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Abstract. The Langevin equation is used to derive the Markov equation for the vertical velocity of a fluid 
particle moving in turbulent flow. It is shown that if the Eulerian velocity variance u,,,~ is not constant with 
height, there is an associated vertical pressure gradient which appears as a force-like term in the Markov 
equation. The correct form of the Markov equation is: 

w(t + At) = aw(t) + bu,,i + (1 -a)Tr.d(&)/dz, 

where w(t) is the vertical velocity at time t, [ a random number from a Gaussian distribution with zero mean 
and unit variance, r, the Lagrangian integral time scale for vertical velocity, a = exp( -AI/T,), and 
b = (1 - a*)‘/‘. This equation can be used for inhomogeneous turbulence in which the mean wind speed, 
crWwE and T, vary with height. A two-dimensional numerical simulation shows that when this equation is used, 
an initially uniform distribution of tracer remains uniform. 

1. Introduction 

In many practical situations it is necessary to calculate the mean dispersion of a passive 
scalar in turbulent flow. Often the diffusion equation gives an adequate solution, for 
example, for the long-range dispersion of tracers in the atmosphere. However, the 
diffusion equation is known to fail close to the scalar’s source, and also in the complex 
flow within vegetative canopies (e.g., Wilson and Shaw, 1977, who discuss momentum 
transport only). 

An alternative approach to dispersion is to simulate individual particle trajectories 
by assuming that the velocity can be represented by a Markov sequence (Thompson, 
1971; Hall, 1975; Reid, 1979). Legg (1982), using a single-particle Markov-chain model, 
compared estimates of vertical dispersion from an elevated line source with results from 
a wind-tunnel experiment. There was good agreement between model and experiment 
both close to the source (i.e., at distances less than iiTL, where U is the mean streamline 
wind speed and TL is the Lagrangian integral time scale for vertical velocity fluctuations) 
and distant from the source. Legg also showed that Markov chain models can be 
generalised to incorporate streamwise velocity fluctuations and skewed velocity distri- 
butions. Hence, the Markov chain model shows promise as a replacement for the 
diffusion equation in predicting the dispersion of passive additives or particles in crop 
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canopies, where the turbulent intensity is very high and velocity distributions are 
skewed. 

However, a simple Markov chain model for predicting vertical dispersion is known 
to fail when the vertical velocity variance changes with height, which always happens 
within vegetation canopies. Wilson et al. (1981a) showed that the simple Markov chain 
model predicts a large and unrealistic downward drift of particles. Using intuitive, 
nonrigorous arguments, they suggested several possible ways of removing the drift. 

The aim of this paper is to present a rigorous treatment of particle dispersion in a flow 
with a gradient of velocity variance. To test the theory, we simulate (for vertical 
fluctuations only) the vertical dispersion of a tracer cloud that is initially uniformly 
distributed, so that the concentration is constant with height. In a correctly specified 
dispersion model, such a uniform tracer distribution must remain uniform. 

2. The Langevin Equation and Markov-Chain Models of Turbulent Dispersion 

Markov-chain simulations of fluid-particle trajectories (Thompson, 1971; Hall, 1975; 
Reid, 1979; Legg, 1982), in which the particle velocities are represented by a Markov 
sequence, are based on an assumed equation of motion for a fluid particle. The equation 
used implicitly in existing models of this kind is the Langevin equation, which describes 
the motion of a particle subject to a retarding force and a random acceleration: for 
example, a pollen grain undergoing Brownian motion in a liquid. In fact, this equation 
was first studied in connection with Brownian motion (e.g., Wang and Uhlenbeck, 1945; 
Csanady, 1973, p. 28) and was only later applied to turbulent dispersion (e.g., Durbin, 
1980). This section shows how the Langevin equation relates to existing Markov-chain 
models of turbulent dispersion. 

The Langevin equation is 

dw 
~ = -aw + I&) ) 
dt 

where w(t) is the vertical component of a fluid particle, c( and 3, are coefficients to be 
specified below and i”(t) is Gaussian white noise (Arnold, 1974, p. 50), which is a 
stationary stochastic process with a Gaussian probability density function, a mean of 
zero and a covariance (at two times s and t) of 

5(sM) = w - f) > (2) 

6 being the Dirac delta function and the overbar denoting an ensemble average over 
many realizations of the stochastic process. Another property of t(t) is that it is 
everywhere discontinuous; however, its integral is a continuous (but not differentiable) 
process. 

Although Equation (1) is a stochastic differential equation, its solution is obtainable 
by formal application of the conventional method for an ordinary first-order linear 
differential equation (e.g., Arnold, 1974, pp. 128-134). The solution is 
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w(t) = w(0)eew + A 

s 
ea("-')&) 6, (3) 

0 

which defines the velocity w(t) of a Brownian particle as a random process with the 
random initial value w(0). By taking the ensemble average of Equation (3), it follows that 
the mean of w(t) is 

i?(t) = w(o)e-zz 

and that the fluctuation about the mean is 

(44 

w’ (t) = w’(0)ecat + ;1 
s 

eacser){(s) ds , 

0 

WI 

where primes denote departures from ensemble-average values (so that w = W + w’). 
The variance w’*(t) and the covariance function w’ (0)~’ (t) of w(t) can now be found. 
Since t is uncorrelated with w, the variance is just the sum of the variances of the two 
terms on the right of Equation (4b); hence 

I t 
- - 
W’*(t) = W’2(0)e-2ac + R2 

ss 
ea(s-t)eafu-rt &)f(u) ds du , 

0 0 

which can be simplified, using Equation (2), to - - w’ 2(t) = w’ 2(0)e-**’ + /1* s e*e(s-gf & 
0 

By evaluating the integral, we obtain, for the variance of w(t), 

W”(l) = w’2(0)e-2at + E (1 - emzJt) , (5) 

The covariance function follows directly from Equation (4b): 

w’ (0)~’ (t) = w’ 2(0)e-cy’ . (6) 

These expressions for the variance and covariance of w(t) enable the coefficients a 
and A in Equation (1) to be expressed in terms of measurable velocity statistics of the 
particle. If the Lagrangian integral time scale for the particle’s velocity TL is defined as 

then it is apparent from Equation (6) that 

a = l/T,. (7) 
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If, further, w(t) is a ~~u~~~~~~~ random process, then Equation (4a) shows that W(t) = 0, 
and Equation (5) fixes /1 as 

2 = a,, &cc = uw ,/2/T, , (8) 
- __ 

where crt, = w’ 2(O) = w’ * (t) is the Lagrangian velocity variance. Hence, if the Lagran- 
gian velocity statistics a, and TL are known, Equation (1) determines the velocities, and 
therefore the trajectories, of an ensemble of particles with a prescribed distribution of 
initial velocity w(O). 

The ensemble of velocity functions thus determined constitutes a Markov process. 
Loosely, a Markov process is a stochastic process W(T) whose behaviour at times 
subsequent to some time to depends only on w(t,) and not on w(t) at times prior to ttt 
(but see Arnold, 1974, or Wang and Uhlenbeck, 1945, for a precise definition). 
Equation (3) satisfies this criterion. An important property of a Markov process is that 
it is continuous but not differentiable. Hence, no Markov process can exactly represent 
particle velocities in a turbulent flow, which must be everywhere differentiable (other- 
wise, infinite accelerations would occur). Therefore, Equations (1) and (3) cannot 
describe exactly the velocities of dispersing marked particles in a turbulent flow. 

The relevance of Equation (1) to turbulent dispersion emerges only when we consider 
the particle velocities at discrete times, r,, t, . _ . t,, where t, + r - t, = At. If we choose 

Ar$ T2.r (9) 

where T, is the time scale over which the particle acceleration remains correlated, then 
the sequence { w,, > = { w(t,,) j (where w is here the actual vertical velocity of a dispersing 
particle) will be a Markov sequence, because w, + , will depend only on w, and not on 
W II- I or still earlier values. (The distinction between a Markov sequence and a Markov 
process is that the former is defined only at discrete times, whereas the latter is defined 
at all times on a continuous interval.) Successive terms in the Markov sequence { w,} 
are given by 

‘I?, + t = a~,, + hJ,, , (10) 

where [, is a random number from a Gaussian distribution with zero mean and unit 
variance. The coefficients a and b are selected, as in the continuous case, to give the 
sequence ( w,, 1 the correct variance gz and integral time scale TL. This is easily done 
by comparing Equation (10) with the solution of the continuous equation, taking the 
integration interval as (t,, t,+ i). This shows that 

a=e - aAr = e-At/T,. 
9 (11) 

and (by comparing the variance of Equation (10) with Equation (5), and using 
Equation (8)) that 

c;b* = g (1 - e-2aAr) =I gz,(l - a”> ; 
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so that 

b = (1 - a2)“2 . (12) 

Equations (10) to (12) define the one-dimensional model used by Legg (1982) and 
others. 

We expect T, to be of the order of the Taylor microscale of the Lagrangian autocorre- 
lation function (Tennekes and Lumley, 1972) which is a measure of the time over which 
the particle acceleration remains correlated. Hence, the ratio TA/TL is likely to be of the 
same order as the ratio of the Taylor microscale to the integral scale for the Eulerian 
autocorrelation function for vertical velocity; in the atmospheric surface layer, for 
example, this ratio is typically 10e2 (Bradley et al., 1981). It is therefore possible to 
choose At so that 

ensuring that the sequence { w,,} describes turbulent dispersion at times much less than 
TL after release (but still greater than T,). 

[In passing, it is worth noting the analogy between a Markov sequence { w,!} for 
velocity, which describes dispersion when t 9 T,, and a Markov sequence of particle 
positions, which describes turbulent dispersion only when t B TL. The latter description 
is equivalent to the diffusion equation (Monin and Yaglom, 1971, p. 606-612) and 
hence is applicable only when a gradient-diffusion assumption is valid.] 

So far, we have assumed that the turbulence is homogeneous, i.e., that both TL and 
G,,. are independent of particle position. When TL varies with position but a, is constant 
(as in an adiabatic surface layer, for example), Equation (10) can be solved numerically 
for an ensemble of particles using time steps small enough that TL for any one particle 
does not vary strongly over a single step. Several workers have shown that this model 
describes well the dispersion of a tracer in the surface layer (Hall, 1975; Reid, 1979; 
Legg, 1982; Wilson et al., 198 lb). However, Wilson et al. (198 la) point out that the 
model fails when o, varies with position. We now show the correct way of incorporating 
CJ,,. variation into the model. 

3. Effect of a Changing Velocity Variance 

In an incompressible turbulent flow, a gradient in velocity variance is always associated 
with a mean pressure gradient. This is shown by the mean momentum equation, which 
can be written in tensor notation (Hinze, 1975, p. 22) as 

aii. _ aiL a 1% -+u; -+- m= -- --+ vA2&, 
at axi dxj P 6 

(13) 

where ui is the Eulerian velocity vector, xi the position vector, p the air density, p the 
pressure and v the kinematic viscosity. As before, overbars and primes denote ensemble 
averages and fluctuations therefrom; the summation convention applies for repeated 
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indices. In a stationary, horizontally homogeneous flow over a level surface, the ground 
being at xI1 = 0, the vertical (U3) component of Equation (13) is (neglecting viscous 
stresses in comparison with Reynolds stresses) 

.__ 
aw’ 2 1 @ E=-- - 

dZ p az ’ 
(14) 

where we have reverted to non-tensor notation, z being the vertical position and wE the 
Eulerian vertical velocity component (distinguished from the Lagrangian vertical velo- 
city w). Hence, wherever there is a gradient in wk’ (for example, in a crop), there is also 
a mean pressure gradient given by Equation (14). [Additional terms in the mean momen- 
tum equation for a crop, resulting from the need to consider horizontal averages (Wilson 
and Shaw, 1977; Raupach and Shaw, 1982) do not enter Equation (14) unless the 
canopy elements exert a lift force on the flow, i.e., a drag force with a vertical component. 
We ignore this case.] 

When there is a gradient of vertical velocity variance, the equation of motion for a 
fluid particle must include a mean force due to the action of the mean pressure gradient 
on the particle. Hence, Equation (1) must be replaced by 

dw 
= -aw+/l((t)+F, 

dt 
05) 

where 

F=-1!Ldp, 
p az az E (16) 

The solution of Equation (15) is 

w(t) = w(O)e-“’ t 3, 
s 

eaCsPr)&s)ds t Fa-‘(1 -em”), (17) 

0 

which represents a random process with mean 

G(t) = E(O)ec” + FCC-‘(1 -em”‘) (18) 

and with the same variance and covariance function (Equations (5) and (6)) as for the 
earlier solution with F = 0. Hence, for stationary w(t), CI remains equal to l/T,- and A 
to oWmTL (see Equations (7) and (8)). If W(O) = E(t), Equation (18) shows that the 
particles have a mean drift velocity 

w(t)= Foe-’ = TL aWp/az. 

As before, we construct a Markov sequence 

(19) 

W II + I = aw,, t bo,,, 4,, + c (20) 
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from the Markov process (Equation (17)). Comparison of Equations (17) and (20) 
shows that 

c = FT,(l - e-At’rL) (21) 

with a and b as before (Equations (11) and (12)). Provided that At % TA and that At is 
small enough that o,,, and TL do not change significantly for any one particle over a single 
time step, Equation (20) will accurately reproduce the velocities of particles dispersing 
in a flow with varying o, and TL. 

To assign a,,, we assume (cf. Legg, 1982) that 

(9 = ).+I’2 
M’ E . (22) 

Equation (20) can then be solved numerically. 
The result obtained here for the mean drift velocity E(t) is identical with that obtained 

from the diffusion equation in Fokker-Planck form (Monin and Yaglom, 1971, p. 610) 
which gives 

a(02 Td 
w(t) = z 

=T “““+023 

aZ L aZ w az ' (23) 

When TL is constant, this is the same as Equation (19) with the assumption (22). When 
Tld and a,,, both vary with z, the first and second drift terms in Equation (23) appear in 
the Markov chain model, Equation (20), through the term c and the terms in a and b, 
respectively. 

4. Simulation Results 

The theory has been numerically tested using model A described by Legg (1982), first 
with Equations (10) to (12) which do not incorporate a a, gradient, and then with 
Equations (20) and (21), which do. The model is two-dimensional (x, z) and steady state 
(continuous-source); it calculates the velocities, and hence positions, of tracer particles 
by assuming a streamwise particle velocity which is always equal to an externally 
specified local mean Eulerian velocity U(z), and a vertical particle velocity which is a 
Markov sequence generated using Equation (10) or (20). The model gives the stream- 
wise particle flux F,(z) = ii(z)C(z) through any chosen vertical plane downstream of that 
at which tracer particles are continuously injected. The local mean particle concen- 
tration is then calculated as C(z) = F,(z)/U(z). 

For both tests, an initially uniform concentration profile was created by releasing 
particles from 24 equally spaced heights in proportion to U(z). The resulting C(z) profile 
was normalised to a mean value of unity (as an integral number of particles was released 
at each height, the initial concentration was not exactly unity at each height; see 
Figure 2). 

If a uniform, self-preserving concentration profile extends throughout an unbounded 
atmosphere, all tracer particles diffusing upward through any given plane are replaced 
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Fig. I. Profiles of (a) U, the mean streamwise wind speed; (b) CT,+,~, the root-mean-square vertical velocity; 
and (c) r,, the Lagrangian integral time scale. The height h of the crop is also shown. 

by an equal number diffusing downward. Our finite-height simulation modelled this 
situation by reflecting all particles that reached the upper boundary. Particles were also 
reflected at the ground, thus imposing a lower boundary condition of zero flux. 

Profiles of windspeed, vertical velocity variance, and Lagrangian time scale (Figure 1) 
were selected to be typical of those found within and above a crop. The wind speed was 
specified by 

U(z)= i@)exp(Y(;l- 1)) zlh 

z>h, 

where :/ is the extinction coefficient within the crop, h the crop height, U* the friction 
velocity, k ( = 0.4) von Karman’s constant, d the zero plane displacement, and z0 the 
roughness length. The condition that U and dti/dz must be continuous at z = h imposes 
the restraints that 

and 

u(h) = (uelk) ln ((A - 4/z,), 

ue = k(h - d)yu(h)/h . 

Values selected were h = 1.6 m, d/h = 0.75, y = 3.0 (Raupach and Thorn, 1981) and 
E(h) = 2.0 m s-l; it then follows that U* = 0.3 u(h) = 0.6 m s- ’ and z,,/h = 0.066. 

The vertical velocity variance ~IJZ~ was chosen so that a,, was 1.25 L(* above the crop 
(Counihan, 1975) and decreased linearly with depth to 0.125 U, at z = 0 (Wilson, 1980). 



MARKOV-CHAIN SIMULATION OF PARTICLE DISPERSION 

x=Om 2m 4m 6m t se. 

11 

h 

2- 

h- 

l- 

o- 

4 

I 

f 

08 1 1.2 0.8 1 1.2 0.8 1 1.2 08 1 1.2 

Normalized tracer concentration 

Fig. 2. Normalised profiles of tracer concentration and the height of the concentration centroid (0). Initial 
concentration profiles (X = O.Om) were chosen to be approximately uniform. Subsequent profiles were 
obtained from Markov chain simulations using (a) Equation (IO); and (b) Equation (20) with the pressure 
term included. The symbols (H) show + one standard error and apply to all profiles after x = 0.0 m. 

The Lagrangian time scale was chosen to increase linearly with z - d above the crop, 
so that TL = 0.32(z - d)/q,,, (Hunt and Weber, 1979). Within the crop we have 
assumed, with little evidence, that TL is constant with height and equals 
0.32(/r - d)/(1.25u,). For the present simulations, the time step At was 0.2 TL. Ten 
replicates of 4000 particle trajectories gave sufficient accuracy and an estimate of the 
standard error. The height of the upper boundary was 2.4 m so that the simulation 
extended 0.8 m above the top of the crop. 

The results (Figure 2a) obtained using the Markov model with no pressure force 
(Equations (10) to (12)) show the downward drift reported by Wilson et al. (1981a). 
After a distance of only 2 m, the concentration close to the ground increased by a factor 
of 4, and at 6 m by a factor of 10. The downward drift is also shown by the fall of the 
centroid Z, defined by 
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-‘I =-I 

Z = j zc(z)d;/j dz)dz, 

0 0 

where z, = 2.4 m is the upper limit of the simulation, Initially Z = 1.20 m, but by 6 m 
it is only 0.71 f 0.01 m. 

Figure 2b shows the results using Equation (20) with the pressure term included. In 
contrast to Figure 2a, the constant concentration profile is preserved. The scatter in 
concentration is all within the range expected from the standard errors, the increase in 
scatter near the ground being caused by the low wind speed and relatively small number 
of particles contributing to the concentration there. (Of the 40 000 particles used in the 
simulation, an average of only 128 are below 0.1 m.) The vaiue of Z is also stable; at 
6 m it is 1.196 + 0.04 m compared with the initial value of 1.20 m. 

5. Conclusions 

We have shown that the equations commonly used in Markov-chain simulations of 
particle trajectories in turbulent flow can be derived from the Langevin equation. 
Furthermore, the pressure gradient associated with a spatial variation of Eulerian 
vertical velocity variance can be incorporated into the Langevin equation, leading to a 
modified Markov equation. It also follows from the solution of the Langevin equation 
that the mean drift velocity induced by a gradient in vertical velocity variance is 
W = T,~w;~/&, the same as that predicted by the Fokker-Planck equation. 

A simulation using the modified equation shows that a uniform concentration profile 
is preserved, as it should be. Thus the equation can be used with confidence in turbulent 
flows in which mean wind speed, velocity variance, and Lagrangian time scale all vary 
with height. 
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