I .  Example  pr imes  program.  

that 7rofl~. should be used to develop programs in languages like POOL [1], ABCL [41], 
Beta [25] or Modula-3 [7]. 

Even though ~ro/3~. is not itself intended as a programming language, it is easy to see its 
scope by looking at a programming example. 

The program presented in figure 1 provides a way of deciding whether natural numbers-- 
up to some stated maximum--are prime or composite. (A development broadly following 
the approach of Section 2 of this program is given in [23].) Classes (here P r i m e s  and 
Si f t )  are  templates which define families of objects. The class definitions fix the instance 
variables and their type, initialisation and the methods associated with the class. Objects 
corresponding to the class template can be created by executing a new statement which 
creates a new object with which a unique reference is associated and returns that reference 
as a result. The initialisation code of the class (if any) is executed to establish the starting 
state of the object (where there is no initialisation statement, the instance variables are 
normally provided with initial values which can be thought of as 'syntactic sugar' for an 
initialisation section). 

Each object has its own copy of the instance variables and it is these copies to which 
reference is made by the methods of the class. The methods of a particular object are 
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invoked using a syntax which has the unique reference associated with that object followed 
by '.' and the name of the method with any parameters to be passed. At most one method 
can be active per object at any one time--so an object becomes free for a further method 
call only when a method has finished execution. (One consequence of this is that rrofl~. 
programs would deadlock if recursive calls were attempted: the approach described in 
Section 2 carefully obviates this danger.) 

Both the initialisation part and the body of each method is a single statement but this 
statement can be a block. A method call establishes a rendez-vous between client and 
server. The client has to wait if the object is busy; a rendez-vous finishes when a value is 
returned (in the simplest case this is by a return statement of the invoked method; but see 
delegate below). In addition to method invocation and new statements, there is a repertoire 
of conventional imperative statement types which can be used in method bodies. 

These comments should clarify most aspects of Primes: its initialisation creates a sieve 
which can be seen as a linked-list of objects conforming to the class S/ft. Both the reference 
in sr of Primes and l of each Sift object are marked as unique which prohibits copying 
(Section 2 shows that this is useful when reifying recursive data structures). The body of 
the method setup in Sift contains a return statement as its first action. This releases the 
client from its rendez-vous, enabling it to make further progress. One can therefore see the 
activity of the initialisation part of Primes as causing a series of setup methods to ripple 
down the linked-list instances of S/ft. It is, of course, desirable to achieve the same sort of 
concurrency with the test methods. Here, however, the problem is slightly different in that 
the client must be held in a rendez-vous pending the return of a value; but it is still desirable 
to complete the execution of the body of test of Sift so that other clients can invoke methods 
of that particular object. This effect is achieved by using the delegate statement which has 
the effect of passing the responsibility for returning a value to the next object. 

There are some facets of 7rofl~. which are explored in examples below: these include the 
parallel statement, the use of shared references and marking classes as immutable (method 
guards and exceptions are available in zrofl~ but are not needed in the examples in this paper). 

Concurrent object-oriented languages are seen here as an approach to implementation; 
although their syntax is used in the overall specifications, it is not considered useful to 
employ gratuitous algorithmic concepts (e.g., new) in specifications themselves--these 
bring unnecessary operational reasoning and the need to consider a global state. 

Many researchers have observed that language restrictions are a crucial weapon in taming 
interference. The basis for the argument that some aspects of object-oriented languages 
provide appropriate constraints rests upon the following points. 

• The instance variables of an object are safe from any interference (recall the restriction 
that only one method is active per object). 

• Unique references provide a way of insulating other objects from interference even though 
they have an independent existence. 

• It is only in the case of shared references that the full danger of interference is felt. Such 
references can be used to simulate shared variables and two active methods (necessarily 
in distinct client objects) can interfere with each other by the method calls they make to a 
server whose reference they share. The interference results from changes to the instance 
variables of the server but even here the actual interference can be constrained by the 
methods available for that class of object. 
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A similar series of observations can be made about the control of granularity. 
The approach followed in the next section capitalizes on the first two observations; the 

impact of the third is seen in Section 3. 

2. Avoiding interference 

Section 3 shows how interference can be specified in a way which makes it possible to present 
compositional developments of concurrent programs. That approach is not, however, easy 
to use and it is certainly true that the best thing to do with interference in a design is to 
minimize it. 

In some cases where parallelism is employed for speed-up (rather than as an inherent 
part of, say, a distributed system), it is possible to avoid interference by ensuring that 
data structures are sufficiently isolated from one another. As the preceding section has 
indicated, concurrent OO languages in generalwand rro)Sk in particular--provide ways 
of indicating that data structures should be insulated from interference. In this class of 
problems, it is appropriate to develop a sequential program from a specification and to 
introduce concurrency by showing that a concurrent program is observationally equivalent 
to the sequential version. 

2.1. Developing a sequential implementation 

The development of a sequential program from its specification is sketched in this section. 
This is presented only in outline because the approach used here is close to standard formal 
development methods. In fact, what is presented could broadly be. viewed as a VDM 
development in the style of [21]: the notation for sets and maps is adopted from that source, 
as are the notions of data reification and operation-decomposition. The only notation which 
might trouble a reader not conversant with VDM are: method specifications are marked with 
a rd/wr frame; (in post-conditions) the value of a variable prior to an operation is marked 
with a hook (e.g., J3) to contrast with the value after the operation which is undecorated 

(e.g., st); the notation for 'maps' or finite functions (Key '~> Data) and the associated 
update operator (t); and the use of brackets to denote the extension of a type (e.g., [Key]) 
with an optional nil value. 

An abstract specification for a symbol table problem can be written as follows. 

Tab class 
vats st: (Key m> Data) <--- { } 
insert(k: Key, d: Data) method 

wr st: Key m)Data 

post st = st t {k ~ d} 
search(k: Key) method res: Data 

rd st: Key m ~ Data 
pre k ~ dora st 
post res = st(k) 

end Tab 
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As in a Larch (cf. [14]) 'interface language',  the specification is framed here in the 
development language. 

A normal design step would be to reify a data structure towards one which could be more 

efficiently handled in an implementation: the map Key m Data can be represented by a 
(self-embedding) recursive tree such as Tablnst. 

Tablnst :: k : [Key] 
d : [Data] 
l :[Tablnst] 
r :[Tablnst] 

inv (mk-Tablnst(k, d, l, r ) ) 
_A (k = nil ¢~ d = nil) A (k = nil =~ 1 = r = nil) 
A (Vlk ~ coll(l), lk < k) A Olrk ~ coil(r), k < rk) 

Where coil is the obvious function to collect the set of  keys; its signature is 

coil: [Tablnst] --~ Key-set 

The definition of  Tablnst can be thought of  as defining a set 

Tablnst = {mk-Tablnst(k, d, l, r )  J k c Key A . . .  A (k = nil ¢~ d = nil) A . . . }  

Notice how the constructor function mk-Tablnst is used as a pattern in the definition of the 
type invariant. 

The relationship of  the representation to the abstraction is given by a 'retrieve'  function 
(again using the constructor as a pattern in the ordered case construct). 

retrm: [Tablnst] ~ (Key m Data) 

retrm(t) A 
cases  t of 
nil ~ { }, 
mk-Tablnst(nil, d, l, r) ~ { }, 
mk-Tablnst(k, d, l, r) ~ retrm(l) U {k ~ d} U retrm(r) 
end 

One could now record this design step by writing a new definition of  Tab (which is 
claimed to satisfy that at the beginning of this section) 

Tab class 
vats st: [Tablnst] ~-- nil 
insert(k: Key, d: Data) method . . .  
search(k: Key) method res: Data . . .  
end Tab 
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The idea here, however, is to represent the recursive type Tablnst as a collection of objects. 
The fact that they are self-embedding is indicated by marking those instance variables which 
contain references to other objects as unique (such references cannot be copied so no sharing 
is possible). Thus 

Tab class 
vats mk: Key 6-- nil; md: Data +-- nil; 

l: unique ref(Tab) <--- nil; r: unique ref(Tab) <--- nil 
insert(k: Key, d: Data) method. . .  
search(k: Key) method res: Data. . ,  
end Tab 

is the design whose satisfaction is actually of interest. 
It is not difficult to see that the following code achieves the required effect for the insert 

method. 

insert(k: Key, d: Data) method 
begin 

if mk = nil then (mk .-- k; md *-- d) 
elif mk = k then md <--- d 
elif k < mk then (if l = nil then l .-- new Tab [i ; Linsert(k, d)) 
else (if r = nil then r +-- new Tab fi ; r.insert(k, d)) 
fi 

return 
end 

To justify this formally requires proof rules for object creation and method call (this problem 
is addressed in [13]). 

2.2. An equivalent parallel program 

As forewarned, the insert method above is sequential: its client is held in a rendez-vous 
until the effect of an insert has passed all the way down the tree to the appropriate point and 
the return statements have been executed in the insert method of each object on the way 
back up the tree. This is where the first equivalence rule comes in; the preceding insert can 
be transformed into that of figure 2 by using Equivalence 1. The basic idea is to identify 
statements which can be executed concurrently with no observable difference of behaviour 
by checking that they are immune from interference. 

A preliminary definition fixes what can(not) be done with unique references. 

Definition 1. A unique reference is defined to be one which is never 'copied' nor which 
has general (unshared) references passed over it--neither in nor out (since one can't pass 
unique references, this restricts to references to 'immutable' objects). 
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Tab class 
wars m/c: Key ~ nil; rod: Data * -  nil; 

l: unique ref(Tab) , -  nil; r: unique ref(Tab) ~ nil 
insert(k: Key, d: Data) method 

begin 
return; 
if m k =  nil then (ink ~ k; md * -  d) 
elif mk = k then md * -  d 

elif k < mk then (if l = nil then l * -  new Tab fi; l.insert(k, d)) 
else (if r = nil then r * -  now Tab fi; r.insert(k, d)) 
fi 

end 
search(k: Key) method res: Data 

if k = mk then return md 
slit k < mk then delegate l.search(k) 
else delegate r.search(k) 
fi 

end Tab 

Figure 2. Symbol table program. 

Equivalence 1. S; retume is equivalent to return e; S providing 

• S conta ins no return or  delegate statements and a lways terminates; 
• e is a s imple expression (i.e., no method calls: compare Equ iva lence 2) and is not  af fected 

by  S; and 
• every method invoked by  S belongs to objects reached by  un ique references. 

Not all programs are intended to terminate; even where they are, termination is not a 
syntactically checkable property; but it is in the spirit of the development method envisaged 
that termination would be proved for relevant methods. (This point does however make 
it doubtful whether the kind of equivalences being considered are suitable for automatic 
application by a compiler.) 

The sequential code for the search method is 

search(k: Key) method res: Data 
if k = mk then return md 
elif k < mk then return l.search(k) 
else return r.search(k) 
fl 

This again holds its client in a rendez-vous until the appropriate value is found and 
returned--furthermore, the whole tree is locked until the active methods terminate. It 
is not possible to use Equivalence 1 here because the value to be returned must be located 
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before the client's needs can be satisfied (cf. the restriction on Equivalence 1 that e be a 
simple expression); it is however possible to 'delegate' the task of returning the value and to 
terminate the statement (and thus the method) thereby unlocking the tree: this is facilitated 
by Equivalence 2 which shows that the search above is observationally equivalent to that 
in figure 2. 

Equivalence  2. return l.m(x) is equivalent to delegate l.m(x) providing 

• l.m(x) terminates; and 
• I is a unique reference. 

In conclusion, it is worth commenting that it is very difficult even to specify the program 
in figure 2. Any attempt to use pre/post-conditions would have to overcome the problem 
that both the initial and final 'states' are combinations of values and unfinished activity. 
Such a specification would at least need some form of auxiliary variable. So the approach of 
introducing parallelism by showing a program which is equivalent to a sequential program 
(whose specification was simple) has avoided considerable complication. 

The work on justifications of Equivalences 1 and 2 is reviewed in Section 4. 

3. Control l ing  interference 

This section considers the sort of program where interference has to be lived with: earlier 
papers (e.g. [19, 20]) introduced the idea of describing and reasoning about interference 
using rely/guarantee-conditions; these ideas are significantly developed in--for example-- 
[9, 35, 40]. The basic observation is that interference can be recorded in specifications in a 
way which makes it possible to formulate compositional proof rules for parallel constructs. 
This leads to a concept of recording assumptions which a developer can make and commit- 
ments that his or her code must fulfill. The specific proposal uses a four-tuple of predicates 
(p, r, g, q): 

• a pre-condition p is a predicate of a single state and identifies assumptions the developer 
is entitled to make about the initial state in which the specified program will be invoked; 

• a rely-condition r is a predicate of two states and characterises the interference which 
the developed code must tolerate---this can be viewed as an invitation to the developer to 
assume that any pair of states which differ as a result of interference will be constrained 
by the relation given by r; 

• a guarantee-condition g is a predicate of two states and defines a restriction on any state 
transitions which the developed code can make; 

• a post-condition q is a predicate of two states and characterises the required input/output 
relation of the component (VDM has always used relational post-conditions in preference 
to ones on a single state). 

A variety of proof rules are presented in the cited papers. It is not difficult to guess their 
general form (e.g., components must tolerate interference from other components and from 
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the environment in which the components are combined) but their specific formulation leads 
to some delicate issues (see [10]). 

This section explores how the ideas for recording and reasoning about interference can be 
used in the framework of concurrent OO languages. It is shown that this framework reduces 
the weight of proof even in the case of the general interference encountered in this section. 

3.1. Specification and initial design steps 

As in Section 2, the development begins with a specification which is embedded in a zro/~X 
class. The task to be implemented by the Primes class is to provide a method (test) which 
determines the primality of natural numbers up to some stated maximum; this maximum is 
provided as a parameter to the initialisation of the Primes class. 

Primes class 
vars max: N 
init (n: N) 

wr max: N 
post m a x = n  

test(n: N) method res: B 
rd m a x : N  
pre 2 < n  < m a x  
post res ¢~ is-prime(n) 

end Primes 

An obvious first step of design would be to introduce into the Primes class a set ps  which 
contains all of the prime numbers up to the stated maximum. This can be viewed as a step 
of reification. 

Primes class 
vars max: N; ps: N-set 
init (n: N) 

wr max, ps 
post max = n ^ ps = {2 < i < max I is-prime(i)} 

test(n: N) method res: B 
rd max, ps 
pre 2 < n  < m a x  
post res ¢~ (n E ps) 

end Primes 

The example program in figure 1 is one possible implementation of this Primes class 
and its development in the style of Section 2--is  presented in [23]; here the aim is to 
develop an implementation which exhibits more parallelism and exposes the problem of 
interference. 
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3.2. Documenting and reasoning about interference 

The aim of the remainder of this development is to build a sieve (in the style of Eratosthenes) 
in which parallel objects remove all composite numbers from a set which is initialised to 
contain all natural numbers up to the maximum value required. The Rem(i) objects (roughly 
~/max of them) run in parallel and are each responsible for removing all multiples (above 
two) of their index i from the set. The access by the Rem(i) objects to the set is achieved 
by introducing a new class Sieve whose reference is shared between the Rem(i) objects. 
Notice that the need to share this reference means that it cannot be marked as unique; 
which, of course, inhibits the use of equivalence rules like those of Section 2. (The reader 
might expect to see a method in Sieve which deletes elements from the set: at this stage 
of development, removal is handled at the specification level; after a further reification, the 
deletion method will be placed in lower level objects.) 

Primes class 
vats max: N; sr: ref(Sieve) 
init (n: N) 

begin 
sr *-- new Sieve(max); 

{sr.ps = {2 . . . . .  max}} 
for all i ~ {2 . . . . .  [~/max] } parallel new Rein(i, sr) 

{sr.ps = {2 < i < max l is-prime(i)}} 
end 

test(n: N) method res:~ 
rd max, sr  

pre 2 < n  < m a x  
post res ¢~ (n E sr.ps) 

end Primes 

Sieve class 
vars max: N; ps: N-set 
init (n: N) 

post max = n/x ps = {2 . . . . .  max} 
end Sieve 

The interesting step is to record a specification of the class Rem(i) which permits infer- 
ence of the second annotation in the initialisation portion of Primes from that which precedes 
the parallel statement. In order to provide insight into the formulation of rely/guarantee- 
conditions it is useful to consider a plausible---but erroneous--post-condition for a sequen- 
tial version of Rem; assume mults(i) yields a set of multiples of i up to max; one might 
think of writing 

p-s-  ps = mults(i) 

Even for a sequential implementation this post-condition would not be correct because not 
all of the multiples of i would have been present when the ith instance of Rem(i) began 
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execution. One could split the putative post-condition into a requirement that certain values 
have been removed 

ps N mults(i) = { } 

and a requirement that no non-multiples are removed 

~ - s - p s  C_mults(i) 

The first of these two conditions is perfectly acceptable as a post-condition for Rem(i) which 
has to exist in an environment of limited (see below) interference. Of course, it is not in 
itself enough because it could be implemented by a process which removed all values from 
ps. In the case of interference, the second condition (which could be used as an additional 
conjunct in the post-condition of a sequential Rein) can be used as a guarantee-condition 
for Rein. But, in the case of a program which has to live in an interfering environment, 
there is an additional problem: no program can ensure that all elements of mults(i) will be 
absent on termination if another process can put values into ps. The assumption that this 
does not occur can be documented as a rely-condition for Rein(i); which then also has to 
be conjoined to the guarantee-condition. 

(In another paper--joint with Pierre Collette---conditions like ps c_ ffs are not repeated 
in both the rely and guarantee-conditions but are viewed as evolution conditions attached 
to the state and can be considered to be an implicit conjunct of every rely and guarantee- 
condition. Evolution conditions can be compared to single state invariants in VDM which 
can be considered to be an implied conjunct of every pre and post-condition.) 

Because of the way the Sieve object has been separated, it is necessary to refer to the set 
ps in the specification which follows as sr.ps. The specification of Rein can now be given. 

Rein class 
init (i: N, sr: ref(Sieve)) 

d 
rely sr.ps C sr.ps 

t ,t 
guar s r p s -  srps C_ muits(i) A sr.ps C srps 
post mults(i) N srps = { } 

end Rem 

The parallel statement which is used in Primes above creates a family of Rein objects: 
two parameters are passed to the initialisation, the first being the index i for which that 
instance is responsible and the second being the shared reference to the Sieve class. Having 
invoked all of these processes, the parallel statement does not terminate until all of the 
invoked processes have terminated. 

The formal proof rule for such parallel statements is concerned with the four predicates 
forming the specification (i.e., the pre and post-conditions in the normal sense and rely and 
guarantee-conditions); see [10, 19, 34] for such rules. Here, the argument is outlined as 
follows. Since the rely-condition of one instance of Rem is also a guarantee-condition of all 
other instances (and no interference comes from the outside environment), one can deduce 
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that the conjunction of the post-conditions holds on termination of the parallel statement. 
The second annotation in Primes is thus established because the guarantee-condition of 
Rem shows that no primes are removed. 

A further step of reification can now be undertaken to arrange that Sieve creates max 
objects of class El which each reflect whether one particular number is currently to be 
considered a member of the set ps or not (thus reifying a set into its characteristic function). 
This design step results in Sieve needing to store a 'look up' table between the natural 
numbers and the references to the El objects. Thus the first step is to document the 
implementation of test of Primes so that it looks up the index of the nth object when it 
applies test. 

Primes class 
vats max: N; sr: ref(Sieve) 

test(n: N) method res: B 
return(st lu( n ) ).testO 

end Primes 

The reification of Sieve then becomes 

Sieve immutable class 

vats max: N; v: N m ref(E/) 
init (n: N) 

begin 
m a x  + -  n ;  

for all i E {2 . . . . .  max}parallel v(i) .-- new El 
{retr(v) = {2 . . . . .  max}} 

end 
lu(n: N) method res: ref(El) 

{2 < n < max} 
return v(n) 

end Sieve 

As indicated above, the Sieve method itself does not contain a method to delete elements; 
that is performed by methods in other objects; Sieve provides the conversion from natural 
numbers to references via the lu method. 

Notice that the Sieve class is marked as immutable. This has several effects on the se- 
mantics of ~ro/~.. One interesting consideration is that multiple instances of this class 
could exist without changing the effect of Primes. This observation makes it possi- 
ble to copy Sieve in order to resolve any performance bottleneck on the use of the lu 
method. 

The reasoning required for the initialisation portion of the Sieve class's parallel statement 
is a simplified form of that which was conducted above. 
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The El class can now be implemented as follows. 

El class 
vars b: B * -  true 
test() method res: 

return b 
deIO method 

begin 
b < -  false; 
return 

end 
end El 

Notice that the earlier guarantee condition ps c_ ~'s follows from the fact that test maintains 
the value of b and del can only make a value false. It is therefore a consequence that---once 
created--no element can re-enter the set having been deleted. 

In a final step of operation decomposition--which again uses a simplified form of 
the reasoning about parallel constructs above--the Rein class can be implemented as 
follows 

Rein class 
init (i: N, sr: ref(Sieve)) 

for all m E {2 . . . . .  Lmax/iJ} parallel (sr.lu(i, m)).delO 
end Rem 

Notice it would be possible to make minor improvements by--for example----commuting 
the return statement in the del method of El (cf. Equivalence 1). 

It must be emphasised that the more complicated design approach which had to be used 
here was resorted to because the straightforward approach of Section 2 is not appropriate for 
dealing with the sort of acyclic directed graph (DAG) which is used in this implementation. 

It is a corollary of the development method proposed here that the level of granularity is 
in the hands of the designer. 

4. Discussion 

This section puts what is covered in the body of the paper into a wider context. 

4.1. Related work 

It is useful to record the differences between rro/~, and POOL which is the language with 
most claim to Jro~.'s parentage. An overview of the work on POOL is given in [ 1]; Pierre 
America and Jan Rutten wrote a combined doctoral thesis [3] which contains a collection 
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of papers on the formal aspects of the POOL project including their work on a denotational 
semantics. 

The main changes from POOL (see [2]) are: 

• In POOL methods have a body (which is a statement which shows--for instances of the 
class--when a rendez-vous can occur as well as executing autonomous code between 
method invocations); in zro/~k, methods can be guarded. 

• The now message to a class can be matched by an explicit initialisation in ~rofl;.. 
• References in 7ro#k are typed. 
• Methods in Jroflk which do not return a value are distinguished from those which do. 
• The delegate statement is new in rroflk. 
• The parallel statement is also new but is an obvious extension. 
• POOL has a local call; this could easily be added to zro/~k. 
• rro/~)~ has no inheritance. 

The development approaches presented here are unlike any in the POOL literature. (A 
proof method for the full rendez-vous mechanism of POOL is given in [ 11]: but this multi- 
level approach is not compositional in a useful sense.) 

The Eiffel language [29] incorporates ofpre and post-conditions within an object-oriented 
language. Hogg uses the idea of 'islands' in [ 18] which are connected with the idea of unique 
references above. 

The equivalence based approach of Section 2 is related to the approach to data structures 
described in [ 17]. Furthermore, the idea illustrated in that section to undertake developments 
which first employ sequential reasoning and then use equivalences to admit concurrency is 
similar to ideas presented by Lipton [28], Lengauer [27], Janssen, Peel and Zwiers [24], 
Xu and He [39, 40] and even has echoes of the well-known UNITY approach [8] or the 
Refinement Calculus for Reactive Systems described by Back in [4]. Equivalence laws are 
elevated to a language definition style in [16, 33] (see also [31]). 

4.2. Further work 

It would be interesting to add to Equivalences 1 and 2 (or even to relax their overly strict side- 
conditions) but the author does not yet plan to emulate [16, 33] in claiming completeness 
as an algebraic language definition. 

There is clearly a need to publish a formal semantics for zroflk and a justification of inter 
alia the equivalence rules used in Section 2. This--with an emphasis on the rr-calculus 
[30]--has in fact been the focus of much of the research over the last two years and will 
be reported elsewhere. What is currently available (to be published in the proceedings of 
the Schlog Dagstuhl workshop on 'Object-Orientation with Parallelism and Persistence', 
April 1995) is a Structured Operational Semantics definition of JroflX and proofs of the 
general equivalences. David Walker has published [36, 37] proofs based on the rr-calculus 
of specific instances of the equivalences. 

As well as the semantics and proofs of the equivalences, it will be necessary to proceed 
to a similar exercise on the rely/guarantee-conditions. These can be modelled on the related 
work on non-object-oriented languages (most recently [10]). 
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It is also important to investigate the expressive power o f  t ro l l ,  and there are experiments 
already under way in this direction. It has already been seen useful to add guards to methods 
which control when they are available for invocation and a form of exception mechanism to 
signal to the client that the server is not available for a particular form of method invocation. 
In this area, the author wishes to investigate the connections with [26] of which he has only 
recently become aware. 

Another area where further work is clearly necessary is bringing ideas of progress argu- 
ments and fairness into the rroflk development method. It is also interesting to note that the 
sieve of Section 3 would be closer to that of Eratosthenes were each R e m  to begin with 

if - - , ( sr . lu( i ) ) . tes t ( ) then  skip else . . .  

Specifying the expectation that the absence of i guarantees eventual removal of its multiples 
is not possible with the current guarantee-conditions. 

In general, the author is well aware that all development methods face the challenge 
of 'scaling up' and the reader is asked to remember that this effort is seen as part of a 
much larger programme in which a general attack on interference has been begun using 
concepts from object-oriented languages but much more remains to be done. Tool support 
is also an important issue for future research because of the need to manipulate multi-part 
specifications and control the consistency of proofs with versions of such specifications. 
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