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Abstract. A similarity theory for the atmospheric boundary layer is presented. The Monin-Obukhov 
similarity theory for the surface layer is a particular case of this new theory, for the case of z-0. Universal 
functions which are in agreement with empirical data are obtained for the stable and convective regimes. 

1. Introduction 

In 1954, Monin and Obukhov published their milestone paper on the similarity theory 
of the surface layer. The theory has proved to be one of the most successful tools in the 
analysis of the mean flow in the atmospheric boundary layer (ABL). The idea of 
similarity has provided a simple framework for determining semi-empirical distributions 
of the meteorological parameters in the lower atmosphere. The application of the 
Monin-Obukhov (M-O) theory has been limited to the lowest lo-100 m above the 
ground. An equally simple method to describe the flow above the surface layer has not 
been developed during the last three decades, mostly due to the absence of sufficient 
experimental data. 

Since the early 1950’s, however, there have been numerous experimental studies 
which have provided a substantial increase of our knowledge of the atmospheric 
boundary layer (The Great Plains 1953 Turbulence Field Program, the Wangara 1967 
Experiment, Kansas 1968 Field Program, Minnesota 1973 Experiment). An extensive 
empirical base provided by these field experiments has been supplemented by three- 
dimensional numerical simulations pioneered by DeardoriTand by second-order closure 
modeling. Employment of these contributions has made it possible to generalize M-O 
similarity theory to the region above the surface layer. 

Our paper is divided into three parts. In the first we derive similarity profiles for the 
stable-continuous boundary layer, which according to Deardorff (1978) is limited by the 
condition 0 <h/L < 2. In the second part we discuss the convective case, which occurs 
in the atmosphere, when - zJL>2 (h, zi- heights of the stable and convective ABL, 
L - Monin-Obukhov length). In the last part, we present the empirical verification of 
the new theory. 
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2. Stable Boundary Layer 

Let us first discuss the case, when air is slightly warmer than the underlying surface and 
the turbulence is continuous in the entire boundary layer. Over land at night, this can 
exist only during strong winds. 

In the stable atmospheric boundary layer, buoyancy suppresses turbulent eddies, 
which become small and independent of the distance from the surface. To express the 
local character of turbulence, we adopt the first hypothesis: ‘The appropriate scales of 
turbulent flow in the stable-continuous regime are based on the local values of the 
Reynolds stress r(z) and the turbulent heat flux w’ 8’ (z).’ We shall use: 

velocity scale: U*(z) = T1’2 (local friction velocity) 

w’ 8 
temperature scale: t*(z) = - ~ +2 (1) 

height scale : A(z) = Z 
G* 

(local M-O length) 

where K - von Karman constant ( = 0.35), /I - buoyancy parameter. In the surface layer, 
(1) takes the form of M-O similarity scales u *, T, and L. The idea of local scaling for 
the stable ABL was first introduced by Nieuwstadt (1984). 

We shall consider the following similarity functions: 

a& = 2 {(au/az)’ + (w/v/az)2}“2 = KAS/U* ; 
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where E = (u’” + d2 + PV’~)/~) - the turbulent energy; E - the dissipation rate; S - the 
magnitude of the wind shear; CT- the horizontal turbulent energy; Y - the horizontal heat 
flux; U, V, 0- the components of the wind velocity and the potential temperature. The 
similarity functions (2) are defined in a way analogous to the M-O similarity functions. 

In the stable ABL, turbulence is in a so-called ‘z-less’ state (Wyngaard, 1973). As a 
consequence, ah similarity functions in (2) should approach constant values 
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It is convenient to rescale the three 0’ functions, defining the following new functions: 

OM = za&; a& = zq; me = zq. (4) 

Values of the universal constant in (3) can be obtained by matching the stable outer and 
stable surface layers. This leads to the second hypothesis: ‘The form of the similarity 
functions @ of Z = z/A in the outer layer (the part of the ABL above the surface layer) 
is identical to the form of M-O similarity functions $ of < = z/L in the surface layer 
(L - Monin-Obukhov length)‘. This is the main result of the similarity theory in the 
stable case. 

The empirical basis of the M-O similarity theory of the surface layer gives the values 
of the constants in (3) and (4) (Takeuchi, 1961; Businger et al., 197 1; Wyngaard et al., 
1971; Wyngaard, 1975): 

OM = 1 + 4.72; o* = 0.74 + 4.72; QE = 1 + 3.72; 
(5) 

Q1 = 8.5; (I),,, = 2.5; @‘e = 4; Q,, = 4. 

Let us notice that (5) holds in neutral stratification, for which Z--+0. Functions $+, & 
and & were previously shown to be constant by Nieuwstadt (1984). 

From the definitions of eddy viscosities and Richardson numbers, we also obtain: 

where KM, KH are momentum and heat eddy viscosities (nondimensionalized by 
KAU ,), and Ri, R,- are Richardson numbers. 

Now we introduce the third hypothesis, concerning the distribution of the Reynolds 
stress and the turbulent heat flux in the stable boundary layer. We assume that in the 
stable, barotropic ABL, over a horizontal terrain: 

T = 24; (1 - z/h)“’ 

W’B’ = (@vq (1 - z/h)“’ 
(7) 

where h is the height of ABL and c(i, cr, are constants (dependent on the state of temporal 
development of the stable ABL, the terrain slope, baroclinicity, etc.). Constants c~i and 
a, must be determined empirically. 

Data presented by Yokoyama et al. (1979) show that or, can vary between 1 and 3. 
The Minnesota observations (Caughey et al., 1979), taken near sunset, show that tll N 2 
and r2” 3 (see Figure 4). The Cabauw data (Nieuwstadt, 1984) collected later in the 
development of the stable ABL, indicate that both q and L-Q are close to 1. 

It can be shown that tx2 2 CQ. This result can be obtained from (2), (4), (5) (7) and 
from the assumption that both S and aO/az + 0 when z/h + 1. The vanishing of the 
gradients at the top of the ABL simply means that the stable regime develops by cooling 
of the daytime mixed layer and that at z = h, the wind velocity reaches a maximum. The 
condition of tl, 2 x2 was not met in Nieuwstadt’s (1984) study. This caused his results 
to exhibit a singularity in the temperature profile at the top of the ABL. 
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From (7) we obtain: 

u, = u*(l - z/h)““2 

t * = T, (1 - z/h)“’ - =I’* 

A = L(l - 4/43/*al- x* 

(8) 

where L - Monin-Obukhov length, (L = u’,/( r@T*) and (we), = - U* T,). 
For the particular case of the Minnesota experiment (Caughey et al., 1979) when 

Z, = 2 and r2 = 3, from (5) (6) and (8) we obtain 

“5 s = (1 + 4.7&Z/h) (1 - z/h) (9) 
U* 

;2 ;p = (0.74 + 4.7/&z/h) (1 - z/h)2 
* 

f; = 8.5(1 - z/h)2 (11) 
* 

W 
-2 = 2.5(1 - z/h)’ 

4 
(12) 

H f2 

c 
= 4(1 - z/h)4 

“,2” = (1 + 3.7p,z/h) “-tl”” 
* 

(13) 

(14) 

Y 
~~ = 4(1 - z/h)3 
U*T* 

z/h 
R1 = ” (1+i.7phz/h)* 

(0.74 + 4.7p,z/h) 

z/h 
Rf = r&z ~ ~~--- 1 + 4.7phzlh 

kv _ z/h(l - z/h) 

w,h 1 + 4.7&Z/h 

kH z/h(l - z/h) --=- 
tiu*h 0.74 + 4.7pL,z/h 

(15) 

(16) 

(17) 

08) 

(19) 

where ph = h/L - the stability parameter. The integration of (10) gives the temperature 
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profile : 

K 
fw - wa 

T* 
= 0.74{ln(z/z,) - 2z/h + 0.5(z/h)2 t 

+ 4.7PhZ/h [ 1 - z/h + l/3 (z//2)2]} 

where z0 is the roughness parameter. 

(20) 

Let us emphasize that the power coefficients in (9)-(20) are not universal, and were 
found for the case of the evolving boundary layer during the Minnesota experiment. 

The comparison of the above functions with observations will be given in Section 4, 
here we only notice that when z/h+O, all functions (9)-(19) take the classic form of the 
semi-empirical surface-layer similarity functions. 

3. Convective Boundary Layer 

Let us now consider the case of a large upward heat flux and light winds, when the 
structure of the ABL is completely dominated by buoyancy (so-called free convection 
regime). The upper part of the daytime ABL over land is almost always convective. 

In free convection, the product of the Reynolds stress with wind shear is relatively 
small so the stress cannot be used to define local scales. This remark leads to the 
hypothesis: ‘The appropriate scales of turbulent flow in the convective regime, below 
the entrainment layer, are based on the local values of the turbulent heat flux w’ 0’ (z).’ 
We shall use: 

velocity scale: U$Z) = [BzZ] ‘I3 

W’B’ (y77J72 113 

temperature scale: tJz> = - ~ = - ~ 
9 [ 1 BZ 

(21) 

height scale: - $3 z . 
& 

The above hypothesis is in accord with the general argument of Tennekes and Lumley 
(1972) that if the turbulence time scales are small enough to permit adjustment to the 
gradually changing environment, it is possible to assume that the turbulence is dynami- 
cally similar, if nondimensionalized by local scales. In our case, the time scale of the 
energy-containing turbulent eddies is z, N zi/w * N 10 min (zi - the height of ABL and w * 
the velocity scale, defined by Equation (28) and is small in comparison with diurnal cycle 
and time changes in the synoptic conditions. 

The actual height z in (21) is a proper scale of height in the lower half of the convective 
ABL as a result of mechanical dumping of energetic long-wave fluctuations due to the 
presence of a solid lower boundary. 

In the convective surface layer, where w’8’ = const, (21) take the form of the free 
convection scales z+,, tro (Wyngaard et al., 1971; Wyngaard, 1973). We consider the 
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following similarity functions : 

@,=KzS, iQ!fT;, @w2$ @o=!r 
9 f Mf t3 

(22) 
W/e2 c&$?, a)30=-, mw3x. 

vf vf’ 4 

From (21) it follows that z is the only height scale and therefore it is impossible to 
construct the dimensionless height parameter in the convective ABL. As a consequence, 
all universal functions obeying local similarity must be constant: 

Q,, O’,, CD,, a,@, Dj8, CD,, - constant. (23) 

The same argument was used to determine the form of the similarity functions in the 
convective surface layer (Wyngaard, 1973). 

Not all statistics obey local similarity. The dissipation rate of the turbulent energy and 
the horizontal wind variances are approximately constant in the mixed layer (Caughey 
and Palmer, 1979) and therefore cannot remain constant when scaled by (21). The 
velocity spectra for the horizontal wind components show a weak dependence on height 
(Kaimal et al., 1976) confirming that (21) are not appropriate scales for these statistics. 
In contrast, the spectrum of the third velocity component, w, has a very distinct spread 
with height, justifying the use of z as a height scale up to z/zi - 0.5. Also in the spectrum 
of temperature there is a strong dependence on height (Kaimal et al., 1976) indicating 
that @‘e follows local similarity. The functions @, and Q0 were empirically shown to be 
constant by Caughey and Readings (1974, 1975) who found a, = 1.21 and QQ= 1.85. 

Now, as was done for the stable boundary layer, we assume the form of the turbulent 
heat flux (Lilly, 1968): 

w’ = (nQ [(l - z/zp - &z/z,] (24) 

where zi is the height of the convective ABL, U; is a constant and a; parameterizes 
entrainment at the top of the ABL. Also in this case the choice of constants is debatable; 
however, there is general agreement that G(; = 1 and a; = 0 + 1. 

From this we have 

w’ = (im)O (1 - rz/z,) 

where z = 1 + sr;, 
and also 

(25) 

l/3 113 

(1 - ctz/z,)“3 = w* (1 - txz/zJ”3 (26) 

l/3 - l/3 

(1 - cYz/zJ2’3 = 8* (1 - c1Z/Zi)2’3 (27) 
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where 

U*lW* = ( - 7c/pj)1’3 

T,/tI, = ( - pjic)” 

and w* and l3* are the mixed-layer scales (Deardorlf, 1977) and pi = q/L. 
Using (22), (26), and (27) we get: 

Kz ae 

T, az 

- l/3 

(1 - clz/zJ2’3 = &(z/L) (1 - Mz/ziy 

213 

(1 - XZ/Zi)2’3 = & (z/L) (1 - ctz/zJ2’3 

- 213 

(1 - LYz/zJ4’3 = &(z/L) (1 - “Z/Zi)4’3 

d e 
~ - (1 - z/zJ 
u*T* 

W’8’2 z 

u*T* -(--I 

- l/3 

L 
(1 - az/zj)5’3 = $33e(z/L) (1 - cXZ/Zi) 

W’3 

TN ( > 

- ; (1 - cfz/zJ = $&z/L) (1 - az/z,) 

where @(z/L) are semi-empirical functions in the surface layer. 
Assuming that (l/T, S/az)/(l/u, aU/az) should remain finite, when 

(Monin and Obukhov, 1954), we obtain 

a& = z K (1 - MZ/Z,)“3/( - z/L)213 
Uf az 

and after resealing: 

Kz au 
~ T - ( - z/L)- “3(1 - az/zJ2’3 = &Jz/L) (1 - LYz/zJ2’3. 
u, oz 

- 

(28) 

(29) 

z/L+aj 

(30) 

(31) 

It should be mentioned that the form of the free-convection surface similarity 
functions + [in Equations (29), (31)] as well as values of the constants given by different 
authors differ substantially. There is a controversy, for example, connected with the 
form of the functions &,, and c#+, in the surface layer. In spite of theory, which predicts 
a‘ - l/3’ power law, Businger et al. (1971) obtained from the Kansas data a ‘ - l/2’ 
power behavior for $,, and ‘ - l/4’ for c&, in the range of z/L up to - 2, the largest value 
found. However, because of the limited z/L range and the difhculty of measuring 
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vanishing temperature gradients, this cannot be taken as a decisive test. There are 
similar difficulties with adopting other surface-layer similarity functions and their region 
of validity. This implies the need for more detailed observations. 

Using the Minnesota 1973 data (Izumi and Caughey, 1976; Kaimal et al., 1976) we 
found the following formulas: 

Q, = 0.42(1 - ~z/z,)“~/( - ~~z/z~)~‘~ (32) 

@)h = 0.35 (33) 

qo= 1.0 (34) 

@, = 1.6 (35) 

06 = 2.0 (36) 

fDl@ = 0.5 (37) 

and after resealing: 

%” &/dz = 0.42(1 - ZZ/Z~)~‘~ / [(z/zJ~‘~ ( - p(i)2131 (38) 
* 

;31 ao/az = 0.35 (1 - xz/z;)2’3/(z/zi)4’3 (39) 
* 

W’fY2 
-~~~- = l.O(l - cxZ/Zi)5’3/( - &Z/ZJl’3 

w*QS 
(40) 

t;: = 1.6 (z/zJzi3 (1 - XZ/Z~)~‘~ (41) 
* 

6 
8;f = 2.0 (1 - rz/zJ4’3 / (z/zJ2’3 

* 
(42) 

u’d’ 
~-.- - = 0.5 (1 - XZ/Zi). 
w*d* 

(43) 

Using the APTEX data (Lendschow et.al., 1980) we also found 

CD M,3 = 0.8 

and 

(44) 

W’3 
- 

3 
= 0.8 z/z,(l - %z/zi). (45) 

W% 

The application of the above formulas is limited to the lower portion of the ABL 
where z/zi < l/z. For small values of z/z/ all functions (38)-(43) and (45) take the classic 
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form of the semi-empirical surface-layer similarity functions. We shall compare the 
obtained similarity functions with empirical data in the next section. 

4. Theory Versus Observations 

In the previous two sections, we developed a similarity theory of the atmospheric 
boundary layer. It was based on the following hypotheses: 

(1) Local values of the heat flux and the Reynold stress (only in the stable and neutral 
cases) can be used to define characteristic scales of the motion in the atmospheric 
boundary layer; 

(2) Similarity functions nondimensionalized by local scales have a simple form 
prescribed by Equations (3) and (23); 

(3) The local scales of motion can be expressed as empirical functions of z/h or z/z,. 
Using hypotheses 2 and 3, we are able to express similarity functions in the form 

(9)-( 19) and (29), (3 1) and extend Monin-Obukov similarity theory above the surface 
layer. We shall examine these hypotheses using experimental data. We shall first 
concentrate on the stable boundary layer. 

Plots of the empirical similarity functions, nondimensionalized by local scales, were 

first presented by Nieuwstadt (1984). Generally, they behave like the derived formulas 
(5)-(6). The evidence for the functions @,,,, me and Ri is given in Figures l-3. The scatter 
seen in these plots may be due to measurement errors, which are substantial in the stable 
ABL (since turbulent characteristics are small). Nevertheless, a comparison of 

I . . . . , * 7 * , . ’ . . I , 

1 
2- x 

I( 

t 
20 

l- 

0 I I 1 I 

1 3 4 >c 

Fig. 1. Standard deviation of the vertical velocity uW = (w”)“~, nondimensionalized by a local parameter 
U, , as functions of z/A. Stable case. Solid circles - averaged nonfiltered data, triangles - filtered data, 

crosses - data of Caughey et al. (1979) (after Nieuwstadt, 1984). 
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Fig. 2. Standard deviation of the temperature Auctuations a, = (?)‘I’, nondimensionalized by a local 
parameter t,, as functions of z,iA. Stable case (after Nieuwstadt, 1984) (crosses are data of Caughey et al., 

1979). 
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Fig. 3. Richardson number Ri as a function of z/A. Stable case (after Nieuwstadt, 1984), The curve is 
described by Equation (16). 

Equations (5) and (6) with the empirical results presented by Nieuwstadt (1984) shows 
that hypothesis (2) is valid with respect to functions ab,, @,,,, Qpa DE, @,,, K,,,, KH, Ri 
in the stable case. We do not possess data to examine hypotheses dealing with the 
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remaining functions (QM, QD,, Q,, @iJ. However, we shall be able to analyze expressions 
(1 l)-( 16) using the 1973 Minnesota data presented by Caughey et al. (1979). 

Figure 4 shows the empirical distribution of the Reynolds stress and the turbulent heat 
flux as a function of z/h from observations in Minnesota. In the figure, Equation (8) is 

z/h 

0 0.2 0.4 0.6 OJ 1.0 12 

-Gi/u~ -a/u,r, 
Fig. 4. Vertical profiles of the dimensionless Reynolds stress and the vertical heat flux. Stable case (after 

Caughey et al., 1979). The curves are described by Equation (7) a, = 2 and a, = 3. 

also plotted, fitting the data very well. In Figures 5-8, Equations (1 l)-( 16) are plotted 
versus the Minnesota data. The curves fit the data remarkably well, which confirms the 
theory for the stable case. It should be noticed that the theory applies as well to the 
evolving-in-time stable ABL (Caughey et al., 1979) as to the more steady state, stable 
ABL (Nieuwstadt, 1984). 

Yamada (1979) derived vertical profiles for r, w’ 8’) w’ 2, 8’ 2, KM and d / V 1 /dZ for 
the stable case by a direct transformation of the simplified second-moment equations. 
Yamada’s profiles have a more complicated form and are expressed in terms of the 
Richardson number and the momentum flux (which has the form given by Equation (7) 

z’hfy--J K/ Lj 
0 1.0 2.0 38 4.0 50 60 0 1.0 2.0 3.0 4P 5.0 6.0 6 IJ 2.0. 3.0 4.0 5.0 6.0 

7h2 l U8Al.T. 

Fig. 5. Vertical profiles of the dimensionless variances and covariances. Stable case (after Caughey et al., 
1979). The curves are described by Equations (1 1 ), (13), ( 15). (Coefficients in Equations (11) and (15) are 

reduced to 6 and 3.) 
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0.6 
< 
N 0.4 

Fig. 6. Vertical velocity variance 2, = w’ * nondimensionalized by U,. Stable case (after Caughey et al.. 
1979.) The curve is described by Equation (12). 

z/h 

Fig. 7. Vertical profile of dimensionless dissipation rate (after Caughey et al., 1979). The curve is described 
by Equation (14). 

with x, = 3/2). Eliminating the Richardson number from his formulas by the use of 
Equation (17) gives different but quite close expressions to those obtained in our paper. 

Now we turn to the free convection case. As was done for the previous case, we shall 
start by examining the behavior of the similarity functions nondimensionalized with 
local scales. The empirical similarity functions QM, Qh, @‘,, QO, QiO obtained from the 
Minnesota experiment (Izumi and Caughey, 1976) are shown in Figures 9-12. We found 
the functions QM and Cp, by differentiating polynomials in In z, fitted to wind velocity 
and temperature measurements. Second- and third-order polynomials in In z were used 
for the temperature measurements and second-order polynomials for the wind velocity. 
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1.0 I I 1 I I I J I - 

0.5 - 

0.005 . ’ I I I I I I 

0.001 0.01 0.1 1.0 

z/h 

Fig. 8. Richardson number as a function of z/h (after Caughey et al., 1979). The curve is described by 
Equation (16), p,, = 5. 

The five runs with the smallest wind direction changes with height were used for this 
purpose. The other functions cf, were found from analysis of all 11 runs of the Minnesota 
experiment. 

From Figures 9-12, it follows that hypotheses (23) and (30) generally work quite well. 
The scatter of all functions close to the top of the ABL is connected with the fact 

2 

q- 

6 

4 

2 

‘i‘ 
6 

4 

2 

IO‘ 
I -1.0 0 1.0 2.0 3.0 “-2.0 -1.0 0 1 .o 2.0 3.0 

%I Qh 
Fig. 9. Similarity functions Q, and a,,. The curve is described by Equation (32) (a = 1.5, pi = - 100). 



390 ZBIGNIEW SORBJAN 

. 

2 :il 
q-1 : l 

6 ;, 
4 . 

* ; 
2. l 

% 

q-2: 

6 . 

4 * 
‘r . 

. 
2 - 

@ 8. 

. . 

. 
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Fig. 10. Vertical velocity variance nondimensionalized by a local parameter I+, obtained from Minnesota 
1973 data (11 runs). Values of u/decrease with height; this is responsible for scatter near the top of the 

ABL. 

[according to (26)-(27)], that when z/zi+ l/cc, the scaling parameters ur and $. tend to 
zero (notice that this scatter disappears on the plots of resealed functions in 
Figures 13-16). This defines the range of z where the theory is valid (z/zi< l/a). 

Controversy about the form of the surface similarity functions $M and & suggests 
testing the following equations, obtained from Equations (38) and (39): 

qM = ,“i o?U/i?z = 0.60(- z/L)-~‘~(~- ~p;‘z/L)~‘~ 
* 

(46) 

I#+, = ;Z/i?z = 0.25(- z/L)-“~( l- UP”;’ z/L)~‘~. 
* 

The above functions fit the Minnesota data in Figure 13 well, for -z/L > 0.5, and 
support the free convection law ‘ - l/3’ in the surface layer, Constants 0.60 and 0.25 
in Equations (46) can be compared with the constant 0.38, obtained by Zilitinkevich and 
Chalikov (1968) for qM and &, in the range of - 0.15 < z/L < - 1.2. The region 
- z/L < 0.5 in Figure 13, where there is a discrepancy between curves and observations, 
can be interpreted as a transition layer to the neutral regime. 
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10-l: . 
8 . 6 .rf . 

. 
4 - 

- 0;. 
2- l 

l 
l - 

11-2: 

6 - 

-2 9 I t’f 
Fig. 11. Temperature variance, nondimensionalized by a convective local parameter r/. Obtained from 
Minnesota 1973 data (11 runs). Values of t/decrease with height; this is responsible for scatter near the top 

of the ABL. 

The function $ in (46) decreases with height, reaching zero at (z/z~)~ = l/a. From this 
we conclude that the theory predicts a minimum in the potential temperature profile at 
the height where the heat flux becomes zero and therefore is unable to predict regions 
of the so-called ‘counter-gradient flux’, often observed in the mixed layer during periods 
of strong convection. For this reason $Q, is not valid near the height (z/z,),. 

Analyzing profiles of the heat flux distribution during the Minnesota experiment, we 
found a mean value of c( about 2.2 for all runs, and equal to 1.5 for runs chosen to derive 
functions @)M and Oh. We also established that a - 1.5 for run 7D1, a - 2.5 for run 5Al 
and a N 1.8 as amean for runs shown in Figure 16. All curves in Figures 13-16 represent 
mean conditions and are plotted for the appropriate mean values of a. The mean value 
a N 1.1 was found for the AMTEX data (Lenschow et al., 1980), shown in Figure 17. 

In Figures 14 and 15 we plotted Equations (41) and (42) versus empirical data from 
the Minnesota experiment (two cases; 7Dl and 5Al). From these figures it follows that 
8’ ‘/ei is particularly close to our prediction, given by Equation (42) in the lower half 
of the ABL. The region of large values of the temperature variance (not shown in the 
figures), near the top of the mixed layer, is excluded from our theory. Figure 16 supports 
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Fig. 12. Horizontal heat flux u’l?, nondimensionalized by convective scales u, and tf, obtained from 
Minnesota 1973 data (11 runs). Values of u/and t,decrease with height; this is responsible for scatter near 

the top of the ABL. 

the validity of Equation (40). In Figures 17 and 18 Equations (43) and (45) are plotted, 
fitting data well in the whole ABL. 

These figures allow us to conclude that in the convective case our local similarity 
theory seems to work quite well for all considered functions. Equation (40)-(42) have 
for z/zi+O the same form (with very slightly different constants) as surface-layer 
formulas found by Kaimal et al. (1976) and Lenschow et al. (1980). For z/zi+ 1, 
Equations (41) and (42) agree with formulas obtained by Yamada (1979). 

The application of the theory can be depicted on the schematic sketch in Figure 19. 
The vertical axis on the sketch emphasizes the vertical structure of the ABL and the 
horizontal one shows the impact of the stability. Vertically, the ABL consists of the 
surface layer (with the approximately constant turbulent fluxes) up to z/h N 0.1 and the 
outer layer above. With respect to stability, we can classify the ABL into: convective, 
unstable, neutral, stable-continuous, and stable-sporadic regimes. The characteristic 
features of these were explained by Arya (1982). Lines inclined by the angle 45 ’ to the 
left and to the right are parametric curves with h/L or z,/L = constant. Moving along 
these lines changes only z. Since the absolute value of L is seldom less than 5 m, the 
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Fig. 14. Dimensionless vertical heat flux, vertical velocity variance and temperature variance. Run 7D1 
from Minnesota 1973 data. The curves described by Equations (25), (41), (42); a = 1.5. 

0 

stratification is always neutral (logarithmic sublayer) very close to the ground and turns 
into stable or unstable above. The free convective regime never occurs next to the 
ground. The upper part of the non-stable ABL is under the direct influence of entrain- 
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Fig. 15. Dimensionless vertical heat flux, vertical velocity variance and temperature variance. Run 5Al 
from Minnesota 1973 data. The curves described by Equations (25), (41), (42); c( = 2.5. 
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Dimensionless moment ~‘0’ 2. The curve described by Equation (40) (data points after Kaimal et al., 1976). 
a = 1.8. 

ment (entrainment sublayer). The theory is not valid for the stable-sporadic regime, 
which needs more theoretical and empirical consideration, or near the entrainment layer. 
The unstable outer layer was not discussed in our paper; however, the similarity 
functions in this region can be obtained by matching the neutral and convective layers. 

5. Conclusion 

We have shown that there is a simple extension of the Monin-Obukhov similarity theory 
to the region above the surface layer. This has been accomplished by extending scaling 
parameters of the surface layer, which are u*, T, in the stable case and ufl and 0, in 
the convective regime into their local (z-dependent) values. 
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Fig. 19. Idealization of the vertical structure of the atmospheric boundary layer 

It has been found that characteristics of the flow, nondimensionalized by local 
parameters, have a form identical to the functional form of the M-O similarity functions 
in the surface layer. The similarity functions predicted for the stable-continuous regime 
are in good agreement with available empirical data for the steady and the evolving- 
with-time ABL. 

In the convective case, locally scaled similarity functions are postulated to be constant 
(except (DM) in the lower half of the mixed layer. It has been shown that functions Qh, 

Q’,., @ST @IO? %I, @,,,3 obey local similarity. Although the function QM behaves as 
predicted, it does not follow the local similarity. 
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