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Abstract. Often, a combination of waves and turbulence is present in the stably stratified atmospheric 
boundary layer. The presence of waves manifest itself in the vertical profiles of variances of fluctuations and 
in low-frequency contributions to the power spectra. In this paper we study internal waves by means of a 
linear stability analysis of the mean profiles in a stably stratified boundary layer and compare the results 
with observed vertical variance profiles of fluctuating wind and temperature along a 200 m mast. The linear 
stability analysis shows that the observed mean flow is unstable for disturbances in a certain frequency and 
wavenumber domain. These disturbances are expected to the detectable in the measurements. It is shown 
that indeed the calculated unstable frequencies are present in the observed spectra. Furthermore, the shape 
of the measured vertical variance protiles, which increase with height, is explained well by the calculated 
vertical structure of the amplitude of unstable Kelvin-Helmholtz waves, confirming the contribution of 
waves to the variances. Because turbulence and waves have quite distinct transport properties, estimates 
of diffusion from measurements of variances would strongly overestimate this diffusion. Therefore it is 
important to distinguish between them. 

1. Introduction 

The vertical structure of the stably stratified boundary layer (SSBL) of the atmosphere, 
e.g., during a clear night over land, is dominated by radiational cooling of the surface. 
The resulting stable temperature gradient inhibits vertical exchange. Turbulence will be 
suppressed, except in a relatively thin (N 100-200 m) layer near the ground where the 
vertical wind shear is large enough to overcome the effects of the stable stratification. 
Therefore one would expect the turbulent kinetic energy, in particular 0: (variance of 
vertical velocity fluctuations) and also r$ (variance of temperature fluctuations) to 
decrease as a function of height, and to be zero above the boundary layer. 

Measurements show that in spite of a stable stratification the variances do not always 
decrease monotonically with height and even may increase. In Figures 1 and 2 an 
example is given of measurements of the vertical profiles of hourly mean quantities and 
variances in the nocturnal boundary layer along the 200 m mast at Cabauw, the 
Netherlands on the 30th of May, 01-02 UT. See Driedonks et al. (1978) for a descrip- 
tion of the 200 m mast. The boundary-layer height (as inferred from acoustic sounder 
observations) was 180 m at the time. The increase of the variances with height is 
presumably caused by internal gravity waves, which can easily be generated in the stable 
atmosphere and which contribute to the variances. The traces of the temperature as a 
function of time given in Figure 3 for different heights demonstrate this phenomenon. 
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Fig. 1. (a) Measured vertical profiles of hourly mean wind speed (ii) and potential temperature (8) at 
Cabauw, 30 May 1978,01-02 UT. The height of the boundary layer was appr. 180 m. (b) Measured vertical 

profile of wind direction for the same period. 
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Fig. 2. Variance profiles of vertical wind fluctuations (uW) and potential temperature fluctuations (Q) 
measured on 30 May, 1978, 01-02 UT. 

The structure of the SSBL is determined by a mixture of turbulence and waves. The 
dynamical properties of neutral waves and turbulence are quite different. Turbulence has 
the property of efficiently mixing pollutants while linear waves do not transport any 
pollutant at all. The discrimination between the two is of practical importance in 
diffusion models. Estimates of diffusion from measurements of variances would strongly 
overestimate the diffusion in these cases. 
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Fig. 3. Temperature traces at several heights as a function of time, 30 May, 1978,01-02 UT. Temp. units 
in “C. 

Various approaches have been made to differentiate theoretically and experimentally 
between waves and turbulence. Busch (1969) and Stewart (1969) have suggested criteria 
which would enable one to determine experimentally whether or not a given field of 
fluctuations is due to turbulence or to waves. This method is based on the different 
spectral properties of waves and turbulence. Caughey and Readings (1975), Caughey 
(1977), and Caughey et al. (1979) applied this spectral method to the SSBL. They came 
to the conclusion that ifwaves and turbulence have a comparable intensity, this spectral 
method works only if the waves and turbulence have different frequencies. 

In this paper we look at the kind of waves that are supported by the background 
profiles of wind and temperature. It is well known (Drazin and Reid, 198 1, p. 320) that 
there are at least two classes of wave-like solutions: neutrally stable waves that do not 
grow in time, and unstable waves that have an exponentially growing amplitude. 

Neutrally stable waves are usually excited by some external inlluence on the flow, e.g., 
by topographical effects or by convective air bubbles that impinge on a stable layer 
capping a convective boundary layer. They also can enter the domain under considera- 
tion from outside. Fua et al. (1982) analysed the interaction between a neutrally stable 
monochromatic wave and a turbulent field. Einaudi and Finnigan (198 1) and Finnigan 



306 A. F. DE BAAS AND A. G. M. DRIEDONKS 

and Einaudi (198 1) analysed a case with a monochromatic wave in a turbulent boundary 
layer, utilizing phase-averaging to discriminate between the wave and the turbulence. 

The occurrence of unstable waves with an exponentially growing amplitude is most 
interesting since they can grow out of small disturbances of the background flow into 
waves with detectable amplitude, feeding on the mean wind shear. In this paper we shall 
especially investigate the background flow for these unstable perturbations. 

Several other studies applied linear stability analysis to a background flow but not 
with observed profiles and not in comparison with measurements. Davis and Peltier 
(1976), Lalas and Einaudi (1976), and Fritts (1980) studied the excitation of gravity 
waves by shear flow instabilities of a hyperbolic tangent velocity protile bounded below 
by a rigid wall. Davis and Peltier assumed the temperature profile to be an hyperbolic 
tangent too, while the other studies assumed an exponential temperature profile. They 
all found a finite and predictable number of unstable modes, one of which is the 
well-known Kelvin-Helmholtz disturbance. 

We performed a case study of measurements in the stably stratitied nighttime 
boundary layer. The stability analysis is applied to the background profiles of wind and 
temperature, here taken as the time-averaged or mean state, and its solutions are 
compared with experimental spectra of fluctuating wind and temperature. The measure- 
ments were taken along the 200 m mast at Cabauw, the Netherlands (for a description 
see Driedonks et al. (1978)). 

2. Theory 

2.1. MODELOFTHEATMOSPHERE 

To study the excitation of gravity waves by shear flow instabilities, we consider a 
stratified shear flow in the SSBL, bounded below the ground and above by an infinite 
layer with a uniform wind and a constant temperature gradient. 

We consider small perturbations on a background or mean state that is characterized 
by P&), P&), 4,( 1, z an d v0 = (u,(z), uO(z), 0) in which p is pressure, p is density, 6’ is 
potential temperature and v is the wind vector. The index 0 denotes the background or 
reference state. The governing equations are the equation of conservation of mass, the 
momentum equations, the energy equation and the equation of state. The flow is 
assumed to be adiabatic and horizontally homogeneous. The effects of the rotation of 
the earth and of viscosity are assumed to be negligible. 

We linearize the equations for small perturbations around the reference state, and 
apply the Boussinesq approximation and Squire’s theorem (Betchov and Criminale, 
1967, p. 101). Squire’s theorem leads to the conclusion that solving the linear stability 
analysis for plane waves in a background wind field, that has shear in its magnitude as 
well as in its direction, is equivalent to solving it for the projection of the wind field on 
the wave-vector direction. 

We consider perturbations a in the form of plane waves: 

c( = Re {d(z) exp (i&x - at))} (1) 
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with k the wavenumber in the x-direction and r~ = a, + iq the complex angular 
frequency. When ai < 0, the disturbance is stable; for ai = 0 neutral, and for ai > 0, the 
disturbance is unstable. 

As the amplitude of unstable perturbations becomes larger, linear theory can not be 
used anymore. To investigate what happens to the disturbances then, non-linear 
interaction should be taken into account. We do not discuss that. 

The linearized equations are (see e.g., Gossard and Hooke, 1975): 

ikli + CM/C% = 0, (24 

p,,(-ia+iku,)ti+p,,ti 2+ikp=O, 

p,,( - ia + iku,)C + E + gp = 0, 

N% ( - io + iku,) p^ - ~ ti=o. 
g 

The Brunt-V%is&i frequency N is given by 

where c, is the speed of sound. 
Since u,, in (2) is the velocity component along the direction of k, we have to solve 

(1) and (2) for any direction $ of the wavenumber vector (the direction of the x-axis). 
However, since we are mainly looking for unstable solutions, the range of C$ that is of 
interest is limited, as will be discussed in Section 3.1. 

Elimination of ti, p, and fi in Equations (2a)-(2d) in favor of ti leads, after some 
calculation, to the Taylor-Goldstein equation for I+(Z) (Gossard and Hooke, 1975, 
p. 123): 

$ ti(z) + A(z)ti(z) = 0 ) 

with 

and 

N2 k2 
A(z) = ~ - k2+ k d2u, 

co2 w dz2 ’ 

co = CT - ku, = k(c - u,,) , 

(4) 

(5) 

(6) 

(7) 

where c is the phase speed 

c = c/k. 
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From Equation (2d) a useful relation between 8 and ti follows: 

gQz) = - -4. N”e, ).qz) . (8) 
w g 

In order to solve Equation (4), we have to give boundary conditions. We take these 
as follows : 

(i) at the ground, 

z = 0 : G(z) = 0 ) (9) 

(ii) above some height z = z,, well above the boundary layer, U,,(Z) and N’(z) are 
taken constant. With a constant A(z) in this region, the solution takes the form: 

i-C(z) - einz , (10) 

where n is given by 

N2k2 

> 

112 
n = (n, + in,) = k {n(Z)U)}1’2 = * -k2 . 

(0 - uok)2 
(11) 

If ni # 0, we take the solution with the exponentially damped amplitude, i.e., rri > 0. If 
ni = 0, and thus IZ = n,, we require a radiation condition at z = z, with energy transport 
upward only. This means that we take the solution at z = z,, which has an upward group 
velocity cgz = &r//an. From Equation (11) it follows that we require 

do 
c =-- 
gz an 

n(u,k - o) > o 

n2+k2 ’ 
(12) 

Thus, if ni = 0, we take n, in Equation (11) to be the one that meets Equation (12). Thus 
n, > 0 if u0 k - g > 0 and n, < 0 if u,, k - c < 0. The Taylor Goldstein equation (4) and 
the boundary conditions (9)-( 12) constitute a boundary-value problem. In Section 3 we 
will solve this and investigate the solutions. 

If an unstable solution of this problem exists in the atmosphere, it will grow into a 
wave. Such a wave is detectable by our spectral method, to be discussed in Section 3.3. 

2.2. SPECTRA 

We analyse the measured wind and temperature spectra in terms of waves and 
turbulence. 

The cross-spectrum S,,(k) is defined as the Fourier transform of the cross-correlation 
function R,,(j) = w(x) ;(x. + r), 

cc 
Xv,(k) = s fL&) e + jkT dr = C,,(k) - iQ,,Jk) , (13) 

-z 

where C,&,,(k) the co-spectrum and Q&k) the quadspectrum. We shall also use the 
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equivalent coherence coh.Jk) and the phase-spectrum &,&), which are defined by: 

cob,,(k) = II Ldk) II /CL(k). W41’2 3 
(14) 

%&) = II &&) II exp { - VL&)) , 

where S,(k) and S,(k) denote the variance spectra (Bendat and Piersol, 1967, 
pp. 83-84); double bars denote absolute values of complex variables. 

For disturbances in the form of Equation (1) we have 

where an asterisk denotes complex conjugate. Then 

S,,(k’) = $ e2*‘{fid* 6(k - k’) + fi* 8S(k + k’)} . 

Through (8) we have 

&j* zz 
-~i+i(%-h) N’e, IIfil,2, 

(q - ku,)2 + c# g 

(16) 

and thus, for the one-sided spectral densities, the ratio of the cospectrum to the 
quadspectrum is: 

c WB- + ui --. 
e we CT, - ku,, 

Furthermore it follows that for our disturbances 

(17) 

cohWO = 1, 

$I,,,~ = arctan((a, - ku,)/q) . 

For neutrally stable waves (cri = 0) we thus have 

Cws/Qws = 0 

cob,, = 1 

$I&&= ++lL 

(18) 

(1% 

(20) 

For unstable waves (ai > 0), usually ai < c,. Thus for those heights that are well away 
from the critical layer (where a, = ku,), we may expect a spectral behavior as follows: 

Cwe/Qwe small 

cob,, = 1 (21) 

qb&flI. 
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When we are in the neighbourhood of a critical layer (a, - ku, small) the fust and last 
condition of (2 1) will not necessarily apply. We then still may expect a large coherence. 

The spectral properties of turbulence are quite different from Equations (20) or (21). 
Turbulence is a chaotic motion. The phase angles are randomly distributed between - rc 
and + rc. Thus the criteria (20) or (21) give a method of discriminating between waves 
and turbulence in the spectra. 

3. Method of Solution 

In this section we will discuss the application of the stability analysis to measured wind 
and temperature profiles in a SSBL and the application of the spectral method to the 
fluctuation measurements of the same period. 

The general restrictions on the solution of the Taylor-Goldstein equations will be 
discussed. In Section 3.3 the solution method of the Taylor-Goldstein equation is 
described as well as how the solutions appear in the spectra. 

3.1. GENERAL RESTRICTIONS ON THE SOLUTION 

Solving the Taylor-Goldstein boundary value problem numerically without knowing 
the regions of the eigenvalues (k, c) is endless work. However, without actually solving 
the problem we can already make restrictions on the solutions by using three criteria. 
We will discuss these in this section. 

The first is a stability criterium based on the Richardson number; the second is the 
semi-circle theorem of Howard. The third is a restriction on the wave length. 

A necessary condition for unstable wave solutions with a propagation direction $ is 
that the Richardson number Ri drops below 0.25 somewhere in the flow (Miles and 
Howard, 1964). The Richardson number is a measure of relative importance of the 
stabilizing influence of the stratification to destabilizing inertial effects and is defined 
by 

EC N2 

(au,/az)2 ’ (22) 

where uO(z) is the profile of the wind components in the direction $. So if for a certain 
$ the value of Ri is larger than 0.25 everywhere, there are no unstable solutions in this 
direction. Therefore before starting to solve the Taylor-Goldstein equation for unstable 
modes, we first check if Ri < 0.25 somewhere. When there is an inflection point in the 
wind profile (at z = z,), then the minimum value of Ri in the profile will be found around 
this point, since the shear has a maximum there and N2 varies in practice much more 
slowly with height than (au,/i7z)2. 

The semi-circle theorem of Howard (Drazin and Reid, 198 1, p. 142) limits the range 
of c-values for which unstable solutions possibly exist. According to this theorem a 
necessary condition for unstable solutions of the Taylor-Goldstein equation is that 
c = (c,, cj) must lie within the semi-circle in the upper c-plane, whose diameter is 
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proportional to the greatest mean velocity difference u,, - urnin in the layer considered, 
reduced by an amount depending on N2: 

N2 II@+ I12dz 

Lcr - 3(%in + %a.x)12 + ci’ 5 +(4nin - %a~)’ - O (23) co 

s 
Pdz 

0 

where w+ = w/(uo - c), and 

p= ?!L+’ 
II II aZ 

+k*/Iti+I/2>0. 

This limits the c-values for which we apply the stability analysis. 
The wavenumber k of the unstable eigensolutions for a hyperbolic tangent profile has 

been calculated by e.g., Drazin (1958), Miles and Howard (1964) and Davis and Peltier 
(1976). They found that the wavelength I = 2n/k of the fastest growing instability ranges 
from 4 to 8 times the shear-layer depth, where the shear-layer depth is defined as the 
depth over which the gradient of the wind is large. In our calculations, we limited the 
range of k that is searched for unstable solutions to 2 to 20 times the shear-layer depth 
as estimated from the measured profiles. 

3.2. DESCRIPTION OF THE NUMERICAL STABILITY ANALYSIS 

We have developed a computer program that determines unstable solutions of the 
Taylor-Goldstein equation (4) with the boundary conditions (9)-(12), for observed 
background vertical profiles of temperature, wind speed, and wind direction. This 
search has to be done in the domain of four parameters: C#J, the angle of the wave vector 
with the North-South direction (clockwise being positive); k, the length of the wave 
vector; c,, the real part of the phase speed; and ci, the complex part of the phase speed. 
We search for combination of these four parameters that give unstable solutions. 

The angle $ was varied in small steps. For each value of $, the projection of the wind 
profile on this direction was calculated. This projected wind profile was investigated for 
meeting the Richardson-number criterion (Section 3.1) at some height. Only when this 
was the case, was the search continued for this @a.lue. Then the depth of the shear 
layer was estimated from the projected profile and the value of k was varied in small 
steps between values corresponding to 2 to 20 times this depth. 

For each value of $ and k, the upper semi-circle in the (c,, c&plane as given by (23) 
was searched for a possible unstable solution (c, # 0). It is possible to do this with a 
shooting method, which iterates toward values of (c,, ci) for which the boundary 
conditions are satisfied. A disadvantage of such a shooting method is that it can be 
sensitive to the values of the parameters (c,, ci) chosen for starting the iteration. Another 
point is that only one solution is found, while there may be more. 
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To avoid these shortcomings, we developed a different solution method, which can 
be called a two-dimensional secant method. First the upper semi-circle in the (c,, ci)- 
-plane was filled with a regular grid. For each of the grid points, the Taylor-Goldstein 
equation was integrated from z = z, down to z = 0 using a Merson integration technique 
(Lambert, 1973) giving g(z = 0) = C,.(O) + ifij(0) for every grid point, We then look for 
the grid squares on whose four corners the calculated four values of both ti,.(O) and fii(0) 
change sign. For each of these grid squares, an iteration procedure is started. Three of 
the corners of such a grid square are used to define two planes: one through the three 
values of ti,(O), and one through the three values of Gd(0). These two planes intersect 
the horizontal plane of CT(O) = tij(0) = 0 along two lines. The intersection point (if any) 
of these two lines defines the new (c,, ci) point, in the interation procedure. At this point 
again values of fir(O) and J+~(O) are generated. Together with two out of the three values 
from the foregoing iteration step, they again define a new (c,, c,)-point by the intersection 
of planes. This iteration is continued until the new values found for (c,, ci) do not differ 
more than a small amount from the old values. It must be remarked that for this method, 
as for the shooting method, no convergence is guaranteed. The iteration is stopped when 
the new values of (c,, ci) are outside the semi-circle defined earlier. This whole iteration 
procedure was carried out for all relevant grid squares. Therefore this method can find 
more than one unstable solution, if present. However, in our case only one solution was 
found. 

The search through the (@, k, c,, c,)-domain gives the possible sets of eigenvalues of 
these four parameters for which unstable solutions of the Taylor-Goldstein boundary- 
value problem exist. For each set of eigenvalues, the corresponding eigenfunctions fi(z) 
and d(z) are calculated. 

4. Results 

4.1. CALCULATION OFTHE UNSTABLE MODES 

First the unstable solutions of the Taylor-Goldstein boundary-value problem will be 
discussed and next the results of the spectral method. 

We start with the input of the stability analysis, the measurements of the background 
flow. We chose a period of a stably stratifled situation in which the variances of wind 
and temperature increased with height. The averaged wind and potential temperature 
profile measured on the 30th of May, 1978, 01-02 UT are shown in Figure 1 and 
tabulated in Table I. The temperature profile clearly shows the stable stratification of 
the boundary layer, which has a height of 180 m at the time (as inferred from acoustic 
sounder observations). The wind in this boundary layer turned more than 60” with 
height. Wind-shear vectors, calculated as the differences between winds at two heights, 
lie in the quadrant between North and West (Figure 4). The profiles of the velocity 
vectors were projected on a plane with direction $, where @ is the angle with the 
North-South direction, clockwise being positive, and Q, is varied in steps of 20” 
(Figure 5, Table II). 
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TABLE I 

Measured wind and temperature profiles 

z Windspeed Wind direction Potential 
temperature 

0 0 0 12.5 
20 3.4 48 13.5 
40 5.0 59 14.7 
80 7.4 62 15.7 

120 9.3 82 17.1 
160 11.4 102 19.6 
180 12.2 109 21.2 

Fig. 4. Wind vectors at heights 20, 40, 80, 120, 160, and 200 m. 

-12 -10 -8 -6 -L -2 

-LO -60 

2 L 6 6 10 12 

Fig. 5. Projected wind profiles on a vertical plane under an angle $ with the North-South direction. 

The largest wind shear occurred in the profile of 9 = - 20” at the inflection point 
z = 140 m. The shear layer around this point has a depth of about 120 m. 

The wind and temperature profiles being known, we search for the propagation 
directions in which the profiles meet the Ri < 0.25 criterion somewhere in the flow. For 
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TABLE II 

Profiles of wind components in direction 4~ 

$ -80 - 60 -40 -20 0 20 40 60 80 

0 0 0 0 0 0 0 0 0 
20 2.1 1.1 -0.1 - 1.3 - 2.3 - 3.0 - 3.4 - 3.3 - 2.9 
40 3.8 2.4 0.8 - 1.0 - 2.6 - 3.9 - 4.1 - 5.0 - 4.1 
80 6.3 4.1 2.4 -0.1 - 2.1 - 4.9 - 6.5 - 1.3 - 1.3 

120 8.8 1.3 4.9 1.9 - 1.3 - 4.4 - 6.9 - 8.6 - 9.3 
160 11.4 10.8 9.0 6.0 2.4 - 1.6 - 5.4 - 8.5 - 10.6 
180 12.1 12.0 10.5 1.1 4.0 - 0.2 - 4.4 - 8.0 - 10.1 

TABLE III 

Richardson number profiles 

4 -80 -60 -40 -20 0 20 40 60 80 

80 0.18 0.22 0.31 1.06 14.53 2.48 0.53 0.26 0.19 
90 0.24 0.26 0.36 0.12 2.68 38.51 1.40 0.49 0.30 

100 0.30 0.21 0.31 0.48 1.03 11.61 7.10 1 .oo 0.44 

110 0.35 0.26 0.26 0.33 0.53 18.51 322.29 2.53 0.65 

120 0.38 0.24 0.21 0.23 0.32 0.74 4.16 1.10 0.95 

130 0.41 0.23 0.18 0.19 0.24 0.46 1.13 3.82 1.36 

140 0.48 0.25 0.19 0.18 0.22 0.38 1.17 7.21 2.03 

150 0.63 0.31 0.22 0.20 0.23 0.39 1.04 1.84 3.40 

160 1.06 0.46 0.31 0.28 0.31 0.48 1.15 1.06 7.98 

110 2.36 0.89 0.55 0.46 0.49 0.71 1.49 8.21 38.78 

180 7.08 2.08 1.16 0.91 0.90 1.19 2.19 8.03 6566.60 

190 34.61 6.53 3.13 2.22 2.05 2.45 3.97 10.73 192.36 

200 97.26 2.92 12.21 8.03 7.05 7.91 11.18 27.13 207.50 

every propagation direction $, the Richardson-number as a function of height is 
calculated around the inflection point (where Ri is smallest) (Table III). 

From this table we see that the Richardson number criterion is only met by wind 
profiles projected on directions along the larger wind-shear vectors (C#J = 0 to @ = - 40). 
Therefore we only apply the stability analysis to this restricted interval of wave- 
propagation directions. 

The wavenumber of the unstable waves is restricted by the shear-layer depth. The 
wind profiles from @ = 0” to $J = - 40” all have a shear-layer depth of about 120 m 
around an inflection point at z = 140 m. We restricted the stability analysis to values 
of the wavenumber k ranging from 2.5 x 10V3m-’ to 25 x 1O-3 m-i (see 
Section 3.1). 

The restrictions on c from the semi-circle theorem depend on the range of wind 
speeds. This range is different for each @. 
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The stability analysis applied to these restricted combinations of $, k, and c resulted 
in unstable eigensolutions that are shown in Table IV and Figure 6 where the angular 
frequency CT, is c,k and the growth rate a, is qk. 

TABLE IV 

Solutions of the stability analysis for @ = - 20 and + = - 40 

k(10m3 m-‘) c~,(lO-~Hz) ui(lo-ss-‘) 

$I=0 
7.5 

10.0 
12.5 1.2 1.1 
15.0 1.4 2.1 
17.5 1.7 2.4 
20.0 

+= -20 
5.0 
1.5 2.0 1.6 

10.0 3.2 5.1 
12.5 4.3 6.3 
15.0 5.4 5.9 
17.5 6.5 4.0 
20.0 

qb= -40 
5.0 
7.5 3.1 2.3 

10.0 4.4 3.7 
12.5 7.4 5.0 
15.0 9.2 3.9 
17.5 11.1 1.3 
20.0 

From these results we conclude that unstable perturbations have wavenumbers 
within roughly the same range for each propagation direction 
(k = 7.5 x 10 - 3 m - ’ - 17.5 x 10 - 3 m - ‘). This was expected, because the shear-layer 
depth h is roughly the same (h w 120 m) for this range of directions. The frequencies 
a, = kc, and growth rates oi = kci of these unstable perturbations do vary with propa- 
gation direction. The real part of the phase velocity, c,, is equal to the windspeed at the 
inflection point. The variation of the growth rate oi resembles a parabola, with a 
maximum for wavelength A of 3 or 4 times the shear-layer depth. 

As mentioned previously, the largest wind shear occurred in the direction $ = - 20 ‘. 
The fastest growing wave calculated for this direction (k = 1.5 x 10 - 3 m - l, 
o, = 4 x 10 - ’ Hz, oi = 6 x lo- 3 s - ‘) has indeed the largest growth rate of all possible 
unstable solutions. 
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Fig. 6. 

7 

, 

/’ ’ 

I’ 

/wave number (m-l) 

Solution of the stability analysis for $I = - 20 where k is wavenumber, a, is angular frequency 
cr, is growth-rate. 

Solution of the stability analysis for $I = - 20 where k is wavenumber, a, is angular frequency 
cr, is growth-rate. 

and 

TABLE V 
Squared amplitude of the vertical fluctuation velocity 11 i I/* and of the temperature fluctuation 11 811’ of the 

solution with maximum growth rate normalised with the maximum value 

TN 
qJ=o fp= -20 I$= -40 

II *II2 II 8 /I z /l+ll* II 411’ II iJ II2 II w 

0 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.14 0.02 0.04 0.00 0.01 0.00 
40 0.28 0.03 0.11 0.01 0.05 0.00 
60 0.45 0.04 0.22 0.01 0.12 0.00 
80 0.72 0.05 0.40 0.03 0.24 0.00 

100 0.98 0.07 0.57 0.07 0.38 0.01 
120 0.86 0.10 0.50 0.23 0.35 0.02 
130 0.52 0.14 0.29 1.00 0.26 1 .oo 
140 0.12 1.00 0.32 0.12 0.45 0.01 
160 0.82 0.12 0.88 0.00 0.94 0.01 
170 1.00 0.10 1.00 0.00 1.00 0.01 
180 0.99 0.08 0.99 0.00 0.95 0.01 
200 0.76 0.06 0.78 0.00 0.72 0.01 
220 0.48 0.05 0.53 0.00 0.48 0.01 
240 0.28 0.04 0.33 0.00 0.30 0.01 
260 0.17 0.03 0.22 0.00 0.19 0.01 
280 0.10 0.03 0.14 0.00 0.13 0.01 
300 0.06 0.02 0.09 0.00 0.08 0.01 
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For each $J, the protie of the amplitude of the vertical fluctuation velocity $(z) of the 
fastest growing wave is calculated as well as the amplitude profile of the temperature 
fluctuation d(z). The energy contents 11 ti(z) II* and II &z)II * normalised with their 
maximum value are shown in Table V. The vertical velocity profiles have a typical 
Kelvin-Hehnholtz structure: a minimum at the inflection point of the wind protile and 
two maxima at both sides. Only the shape of eigenfunctions is determined. The absolute 
value of the amplitudes of the eigenfunctions can not be determined as we used a 
eigenvalue problem to describe wave generation. 

If we combine the results of the stability analysis for different propagation directions, 
we come to the conclusion that perturbations with a frequency f = 0J27t from 3 x 10 - 3 
to 2 x 10 -’ Hz are unstable. Whenever these perturbations occur in the atmosphere, 
they will grow into waves and should become detectable by our spectral method. 

4.2. SPECTRAL ANALYSIS OFTHE OBSERVATIONS 

The results of this spectral analysis will now be discussed. From the measured 
fluctuations of the vertical velocity w’ and of the (potential) temperature 8’, the energy 
and cross-spectra are calculated. The energy spectra of w’ and 8’ in Figure 7 show a 
large peak around f = 10 - 2 Hz at heights 120,160, and 200 m. This peak is investigated 
for linear wave properties. 

The phase and coherence spectra of the heights 200 and 160 m (Figure 8) clearly show 
the properties of internal waves around this frequency: a very nearly constant phase of 
+ n and a large coherence (see Equations (20) and (2 1)). Outside this frequency interval, 
they are randomly distributed, which indicates turbulence. 

The cospectrum and the quadspectrum of these heights, too, co&m the wave 
properties around f = 10 - 2 Hz: the cospectrum is small and the quadspectrum large. 
The properties of the waves at a height 120 m were less clear. 

The peak in the spectra around f = 10 - * Hz has the same frequencies as the solutions 
of the stability analysis. Figures 7 and 8 show the solutions of the stability analysis 
depicted in the spectra. We draw the conclusion that all possible Kelvin-Helmholtz 
solutions were indeed excited in the atmosphere. This is in agreement with the 
conclusions of Davis and Peltier (1976), who state that the Richardson-number criterion 
is not only a necessary but also a sufficient condition for K.H. instabilities. Other waves, 
the so-called resonant waves, have growth rates that are much smaller than those of 
Kelvin-Hehnholtz waves, if the latter are present. 

4.3. VARIANCE PROFILES 

We also calculated the energy of the measured fluctuations in the frequency range 
from 3 x 10e3-2 x 10e2 Hz. Figures 9 and 10 show these measured variances as well 
as the energy of the fastest growing K.H. waves for $I = - 20, both normalized with their 
maximum value. 

Comparing the two vertical velocity variance proties (Figure 9), we see that both 
show a maximum around z = 170 m. The second, smaller maximum of the calculated 
profile does not appear in the measurements. This is probably due to the fact that 
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Fig. 9. Amplitude profile of the normalised vertical velocity Auctuations of the fastest growing solution for 
$J = - 20 and the measured vertical velocity fluctuations. 
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Fig. 10. Amplitude profile of the normalised temperature fluctuations of the fastest growing solution for 
C#J = - 20 and the normalised measured temperature fluctuations. 
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turbulence is present in the atmosphere up to the boundary-layer height (z = 180 m). 
This turbulence having its largest intensity at lower heights suppresses the wave structure 
there. 

Figure 10 displays the measured and calculated temperature variance profiles for 
$I = - 20, both showing a large peak, the measured peak at a slightly greater height than 
the K.H. peak. We see that the structure of the K.H. waves is a good explanation for 
the observed anomalous variance profiles. 

5. Discussion 

In spite of the fact that we restricted our research to unstable waves generated by shear, 
while many more types of waves can be generated in a stably stratified atmosphere, we 
are able, in this case, to explain the ‘wave part’ of the spectra as being Kelvin-Hehnholtz 
waves. The frequency interval 3 x lo- 3 Hz <f < 2 x lo- ’ Hz showed wave proper- 
ties and coincides with that of the unstable solutions of the linear stability analysis. 

To be able to determine the contribution of waves to the measured fluctuations, we 
have to know the energy of the waves. But as stated before, from an eigen-value problem 
point of view, the frequencies and wavelengths can be determined but not the absolute 
value of the K.H. amplitudes. Nevertheless the calculated vertical structure of K.H. 
waves is an explanation for the measured variance profiles of the vertical velocity 
fluctuations and of the temperature fluctuations. The spectral method is only efficient 
in cases in which K.H. waves dominate over turbulence. Anomalies in the variance 
profiles due to waves occur in a stably stratified boundary layer where the turbulence 
is suppressed. Therefore the method we developed is sufficient to explain these 
anomalies. 

It is not yet clear why the Kelvin-Helmholtz disturbances are indeed observed as 
waves during a period as long as an hour while the calculated typical time constant for 
growth is of order of 3 min. In this analysis, the non-linear effects are not taken into 
account. These forces however, might reduce the growth rate of the waves. Therefore 
the instabilities can be stabilized at a certain amplitude instead of breaking into 
turbulence. The frequencies which will be observed depend on the initial growth rate as 
well as on the non-linear effects (Lalas and Einaudi, 1976). 

6. Summary and Conclusions 

The aim of this research was to distinguish waves from turbulence and to explain 
measured anomalies in the stably stratified boundary layer, especially in the variance 
profiles of vertical velocity and potential temperature. 

From turbulence theory, the variances of the vertical velocity and temperature in a 
stably stratified boundary layer are expected to decrease with height. Waves cause 
anomalous behavior of these variances. We restricted ourselves to shear-generated 
Kelvin-Helmholtz waves, which can be calculated with a linear stability analysis of the 
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Taylor-Goldstein boundary-value problem. The stability analysis has been applied to 
one hour of measurements on 30 May, 1978, 01-02 UT. 

K.H. waves only feel the wind shear in their propagation direction. Therefore the 
analysis has been applied to profiles of wind components in propagation directions that 
met the Richardson number criterium for instabilities. The solutions form a continuous 
frequency interval of growing waves bounded by two neutrally stable solutions. The real 
phase velocity is equal to the wind velocity at the inflection point. The growth rate is 
a parabolic-like function of the wavenumber. The fastest growing solutions have a 
wavelength that is about 4 times the shear-layer depth. 

These results for realistic profiles are in accordance with the results of Davis and 
Peltier (1976) who defined the frequencies, wavelengths, and growth rates of unstable 
disturbances of a hyperbolic tangent profile as functions of the parameters of the 
background flow. 

Applying the spectral method to the fluctuation measurements, we see that the 
frequencies of the K.H. instabilities agree with an interval in the spectra that shows wave 
properties. 

The form of the solutions G(z) and d(z) of the Taylor-Goldstein boundary value 
problem are an explanation for the measured variance profiles. 

We can draw the conclusion that if we solve the Taylor-Goldstein equation for 
measured wind and temperature profiles, we fmd K.H. waves that can be found in the 
spectra. These waves explain the anomalous behaviour of the variance profiles in cases 
in which K.H. waves dominate over turbulence and other kinds of waves. 
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