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Abstract. The evolution and structure of a steady barotropic nocturnal boundary layer are investigated 
using a higher-order turbulence closure model which includes equations for the mean quantities, 
turbulence convariances, and the viscous dissipation rate. The results indicate that a quasi-steady 
nocturnal PBL might be established in 4-10 hours after transition, depending on surface cooling rate. The 
latter is assumed to be constant in the model. The emphasis is on prediction of eddy viscosity, nocturnal 
mixing-layer depth, and the stability-dependent universal functions in the geostrophic drag and heat 
transfer relations. The model predictions are parameterized in the framework of the PBL similarity theory 
and compared with observations and results of other models. 

1. Introduction 

The atmospheric boundary layer is generally stably-stratified over land at night, 
though persistent daytime inversions also often occur in winter. The nocturnal 
mechanically-mixed layer is typically much shallower than the daytime convectively- 
mixed layer. Its depth also varies widely, from a few meters to hundreds of meters, 
depending on the upper wind, stability, and terrain. This has an important bearing on 
the dispersion of pollutants in the atmosphere; maximum pollutant-concentration 
levels are usually associated with strongly stable conditions and low wind speeds, 
when the diffusive ability of the atmosphere is at a minimum. It is important 
therefore to study the physical processes of the nocturnal boundary layer and 
develop models capable of simulating the salient features of its turbulence as well as 
mean profiles. The models should enable us to improve diffusion estimates for stable 
conditions. 

Several numerical and analytical model studies of the nocturnal boundary layer 
have been reported in the literature. These include Deardorff (1972), Businger and 
Arya (1974), Delage (1974), Wyngaard (1975), Blackadar (1976), Briggs (1977), 
Zeman and Lumley (1978), and Brost and Wyngaard (1978). 

In the present study, we use Wyngaard’s (1975) higher-order turbulence closure 
model to investigate the steady-state structure of an idealized nocturnal planetary 
boundary layer (PBL). The emphasis is on prediction and parameterization of eddy 
viscosity, dissipation rate of turbulent kinetic energy, mixing-layer depth, and the 
stability-dependent universal functions in the geostrophic drag and heat transfer 
relations. The model predictions are parameterized in the framework of the PBL 
similarity theory and compared with observations and results of other models. 
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2. The Model 

We consider a horizontally homogeneous barotropic PBL over a flat homogeneous 
surface. Neglecting the moisture effects and radiation flux divergence, the mean flow 
equations, with x axis in the direction of surface shear stress and z in the vertical, are 

- 
au/at = -auw/az +f( v - V,) 

- 
aVlat=-avwlaz+f(U,-U) 

- 
aqat = -aow/az. 

(1) 

Here (U, V, W = 0) are the mean velocity components in (x, y, z) directions, respec- 
tively, and 0 is the mean potential temperature. The corresponding fluctuating 
quantities are given by (u, U, w) and 8; f is the Coriolis parameter; and the 
components of the geostrophic wind vector G = U,i+ V,j are defined by fU, = 
-8P/dy and fV, = dP/dx, where P is the mean kinematic pressure. 

In order to solve Equation (l), we write transport equations for the turbulent 
fluxes of momentum and heat. These equations are closed approximately by 
expressing the third moments in terms of dimensionally-consistent, physically- 
plausible, semi-empirical expressions involving the mean quantities, the second 
moments, and a turbulence time scale 7 = 2El.5, where F is the mean viscous 
dissipation rate of the turbulent kinetic energy (E = =,/2); T is determined by the 
model itself, not specified a priori, since the model also includes a dynamical equation 
for 8. These higher-order closure models are discussed by Wyngaard (1975), and 
reference should be made to that paper for details. 

The closed equation set was numerically integrated in time on a digital computer 
using a Dufort-Frankel explicit finite-difference scheme. A logirithmic trans- 
formation of the vertical coordin%e’ was used from the lower boundary, set at 
z = 1 m, to the upper boundary at 1000 m, with a total of 51 grid points. The lower 
boundary conditions were based on the surface-layer flux-profile relations (Businger 
et al., 1971) and other data from field measurements and numerical studies. At the 
upper boundary, a simulated inversion lid, all turbulence quantities and the vertical 
gradients of mean variables were set to zero. 

In order to study the temporal evolution of the nocturnal boundary layer, the 
model was initialized with equilibrium distributions of variables in a decaying 
convective PBL around sunset at the instant of transition (t = 0) when the vertical 
surface temperature flux (Q. = H,,/pc,) goes to zero. To simulate the nocturnal 
PBL, a constant cooling rate, ranging from 0.2 to 2.0 C hr~‘, was specified at the 
surface (zO), the geostrophic wind (G) was provided, and the surface friction velocity 
(u,), surface heat flux (Ho), Monin-Obukhov stability length (L), and cross-isobar 
angle ((u) were determined from the model at each t. In the calculations, we specified 
westerly winds, 45 N latitude, a constant G = 10 m s-’ and a roughness length 
z0 = 0.01 m. For convenience, we used a coordinate system with the positive x-axis 
oriented in the direction of the geostrophic wind, and adjusted the lower boundary 
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conditions to account for the angle a(t) between surface and geostrophic winds. 
Details of the computational techniques, boundary and initial conditions as well as 
the model equations can be found in Rao and Snodgrass (1978). 

3. Results and Discussion 

In a horizontally homogeneous nocturnal PBL with negligibly small radiation flux 
divergence, the cooling rate is balanced entirely by the turbulent flux divergence. For 
a constant surface-cooling rate, a quasi-steady state may be established when 

- 
a@ -dWO 

t- az 
- - = Q,/ h = constant, (2) 

or 

where h is the mixing-layer depth. This implies that heat flux decreases linearly with 
height; both Q0 and h, as well as other key PBL parameters such as U* , (Y and L, 
should approach constant values as the PBL approaches a quasi-steady state. This 
leads to a near-constant value for the PBL stability parameter p = lu,/fLI, where p 
represents the ratio of the rotation time scale, IfI-‘, to the turbulence time scale, 

L/u,, in the stable case. The steady-state value of p increases with the surface 
cooling rate. 

The results indicate that after an initial period of rapidly changing values, a 
quasi-steady nocturnal PBL, characterized by near-constant values of U* , Qo, L, h 
and (Y, might be established in 4-10 h after transition, depending on the surface 
cooling rate. The model predictions of the mean field and turbulence structure show 
good agreement with the atmospheric surface-layer observations from Kansas and 
Minnesota experiments (Wyngaard, 1975; Rao and Snodgrass, 1978). This idealized 
steady state may be short-lived in reality (see Businger, 1973, p. 86), but nevertheless 
is useful in understanding the equilibrium structure of the stable PBL. 

3.1. EDDYVISCOSITYDISTRIBUTION 

The vertical distributions of eddy viscosity, K, are of considerable interest since 
several recent papers on the nocturnal PBL are based on the eddy viscosity models in 
which the stresses in the mean momentum equation (1) are replaced by 

- 
uw = -K,, XT/&, VW = -K,, a V/dz . (3) 

The vertical profiles of K,,, plotted nondimensionally in Figure 1 show a strong 
dependence on the PBL stability parameter p. As k increases, the eddy viscosity 
profiles become flatter; both the maximum eddy viscosity, Km, , as well as the height 
where it occurs, z,,,, decrease by nearly two orders of magnitude as the PBL 
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Fig. 1. Nondimensional eddy viscosity distributions in the quasi-steady nocturnal PBL, calculated 
for different stabilities. 

changes from neutral (CL = 0) to moderately stable (p = 118). The calculated varia- 
tions of K,,,,, and tmax are functions of F; for p > 10, they are given by the best-fit 

expressions 

Km,&& = 0.016/.83 

z,,J/u* = 0.168 p-0.8o. 
(4) 

In PBL models, it is often taken that KY, = K,, ( = K, say); this assumption is 
consistent with our results in Figure 2, which shows identical vertical profiles of K,, 
and KYL calculated for p = 65. It will be useful to compare these profiles with the 
corresponding K-distributions used by other models based on K-theory. Businger 
and Arya (1974) specified steady-state eddy viscosity distributions by the implicit 
relation 

Kf k5 
z=(l+PcLs) 
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Fig. 2. Comparison of calculated nondimensional eddy viscosity profiles with those used in other 
nocturnal PBL models. 

where k = 0.35, fl= 4.7, t= fz/u* and 1 V,l = IG sin al. Delage (1974) used the 
expression 

K = 1(0.16E)“*, (64 

where 1 is a mixing length given as 

1 ={l/k(z+to)+l/h +P/kL’}-’ (6b) 

with k = 0.4, p = 5, and A = 0.0004Gff’. Here L’(z) is the local value of the 
Monin-Obukhov stability length. Using the steady-state values of (Y, E, and L’ 
calculated by the present model for p = 65, Equations (5) and (6) are evaluated and 
compared with the K-profiles in Figure 2. Equation (5) gives somewhat larger K 
values in the outer layer while Equation (6) agrees fairly well with our results. Both 
equations predict slightly higher peaks than the present model; however, the general 
profile shape and behaviour are similar in all models. 

The K-variation shown in Figure 1 may be parameterized as K/u,2 =F(& p) 
where 5 = z/L. The predicted steady-state eddy viscosity profiles are represented 
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well (see Figure 3) by 

ku,z -br) 

K=(1+4.7$ ’ 
(7) 

where k = 0.35, b = 9.1, and 77 = &p1’2. Using relations given later in this paper, 
Businger and Arya’s (1974) K-expression, Equation (5), can also be reduced to this 
form. The advantage of Equation (7) is that the steady-state eddy viscosity profile in 
the nocturnal PBL can be specified explicitly from the surface-layer parameters, U* 
and L. 
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Fig. 3. Similarity representation of calculated eddy viscosity distribution in the quasi-steady nocturnal 
PBL. The best-fit curve (solid line) is given by Equation (7). 

The dissipation rate of turbulent kinetic energy is calculated in the model by a 
dynamical equation for E. The steady state &-profiles in the nocturnal PBL are 
adequately represented by 

q5,0 = (& - t) e-6-sq, (81 
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where & = (kz/ui)s and &, =(/U/U,) [(dU/dz)*+(13V/13z)*]“* are dimensionless 
dissipation rate and horizontal mean wind shear, respectively. The decrease of E with 
height is in qualitative agreement with the recent Minnesota data (Caughey et al., 
1978). 

3.2. NOCTURNAL MIXING-LAYER DEPTH 

The variation of the nocturnal mixing-layer depth h, calculated somewhat arbitrarily 
as the height where the shear stress decreases to 5% of its surface value, is plotted in 
the dimensionless form shown in Figure 4(a). The best fit, for F > 10, is given by 

hlfl/u, = aFpl’*, or h/L = ap1j2 (9) 

where a is a constant of order unity. This relation was first suggested by Zilitinkevich 
(1972, 1975) from similarity considerations and dimensional analysis. From Equa- 
tion (9), we can write h - Iu,L/fl”2 ; thus the nocturnal mixing-layer depth in the 
idealized barotropic PBL at middle latitudes is proportional to the geometric mean 
of the length scales u*/lf 1 and L, and it is uniquely determined by the surface stress, 
Coriolis parameter, and stability. In the present model, calculating h as mentioned 
above, we evaluated a = 0.27 in the steady state; the corresponding values of this 
constant from other models are 0.55 (Businger and Arya, 1974), 0.22 (Wyngaard, 
1975), and 0.40 (Brost and Wyngaard, 1978). Thus, its value appears to be strongly 
dependent on some of the model parameterizations. The model results in Figure 4(a) 
show that the value of a also depends on t; at t = 2 h, a = 0.43 and decreases to 0.27 
as the flow approaches steady state. 

The nocturnal boundary-layer height, determined from the temperature and wind 
soundings as the height to which significant surface cooling has extended, typically 
increases with time during the night (Blackadar, 1957; Izumi and Barad, 1963; 
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Fig. 4(a). Calculated variation of the dimensionless nocturnal mixing-layer depth as function of the 
stability parameter F. See text, Equation (9). 
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Deardorff, 1972). Yamada (1976) determined h as the height of the surface 
inversion layer from the radiosonde-measured 0, profiles of the Wangara data 
(Clarke et&., 1971), and found that under strongly stable conditions, h > 0.3 lu,/fj, 
the neutral PBL height. These findings indicate that h determined from the 0, 
profile, usually exceeds the height where turbulent shear stress and heat flux become 
negligible, probably due to radiative and advective effects, and may not be a good 
indicator of the nocturnal mixing-layer depth. It also appears that, unlike the 
daytime convective case, the evolution of the nocturnal PBL height cannot be 
satisfactorily described by a rate equation (Yu, 1978). 

It is difficult to verify Equation (9) from available observations. Ideally, one would 
require turbulence profile measurements in the stable boundary layer under sta- 
tionary, horizontally-homogeneous conditions. These conditions are rarely satisfied 
and turbulence data are scarce. 

The Kansas surface-layer data (Izumi, 1968), in addition to u.+ and L, include 
15-min average measurements of w0 at z = 5.66, 11.31 and 22.63 m, and the 
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Fig. 4(b). Comparison of model prediction (solid line) with the variation of nocturnal mixing-layer depth 
deduced from the Kansas data. (See text for details). 
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corresponding potential temperature profiles which allow the determination of 
cooling rates at these heights. Assuming a linear decrease of heat flux with height 
(Wyngaard, 1975; Rao and Snodgrass, 1978) in the nocturnal mixing layer, h is then 
estimated from Equation (2). The variation of half-hour average estimates of h are 
plotted in Figure 4(b) along with the present model prediction, h/L = 0.27 p”’ , for 
comparison. 

A similar analysis was carried out for the Wangara stable boundary layer data 
(Clarke et&., 1971) and the results are shown in Figure 4(c). In this case, l-h average 
values of the parameters Qo, L and U* are based on the calculations of Melgarejo 
and Deardorff (1975), and the corresponding cooling rates are estimated from 
screen-level (1.2 m) temperatures. The Wangara results cover a shorter range of ~1 
and show more scatter than the Kansas data, probably due to significant radiation 
flux divergence, which was not considered in the present model. It should be noted 
that the preceding analysis for the estimation of h is based on several assumptions, 
including a continuous turbulence regime in the nocturnal mixing layer and negligi- 
ble advective effects, which are often not satisfied in the real atmosphere. In a recent 
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Fig. 4(c). Same as Figure 4(b), but with the Wangara data. 
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case study of the nocturnal boundary layer, Nieuwstadt and Driedonks (1979) 
conclude that advection effects are important, especially in the upper part of the 
boundary layer, and explain the differences between their observed and calculated 
results in terms of temperature advection. 

A more recent analysis of the Minnesota stable data (Caughey et al., 1978) and the 
accoustic sounder data at the 200 m high meteorological tower at Cabauw in the 
Netherlands (Nieuwstadt and Driedonks, 1979) tend to support Equation (9), 
though the value of the constant a still remains unsettled. 

Another parameterization for h can be obtained by integrating the equations of 
motion (1) over the mixing-layer depth in the steady-state limit. This yields the 
constraints, 

The latter indicates that U must overshoot U, within the mixing layer. We can write 
the first constraint, to a good approximation, as 

or 

d/f= V, dz = hG sin cy, (12) 

20 

h = alui/(fG sin cu). 

This can also be expressed as 

u,/G = az(fh sin CY/G)“~ (13) 

where u2=al -“2. The last relation, shown as the dashed line in Figure 5, fits the 
model predictions well with the constants a2 = 0.80 and aI = 1.56; these values agree 
with a2 = 0.79 and aI = 1.6 obtained by Brost and Wyngaard (1978) from a different 
model. 

3.3. GEOSTROPHICDRAGANDHEATTRANSFERRELATIONS 

Asymptotic matching of the similarity profiles of mean velocity and temperature in 
the inner and outer layers of the stable PBL leads to the well-known geostrophic drag 
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Fig. 5. Calculated variation of the geostrophic drag coefficient in the nocturnal PBL as a function of 
(fh sin c+G) I’*, indicated by dashed line, and the stability parameter w, indicated by solid line, for 

Ro= 10’. 

and heat transfer relations: 

G cos&=;{ln ~u*/fzo~-A(p)} 

B(P) G sin a/u* = k sign (f) (14) 

where Ok is the potential temperature at the top of the boundary layer, and A, B, and 
C are universal functions of cc. to be determined from theory and observations, The 
first two equations may be combined to give an implicit relation between the 
geostrophic drag coefficient, C, = u,/G, and the surface Rossby number, Ro = 
IG/fzOl, as follows: 

which implies that Q/G = C,(Ro, CL); for a given Rossby number, C, should only 
depend on CL. Figure 5 (solid line) shows the variation of the geostrophic drag 
coefficient with p in the present model (Ro = 107). 

The functions A(F), B(p) and C(F), calculated from Equation (14) in the model, 
are shown in Figure 6 where they are compared with the best-fit polynomial 



26 

20 

(0 

0 

-10 

-20 

r 
K. S. RAO AND H. F SNODGRASS 

t 

i J 
0 50 400 

P 

Fig. 6. Comparison of calculated similarity functions A, B, and C in the geostrophic drag and heat 
transfer relations with the best-fits to the Wangara stable PBL data. 

expressions to the Wangara data (Clarke et al., 1971) given by Arya (1975). There is 
fair agreement between model predictions and observations. From Equations (9), 
(12),and(14),wecanwriteB(~)=bl~1’2 where the constant b1 = 1.7 1. For p > 10, 
the present model results can be represented by the best-fit expressions shown in 
Table I, where they are compared with the functions given by Arya (1977), Briggs 
(1977), and Brost and Wyngaard (1978), all obtained from different models of the 
stable barotropic PBL. Except for B(p), the agreement between various models is 
good. 

TABLE I 

Comparison of PBL similarity functions A, B, and C from different models 

A(w) B(F) CCCL) 

Present model In ~“Z-0.98~1’2+2.5 1.79~“2-0.60r 1.71~1’2 In ~“*-3~t”+6.5 
Arya (1977) Ins”*-0.96p”*+2.5 1.15@ “a+l.l ln~“*-3fi”*+7.0 
Briggs (1977) Ins”*-1,01*“*+2.5 1.86~ “* - 

Brost & Wyngaard (1978) In ~“2-0.9~“2+2.0 1.40fi1/* - 
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