
JIIS, 6, 199-221 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Generating Data Integration Mediators that Use
Materialization*

GANG ZHOU**, RICHARD HULL, AND ROGER KING {gzhou, hull, king}@cs.colorado.edu
Computer Science Department, University of Colorado, Boulder, CO 80309-0430

Abstract. This paper presents a framework for data integration that is based on using "Squirrel integration
mediators" that use materialization to support integrated views over multiple databases. These mediators generalize
techniques from active databases to provide incremental propagation of updates to the materialized views. A
framework based on "View Decomposition Plans" for optimizing the support of materialized integrated views is
introduced. The paper describes the Squirrel mediator generator currently under development, which can generate
the mediators based on high-level specifications.

The integration of information by Squirrel mediators is expressed primarily through an extended version of a
standard query language, that can refer to data from multiple information sources. In addition to materializing
an integrated view of data, these mediators can monitor conditions that span multiple sources. The Squirrel
framework also provides efficient support for the problem of "object matching", that is, determining when object
representations (e.g., O1Ds) in different databases correspond to the same object-in-the-world, even if a universal
key is not available.

To establish a context for the research, the paper presents a taxonomy that surveys a broad variety of approaches
to supporting and maintaining integrated views.

Keywords: materialized integrated view, integration mediator, activeness, view decomposition plan

1. Introduction

Given the advent of the information super-highway, an increasingly important computer sci-
ence problem today is to develop flexible mechanisms for effectively integrating information
from heterogeneous and geographically distributed information sources. The traditional ap-
proach is to support a virtual integrated view, and to support queries against the view by
query decomposition, query shipping, and integration of query results (Arens et al., 1993,
Litwin et al., 1990, Thomas et al., 1990). More recently, the use of materialization has been
gaining increasing attention in connection with supporting both single-source and integrated
views (Ahmed et al., 1991, Widjojo et al., 1989, Lu et al., 1995, Zhuge et al., 1995). There
are a variety of situations under which materialization is preferable to the virtual approach,
e.g., cases where network connectivity is unreliable, where response-time to queries is crit-
ical, or where it is cheaper to materialize and incrementally maintain intricate relationships
rather than re-compute them each time they are needed for a particular query answer. The
primary contribution of the research presented in this paper is the description of a prototype
tool that can generate systems that support data integration using materialized integrated
views.

* This research was supported in part by NSF grant IRI-931832, and ARPA grants BAA-92-1092 and 33825-
RT-AAS. A preliminary version of some of the material presented here appears in (Zhou et al., 1995).
** A student at the University of Southern California, in residence at the University of Colorado.

200 G. ZHOU, R. HULL, R. KING

A central component of our framework is the notion of"Squirrel integration mediator" (or
Squirrel mediator). As detailed below, these provide a variety of mechanisms for supporting
and incrementally maintaining materialized integrated views. Squirrel mediators are im-
plemented as special purpose "active modules" (Boucelma et al., 1995, Dalrymple, 1995);
these are software components whose behavior is specified largely by rules, in the spirit
of active databases. The rules permit a relatively declarative style of programming, thus
increasing reusability and maintainability. The primary components of a Squirrel mediator
are a local store for the materialized integrated view and auxiliary information, rules for
incremental maintenance of the view, and an execution model for applying these rules.

Squirrel mediators extend existing techniques (Blakeley et al., 1986, Ceri and Widom,
1991, Chang, 1994, Griffin and Libkin, 1995, Gupta et al., 1993) maintenance of material-
ized views defined over a single database in two fundamental ways. First, Squirrel mediators
can support materialized integrated views over multiple databases. These mediators ma-
terialize both the classes for export and also auxiliary classes, so that maintenance can be
performed using exclusively incremental updates from the source databases. (This contrasts
with the approach of (Zhuge et al., 1995), where only export classes would be materialized.
Under that approach, export classes is maintained using incremental updates from the source
databases and polling of the source databases.) Second, Squirrel mediators are based on
"View Decomposition Plans" (VDPs), which serve as the skeletons for supporting mate-
rialized integrated views, providing both data structures for holding the required auxiliary
information, and serving as the basis for the rulebase. VDPs provide a broad framework for
optimizing support for integrated views, in a manner reminiscent of query execution plans
used in traditional query optimization (as described in, e.g., (Abiteboul et al., 1994)).

In the Squirrel project at the University of Colorado we are currently developing a pro-
totype generator that can be used to generate Squirrel mediators as described above. The
current Squirrel generator takes as input the specification of the integrated view to be
constructed, expressed in a high-level Integration Specification Language (ISL). The spec-
ification includes primarily how the data from various sources is to be integrated. For this
purpose, a generalization of a standard query language is used. As output, the generator
produces a Squirrel mediator. When invoked, the mediator first initializes the integrated
view and sends to the source databases specifications of the incremental update information
that they are to transmit back to the mediator. Then the mediator maintains the integrated
view and answers queries against it, In order to construct the Squirrel generator, we have
developed a systematic approach to building Squirrel mediators, that is based largely on the
use of VDPs.

A novel feature of the mediators generated by Squirrel generator is that they can provide
efficient support for monitoring conditions based on information from multiple sources.
This is accomplished by materializing and incrementally maintaining information relevant
to these conditions. In this manner, a mediator can send an alert as soon as updates received
from the source databases indicate that a condition has been violated.

A second novel feature of Squirrel mediators is the support they can provide for "object
matching", that is, determining when two object representations (e.g., keys in the relational
model or object identifiers in an obj ect-oriented model) from two different databases refer to
the same object-in-the-world. In this regard, Squirrel mediators build on previous systems

112

GENERATING INTEGRATION MEDIATORS 201

that support full (Widjojo et al., 1989) or partial (Ahmed et al., 1991, Kent et al., 1993) ma-
terialization for supporting integrated views. In particular, Squirrel mediators can accom-
modate a variety of complex criteria for matching objects, including "look-up tables",
user-defined functions, boolean conditions, historical conditions, and intricate heuristics.

The current Squirrel prototype is focused on a small portion of the full space of possible
approaches to data integration. Indeed, modern data integration applications involve a
broad array of issues, including the kinds of data, the capabilities of data repositories, the
resources available at the site of the mediator (e.g., storage capacity), and the requirements
on the integrated view (e.g., query response time and up-to-dateness). No single approach
to supporting data integration can be universally applied. To better understand the impact
of those issues on data integration, and provide a larger context within which to understand
the Squirrel framework, we include in this paper a survey of issues and techniques that
arise in data integration, with an emphasis on those issues that affect approaches based on
materialization. This survey is presented in the form of a taxonomy based on several spectra,
including for example a spectrum about the degree of materialization, which ranges from
fully materialized to fully virtual, and spectra concerning different ways to keep materialized
data up-to-date. This taxonomy will be used in the future development of Squirrel, both
guiding the choice of extensions, and in permitting modular support for different kinds of
features.

The rest of the paper is organized as follows: Section 2 describes related work that this
research is based upon. Section 3 gives a motivating example that illustrates several as-
pects of our approach. Section 4 gives a high level description of the Squirrel framework,
including descriptions of the ISL, View Decomposition Plans, and the generation of Squir-
rel mediators from ISL specifications. Section 5 presents the taxonomy of the space of
approaches to data integration. Brief conclusions are given in Section 6.

Due to space limitations, the presentation here is rather terse; further details may be found
in (Zhou et al., 1995).

2. Preliminaries

This section briefly surveys two of the technologies that are used by Squirrel.

The Heraclitus Paradigm: Squirrel mediators use incremental updates to maintain ma-
terialized integrated views. The notation and tools used to manipulate such incremental
updates are introduced now.

We use the Heraclitus paradigm (Hull and Jacobs, 1991) which elevates "deltas", or
the differences between database states, to be first-class citizens in database program-
ming languages. This paradigm has been developed for relations (Ghandeharizadeh, 1993,
Ghandeharizadeh et al., 1994), for bags (Doherty et al., 1995), and for the object-oriented
database model (Boucelma et al., 1995, Doherty et al., 1995). We illustrate key elements of
the paradigm here in the context of the relational model. Speaking loosely, adelta (value) is
simply a set of insertion atoms of the form ' + R (~ ' and deletion atoms of the form ' - R (~ ' ,
subject to the consistency condition: two conflicting atoms (i.e., two atoms +c~ and --~)

113

202 G. ZHOU, R. HULL, P~. KING

cannot both occur in the delta. A delta can simultaneously contain atoms that refer to more
than one relation.

Three important operators for deltas are apply, smash, and when. Given delta A and
database state db, apply(db, A) denotes the result of applying the atoms in A to db.

Smash, denoted '!', is a kind of compose operator. In particular, for any state and deltas,
apply (db, A1 [A2) = apply(apply(db, A J , A2). For the relational case, the smash A1 !A~
can be computed by forming the union of A1 and A~, and then deleting any element of A1
that conflicts with an element of A2 (Hull and Jacobs, 1991). Smash is also relatively easy
to compute for bag and object-oriented deltas.

Finally, the operator when permits efficient access to hypothetical states of a database,
withoutmodifyingthecurrentdatabasestate. In particular, theexpression'q when A' yields
the value of query q on the state that would arise if A were applied to the current state.
Squirrel mediators are implemented in the language Heraclitus[Alg,C] (Ghandeharizadeh
et al., 1994), which extends C to include persistent relations and deltas.

Immutable OIDs for export: One subtlety concerning object identifiers (OIDs) is that
from a formal perspective, only the relationship of the OID to values and other OIDs in a
database state is important (Beeri, 1989); the particular value of an OID is irrelevant. As
a result, a DBMS is free to change the specific values of OIDs, as long as its internal state
remains "OID-isomorphic" (Abiteboul et al., 1994) to the original state. This may create a
problem if OIDs from a source database are used to represent information in the local store
of a Squirrel mediator.

To overcome this problem, we generally assume that the relevant physical OIDs in a source
database are immutable. If a source database does not use immutable OIDs, then we follow
the technique of (Eliassen and Karlsen, 1991), and assume that these source databases have
been wrapped to support immutable OIDs for export.

3. A Motivating Example and Intuitive Remarks

This section gives an informal overview, based on a very simple example, of several key
aspects of the Squirrel framework for data integration using Squirrel mediators. Section 4
describes the Squirrel framework in more detail.

In the example there are two databases, StudentD9 and Erapl oyeeDB, that hold informa-
tion about students at a university and employees in a large nearby corporation, respectively.
A Squirrel mediator, called here S_E_Nediator, will maintain an integrated view about per-
sons who are both students and employees, providing their names, majors, and names of
the divisions where they work. The mediator will also monitor the condition that no more
than 100 students are employees.

Figure 1 gives a high level specification (in our ISL language, see Section 4.2) of the data
integration problem. This ISL specification includes primarily the relevant subschemas of
the two source databases (in the Source-DB parts), and the definition of the integrated view
(in the Expor t c l a s s e s part). In this example the view consists of only one class; in
general the view might include several classes. In the example, there is not a universal key
between students and employees. However, the ISL specification includes a description of

114

G E N E R A T I N G I N T E G R A T I O N MEDIATORS 203

Source-DB: StudentDB

interface Student {

extent students;

string studName;

integer[7] studID;

string major;

string local_address;

string perm_address;

};

key: studID

Correspondence S E match:

Match classes:

s IN StudentDB:Student,

e IN EmployeeDB:Employee

Match predicates:

close_names(s.studName, e.empName)

AND (e.address = s.local address

OR e.address = s.perm_address)

Match object files:

Shome/demo/close names.o

Source-DB: EmployeeDB

interface Employee {

extent employees;

string empName;

integer[9] SSN;

string divName;

string address;
};

key: SSN

Export classes:
DEFINE VIEW Student_Employee

SELECT s.studName~s.major,e.divName

FROM s IN StudentDB:Student,

e IN EmployeeDB:Employee

WHERE S E match(s,e);

Conditions:

Condition:

count(Student_Employee) =< I00

Action:

send_warning('count exceeded')

Figure 1. The ISL specification of the example problem

how students and employees can be matched, in the Correspondence part (see below).
Note that the function S_E_match defined by that correspondence is used in the specification
of the view. Finally, the C o n d i t i o n s part of the ISL specification includes the condition
to be continuously monitored.

We now consider in a little more detail how S_Emediator (a) provides support for object
matching, (b) uses rules to support incremental maintenance of materialized data, and (c)
monitors the condition.

With regards to issue (a), the Match predicate in the Correspondence part of the
ISL specification incidates that a student object s matches an employee object e if (])
either 8.1ocal_address = e.address or 8.perm_address = e.address, and (2) their
names are "close" to each other according to some metric, for instance, where different
conventions about middle names and nick names might be permitted. The "closeness" of
names is determined by a user-defined function, called here c lose_names (), that takes
two names as arguments and returns a boolean value. (More intricate match criteria can
also be supported.)

Following the default approach used by Squirrel, object matching between students and
employees is supported in S_E_Mediator by having the local store hold a "match" class,
in this case called match_Stud_Emp, that essentially holds the "outer join" of the S t u d e n t
and Employee classes. For each person who is both student and employee there will be
one "surrogate" object in match_Stud_Emp that represents this person; for each person who

115

204 G. ZHOU, R. HULL, R. KING

is a student but not an employee there will be one "surrogate" object in match_Stud_Emp,
several of whose attributes will be nil; and likewise for employees who are not students.
This match class is used by the Squirrel mediator to support the derived boolean relation
S_E_match referred to in the definition of flae view class Student_Employee.

The class mat ch_S tud_Emp illustrates one kind of intricate relationship between data from
multiple sources which is expensive to compute. By using materialization, this relationship
can be computed when S_E_mediator is initialized, and then maintained incrementally as
relevant data in the source databases changes. In general, the query response time obtained
by using this materialized approach to data integration will be faster than when using the
virtual approach, where the potentially expensive step of identifying matching pairs of
objects may be incurred with each query against the view. Also, we expect that if the
update-to-query ratio is sufficiently small, then the materialized approach will also be more
efficient on average than the virtual approach.

In this simple example, the export view Class Student_Employee is a simple projection
and selection of the class match_Stud_Emp. Thus, S_E_Mediator can support this class in
a virtual fashion, translating queries against the view into queries against match_Stud_Emp.
In general, a Squirrel mediator may materialize some export view classes, and support others
as selections and projections of other materialized classes.

We now turn to issue (b), that of incrementally maintaining materialized data in the
Squirrel mediator. Two basic issues arise: (i) importing information from the source
databases and (ii) correctly maintaining the materialized data to reflect changes to the source
databases. For this example, with regards to (i) we assume that both source databases can
actively send messages containing the net effects of updates (i.e., insertions, deletions, and
modifications) to S_E_Mediator. A rulebase in the Squirrel mediator is used to perform (ii).
To illustrate briefly, we informally describe two representative rules involved in supporting
the class match_Stud_Emp. The two rules correspond to the creation of new S t u d e n t
objects in the source database StudentDB.

Rule RI: If an object of class S tuden t is created, insert a corresponding new object into
class match_Stud_Emp whose Employee-attributes are n i l .

Rule R2: Upon the insertion of a mat ch_S tud_Emp object x with n i 1 Employee-attributes,
if there is a corresponding object y in match_Stud_Emp with n i l Student-attributes
that matches x, then delete x and modify y by replacing its n i l attributes with values
from x.

The complete rulebase would include rules dealing with creation, deletion, and modification
of objects in both source databases (see Subsections 4.5 and 4.6).

Finally, we indicate (c) how the condition count (Student_Employee) =< 10 0 is mon-
itored. This is a particularly simple case, because the only class mentioned in the condition
is one of the export view classes. In this case, the condition is monitored by rules that
incrementally maintain the count of tuples in match_Stud_Emp that have no n i l values.
More generally, a condition may refer to data that is not represented by any of the export
view classes. In that case, the classes holding data relevant to the condition are materialized,
and rules are used to incrementally maintain these classes and monitor the truth-value of
the condition on them.

116

GENERATING INTEGRATION MEDIATORS 205

Importantly, the Squirrel mediator can alert a user that the condition has been violated as
soon as the relevant updates to the source databases are transmitted to the mediator. If a vir-
tual approach to supporting the integrated view were used, then the condition could be mon-
itored only by periodically asking a query that called for the count of Student_~.mployee.
This would involve repeated accesses to the two source databases, and might not alert the
user of violation of the condition as quickly as the materialized approach.

4. The Squirrel Integration Mediator Generator

We are currently developing a prototype tool called Squirrel mediator generator. The
Squirrel generator takes as input a high-level specification of an integrated view to be
supported, and produces as output a mediator that supports it. One of the challenges in
designing the Squirrel generator was to develop a systematic and uniform methodology for
constructing such mediators from high-level specifications. In this section we describe both
the methodology and the Squirrel mediators that are produced by it.

The section begins with a high-level description of how Squirrel mediators are generated.
(Subsection 4.1). Next, the high-level Integration Specification Language (ISL) (Subsection
4.2) is described. The skeleton of a Squirrel mediator is provided by its View Decomposition
Plan (VDP); this is described in Subsection 4.3. The next two subsections (4.4 and 4.5)
describe the execution model used by Squirrel mediators, and also indicate how incremental
updates are propagated through the various materialized classes stored by these mediators.
Subsection 4.6 describes how VDPs and rule-bases are constructed. A final component of
our solution is the automatic generation of rules to be incorporated into the rulebases of the
source databases, so that relevant updates will be propagated to the mediator. We do not
address the generation of those rules here.

4.1. An overview of the automatic generation of Squirrel mediators

This subsection gives a brief overview of how Squirrel mediators are generated. Further
detail is given in the subsequent subsections, where the various components of Squirrel
mediators are described.

The overall architecture of a Squirrel mediator is shown in Figure 2. A Squirrel mediator
consists of six components - an update-queue that holds incremental updates from remote
information sources, a VDP, a rulebase, an execution model, a local persistent store, and a
query processor that accepts queries against the view.

There are two kinds of information flow within a Squirrel mediator. One involves incre-
mental updates against the source databases, which flow into the queue; as a result of the
execution model (applied to the rulebase and VDP) these incremental updates then prop-
agate into the integrated view. The other kind of information flow involves queries posed
against the integrated view, and answers made in response to them. Importantly, humans
and processes that query the Squirrel mediator need only be aware of the query processor
and the local store.

117

206 G. ZHOU, R. HULL, R. KING

. , u: r:l " t : :::: "
I ~ : I Query-PrOcessOr I

 Execu 'oo I ,
Model I IV'eWana I Luu~,

! :
(Queue for updates -~ ', ~ ',

~. Urom ,data spumes J ' ~ ,,
.

~ U p d a t e s ~ ~

Store

Figure 2. Configuration of a Squirrel mediator connected with three source DBs

The process of generating Squirrel mediators from an ISL specification is illustrated in
Figure 3. The software modules corresponding to the components of a Squirrel mediator
can be divided into two groups with regards to the construction of the mediators. The first
group includes three modules, namely the execution model, query processor, and update-
queue handler. These modules are independent from any particular ISL specification and are
kept in the Squirrel library. The second group of modules includes the VDP, the rulebase,
and the initialization module. The latter initializes the local store and (possibly) creates
rules for the remote source databases. Those modules must be tailored to particular ISL
specifications, and are generated dynamically by Squirrel's ISL compiler from the ISL spec-
ification. More specifically, the ISL compiler reads in an ISL specification and outputs the
three modules in Heraclitus[Alg,C] code. As mentioned in Section 2, Heraclitus[Alg,C] is
a database programming language that provides notation and constructs that are convenient
for implementing various software modules of the Squirrel mediator. Since these modules
are in Heraclitus[Alg,C] code which is relatively high-level, the user has the freedom to
modify them, e.g., by adding new rules or modifying the VDP. The final executable Squirrel
mediator is created by pushing the three generated modules through the Heraclitus[Alg,C]
compiler, and linking the result with the modules from the Squirrel library. In the remain-
der of this section we discuss the ISL and the three most important components of Squirrel
mediators, namely, the VDP, the execution model, and the rulebase.

118

GENERATING INTEGRATION MEDIATORS 207

ISL _.__.~ ISL [- - -~Ru lebase [....~ Heraclitus ~ Executable
Spec. 'T Compiler l I " I ~] Compiler I] ~] " IM

" " [.__~ Initialization__l
- - M o d u l e

(The above are
Heraclitus Code)

Execution model
SquirreI !
Ltbrary I Query processor

Update queue handler 1

Figure 3. The process of automatically generating Squirrel mediator from an ISL specification

4.2. Squirrel Integration Specification Language (ISL)

The Integration Specification Language (ISL) allows users to specify their data integration
applications in a largely declarative fashion. The language currently supported by Squir-
rel for specifying integrated views includes rich object matching criteria and a subset of
ODMG's OQL (Cattell, 1993) that corresponds to the relational algebraic operators selec-
tion, projection, join, union, and set difference, where both imported and exported classes
may be sets or bags. In the discussion here we focus on the case where the imported and
exported classes are sets; the extension to bags is straightforward. Importantly, even in
the case where imported and exported classes are restricted to be sets, some of the classes
stored inside a Squirrel mediator may be bags; this occurs if the integrated view involves
projection or union. The primary focus of ISL is on the specification of matching predi-
cates, of integrated views, and of conditions to be monitored. An ISL specification for the
Student/Employee example is shown in Figure 1 in Section 3. We now briefly describe the
four parts of the ISL (see (Zhou et al., 1995) for more details).

(1) Source DB subschemas describe relevant subschemas of the source databases, A key
may optionally be specified for each class,

(2) Correspondence specifications describe match criteria between objects of families of
corresponding classes. A correspondence specification for a given family of classes has
three parts: (a) Match classes part lists the classes that are matched in this specification,
and indicates the ranges of variables used in the match predicates. (b) Match predicate
part is a binary matching predicate specifying correspondences between objects from two
classes. The predicates can be based on, among other things, boolean relations or user-
defined functions (that may in turn refer to "look-up tables" or intricate heuristics). In the
case of n-ary matching, the full correspondence is expressed using a set of binary match
predicates. We are developing extensions to incorporate historical conditions and heuristics
expressed as rules. (c) Match objectfiIes (optional) part specifies the path(s) of the object
file(s) containing the implementation of user-defined comparison function(s).

119

208 G. ZHOU, R. HULL, R. KING

(3) Distinguished classes include all export and possibly some internal classes. The defi-
nition of a distinguished class may refer both to source database classes and to distinguished
classes that are already defined.

(4) Conditions include rules for monitoring conditions. The conditions may refer to
source classes, distinguished classes, and/or user-defined functions.

4.3. View decomposition plans (VDPs)

The skeleton of a Squirrel mediator is provided by its View Decomposition Plan (VDP). A
VDP specifies the classes (both distinguished and other) that the mediator will maintain,
and provides the basic structure for supporting incremental maintenance. As noted in the
Introduction, VDPs are analogous to query execution plans as used in query optimization.
This subsection presents a definition of VDP and gives several examples.

As will be defined formally below, the VDP of a Squirrel mediator is a directed acyclic
graph (dag) that represents a decomposition of the integrated view supported by that me-
diator. The leaf nodes correspond to classes in the source databases, and the other nodes
correspond to derived classes which are materialized and maintained by the Squirrel me-
diator. Some non-leaf nodes, including all maximal nodes of the VDP, correspond to the
distinguished (i.e., export and internal) classes in the ISL specification for the Squirrel me-
diator. An edge from node u to node v in a VDP indicates that the class of v is used directly
in the derivation of the class of u. In general, the propagation of incremental updates will
proceed along the edges, from the leaves to the top of a VDP. Analogous to query execution
plans, different VDPs for the same ISL specification may be appropriate under different
query and update characteristics of the application.

The framework developed here can be used with both the object-oriented and relational
data models. For the sake of conciseness, we describe the framework by using the relational
algebra syntax, which can be mapped to the OQL syntax.

Formally, a VDP is a labeled dag 12 = (V, E, class, Source, deft Dist) such that:

1. The function class maps each node v E V into a specification of a distinct class,
which includes the name of the class and its attributes. We often refer to a node v by using
the name of class(v).

2. Source is a possibly empty subset of V that contains some or all of the leaves of the
dag. Nodes in Source correspond to classes in the source databases, and are depicted using
the [] symbol. Other nodes are depicted using a circle. In a "complete" VDP each leaf
is a source database class; VDPs whose leaves are not source database classes are used in
Subsection 4.6 to describe the construction of "complete" VDPs.

3. An edge (a, b) E E indicates that class(a) is directly derived from class(b) (and
possibly other classes).

4. For each non-leaf v E V, def(v) is an expression in the view definition language that
refers to {class(u) I (v, u) ~ E}. Intuitively speaking, def(v) defines the population of
class(v) in terms of the classes corresponding to the immediate descendants of v. The
expressions used to define a class in terms of other classes are restricted. The restrictions

120

GENERATING INTEGRATION MEDIATORS 209

are follows: (a) the immediate parents of leaf nodes can involve only projection, selection,
and object matching on those leaf nodes. Otherwise for node v, (b) def(v) can be arbitrary
combination of selects, projects and joins; or (c) def(v) can have the form of a union or a
difference, with arbitrary selects and projects underneath that. Non-leaf nodes involving
difference are called set nodes, and all other non-leaf nodes are called bag nodes. The
relations associated with set nodes are stored as sets, while the relations associated with
bag nodes are stored as bags.

5. Dist C V denotes the set of distinguished classes. These correspond to the internal
and export classes specified in the ISL. Each maximal node (i.e., node with no in-edges) is
in Dist; other non-source nodes may also be in Dist. Elements of Dist are depicted using
a double circle.

Example 1: Let R(r l , r2, r3, r4) and S(sl, s2, sa) be two classes from distinct databases.
Suppose that the integrated view for a Squirrel mediator has the single class T = ~'Tl,s2
(crfR Nr2=sl trgS N~2=ra crhR). A VDP V1 for T is shown in Figure 4. The dotted line
separates the mediator classes from the source classes. There are four non-leaf classes in
the VDP, namely T, R~, S', and R~. The attributes of the classes are shown next to the
non-leaf nodes. R~, R~, and S ' serve as auxiliary data, so that T can be maintained using
incremental updates from the sources and information local to the mediator.

An alternative to "}~1 is VDP V2, where nodes R~ and R~ are merged into node R ~. The
join in ~'1 can use R] and R~ directly, while the join in V2 must use selections of R'. The
combination of R] and R~ will generally take less space than R ~. For example, if an object
(ai, a2, a3) satisfies only the selection condition f , the whole object is in the class R', but
only the projection (al, a2) would be in R]. On the other hand, incremental maintenance
of R ~ may be more efficient than that of R~ and R~, because an update to the class R needs
to be processed only once in the former case. Each of the non-leaf nodes in both VDPs
here are bag nodes. []

Jr> Sz]~j))=/Crl,s2(R' 1 D'~r2=sl S' [rl, s 2] ~ =~rl,s2(O'f R' ~:<]r2=sl S'
~ " ~ D<]s2=r3R'2) / ' ~ J ~ ~><~s2=r3tSh R')

#--N~'I~I, r2] /-- [Sl, s2] "'~..-~[r 3] ..--~[r,, r., rd "v'-"[sl~ s2] O S
R~=grl,~Oft ~)=gsl,s2~...-i(~=/~r3(IhR R(R~--'~rl,r2,r3~fvh R SQ~) = sl,s2 g

~ ~ [S l , S2, S3] ~ [rl, r2, r3, r4] ~ [sl, s2, s3]

(~1) (q)

Figure 4. Two alternative VDPs of a view T = 7rrl ,s2 (~rfR Nr2=sl o'gS Ns~=ra ~rhR)

In the previous examples, the integrated view involves only one export class. In the next
example we give a complex VDP involving several distinguished nodes.

Example 2: Among other export classes of some Squirrel mediator, let class T be defined
as (fret(R1 matehz R2) - 71-0-(R3)) - rrff(R4 N Rs). Here M = (R1 match7 R2) is a

121

210 G. Z H O U , I%. H U L L , R. KING

match class based on matching predicate 7 (as illustrated in the Student/Employee example
in Section 3), which contains object correspondence information for objects in classes R1
and R2. To simplify the exposition, selection and join conditions and projection attributes
are omitted in the view definition. A VDP supporting this class is shown in Figure 5. The
VDP includes three distinguished classes, W, R~, and M, in addition to T. The grey edges
coming from W indicates that W also relies on other classes not shown in the figure. In
this VDP, M, Q, and T are set nodes, and P, R~, R~, R~ and S are bag nodes. []

Figure 5, T = (~ro'(Rl mateh.y R2) - 7 ra(R3)) - 7to-(R4 N R5)

4.4. An execution model for Squirrel mediators

Together this and the next subsections present the execution model used by Squirrel me-
diators generated by the current Squirrel generator. The execution model is called the
"bottom-up VDP-based execution model" (BV execution model). This is just one of sev-
eral possible and reasonably efficient execution models; a topic of continuing research is
the comparison of alternative execution models. This subsection focuses on how the ex-
ecution model supports the traditional query operators (selection, projection, join, union,
difference), and the following subsection describes how support for object matching is
incorporated.

The approach to maintaining integrated views presented here (based on the execution
model, VDPs, and rulebases) provides a systematic and comprehensive implementation of
an algorithm that follows the spirit of and generalizes the algorithms of (Blakeley et al., 1986,
Gupta et al., 1993, Griffin and Libkin, 1995) for maintaining materialized views over a sin-
gle database, using the active paradigm as in (Ceri and Widom, 1991, Chang, 1994).

As with all active databases, the BV execution model permits a separation of the logic
of a Squirrel mediator from the control. As with other active databases, the control aspect
of the Squirrel mediator is performed by the execution model. Unlike most other active
databases, the logic of a Squirrel mediator is found in two components: the rulebase and the
VDP. In essence, the execution model uses the VDP to guide the order of rule application.

122

G E N E R A T I N G I N T E G R A T I O N MEDIATORS 211

Furthermore, the rulebase is closely related to the VDR In general, each rule specifies how
updates are propagated along a specific edge of the VDR

The BV execution model ensures that incremental updates of source data are correctly
reflected in the integrated view. The model offers some freedom with regards to the specific
order in which rules are fired, thereby offering opportunities for optimization at that level.
The BV execution model is currently implemented using Heraclitus[Alg,C].

We now describe several aspects of the BV execution model in some detail, and then
present its specification. The execution model uses several notions from the Heraclitus
paradigm (see Subsection 2).

A VDP-rulebase is a pair (12,edge_rule), where

(a))2 = (If, E, class, Source, def , Dist) is a VDP; and

(b) edge_rule is a function that maps each edge in E to a rule (or a set of rules, in case the
edge is from a leaf node into a match-class node).

A description of the rules, and how they are generated, is given in Subsection 4.6. The fol-
lowing description of the BV execution model provides important context for understanding
those rules.

Speaking at an abstract level, incremental updates will arrive in the queue of the Squirrel
mediator in a serial but asynchronous manner. We assume that each incremental update
arriving to the queue is in the form of a delta against one or more of the classes in a single
source database. (A simple optimization would be to let the source databases filter the
updates, so that they correspond to deltas against the lowest non-leaf nodes of the VDR)

Each invocation of the execution model will form a separate transaction. Let the sequence
of starting times of these transactions be t~, t2, These are called execution invocation
times. We require for each i that ti+l is a point in time that is after the completion of the
transaction for time ti. By the phrase "the state of the source databases at time ti" we
mean the state of the source databases as reflected by the updates they have reported to the
Squirrel mediator up to time t~.

Suppose that a Squirrel mediator with VDP 12 has been deployed. Two repositories
are associated with each non-leaf node v of 12. Suppose that class(v) = R. The first
repository is denoted simply as 'R' , and holds the "current" population of class R. The
second repository is denoted by 'AR' , and holds the smash of incremental changes for R
that result from the incremental propagation of updates during a single execution of the
execution model. Recall that classes of bag nodes (i.e., those defined using selection and/or
projection and/or join, or union) will hold bags, and set nodes (i.e., those defined using
difference or matching) will hold sets.

Let v be a node with class(v) = R. By the phrase "process node v" we mean to fire
all eligible rules in {edge_rule(v ', v) I (v', v) E E} (in any order) and then to execute
the following steps: (1) R = apply(R, A_R) ; (2) AR = 0; In the BV execution model a
node v will not be processed until all of its children have been processed. As a result, all
incremental changes to a node v are accumulated before any of these changes are propagated
to parents of v.

We now briefly present the BV execution model for VDPs that do not have match
classes. First, break all incremental updates held in the queue at a given time t into a
set A R x , . . . , ARk of subdeltas that refer to some set R1, • . . , Rk of source classes that are

123

212 G. ZHOU, R. HULL, R. KING

interface match Stud Emp {
string studName; string empName;
integer[7] studID; integer[9] SSN;
string major; string divName;

string local_address; string address;

string perm_address; };

Figure 6. The class interface of raatch_Stud_Emp, used by S_E_Mediator

associated with leaf nodes Vl,. • . , Vk (respectively) of the VDP. Then, all eligible rules in
U{edge-rule(v 5, vi)] i E [1, k], (vj, vi) E E} are fired, in any order, and all entries in the
queue that contributed to the subdeltas are deleted. Finally, each non-leaf node is processed
in an order where a node v cannot be processed until all of its children have been processed.

It is straightforward to verify that after completion of the execution of this algorithm for
time t, the materialized data in the mediator reflects the state of the source databases at time
t.

4.5. Providing support for n-ary matches

The Student/Employee example of Section 3 gave an overview about how binary match
classes are supported in Squirrel mediators. This subsection presents the general frame-
work used to support n-ary match classes, and describes how the BV execution model is
generalized to accommodate this.

Suppose now that classes A1 , . . . , An from various source databases represent the same
or overlapping sets of objects-in-the-world. A Squirrel mediator can support matching of
objects from these classes by maintaining a match class match_A1 _A,~. Each of the
source classes will contribute three kinds of attributes to the match class (these sets may
overlap):
identification attributes: These are used to identify objects from source databases. They

might be printable attributes known to be keys, or might be immutable OIDs from the
source databases (see Section 2). Although OIDs are not technically attributes, we View
them as such here.

match attributes: These are the (possibly derived) attributes referred to in the match pred-
icates.

data attributes: These are attributes that are used in distinguished classes or by other inter-
mediate classes in the VDP.

Speaking loosely, the class match_A1 A,~ will hold an "outer join" of the underlying
source classes, where each object in march-.A1 An represents a single object-in-the-
world. Each element of match_A1 An is called a surrogate object. A given surrogate
object might represent objects from essentially any subset of the associated source database
classes.

The interface of the match class match_Stud_Emp tbr the Student/Employee example of
Section 3 is shown in Figure 6. The left column of 5 attributes of this class come from the

124

GENERATING INTEGRATION MEDIATORS 213

Student class; the other 4 attributes in the right column come from the Employee class.
The identification attributes are seud~-D and SSN, which are printable keys; the match
attributes are studName, l o c a l _ a d d r e s s , perm._address, empName, and a d d r e s s ; and
the data attributes are studName, maj or, and divName.

The use of a match class such as match_A1 -An is just one possible way of using
materialization to support intricate object matching. Indeed, if there are relatively few
matches, then it is possible that the class match_A1 An will waste a great deal of
space on n i l values. In the current Squirrel prototype, we allow the underlying physical
implementation to optimize the internal representation of match classes.

In its current form, when specifying the match criteria for a family of corresponding
classes, the ISL can support the specification of several binary match predicates. (More
complex match predicates that simultaneously involve three or more classes may be useful in
some applications, but these are not currently supported). Suppose that "7 is the conjunction
of all of the binary match predicates for classes A1,. . . ~ An. For objects ai in A¢ and aj in

Aj, we write ai A¢,A~ aj if ai and aj satisfy the match predicate of 7 specified for the pair
A¢, Aj. There may be complex interaction between the match predicates in a specification
7 (see (Zhou et al., 1995)).

The BV execution model presented in Subsection 4.4 above must be modified to accom-
modate match classes. Speaking intuitively, there are two reasons for this. The first stems
from the fact that a match class can have more than one child from the source databases.
(No other kind of node in VDPs has this property.) This complicates the initialization step
of the execution mode/, because the incremental updates of all children of a match node
must be brought up to the match node. These incremental updates should not be applied to
the match class, because one of the guiding philosophies of the BV execution model is that
incremental updates to a class are applied only when that class is "processed". However,
when bringing incremental updates from one source class into the match class we need to
refer to the effect of incremental updates already brought from other source classes. As a
result, we use the Heraclitus operator when to obtain efficient hypothetical access to a match
class and the incremental updates already propagated to it. The second reason that the BV
execution model needs to be modified stems from the possibility of complex interaction
between the possibly many binary match predicates that contribute to the definition of an
n-ary match. Speaking intuitively, rules corresponding to these binary match predicates
must be fired repeatedly until a fixpoint is obtained. A more formal presentation of the
extended BV execution model is in (Zhou et al., 1995).

4.6. Default VDP and rule templates

VDPs provide very flexible representations of the skeletons of update processing strategies in
the mediator, which can be tailored to optimize the support of integrated views. The current
Squirrel prototype constructs a reasonably efficient default VDP for a given integrated view.
However, the user who created the ISL specification can explicitly modify the default VDP,
so that the final Squirrel mediator will be generated according to the revised VDR (For

125

214 G. ZHOU, R. HULL, R. KING

example, VDP 121 of Figure 4 and the VDP of Figure 5 are default, and 122 of Figure 4 is
not.)

In this subsection we give a brief overview of the construction of default VDPs for
supporting arbitrary ISL specifications. This subsection focuses on constructing "simple
VDPs", that support individual class definitions of an ISL specification. As mentioned at
the beginning of Subsection 4.3, in this discussion we focus exclusively on constructing
mediators whose imported and exported classes are sets.

A simple VDP is a VDP that (i) has a single root, that is distinguished; (ii) has only source
classes or distinguished nodes as leaves; and (iii) has no distinguished non-leaf, non-root
nodes. Intuitively, a simple VDP can be constructed for each distinguished class defined in
an ISL specification. When constructing VDPs for a full ISL specification, i.e., for multiple
distinguished classes, combine the simple VDPs into a single VDP. In this subsection we
describe how we build default simple VDPs for three representative distinguished classes,
namely classes defined by difference, select-project-join (SPJ) queries, and object matching.
More details about default simple VDPs for all kinds of distinguished classes, and about
merging several simple VDPs into a single VDP can be found in (Zhou et al., 1995).

Every edge (a, b) in a VDP is associated with an update propagation rule which computes
an incremental update (Aclass(a)) to the class class(a) based on an update Aclass(b).
(More than one rule is generated for each edge from a match class, and additional rules are
associated with the match classes.) A family of rule templates is used to generate the update
propagation rules. Translation of the templates into actual rules uses information about the
source database classes, the classes of the Squirrel mediator, and possibly user-defined
functions.

We now describe an algorithm for building a simple VDP for an individual class definition
in an ISL specification. The algorithm uses an induction on the structure of the expression.
We define a subexpression to be special if it is a source class, a distinguished class, or if its
root operator is union, difference, or match.

There are two base cases in this construction, when the subexpression is simply a source
class or simply a distinguished class. In both cases, the VDP for the subexpression has one
node, labeled by that class.

There are five inductive cases in the construction; we now consider three of these. (The
other two, for union and SPJ are similar.) Importantly, the deltas created by the rules
presented below do not include any redundant inserts or deletes.

(1) Difference: Suppose that the subexpression is T = R1 - R2. Let 12~ be the VDP for
Ri (i --- 1, 2). The VDP for T is constructed as the union of V1,))2, along with an additional
node labeled by T, and edges (T, R1) and (T, R2).

The rule templates for edges (T, R1) and (T, R2) are now presented. Recall that T is a
set node. In these templates, A'Ri denotes the net change (as a set-based delta) between
Ri, considered as a set, and apply(Ri, ARi), considered as a set. Also, the operands for -
and f3 are interpreted as sets.

126

GENERATING INTEGRATION MEDIATORS 215

rule template for diffl: edge (T, R1)
ON new A'R1
IF true
THEN (AT) + = (A ' . / ~ I) + - R2 ; (A T) - ~-- (n t R 1) - (7 ~ 2 ;

rule template for diff2: edge (T, R2)
ON new At/~2
IF true
THEN (AT) + = (A 'R2)- n R1; (A T) - = (z~tf~2) + ~ f~l;

(2) SPJ: Suppose now that the subexpression is T, which is non-trivial and does not have
union or difference as root. Suppose further that T = e(R1,. • •, Rn) where e is an operator
involving at least one join, along with zero or more selections and projections, and each
R~ is a special node. Again generalizing a well-known normalization result, the expression
e (R I , . . . , Rn) can be normalized into the form: T = ~rpaf (Ra Nga . . . Ng~_ 1 Rn), where
p is a subset of attributes of the join, f is a selection predicate, and each of 91, • • . , 9n-1 is
a join condition,

In order to construct a default VDP for T we introduce n pre-classes, one each for
R 1 , . . . , Rn. Intuitively, the pre-class R~ for Ri will be a selection and projection of Ri,
that includes all attributes needed for T, and includes only those tuples of Ri that will
impact the join. More precisely, when constructing the pre-class R~ for R i we incorporate
the set pi of all attributes of Ri that are referred to in the join conditions g l , . . - , 9,~-1,
the selection condition f , or the projection list p. Also for each i we let f i be a selection
condition implied by f relevant to Ri. (We do not insist that f i captures all of the restrictions
that f makes on R~; if f is complex, that might be inconvenient to compute.) The i-th pre-
class is now defined as: R~ = lrp/r A Ri. Finally, since some of the arguments to the join
may be projections of the original arguments, we may need to modify the join conditions
91, . . . , 93-1 into corresponding conditions 9~ , . . . , 9~-1. (The VDP 122 in Figure 4(b) in
Example 1 illustrates this construction.)

The VDP for T is now constructed from the VDPs for the R~'s (constructed as in the
previous case), along with the node T and edges (T, R~) for i E [1..n]. The rule template
for the edge (T, R~) is (using the bag semantics):

rule template for SPJ: edge (T, R~)
ON new AR~
IF true
THEN (AT) + = zrpcrf(R' 1 Ng, . . . Ng,_ 1 (AR~) + Ng~ . . . N g , R~);

(3) Match: A default VDP for an n-ary match involving source classes A1, • • •, An consists
of a node for match_Aa -An with an edge from match-A1 -A,~ to each of the A~'s.
(Figure 5 illustrates a binary matching.)

We present here the rule templates for supporting a match node that concern creation
of objects for a source class Ai. The two rule templates presented here would be used to
generate the rules Rz and a2 informally described in Section 3. The modification updates
indicated in the second rule action is shorthand for a deletion followed by an insertion.

127

216 G. ZHOU, R. HULL, R. KING

Although the rules generated from the templates described here refer to individual objects,
the execution model apply the rules in a set-at-a-time fashion.

rule template for match_edge insertion: edge (ma tch_A1 A n , A i)

ON new AAi
IF (insert A~(x : a l , . . . , a~)) in AAi
THEN [insert m a t c h _ A 1 _ A n (n e w : . . . , n i l , x . m l , . . . , x . m j , n i l , . . .)] ;

where m l , . . . , m j are attributes contributed to m a t c h _ A 1 A n by A+
Description: if a new object x of class Ai is inserted, insert a corresponding new object

into class m a t c h _ A 1 _A,~, with ni l for non-Ai attributes.

rule template for match_node insertion: node (m a t c h - A 1 A n)

ON insert m a t c h _ A 1 - A n (x : . . . , n i l , x . m l , . . . , x . m j , n i l , . . .)

IF exists a unique y in m a t c h _ A 1 -An such that m a t c h (x , y)

THEN [dele tematch_A1. . . .An(x) ;
modify m a t c h _ A 1 A n (y : e x i s t i n g a t t r . o f y, x . m l , . . . , x . m j , . . .)];

Description: when a new m a t c h _ A 1 -An object x is inserted, if an object y of class
m a t c h - A 1 -An matches x, delete x and modify y by setting the values of attributes
m l , . . . , m j t o x . m l , . • . , x . m j .

Analogous rule templates for deletions of source objects are also included. The match_edge
deletion rule template is a bit more complex than for insertion. Recall that a surrogate object
in m a t c h _ A 1 -An may correspond to one or more source objects. If a source object
ai with surrogate object x is deleted, then the match_edge deletion rule will delete x from
m a t c h - A 1 AN, and then insert new surrogate objects into m a t c h - A 1 -A,~, one
corresponding to each of the source objects (other than ai) that x corresponded to. (Note
that the match_node insertion rules may now recombine some of these newly inserted sur-
rogate objects.) In this manner, information inferred from the presence of ai will not be
retained in m a t c h _ A 1 AN after ai has been deleted from the source database.

5. A Taxonomy of the Solution Space for Data Integration

In its current form, the Squirrel system can be used to generate a rather narrow class of
mediators, that assume the underlying data is stored in a relational or restricted object-
oriented form, that are based exclusively on the materialized approach, etc. In this section
we provide a survey of additional possibilities for supporting read-only integrated views,
that covers both different aspects of the underlying application environment, and different
approaches to supporting the view. While the survey does include the virtual as well as the
materialized approach, more emphasis is placed on the materialized approach. The survey
is presented in the form of a taxonomy, which is summarized in Table 1 at the end of this
section.

Our taxonomy is based on seven spectra. The first four spectra are relevant to all solutions
for data integration; these are (1) Data model heterogeneity, (2) Expressiveness of the
integration language, (3) Object matching criteria, and (4) Materialized vs. virtual. The other
three spectra are relevant to solutions that involve materialization; these are (5) Activeness of
the source databases, (6) Maintenance strategies, and (7) Maintenance timing. We feel that

128

GENERATING INTEGRATION MEDIATORS 217

these spectra cover the most important design choices that must be addressed when solving
a data integration problem. In the discussion below we have identified within each spectra
what we believe to be the most important points, relative to the kinds of data integration
problems and environments that arise in practice. While the spectra are not completely
orthogonal, each is focused on a distinct aspect of the problem.

A primary motivation for developing the taxonomy is to aid in the development of mod-
ular implementations for a broad array of mediators that support integrated views. As just
one example, the taxonomy suggests that the implementation strategy used for incremental
update can be largely independent from the choice and implementation of maintenance tim-
ing. Such modularity facilitates the reusability and maintainability of different components
of mediators. We expect to use the taxonomy when choosing future extensions of Squirrel.

We now describe each of the seven spectra in turn.

Data model heterogeneity: This spectrum concerns the kind of data model that is used
by the underlying data sources. The primary possibilities include files, legacy and ad hoe
models, the relational model, and object-oriented database models. Constructs for modeling
temporal, geographic, manufacturing and other specialized kinds of information also arise.
To construct an integrated view across different data models, some data restructuring will
be necessary. This may also be necessary if one or more of the underlying models is
different from the data model used by the integration mediator. The different data models
will generally entail different access languages; integration across multiple models will thus
require language translation or wrapping.

The current Squirrel prototype assumes that both the source databases and view for export
are represented in the relational or (ODMG) object-oriented database model.

Expressiveness: This spectrum concerns the expressive power of the language(s) used
to specify integrated views. One aspect of this spectrum concerns the expressive power
in terms of conventional query languages. In terms of the relational data model, some
possibilities here include the relatively simple conjunctive queries (in other words, algebra
expressions built up from selection, projection and join); these extended using negation (i.e.,
the relational algebra), or with aggregation, or with both; and the inclusion of recursion
(Abiteboul et al., 1994). A somewhat orthogonal aspect concerns whether intricate object
matching criteria are supported. Another orthogonal aspect is whether explicit constructs
are provided in the language for temporal, geographical, and other specialized kinds of
information.

A related aspect of the expressiveness spectrum concerns whether the integrated view
can monitor conditions across multiple information sources, and if so, how expressive the
language for specifying the conditions is.

Squirrel-generated mediators can support integrated views and monitor conditions ex-
pressed using a subset of ODMG's OQL that has roughly the expressive power of the
relational algebra, extended with object matching capabilities.

Object Matching Criteria: In some cases the problem of identifying corresponding pairs
of objects from different databases can be straightforward; in other cases this can be quite
intricate or even impossible. We mention some key points from the spectrum, combinations
and variations of these can also arise:

129

218 G. ZHOU, R. HULL, R. KING

Key-based matching is the most straightforward one; it relies on the equality of keys of
two objects to match them. WorldBase (Widjojo et al., 1989) and SIMS (Arens et al.,
1993) are two examples using this approach. A generalization of this is to permit keys
that involve derived attributes.

Lookup-table-based matching uses a lookup-table that holds pairs of immutable OIDs or
keys of corresponding objects. References (Widjojo et al., 1989) and (Kent et al., 1993)
support look-up tables.

Comparison-based matching provides in addition the possibility of comparing (possibly
derived) attributes of two objects, either with arithmetic and logic comparisons or user-
defined functions that take the attributes as arguments and return a boolean value, such
as the function close_names () in the rule R2 of the Student/Employee example.

Historical-based matching can be used to supplement other matching methods. For in-
stance, an application can specify that two already matching objects stay matched, even
if they cease to satisfy the other matching conditions.

The current Squirrel prototype supports all of the kinds of matching criteria mentioned
above.

As an aside, we note that in the Student/Employee example, the Student class and
the Employee class refer to the same kinds of objects in the world, namely, people. In
the terminology of (Chang, 1994, Chang and Hull, 1995), two entity classes from different
databases that refer to the same or overlapping domains of underlying objects are called
congruentclasses, In some cases objects from non-congruent classes may be closely related.
For example, one database might hold an entity class for individual flights of an airline,
while another database might hold an entity class for "routes" or "edges" (connecting one
city to another) for which service is available. The current Squirrel prototype focuses
exclusively on matching objects from congruent entity classes.

Materialized vs. virtual: This spectrum concerns the approach taken by an integration
mediator for physically storing the data held in its integrated view. The choices include
fully materialized approach, as presented in the current paper, which materializes in the

persistent store of the mediator all information relevant to the integrated view and
maintenance of it;

hybrid approach that materializes only part of the relevant information; and
fully virtual approach, as presented in (Arens et al., t993, Florescu et al., 1995), which

uses query pre-processing and query shipping to answer queries that are made against
the integrated view.

The current Squirrel prototype focuses exclusively on the fully materialized approach.
Reference (Ahmed et al., 1991) describes a system in which integrated views are primar-
ily virtual, but some match information is materialized. Reference (Zhuge et al., 1995)
describes a different kind of hybrid, in which the integrated view is materialized, but the
source databases must be polled when incorporating new updates.

Activeness of Source Databases: This spectrum concerns the active capabilities of source
databases, and is relevant only if some materialization occurs. This spectrum allows for both
new and legacy databases. The three most important points along this spectrum represent
three levels of activeness.

130

GENERATING INTEGRATION MEDIATORS 219

Sufficient activeness: A source database has this property if it is able to send deltas corre-
sponding to the net effect of all updates since the previous transmission, with triggering
based either on physical events or state changes.

Restricted activeness: A source database has this property if it cannot send deltas, but it
has triggering based on some physical events (e.g., method executions or transaction
commits), and the ability to send (possibly very simple) messages to the integration
mediator. One useful case of restricted activeness is provided by "asynchronous replica-
tion servers". These systems, that are becoming commercially available for relational
DBMSs (Stacey, 1994), permit one database to hold an exact copy (no selections or
projections) of a relation in another database. Another useful possibility here is the
case that on a physical event the source database can execute a query and send the
results to the integration mediator. Even if the source database can send only more
limited messages, such as method calls (with their parameters) that were executed, the
mediator may be still able to interpret this information (assuming that encapsulation
can be violated).

No activeness: This is the case where a source database has no triggering capabilities. In
this case the mediator can periodically poll the source databases and perform partial or
complete refreshes of the replicated information.

The current Squirrel prototype is focused on the case of sufficient activeness. It would
be relatively straightforward to extend Squirrel to make use of asynchronous replication
servers within the restricted activeness case.

Maintenance Strategies: Maintenance strategies are meaningful only if some material-
ization occurs in the mediator. We consider three alternative maintenance strategies:

local incremental update approach, as presented in the Student/Employee example in Sec-
tion 3, that stores relevant portions of source data in the mediator so that the incremental
maintenance can be performed locally after the source notifies the mediator of relevant
updates,

polling-based incremental update approach, as presented in (Zhuge et al., 1995), that does
not store extra data for the purpose of incremental maintenance, but polls for data as
needed from the sources, and

refresh of the out-of-date classes in the mediator by re-generating all their objects.

The current Squirrel prototype is focused on local incremental update.

Maintenance Timing: Maintenance timing concerns when the maintenance process is
initiated. Many different kinds of events can be used to trigger the maintenance. Some
typical kinds of events include: (i) a transaction commits in a source database, (ii) a query
is posed against out-of-date objects in the mediator, (iii) the net change to a source database
exceeds a certain threshold, for instance, 5% of the source data, (iv) the mediator explicitly
requests update propagation, (v) the computer holding the mediator is reconnected via a
network to the source databases, and (vi) a fixed period of time has passed.

The current Squirrel prototype is focused on the first case mentioned above. However,
the execution model used by Squirrel is quite independent of the maintenance timing, so
other points on this spectrum would be relatively easy to incorporate.

131

220 G. ZHOU, R. HULL, R. KING

Table 1. Solution space of the data integration problem

Spectra Range
Data model heterogeneity file, legacy and ad hoc models, relational, object-oriented
Expressiveness integr, view (conj. query, neg), obj. match., temporality,
Matching criteria key ~ lookup-table ~ comparison ~ historical ...
Materialized vs. virtual fully materialized ~ hybrid ~ fully virtual
Activeness of source DB
Maintenance strategies

sufficient activ. ,--, restricted activ. *-~ no activ.
local incr. update ~ polling-based incr. update ~ refresh

Maintenance timing trans, commit, net change, network reconnect, periodic, ...

6. Conclusions

This paper presents a framework and prototype tool for generating Squirrel integration
mediators, that use materialization to support integrated views over multiple data sources.
The paper makes several contributions towards database interoperation. To provide context
for research in this area, we (a) present a broad taxonomy that surveys much of the solution
space for supporting and maintaining integrated views. At a more concrete level, we
(b) introduce "Squirrel mediators"; these are a special class of active modules that support
incremental maintenance of materialized integrated views in a relatively declarative fashion.
Furthermore, (c) we develop a uniform approach for generating integration mediators based
on the use of"View Decomposition Plans", and describe (d) the prototype Squirrel generator,
which can generate integration mediators automatically. In Squirrel, (e) Squirrel mediators
are specified using a high-level Integration Specification Language (ISL). Finally, (f) our
framework provides substantial support for intricate object matching criteria.

Primary future directions include developing mediators that support hybrids of the virtual
and materialized approaches, and experimentally comparing the relative efficiency of using
the virtual, hybrid and materialized approaches.

Acknowledgments

We are grateful to Omar Boucelma, Ti-Pin Chang, Jim Dalrymple, Mike Doherty, and Jean-
Claude Franchitti for numerous interesting discussions on topics related to this research.

References

Abiteboul, S., R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, Reading, MA, 1994.
Ahmed, R., P. DeSmedt, W. Du, W. Kent, M. Ketabchi, W. Litwin, A. Rafii, and M. C. Shan. Pegasus heterogeneous

multidatabase system. IEEE Computer, December 1991.
Arens, Y., C.Y. Chee, C.N. Hsu, and C.A. Knoblock. Retrieving and integrating data from multiple information

sources. Intl. Journal of Intelligent and Cooperative Information Systems, 2(2):127-158, 1993.
Beeri, C. Formal models for object oriented databases. In Proc. of First Intl. Conf. on Deductive and

Object-Oriented Databases, 1989.
Blakeley, J.A., P.-A. Larson, and EW. Tompa. Efficiently updating materialized views. In Proc. ACM SIGMOD

Symp. on the Management of Data, pages 61-71, 1986,

132

GENERATING INTEGRATION MEDIATORS 221

Boucelma, O., J. Dalrymple, M. Doherty, J. C. Franchitti, R. Hull, R. King, and G. Zhou. Incorporating Active and
Multi-database-state Services into an OSA-Compliant Interoperability Framework. In The Collected Arcadia
Papers, Second Edition. University of California, Irvine, May 1995.

Cattell, R.G.G. The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers, San Mateo, California,
1993.

Ceri, S. and J. Widom. Deriving production rules for incremental view maintenance. In Proc. oflntl. Conf. on
Very Large Data Bases, pages 577-589, 1991.

Chang, T.-P. On Incremental Update Propagation Between Object-Based Databases. PhD thesis, University of
Southern California, Los Angeles, CA, 1994.

Chang, T.-P. and R. Hull. Using witness generators to support bi-directional update between object-based
databases. In Proc. ACM Symp. on Principles of Database Systems, pages 196-207, 1995.

Dalrymple, J, Extending Rule Mechanisms for the Construction of lnteroperable Systems. PhD thesis, University
of Colorado, Boulder, 1995.

Doherty, M., R. Hull, M. Den', and J. Durand. On detecting conflict between proposed updates. In Proc. oflntL
Workshop on Database Programming Languages, September 1995. to appear.

Doherty, M., R. Hull, and M. Rupawalla. Structures for manipulating proposed updates in object-oriented
databases, 1995. Technical report in preparation.

Eliassen, E and R. Karlsen. Interoperability and object identity. SIGMOD Record, 20(4):25-29, 1991.
Florescu, D., L. Raschid, and P. Valduriez. Using heterogeneous equivalences for query rewriting in multidatabase

systems. In Proc. of Third lntl. Conf. on Cooperative Information Systems (CooplS-95), Vienna, Austria, May
1995.

Ghandeharizadeh, S., R. Hull, and D. Jacobs. Heraclitus[Alg,C]: Elevating deltas to be first-class citizens in a
database programming language. Technical Report USC-CS-94-581, Computer Science Department, Univ. of
Southern California, 1994.

Ghandeharizadeh, S., R. Hull, D. Jacobs, et al. On implementing a language for specifying active database
execution models. In Proc. of Intl. Conf. on Very Large Data Bases, pages 441-454, 1993.

Griffin, T. and L. Libkin. Incremental maintenance of views with duplicates. In Proc. ACM SIGMOD Syrup. on
the Management of Data, pages 328-339, 1995.

Gupta, A., I.S. Mumick, and V.S. Subrahmanian. Maintaining views incrementally. In Proc. ACM SIGMOD
Syrup. on the Management of Data, pages 157-166, 1993.

Hull, R. and D. Jacobs. Language constructs for programming active databases. In Proc. oflntl. Conf. on Very
Large Data Bases, pages 455-468, 1991.

Kent, W., R. Ahmed, J. Albert, and M. Ketabchi. Object identification in multidatabase systems. In D. Hsiao,
E. Neuhold, and R. Sacks-Davis, editors, Interoperable Database Systems (DS-5) (A-25). Elsevier Science
Publishers B. V. (North-Holland), 1993.

Litwin, W., L. Mark, and N. Roussopolos. Interoperability of multiple autonomous databases. ACM Computing
Surveys, 22(3):267-293, September 1990.

Lu, J.J., G. Moerkotte, J. Schue, and V.S. Subrahmanian. Efficient maintenance of materialized mediated views.
In Proc. ACM SIGMOD Syrup. on the Management of Data, pages 340-351, 1995.

Stacey, D. Replication: DB2, Oracle, or Sybase? Database Programming and Design, December 1994.
Thomas, G. et al. Heterogeneous dislributed database systems for production use. ACM Computing Surveys,

22(3):237-266, September 1990.
Widjojo, S., R. Hull, and D. Wile. Distributed Information Sharing using WorldBase. tEEE Office Knowledge

Engineering, 3(2):17-26, August 1989.
Zhou, G., R. Hull, and R. King. Squirrel phase 1: Generating data integration mediators that use materialization.

Technical report CU-CS-793-95, Computer Science Department, University of Colorado, November 1995.
Zhou, G., R. Hull, R. King, and J-C. Franchitti. Using object matching and materialization to integrate hetero-

geneous databases. In Proc. of Third Intl. Conf. on Cooperative Information Systems (CooplS-95), Vienna,
Austria, May 1995.

Zhuge, Y., H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing environment. In
Proc. ACM SIGMOD Syrup. on the Management of Data, pages 316-327, San Jose, California, May 1995.

133

