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Abstract. Shuttleworth’s analysis of evaporation from partly wet canopies is appropriate only for the 
unrealistic case of dispersed, minute water droplets. When a more realistic model is used, the predicted 
range of canopy resistances is consistent with experimentai estimates for a pine forest. 

1. Concept of Intrinsic Resistance 

Evaporation cannot occur from a free water surface when the air in immediate 
contact with the water is saturated at the temperature of its surface. When the air is 
not saturated, the saturation deficit needed to sustain unit flux of water vapour is 
proportional to a resistance (RI) which depends on the molecular properties of the 
air-water interface. This resistance is omitted from standard micrometeorological 
analyses on the grounds that it is negligible and Shuttleworth (1975) confirmed the 
validity of this assumption by using kinetic theory to show that RI was probably 
about 0.05 s m-r for water vapour - three to four orders of magnitude less than the 
aerodynamic boundary-layer resistances characteristic of leaves. He then deduced 
from an equation which he stated, but did not derive, that the resistance of a canopy 
to the diffusion of water vapour should be negligible even when the foliage was only 
slightly wet. This deduction is contrary both to intuition about the loss of water from 
plants and to human experience. For example, sweat breaking out on the face does 
not produce evaporative cooling over the whole body! A short supplementary paper 
by Shuttleworth (1976) contains experimental evidence that when the canopy of a 
pine forest was partly wet, the value of r,, derived by manipulating the Penman- 
Monteith formula, ranged from 0 to 100 s m-‘. Because this result was inconsistent 
with his own equation, Shuttleworth deduced that the Penman-Monteith equation 
was not valid for a partly wet canopy. The purpose of this note is to argue the contrary 
proposition - that Shuttleworth’s equation is inappropriate for partly wet canopies 
because its validity is limited to the unrealistic case where water is uniformly 
distributed in very small droplets. 

2. Restricted Validity of Shuttleworth’s Equation 

It is convenient to consider a layer of canopy containing unit leaf area index of n 
identical leaves (or needles in the stand considered by Shuttleworth) each with an 

Boundary-Layer Meteorology 12 (1977) 379-383. Ail Rights Reserved 
Copyright @ 1977 by D. Reidel Publishing Company, Dordrecht-Holland 



380 J. L. MONTEITH 

area of l/n, a stomata1 resistance of r,,,, and a boundary-layer resistance of r, 
depending on wind speed. A fraction W of each needle is wetted by rain or dew. 

Shuttleworth dealt with the special case in which the flux of water vapour 
from each needle could be treated as a current through two parallel resistances 
r,,,/(l - W) representing the dry fraction of the epidermis; and rl/ W representing 
the wet fraction (Figure la). 
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Fig. 1. Electrical analogues for water-vapour flux from partly wet canopy - (a) according to Shuttleworth 
(1976) and Equation (1); (b) according to Equation (4). 

The combined surface resistance of rz needles is then 

r, = n-l[yy--’ (1) 

equivalent to Shuttleworth’s equation; and when the aerodynamic resistance is 
included, the total resistance of the system is 

r, = r, + n-‘r, . (2) 

(This equation omits a shelter factor (Thorn, 1971) which is not relevant to the 
discussion.) From the literature reviewed by Jarvis et al. (1976), characteristic and 
convenient values for a pine forest may be chosen as r,,, = lo3 s m-l and r, = 

lOsm-‘. Figure 2 shows how the resistance of a single needle (nrs) depends on W 
when these values are put in Equation (1). For all values of W exceeding 0.01, the 
effective resistance of a single needle is less than rI/O.O1 = 5 s m-r which is trivial 
compared with the resistance of lo3 s m-r for W = 0. In other words, Equation (1) 
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Fig. 2. Dependence of resistance nr, on surface wetness W assuming: rr = 0.05 s m-‘; rSt, = 10’ s m-‘; 
r,,lOsm-’ - (a) according to Shuttleworth (1975) and Equation (1); (b) according to Equation (4). 

predicts that, when only 1% of the foliage in a canopy is wet, the rate of evaporation 
is virtually the same as when all surfaces are covered with water. 

This implausible result is a direct consequence of treating r,,,/(l - W) and rI/ W as 
parallel resistances, a procedure which is valid only when both resistances meet at an 
equipotential point (X in Figure la), which is inside the aerodynamic boundary layer 
of the needle (represented by r, in Figure la). For this condition to be satisfied, the 
boundary layer must be occupied by equipotential shells surrounding the needle, 
more or less parallel to the epidermis. For example, in the simplest case of a dry 
needle (W = 0), transpiration takes place mainly through stomata and to a much 
smaller extent through the almost impermeable cuticle. Although stomata1 pores 
usually occupy only about 1% of a leaf surface, the rate of water loss can approach 
the loss from a free water surface because there is a large number of pores per unit 
area. More specifically, when the distance between the pores is of the order of 
100 Frn, the equipotential shells associated with the end of each pore intersect well 
within the boundary layer and a two-dimensional field plotter has been used to 
demonstrate this behaviour (Monteith, 1975). For such a distribution of water- 
vapour sources, it is justifiable to treat the stomata1 resistance r,,, and the boundary- 
layer resistance r, as distinct components connected in series. This simple procedure 
would not be valid, however, if stomata were much larger and more widely spaced. 

Returning to the case of a wetted leaf, it follows that Equation (1) is valid when 
large numbers of very small droplets are distributed more or less uniformly over the 
epidermal surface. This is the least likely of all the ways in which liquid water might 
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be distributed among pine needles, or in any other type of foliage. To be more 
exact, the mean separation of the droplets would need to be an order of magnitude 
less than the mean boundary-layer thickness which is given by rQ, where D is the 
molecular diffusion coefficient for water vapour. Putting r, = 10 s m-r and D = 
2.5 X 10m5 m2 s-l gives rQ = 250 wrn implying a droplet separation of the order of 
25 pm. The implausible conclusion from Shuttleworth’s equation is therefore a 
consequence of the unrealistic distribution of water for which it is valid. 

3. Alternative Equation for Partly Wet Canopy 

In contrast to the extreme dispersion of water needed to make Equation (1) valid, a 
partly wet canopy might consist of a fraction W of completely wetted needles. This 
distribution is consistent with Shuttleworth’s experimental criterion for partial 
wetness: some, but not all his electrical sensors indicated the presence of water. The 
effective resistance of unit leaf layer is found by combining the wet and dry 
components in parallel and subtracting r, to give 

r,=n-l 
IF 

W +1-w -1 - ~ 
0 + r, rsto + r, I I 

- r, 

which satisfies the condition r, = nelrsto when W = 0 (see Figure lb). Because rI is 
much smaller than r,, Equation (3) can be reduced to the simpler form 

r,-n-'(l-W)[(W/r,)+(llr,,,)l-' (4) 

which is independent of rI. Figure 2 shows that when standard values of r,, r,,, and rr 
are inserted in Equation (4) nr, may assume a much wider range of values than was 
predicted by Equation (1). This wider range is consistent with the experimental 
evidence that the canopy resistance of a pine forest (approximately nr, divided by the 
leaf area index) assumes values up to 100 s m-l when the foliage is partly wet 
(Shuttleworth, 1976). 

The relation between r, and W cannot be unique: for a given value of W, water 
may be distributed in many different ways from which two limiting cases have been 
selected. Lack of uniqueness may limit the predictive value of the Penman-Monteith 
equation but it does not demonstrate its ‘failure’. Indeed, because the equation is 
derived by combining expressions for the conservation of energy and of mass, it 
cannot fail when used retrospectively to derive a value of r, for a uniform canopy. 
This contention is supported by 10 years of experimental evidence for crops, 
orchards and forests (Gash and Stewart, 1975; Black etal., 1970; Szeicz &al., 1973; 
Monteith et al., 1965; etc.). 
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