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Abstract. This paper compares a number of one-dimensional closure models for the planetary 
boundary layer (PBL) that are currently in use in large-scale atmospheric models. Using the results of a 
large-eddy simulation (LES) model as the standardof comparison, the PBL models are evaluatedover 
a range of stratifications from free convective to neutral and a range of surface shear stresses. Capping 
inversion strengths for the convective cases range from weakly to strongly capped. Six prototypical 
PBL models are evaluated in this study, which focuses on the accuracy of the boundary-layer fluxes 
of momentum, heat, and two passive scalars. One scalar mimics humidity and the other is a top-down 
scalar entrained into the boundary layer from above. A set of measures based on the layer-averaged 
differences of these fluxes from the LES solutions is developed. In addition to the methodological 
framework and suite of LES solutions, the main result of the evaluation is the recognition that all 
of the examined PBL parameterizations have difficulty reproducing the entrainment at the top of 
the PBL, as given by the LES, in most parameter regimes. Some of the PBL models are relatively 
accurate in their entrainment flux in a subset of parameter regimes. The sensitivity of the PBL models 
to vertical resolution is explored, and substantive differences are observed in the performance of the 
PBL models, relative to LES, at low resolution typical of large scale atmospheric models. 
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1. Introduction 

It seems clear that with the computational capabilities available even in the fore- 
seeable future, modelling of the atmosphere or the atmosphere/ocean system will 
not be carried out at vertical and horizontal resolutions sufficient to resolve eddies 
responsible for turbulent transport of heat, mass and momentum. Therefore it seems 
reasonable to assume that large-scale models will continue to require some form 
of parameterization of turbulent processes. As pointed out in a review of the role 
of planetary boundary layer (PBL) models within climate models by Brown and 
Foster (1994), the role of turbulent transport appears crucial. Given the importance 
of turbulent transport and its modelling within climate and large scale models, it 
is reasonable to examine the sensitivity of climate simulations to these parameter- 
izations. Towards that end, this work attempts to quantify the ability of a number 
of boundary-layer schemes to represent turbulent transfer within the PBL. 
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Table I 
Results of model survey. 

GCM Total levels PBL Levels Closure 

BMRC 
Canadian Climate Centre 
ECMWF 
GFDL-Manabe 
GFDL-Miyakoda 
GLA 
Los Alamos 
NCAR-CCM I 
NMC-MRF 
NMC-eta 
NMC-NGM 
Oregon State 
U.K. Meteorological Office 
U. Hamburg 
U. Maryland 
UCLA-CSU 

9 
15 
19 
30 
I8 
17 
20 
12 

I6 

19 
I8 

2 
2-3 
4 
6 
4 
2-3 
A;, = 30m 

3-4 
A:,. = 30mb 
5 
Aip = 20 - 50m 
2 

K(R) 
K(Rt) 
K(Rt) 
K( R, )-MY-2.5 
K( R, )-MY-2.5 
MY-2.5 

K(Rt 1 
K(R) 
K(k) 
lC( R, )-MY-2.5 
N. Phillips 
K-profile 

K(Rt) 
A-( R, 1 
lit R,) 
mixed-layer model 

This investigation has its origins in the Planetary Boundary Layer Model Work- 
shop which was part of The World Climate Research Programme held at the 
European Centre for Medium-Range Forecasts in 1989 (Taylor and Wyngaard, 
1990). As part of this workshop, a survey of twenty &mate research groups was 
conducted; sixteen of these responded. Table I gives a list of the closures used 
within global climate models (GCMs) along with the total number of model lev- 
els within the boundary layer. The survey indicated that the closures fell into a 
few broad categories. Most research groups use some form of a K(R,) scheme 
(i.e., a stability-dependent eddy diffusivity), with the Mellor and Yamada (1974, 
1982) level 2.5 also in use. In addition, the survey showed groups using the K- 
profile scheme (Troen and Mahrt, 1986), and the mixed-layer model (Tennekes and 
Driedonks, 1981 and Driedonks, 1982). 

In an effort to make our comparison of broader interest, it has not been restricted 
to closures found in climate models. Closures used in forecast and mesoscale 
models have also been included so that their potential for use in climate models 
can be evaluated. Based on this reasoning and the above survey, Table II shows a 
number of general categories of turbulence closure chosen for our evaluation. 

In a review on the sensitivity of climate simulations to land-surface and boundary- 
layer treatments, Garratt (1993) emphasized the need for intercomparisons of PBL 
models both in isolation and within GCMs. In general, evaluations of boundary- 
layer schemes tend to be of a few different types. One is comparison of GCM results 
using boundary-layer treatments that vary between runs. This type of study has been 
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Table II 
Generic Model Categories. 

Model Type 

Ii( Ri) 
single-point 
Zi-profile 

Authors 

(Louis, 1979, Louis, Tiedtke and Geleyn, I98 1) 
(Mellor and Yamada, I974,1982) 
(Troen and Mahrt, 1986, Holtslag el al., 1990, 
and Holtslag and Boville, 1993) 

mixed-layer (Tennekes and Driedonks, I98 I and Driedonks, 1982) 
stability-bounds (Price and Weller, 1986) 
multi-stream exchange (Stull, 1984, 1993) 

undertaken recently by Holtslag and Boville (1993) with the NCAR CCM2 model. 
They compared model results from a I<( Ri) scheme with those from an updated 
K-profile scheme, assessing the impact on the climate simulation. Garratt (1993) 
cites a number of other such sensitivity studies, which can reveal sensitivities of 
the large-scale model that may be the result of interaction between many complex, 
non-linear systems within the model. This can also be a disadvantage in that the 
complexity of the interactions may very well obscure the behaviour of the PBL 
treatment. 

Another type of examination involves the comparison of PBL model results 
with atmospheric measurements, most often using a profile version of the model. 
For example, Andren (1990) compared mean and turbulent quantities with mea- 
surements from a stratocumulus-topped marine boundary layer (Brost el al., 1982) 
and from the KONTUR PBL experiment (Grant, 1986). Betts and Miller (1986) 
used GATE (Thompson et al., 1979), BOMEX (Holland and Rasmusson, 1973), 
ATEX (Augstein et al., 1973) and arctic air-mass data sets to evaluate transport and 
convection parameterization schemes. Similarly, Yamada and Mellor (1979) use 
BOMEX data to examine the performance of a second-order turbulence closure 
coupled with an ensemble cloud model. Yamada and Mellor (1975) used the Wan- 
gara data set (Clarke et al., 1971) to examine the behaviour of the level-3 version of 
the Mellor and Yam ada ( 1974, 1982) second-order-closure model through several 
diurnal cycles during days 33-35 of the experiment. In such comparisons a number 
of assumptions and interpolations are typically required to match the data with the 
model forcing parameters. Interpolations and smoothing are also often required 
to transform observational data so that comparison is possible. This is seldom a 
straightforward undertaking, but one advantage of such studies is clearly the link 
with the real atmosphere. 

Ideally, the benchmark for evaluating PBL models would be measurements of 
the full set of variables to be modelled over the entire parameter space in which the 
models are intended to operate. Unfortunately, there still exists the “fact gap” that 
Bradshaw (1972) referred to more than two decades ago. This fact gap was created 
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as the computational power available for running turbulence models began to far 
exceed the available data base on turbulent flows. These data-base limitations 
stem from the inherent difficulty of measuring turbulent flows, as discussed by 
Corrsin (1963). Three of the limiting difficulties are the imperfect response of 
sensors, the inability to measure full, three-dimensional properties in general (and 
the inability to measure certain turbulence properties at all), and the need for long 
averaging times to generate reliable statistics. These problems are particularly 
severe in atmospheric turbulence (Lenschow, 1986). Atmospheric measurements 
tend also to suffer from changing ambient conditions and departures between the 
underlying flows and our idealizations of them. As a result, Bradshaw’s “fact gap” 
is particularly prominent in atmospheric turbulence. 

For this reason, developers of turbulence closures often augment their data 
base with turbulence simulations (see, for example, Randall et al., 1992; Moeng 
and Wyngaard, 1989; Deardorff, 1972a.) In this study we have used large-eddy 
simulation (LES) to help evaluate the behaviour of a number of turbulence closures. 
The simulations are of a series of PBLs ranging from neutral to strongly convective. 
This method has the advantage that within a limited parameter space, we are free to 
vary a number of model parameters such as surface heating, mean thermodynamic 
structure, and the geostrophic wind profile. In addition, scalars can be introduced 
into the model domain using mean concentration distributions that facilitate the 
detailed study of turbulent transport. Also of advantage is the ability to extract any 
of the model variables at any time during the simulation at any point within the 
model domain. 

Examination of closures for pressure covariance, higher order moments and 
molecular destruction is particularly suited to comparison with LES output as is 
demonstrated by Moeng and Wyngaard (1989). The approach here is to some 
extent different in that it focuses on the overall behaviour of methods designed to 
encompass all of these processes. This makes the task of evaluation more difficult as 
we are examining the behaviour of a coupled nonlinear system rather than isolated 
aspects of any particular closure. It also makes performance measures difficult to 
define. This has lead to modelling in a restricted parameter space in part due to 
the above difficulties and in part due to the desire to define and quantify first the 
simpler characteristics of the closures before moving onto more complex situations. 
The comparison does show the performance of the schemes in modelling very 
simple types of atmospheric boundary layers. In so doing, the comparison suggests 
standards for what might be considered necessary but not sufficient performance. 
The study also demonstrates a number of measures that can be used to assess the 
ability of the closures to model vertical turbulent transfer in a large-scale model. 
The subset of cases presented here can be considered a starting point for further 
comparisons and evaluations. These might include the stable PBL, PBLs including 
moist convection, or PBLs interacting with irregular terrain. 

In the next section we provide a context in which we can qualify the com- 
parisons to be made and describe the parameters and methods used to carry out 
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the simulations. The section following is a general overview of the modelling 
framework and boundary conditions used in the comparison. We then describe the 
modelling experiments and integration sequence used to derive the profiles used as 
a basis for comparison of the LES and the PBL model results. Section 6 presents a 
number of measures used to assess the model performance and presents the results 
of the comparisons. The final section concludes with an overview of the model 
performance. Detailed model descriptions are presented in Appendix A. 

2. A Basis for Comparison 

LES originated with Deardorff (1970, 1972a) and now finds extensive use in both 
geophysical and engineering studies (for reviews see Rogallo and Moin, 1984; 
Galperin and Orszag, 1993). LES separates the flow field into two components: a 
large-eddy (or resolvable-scale) field and a residual (or subgrid-scale) field. The 
philosophy behind this division is that large scales in a turbulent flow contain 
most of the energy and flux and therefore are of prime importance. Moreover the 
resolved field is more dependent on boundary conditions and thus varies markedly 
depending on the physical situation modelled. On the other hand, the small-scale 
motions contain appreciably less energy and are more isotropic and universal in 
their behaviour. Thus, a model that resolves the large-scale turbulent motions and 
parameterizes the rest can be expected to exhibit some generality and possess 
reasonable predictive capabilities. 

LES provides time-dependent, three-dimensional fields of velocity, pressure, 
temperature, and advected scalars subject to a wide variety of boundary-layer forc- 
ing. Furthermore, with LES it is possible to simulate realistic flow conditions in a 
controlled fashion. For example, buoyancy, geostrophic wind, capping-inversion 
strength, surface boundary conditions, and surface roughness can be readily mod- 
ified in LES. Each LES integration serves as an “experiment” in its own right, and 
provides a complement to direct measurements. 

LES is maturing to a stage where it is giving us insight into atmospheric 
boundary-layer properties that have been measured only poorly, if at all. LES 
results outstrip oceanic observations enormously. A recent comparison of several 
planetary boundary-layer LES codes revealed that despite the differences in numer- 
ical methods and subgrid-scale modelling, the code-to-code variation in results was 
less than the scatter in the available experimental data (Nieuwstadt et al., 1993; 
And& et al., 1994). It can also be noted here that LES does predict a number 
of the salient features of the convective boundary layer. These include the ratio 
of surface to entrainment flux in the free convective limit and second moment 
profiles from convective boundary layers in laboratory experiments and from the 
atmosphere (Nieuwstadt et al., 1993). However, it still must be noted that there 
remains a degree of uncertainty in LES results in light of our inability to accurately 
measure many quantities in the convective atmospheric boundary layer. 
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The LES code that forms the basis of our study was developed by Moeng 
(1984), and has been used in numerous studies of the PBL. For example, Moeng 
and Wyngaard (1989) studied convection dominated PBLs, McWilliams et al. 
(199 1) investigated shear driven oceanic PBLs, and Moeng and Schumann (199 1) 
examined stratus-topped PBLs. 

3. The LES Database 

3.1. THE LES CODE 

The LES code used in the PBL evaluation solves the filtered Navier-Stokes equa- 
tions using a mixed finite difference, pseudo-spectral method. Derivatives in the 
x - y plane are evaluated pseudo-spectrally, while derivatives in the vertical direc- 
tion 2 are represented with second-order centered finite differences. The solution 
variables are advanced in time using a second-orderexplicit Adams-Bashforth rule. 
In order to prevent the buildup of aliasing errors, the upper l/3 of wavenumbers 
are truncated in Fourier space. The flow variables carried throughout the simulation 
are the three velocity components II, 13, and II’, the virtual potential temperature tl, 
and the SGS kinetic energy f. A Poisson equation for the fluctuating pressure P 
is solved at each time step. The formulation and implementation of that equation 
ensures that the flow remains incompressible. Two passive, conservative scalars, 
referred to as R and C’ scalars, are also tracked during the course of a simulation. 
The scalar distributions were designed to mimic transport of a “top-down” scalar 
c’ with zero surface flux while the scalar B, which is designed to mimic humidity, 
has nonzero fluxes at both the ground and inversion height. 

The flow is horizontally homogeneous, and periodic boundary conditions are 
used in both horizontal directions. Along the upper boundary, the radiative bound- 
ary conditions of Klemp and Durran (1983) for the vertical velocity and pressure 
are used, the SGS energy is set equal to zero, the virtual potential temperature gra- 
dient is taken to be a constant, and the vertical gradient of the horizontal velocity 
is set equal to zero. At the lower boundary, horizontally averaged conditions at the 
first computational grid point above the surface are matched to Monin-Obukhov 
similarity theory (Businger et al., 1973). This yields a prediction of the horizontally 
averaged surface shear stress and the heat flux. In order to estimate the local, fluc- 
tuating surface fluxes, a “local similarity rule” is adopted; it relates the fluctuating 
value of the surface fluxes to the fluctuating velocity and temperature at the first 
grid level (See Moeng, 1984 and Sullivan et al., 1994). In the LES the surface 
boundary condition for scalars is handled in a similar way. 

The subgrid-scale (SGS) parameterization used in the LES code is based on 
a prognostic equation for the SGS turbulent kinetic energy. The kinetic energy is 
then used to calculate the SGS fluxes. 
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3.2. LES DATABASE 

For the present evaluation, the database generated by LES is mainly confined to 
cloud-free PBLs driven by shear and buoyancy. Unstable and neutrally stratified 
PBLs were generated by specifying the surface heat flux, while the shear forcing 
was introduced by varying the level and vertical distribution of the geostrophic 
wind. This flow regime was selected because PBLs are typically subjected to this 
type of forcing, and because of the practical limitations associated with LES. We 
wish to consider flow regimes where the LES data are relatively independent of 
the SGS model, so the LES data can be considered as representative of real PBL 
flows. For this reason, we have omitted the stable regime from the evaluation. The 
neutral and convective regimes considered are in no way exhaustive in terms of 
the possible PBL flows, but they do represent a significant subset from which PBL 
models can be evaluated. 

3.2.1. Case Descriptions 
A summary of the LES database is provided in Tables III and IV. Parameters 
included in Table III, in addition to the case name, are the following: L,.. L,, L,, 
domain sizes in .r, y. : directions; (s=. surface heat flux; r,. 1 i. geostrophic wind 
components in .(*, y directions; zo( Lr.t,h,z), roughness lengths for momentum, heat 
and scalars. Here we note that the value of ~0 used for the EKM case is different than 
the remaining cases and that the roughness length used is the same for momentum, 
heat and scalars. Table IV gives I, and =I / I, where L is the Obukhov length; z!. the 
height of the capping inversion; <I*, . convective velocity scale; II,. friction velocity; 
7. large-eddy turnover time. We also list in Table IV the method for computing z;, 
which is described later. 

The convective velocity scale in Table IV is 

ll‘, = (&Lz1p3 ~ (1) 

where :j = y/00 is the coefficient of thermal expansion. A large-eddy turnover 
time is defined as 

r = 3,/w* 

for convective cases and 

(2) 

for shear cases where II‘, = 0.0. These simulations can be roughly grouped into 
four different categories. 

Free-convection simulation 
Case 24F is a simulation of a free-convection PBL; i.e., one with zero mean 

wind. A strong capping inversion is imposed at 1000 m in order to limit the growth 
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Table III 
Case/Parameter matrix 

Case LzT L,, L, (km) Q,(K m s-‘) I!, (m s-‘) 1,; (m s-l) q,cu,t,b,cJ (m) 

EKM 2 x 2 x 3.6 0.00 
oowc 5x5x2 0.00 
05wc 3X3X1 0.05 
oosc 3X3X1 0.00 
03sc 3X3X1 0.03 
05sc 3X3X1 0.05 
24SC 5x5x2 0.24 
24F 5x5x2 0.24 
15B 5x5x2 0.15 
24B 5x5x2 0.24 

10.0 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 
0.0 
10.0 
10.0 

0.0 0.10 
0.0 0.16 
0.0 0.16 
0.0 0.16 
0.0 0.16 
0.0 0.16 
0.0 0.16 
0.0 0.16 
O-20 0.16 
O-20 0.16 

Table IV 
Case/Parameter matrix . 

Case -2,/L L (m) z2 (m) up* (m s-‘) uL* (m s-‘) r(s) zz Method 

EKM 0.0 
oowc 0.0 
05wc 2.26 
oosc 0.0 
03sc 1.30 
05sc 1.30 
24SC 18.4 
24F m 
15B 1.13 
24B 12.1 

cc 1500 0.00 
cc 1065 0.00 
-480.7 1087 1.20 
x1 448 0.00 
-379.4 493 0.79 
-369.7 480 0.93 
-55.9 1025 2.00 
0.00 1033 2.00 
-125.3 968 1.68 
-83.47 1011 1.99 

0.390 3600 II 
0.667 1596 III 
0.680 905 III 
0.500 896 III 
0.530 624 I 
0.623 516 I 
0.566 512 I 
0.00 515 I 
0.627 576 I 
0.640 508 I 

of the PBL with time. The large computational domain is chosen to capture the 
well-known large thermal plumes which exist for this type of flow (Schmidt and 
Schumann, 1989). 

Buoyancy with shear simulations 
This series includes cases OOWC, 05WC, OOSC, 03SC, 05X, 24SC. All of 

these runs include various combinations of shear and buoyancy forcing varying 
from strongly buoyant flows with small shear, case 24SC, to cases with zero 
buoyancy and strong shear, case OOSC. These flows contain both thermally driven 
plumes and organized streaky structures (Moeng and Sullivan, 1994). Two types of 
capping inversions were used in these PBL simulations; it is strong in cases ending 
with SC and weak in cases ending with WC. 
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Baroclinic simulations 
Two simulations with varying amounts of baroclinic forcing, 15B and 24B, 

were also considered. As in the previous simulations, these contain strong capping 
inversions and varying amounts of surface buoyancy forcing. Here, however, baro- 
clinic effects were introduced by varying the geostrophic wind with height. 

Ekman simulation 
A simulation of an idealized Ekman flow, case EKM, was also included in the 

present database. This flow is further described in Andren and Moeng (1993). 

3.2.2. Construction of Simulations 
All simulations were carried out using meshes of 96 points along each coordinate 
direction (i.e., a total of 963 points), except for the Ekman simulation which uses a 
mesh of 80 x 80 x 120. A uniform equidistant mesh spacing was used in x and y 
while a uniform spacing, typically smaller than in the horizontal, was used in the 
vertical direction 2. 

The simulations were initiated with small perturbations except for the cases 
with zero surface heat flux. In these cases, sustained turbulence was established 
by first running several large-eddy turnover times with a small surface heat flux 
and setting this flux to zero after the turbulence was reasonably established. In 
this instance, a shear-driven turbulent state was easy to achieve and maintain 
(Moeng and Sullivan, 1994). A special initiation procedure was used for the Ekman 
simulation as described in Andren and Moeng (1993). 

The heat flux at the lower boundary was specified for all simulations. A zero 
surface flux boundary condition was used for the scalar C’ in all simulations. The 
surface boundary condition for the B scalar differs in that a constant value was 
used, (B = 15 arbitrary units). The initial profiles for the passive scalars were 
constructed from the following rules: 

B = 13.5, 0 < z 5 1.01:; 

= 3.0, ,I > l.Olc, (4) 
c = 0.0, 0 < z 5 1.01:; 

= 1.0, ,^ > 1.01:;. (5) 

The duration of the simulations was determined by examining the variation in 
the computed statistics. After some testing, it was decided that the dynamical fields 
were reasonably well behaved after about 5r, i.e., after about 5 large-eddy times. 
At this point the B and C’ scalars were injected into the flow using the initial and 
boundary conditions given above and all fields were then advanced at least another 
10~. The long LES integration periods allow the initial transients to die out and 
yield a good approximation to statistically stationary data. A sketch of the LES 
time integration sequence is given in Figure 1. 
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End 
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Figure 1. Typical integration sequence. 

3.3. POST-PROCESSING OF LES DATA 

The LES generates time and spatially varying dynamical fields U, 1’. u’, 8, t’, and 
P and passive scalar fields B and C’, from which one can calculate statistics. We 
have restricted our attention to means and second-order statistical quantities, as 
these are of primary importance in a large-scale model. Since LES generates large 
amounts of information it is not practical to store data at every time step. Instead, 
we archived selected data at particular time steps and then subsequently analyzed 
them, choosing enough time steps to obtain reliable statistics. 

In calculating statistics we used a combination of temporal and horizontal spatial 
averages, the latter permitted because of the horizontal homogeneity. A horizontal 
average of any flow variable F( .I’. y. Z, t ), written in discrete variables, is 

where the function evaluated at the nodes ,rj. yh. is F( .I’~. yk. Z, I) and S,Z. and 
-17, are the number of grid points in the .I‘ and y directions, respectively. For a 
statistically steady flow, (F) is only weakly dependent on time t. 

We found that reliable estimates of higher order statistical moments typically 
cannot be obtained from a spatial average at one time due to the limited number of 
LES grid points. Smooth estimates can, however, be obtained by further averaging 
the data in time. One could calculate this spatial average at several different times 
and average the results. This would ignore the growth of the PBL depth in time, 
which can be appreciable for convective cases with weak capping inversions. In 
order to account for this growth, we estimate the PBL height Z; at the sampling 
time, compute a normalized coordinate z/z~, nondimensionalize the horizontally 
averaged statistics by appropriate velocity and temperature scales, interpolate the 
results to a common grid of Z/Z, values, and time-average these gridded values. 
We then form the dimensional result by multiplying by the average values of the 
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velocity and temperature scales. In general, between 20 and 30 time samples were 
used for the averages presented here. Therefore, approximately 2 - 3 x lo5 data 
points were averaged at every vertical location. All flux estimates include resolved 
and SGS contributions; i.e., the total average flux computed from the LES data is 
used for the model comparison. 

Since our averaging procedure relies on the boundary-layer height, an estimate 
of -^[ is needed for each type of PBL flow. We considered three different rules for 
estimating zi in the LES cases. 
Method I (convective method): the height of the minimum total heat flux, 

min( rr@( z)) . 

Method II (shear method): the height where the total momentum flux first falls 
below a specified fraction of the surface stress, 

(pF( c) + TT( :)I1 = o.o5u** . (8) 

Method III (weak-capping-inversion method): the height where the local average 
virtual potential temperature (I?( 2)) first exceeds the vertical running average of 
the mixed layer virtual potential temperature by a specified amount, in this case 
0.25 K, 

Different methods of inferring zI were used because of the wide range of buoyancy 
and shear forcing and the varying capping inversions. For example, our simulation 
of the turbulent Ekman flow does not have a capping inversion and thus method II 
was used to estimate the boundary-layer height. When all three z, methods apply, 
as in the convective cases with weak capping inversions, we found that methods I 
and II yield slightly lower estimates of the boundary-layer height than method III. 
Method III is the most robust, being relatively invariant to wide variations in the 
entrainment heat flux which can occur for weakly capped cases with small or zero 
surface heat flux. The zi method used for each simulation is given in Table IV. For 
the PBL models, method III was used for all cases except the Ekman flow, which 
used method II. 

4. The PBL Models 

4.1. GENERALMODEL DESCRIPTION 

There are several different methods by which turbulence effects in a large-scale 
model are treated. One method represents the turbulent flux term in each mean-field 
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equation through an eddy diffusivity. In a horizontally homogeneous PBL and in 
the absence of radiative flux divergence these mean-field equations then become 

(10) 

(12) 

in which @ is 8, B or C. The 1C( Ri) and low order single-point closures differ 
mainly in their specification of the eddy diffusivities (EC, and ECd). The K-profile 
model uses nearly identical equations but has a “non-local” term in the flux-gradient 
relation for temperature. 

There are also closures that are not based on the explicit solution of differential 
equations. The multi-stream exchange and stability-bounds schemes are in this 
category. These closures, although based on physical principles, take the form of 
one or more “mixing rules” to carry out mixing of properties between different 
regions of the fluid. Both the mixed-layer model and the stability-bounds model 
make assumptions about the structure of the mixed layer and the distribution of 
fluxes within it. 

At this point it is worth explaining our interpretation of the term “non-local”. 
The term non-local is one which is somewhat muddied by its use in a number of 
contexts. Here we intend it to mean that mixing at a point in the profile is physically 
related to properties or processes at some point which is not adjacent to that point. 
This really has two interpretations. The first is in the real atmosphere where, for 
example, large plumes which scale with the depth of the mixed layer impinge on 
the capping inversion. In this region, the mixing which occurs is dependent upon 
not only the local properties of the flow but those which are transported from 
some distant point, in this case near the surface. The buoyancy and the mechanical 
energy with which the plume interacts with the inversion is determined from flow 
properties much nearer the surface than the capping inversion. Here we note that 
this non-local behaviour is reasonably well represented in LES by virtue of the fact 
that these plumes are resolved. 

In the case of the closure models, there are a number of degrees of non-local 
behaviour formulated into the models. The transilient model, for example, is explic- 
itly non-local in that it mixes parcels from widely separated points in the profile. 
One might think of this type of model as havingfirsr-order non-local characteris- 
tics. Alternately, models such as the K-profile model mix properties from points 
which are adjacent, however, this is done with mixing coefficients which are deter- 
mined using properties of the flow in areas which are not adjacent to the point. One 
might think of this as a second-order non-local property. 
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4.2. BOUNDARY CONDITIONS 

One challenge of this comparison exercise is to provide a framework within which 
all of the models can be compared fairly. To ensure that differences in the profiles 
produced by different models are intrinsic to the models rather than details of their 
implementation, wherever possible the models share common service routines for 
the calculation of boundary conditions, initialization, and time integration. 

In all but the mixed-layer model, boundary conditions are handled by com- 
mon routines that use Monin-Obukhov similarity theory and the Businger-Dyer 
relationships, 

where 4 is one of 6, B or C’, 00 is @( ~0 ) and 

(13) 

(14) 

!l?m=ln[($) (q)2] -tan-t,r+i. ,<O (17) 

,<o (18) 

where 

.c = (1 - 15z/Lp4 

(from Arya, 1988). 

(19) 

We use a no-slip lower boundary condition for velocity and a constant-flux 
boundary condition for 8. We specify a constant value of the B scalar at the 
surface, allowing the surface flux to vary according to Equation (14). A zero-flux 
lower boundary condition is specified for the C’ scalar. 

The mixed-layer model is handled somewhat differently from the rest in the 
calculation of surface fluxes. As implemented by Suarez et al. (1983) in the UCLA 
general circulation model, we use the bulk aerodynamic formulation described by 
Deardorff (1972b). This method uses a combination of surface-layer and PBL- 
deficit formulations to specify the friction and heat-transfer coefficients, 

(20) 
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(21) 

where the subscript nl signifies the mean mixed layer value and C’,, and G’S are 
functions of -3,/~o and :,/L. Scalars are handled similarly using (‘0, 

- (w’b’)o = u*( I?,,, - BO)C’~ (22) 

-(w’c’)() = u*( c’,,, - C’o)c’(J. (23) 

This allows the determination of surface fluxes from mean mixed-layer values. 
Because not all of the models explicitly calculate turbulent fluxes, the fluxes are 

derived diagnostically from the mean conservation equations. This is accomplished 
by vertical integration of the time tendency of the mean fields, 

i)O(-^,f)= 
i?f 

qu”Q’)(--,f) + $,(- f) 
i)= 6-3 (24) 

where o is 5:, I -, H. B or C’ and S’ is a source term (for example j( 1. - 1 i ) when 
~3 = (7). Integration of this source term with the surface flux as a lower boundary 
condition yields the flux profile, 

(25) 

5. Modelling Experiments 

5.1. INTEG~C~TI~N SEQUENCE 

As shown in Figure 1, the experiments begin by running the LES code for a time 
sufficient to produce fully developed, quasi-steady turbulence fields. Scalars are 
then introduced into the LES flow; the LES code then continues to run and the 
integration of the PBL models begins. Initial conditions for the PBL models are 
taken from horizontal averages of the 1:. I - and H fields from the LES and the 
prescribed profiles for the B- and (Y-scalars. In most cases the grid spacing of 
the PBL models is greater than that of the LES, requiring the LES profiles to be 
averaged over the intervals of the PBL model grid (or over the entire mixed layer, 
in the case of the mixed-layer and stability-bounds models.) From this point, both 
the LES and PBL models are integrated for about ten large-eddy-turnover times. 
During this integration, both the LES and PBL models have the same surface 
heating and Coriolis forcing. 

Figure 2 shows the LES and PBL model final mean profiles for the 24SC case 
as used in the comparison. Strong shear in both cj and V is present at the top 
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F&l-e 2. Mean final profiles for the 24SC case. PBL model resoultion is 50 m. 

of the mixed layer. The potential temperature profile shows the strong capping 
inversion while both scalars have a sharp jump located at the inversion base. The 
main difference between this and the weakly capped cases is the strength of the 
capping inversion, here on the order of 6 K while the weakly capped case is near 
1 K. 

The mixed-layer model, here shown as open hexagons projected onto a 50 
m grid, is initialized differently from the grid-point models. The algorithm for 
initializing mean fields in the mixed-layer model linearly extrapolates the profile 
above the mixed layer down to the top of the mixed layer. The jump at the top of 
the mixed layer is then calculated as the difference between the mean value within 
the mixed layer and the value at the base of the inversion. Within the model this 
is maintained as a step change at the top of the mixed layer, although the plotted 
profiles show a change over one grid interval on a 50 m resolution grid. This is 
purely an artifact of the plotting. 
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6. Results 

Neglecting mean advection and local effects such as radiative flux divergence, the 
instantaneous change in a variable 4 is given by 

(26) 

It follows that any change in potential temperature or scalar concentration averaged 
over the mixed layer is a result of a change in flux across the mixed layer: 

= _ (W’#)(N, t) - (w’4’)(0, t) 
4t) 

(27) 

This shows that the time rate of change of a mixed layer mean value is proportional 
to the difference between surface and entrainment fluxes and inversely proportional 
to the depth of the mixed layer. If we are concerned with mixed-layer-mean values, 
as seems reasonable in the context of large-scale modelling, we must examine the 
ability of the models to predict surface and entrainment fluxes. 

In order to assess the ability of the PBL models to reproduce mixed-layer profiles 
of mean variables as well as surface and entrainment fluxes, we have defined two 
measures of model performance, At and AZ: 

=- J tf (~4qWoM),, t&f - to G-3) 
to 

A* E 
Jz;(q q5( 2, tf ) - q5( z, to))dz 

tf - to 

=- J tj (U!‘dj’)( 2;( to), t) - (~U”&)(“O> f)& tj - to (29) 
to 

H is the top of the model and to and tf are initial and final integration times, 
respectively. 

These measures have a number of advantages over more traditional ones. First, 
they are easily calculated from final and initial profiles of mean variables and are 
integral measures of model performance. This is in contrast to measures such as 
time-integrated entrainment flux at z;, since for some models z; and the flux there 
can fail to be smooth functions of time or even well-defined. 

Although it is not a direct measure of entrainment flux, the RHS of Equation 
(28) represents the average flux through z = zi( to), between to and tf. Figure 3 
shows a schematic of the two model performance measures showing initial and 
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Figure 3. Idealized entrainment diagram. Al is entrainment while AZ includes entrainment and 
integrated surface flux. AI and AZ. On the left is the flux profile at tf with open arrows showing 
entrainment flux (.~‘d’)~ and the contribution to the Al and A2 entrainment measures (w’d’)~ 

final profiles of the variable 4 with an increase in mixed-layer depth from z;( to) 
to z;( tj). The utility of the 41 and A2 measures can be more easily seen by noting 
the following: A2 - At follows the average surface flux over the period; 42 - Al 
is zero for the C-scalar, with .4t and A2 purely functions of entrainment; A2 > ‘41 
for 8, while for the B-scalar 42 can be less than iill and even negative for large 
enough entrainment. 

As a cautionary note, it should be pointed out that these measures are finite in 
formulation and are subject to errors which grow as (Az2 /c;( t~))~. These measures 
should not be used where the initial and final values of zi differ by a significant 
fraction of the boundary-layer depth. Care has been taken in what is presented here 
to ensure that this is not the case. 

In our description of model results we abbreviate the model types as fol- 
lows: li( Ri) is KOFR; I<-profile, KPRO; Mellor-Yamada level 2, MY20; Mellor- 
Yamada level 2.5, MY25; transilient, TRAN; stability-bounds, STAB; and mixed 
layer, MIX. Where case-specific results are presented, the PBL model resolution is 
50 metres. As we will show, at this resolution the models show a weak dependence 
on resolution. This allows discussion of the physical characteristics of the models 
while resolution is not an issue. The method of generating the PBL model grid for 
the resolution experiments is described in the discussion of those experiments. 
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6.1. C-SCALAR 

The /lt measure has been plotted for all of the cases* for the C-scalar in Figure 
4. The A, values have been normalized by the mean of the Al measure for the 
LES. This normalization was chosen to retain relative magnitudes. Figure 5 shows 
the mixed-layer mean (between the surface and 2;) concentrations of the C-scalar 
normalized by integration time and the mean concentration of the C-scalar over 
all of the LES cases. This normalization allows comparison with the *4t measure 
shown in Figure 4. In Figures 4 and 5 the cases are arranged in groups separated 
by vertical lines. On the left of the figure is the EKM case. Moving to the right, the 
next two cases are weakly capped cases with limited surface heating (OOWC and 
OSWC). The next four cases (OOSC to 24SC) are all identical except that the surface 
heat flux ranges from 0.0 to 0.24 K m s-’ and x; is of order 1000 m for 24SC and 
500 m for the other three cases. These cases are strongly capped (see Figure 2). The 
next case to the right is a free-convection case (24F) with surface heating equal to 
that of 24SC but with zero geostrophic wind. The two cases to the extreme right 
are baroclinic (15B and 24B) in which the geostrophic wind varies with height. 
They have moderate surface heating, 0.15 K m s-’ and 0.24 K m s-’ , respectively, 
and are strongly capped. More details of these runs are found in Tables III and IV. 

We expect the mean concentration within the mixed layer to depend on the mean 
flux divergence throughout the mixed layer and thus scale with total entrainment 
for similar mixed-layer depths. Thus, the striking similarity between Figures 4 and 
5 is not unexpected. These figures show the substantial variation in entrainment 
and the mean concentration over the cases. 

The LES results in Figures 4 and 5 show the strong dependence of entrainment 
on surface heating. This is particularly strong for the weakly capped cases (OOWC 
and OSWC) but also evident in the strongly capped cases. The effect of mean shear 
can also be seen in the LES results. The free-convection case (24SC) shows a 
substantial decrease in entrainment when compared to either of the sheared cases 
with similar surface heating (24SC and 24B). The two cases with strong geostrophic 
wind shear (15B and 24B) show the opposite tendency, entraining significantly 
more than cases with similar surface heating and strong capping inversions (OSSC 
and 24SC). 

In most instances the PBL models share responses to surface heating and shear. 
With the exception of MIX, there is a tendency to underpredict entrainment and 
therefore mixed-layer-mean concentrations by all of the models. For the weakly 
capped cases (OOWC and OSWC) KPRO and MIX overpredict entrainment while 
the remaining models underpredict. All of the models underestimate entrainment 
and mixed-layer concentration for the strongly sheared baroclinic cases (15B and 
24B). Here MIX, TRAN and KPRO give results closest to the LES values, while 
still being somewhat low. 

* Scalars are not included in the EKM case and therefore are not plotted or included in averaging 
over cases. 
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Figure 4. C-scalar AI measures normalized by LES ‘41 value averaged over cases. 

Theory, existing measurements, and LES results all suggest that in a strongly 
capped environment, the complex interaction between ascending plumes and the 
capping inversion determines the the rate at which overlying air is entrained into 
the mixed layer. This interaction is affected by the local shear over the entrainment 
zone, shear across the entire mixed layer and surface heating. This implies that non- 
local aspects of mixed-layer structure play a part in determining the entrainment 
rate. 

Therefore it is perhaps not unexpected that the non-local models MIX, TRAN 
and KPRO give the best results in the strongly capped cases. Each of these embod- 
ies some aspect of non-local mixing, with MIX based explicitly on a non-local 
formulation of entrainment dynamics. MIX predicts results nearly identical to LES 
for the free-convection case (24F), while the remaining models appear to do very 
poorly in the absence of shear. 

6.2. TEMPERATURE 

In the case of potential temperature, we again expect to see entrainment play a 
role. For cases with large surface fluxes, the role of entrainment is less important 
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Figure 5. Mixed-layer mean values of C-scalar concentration normalized by LES C-scalar concen- 
tration averaged over cases. 

because the surface heat flux is responsible for a large portion of the change in 
mixed-layer-mean potential temperature between initial and final profiles. In terms 
of our measures, we expect to see A2 somewhat larger than Al for cases with 
positive surface heat flux. 

Figure 6 shows the Al measure for potential temperature normalized as before 
by the average of the LES values of Al over the cases. The general response of 
the LES to shear and surface heating is similar to that of the C-scalar results, with 
a few exceptions. Of all of the models, only MIX and KPRO show the expected 
enhanced entrainment with the increase in surface heating between the 05SC and 
the 24SC cases. Both MY20 and MY25 maintain a nearly constant but substantially 
underestimated value of A,, while KOFR and STAB show substantial decreases. 
Examination of the two cases shows that although the entrainment zone is deeper 
and the temperature difference across the entrainment zone is less for the 24SC 
case due to its strong surface heating, the shear across the entrainment zone is 
substantially less. The local Richardson number across the entrainment zone are 
0.44 and 1.60 for the 05SC and 24SC cases respectively. STAB and KOFR are 
explicitly dependent upon Richardson number while both MY20 and MY25 are 
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Figure 6. B AI measures normalized by LES AI value averaged over the cases. 

indirectly dependent upon the local Richardson number. Thus, the diminished 
shear in the entrainment zone strongly affects their ability to entrain overlying 
air. The particularly strong dependence on shear in KOFR can also be seen in its 
over-prediction of entrainment in the baroclinic cases (15B and 24B). 

In contrast, TRAN is less dependent upon local Richardson number by virtue of 
its non-local formulation. While mixing across the entrainment zone is diminished, 
mixing from the surface, which is independent of the local Richarson number 
within and near the entrainment zone, maintains some entrainment. KPRO, which 
is independent of the entrainment zone Richardson number, shows an increase in 
entrainment with increase in surface heating and performs the best of all of the 
schemes in this instance. 

In the free-convection case (24F), all of the models performed poorly with all 
but MIX predicting nearly no entrainment and MIX significantly over-predicting 
entrainment. The overprediction by MIX is consistent for all of the cases. The 
reasons lie partly in the temperature structure artificially imposed upon the model 
by the comparison to LES profiles. We can illustrate this through simple plume 
behaviour in a convective mixed layer. An initially buoyant parcel rising from 
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the surface will overshoot its level of neutral buoyancy; this occurs where the 
potential temperature is near that of the surface air. The subsequent overturning 
and distortion of parcels entrains overlying air into the mixed layer. MIX represents 
the entrainment flux by the time rate of change of Z; multiplied by a step change 
in temperature at the top of the mixed layer. Thus, to model the simple mechanism 
described above, the correct mixed-layer growth rate needs to be combined with 
a step change that approximates the difference between the surface temperature 
and the mean mixed layer temperature. In all of the strongly capped cases the 
imposed strength of the capping inversion is such that n6’ is much greater, often by 
a factor of two or more, than the difference between the temperature at the surface 
and that within the mixed layer. Thus, although the mixed-layer depth is well 
predicted by the MIX model, the entrainment and therefore the mixed-layer mean 
is in strong disagreement with that of the LES due to the large value of /U3. These 
results underscore the simplicity of the assumptions implicit in the mixed-layer 
formulation. 

To see more clearly the effect of entrainment on the layer-averaged potential 
temperature, we turn to Figure 7 which shows the ratios (;1t /( A2 - At)) for each 
of the models in all cases where the surface heat flux is non-zero. This measure 
mimics the entrainment/surface flux ratio. The LES ratios vary somewhat between 
cases, decreasing with stronger surface heat flux. For the strongly heated, strongly 
capped cases (24SC, 24F, 15B and 24B) and the case with weak surface heating 
and a weak capping inversion (OSWC) the ratio is near 0.2, the value often cited 
for convective boundary layers. With weak surface heating and a strong capping 
inversion (03SC and OSSC), the value is significantly greater. Thus, the models 
make the largest errors in cases where entrainment makes the smallest contribution 
to the mean mixed layer values. 

6.3. B-SCALAR 

Both the c-scalar and potential temperature use a specified flux at the lower 
boundary. The B-scalar is more like moisture, with its surface flux dependent upon 
the difference between a specified surface value (15.0) and the mixed-layer mean. 
The initial profile of the B-scalar has a constant value (13.5) in the mixed layer with 
a step change to a value of 3.0 above the mixed layer. This concentration profile 
initially induces large surface and entrainment fluxes of B-scalar. As integration 
proceeds, air with lower B-scalar concentration is entrained, acting to reduce the 
concentration in the mixed layer. Thus, as with potential temperature, the mixed- 
layer concentration of the B-scalar depends on both the entrainment and surface 
fluxes. 

Figure 8 shows the A2 measure for the B-scalar, with typical concentration 
profiles given in the lower right of the figure. The solid line is the initial B-scalar 
concentration profile with profiles l-3 representing different balances between 
upward surface flux and entrainment flux. Profile 1 shows the results of strong 
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Figure 7. Integrated entrainment ratio ( .4 I/( .4? - .4 1) ) for 0. 

entrainment with weak surface flux, while profile 3 shows the opposite balance; 
profile 2 lies between the others. Given the definition of -42, we expect that an 
underestimate of entrainment or an overestimate of surface flux yields values of A2 
lower than the LES. The similarities between the plots of :1 t for 0 and particularly 
the C-scalar suggest that entrainment is underpredicted in the strongly capped 
cases and overpredicted in the weakly capped ones. This is to be expected, since 
the nearly constant, large step change in concentration at the top of the mixed layer 
is similar to that of the C-scalar. This suggests that the main contributor to the 
mixed-layer concentration of the B-scalar is again entrainment. 

6.4. MOMENTUM 

The momentum budget within the mixed layer and entrainment zone is somewhat 
more complex than that of either the C-scalar or the potential temperature (0). The 
vertical integrals of the horizontal momentum equations are 

H i31T J 1 - - f(17 - 1,;) (12 = -(u'll"),o 
i0 dt 1 (30) 
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Figure 8. B-scalar A2 measures normalized by LES AZ value averaged over cases. 

and 

1 dz = -(u’w’)*” (31) 

where H is the top of the model and the subscript ~0 indicates a value at height 
~0. Because of the geostrophic-departure terms in the integrals, the simple conser- 
vation arguments we used earlier for scalars do not apply here. Instead, we will 
focus on the ability of the PBL models to predict surface shear stress. Figure 9 
shows a comparison of IL, from PBL and LES models, normalized with the LES 
results. The error is only weakly systematic; MY20 and MY25 consistently under- 
predict, TRAN consistently overpredicts, and the remainder show a mix of over- 
and underprediction. Most of the errors are well within the 1.5-25 percent range, 
suggesting reasonable performance in predicting surface momentum flux. The con- 
sistent over-prediction in the EKM case may be less a reflection of the performance 
of the PBL models than the poor treatment of small near-surface eddies by the LES 
model under neutral stratification. 
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Fiyre 9. Difference between PBL models and LES for surface momentum flux normalized by 
(U,)LES. 

6.5. RESOLUTION-DEPENDENT MEASURES 

A number of practical factors must be considered in the choice of a closure scheme 
for use in a large-scale model. These include the ease of implementation of the 
closure into the code structure as well as its computational cost. Including more 
points within the mixed layer generally leads to a more accurate calculation, due 
to the enhanced ability of the grid-point schemes to resolve mean gradients. This 
tradeoff between cost and accuracy leads to the concept of optimal resolution. 

We have defined and calculated two additional measures of model performance 
with the notion of optimal resolution in mind. The first, shown in Figure 10, 
measures a model’s ability to calculate mean values. The variables included in the 
measure are 6, the B-scalar, the C-scalar, and IL’1 (wind speed, ( U* $ I’*)‘/*). The 
second, shown in Figure 11, measures a model’s ability to calculate surface and 
entrainment fluxes. The fluxes in this measure are ( w’B’)~, (~l’b’),f~, ( w’c’), and U* 
(C( uh’)& + (w’u’)~~~)“~). Th ese two measures are averaged over the modelled 
cases and therefore indicate the expected error over the range of atmospheric 
stabilities and thermal structures in the comparison. 
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Figure 10. Aggregate error averaged over all cases for 0, B-scalar, C'-scalar and wind speed lL'1 
(bottom to top) plotted against resolution. Numbers along abscissa are number of grid lengths (A:) 
in the mixed layer. Error measures and normalization are described in text. 

To show the dependence of model performance on resolution, as indicated by 
the above measures, the models were run at a number of resolutions. The resolution, 
as plotted on the abscissa in Figures 10 and 11, is defined as the number of grid 
lengths (-1:) within the mixed layer. Resolutions used in the experiment range 
from 3 to 15, or between z 330 m ( 2 ,  % 1000 m, 3 points) and = 33 m (2 ,  = 500 
m, 15 points) depending upon mixed-layer depth and the number of grid points. 
The latter represents a somewhat optimistic estimate of the upper limit that can be 
used within large-scale models. 
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Figure 11. Aggregate surface and entrainment flux error for ( w H ) , ,  ( w h )  .j, , ( w c ) ,  and 11 ,  (bottom 
to top) averaged over all cases, plotted against resolution. Numbers along abscissa are number of grid 
lengths (Az) the mixed layer. Error meawres and normalization are described in text. 

6.5.1. Aggregate Mean Pl-ofrle Errw 
The measure shown in Figure 10 is based on the difference between model and 
LES values at the final integration time ( t f )  at different levels (n , )  throughout the 
modelled profiles, 

where o is any mean variable and 1 ,  and t j  are respectively the initial and final 
times in the model integration. Here the overbar on o represents the LES value, 
found by averaging over one PBL-model grid length centered on z , , .  These error 
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measures are incorporated into an rms estimate of the error over the mixed layer 
for each case, 

112 

e@) 1%’ e,(4)2 
caSe = Nzt $ 1 j=l 

I I 
(33) 

where NZI refers to the number of points in the PBL-model mixed layer. The rms 
profile errors are then normalized by @, the change in the mean profile averaged 
over profiles and cases for the LES, 

a= 1 Nr NF’ I+jJ”f)case - 4(q, &Lsel 

NLESNcase j=’ case=’ Of - &se . 
(34) 

Here 1vLEs refers to the number of points in the LES profiles and N,,,, is the 
number of cases over which the average is taken. 

An aggregate rms error is then calculated using the normalized measures, pro- 
viding a performance measure over the parameter space in the study: 

E(4) = [&X, (e(~~q2]“2. (35) 

In Figures 10 and 11, the error values are plotted one above the other to show 
the cumulative error as well as the individual contributions to the total error from 
each variable. Figure 10 shows a marked similarity of the response to resolution, 
particularly near the high-resolution end of the plot. All of the grid-point models 
show similar performance at high resolution, differing substantially only at coarse 
resolutions. Both TRAN and STAB become independent of resolution near 10 AZ, 
while the remaining grid-point models show an error which is significantly reduced 
but still diminishing with increasing resolution. At very low resolutions (near 3 
AZ), both KPRO and KOFR appear to give the lowest aggregate mean profile error 
between the models. MIX is independent of resolution and gives errors that are 
similar to most of the grid-point models run at between 6 and 9 AZ and similar to 
KPRO near 4 AZ. 

6.5.2. Aggregate Flux Error 
In order to examine the error associated with the over- or under-prediction of 
surface and entrainment fluxes, an aggregate index of flux error was defined and 
calculated. Like the aggregate mean profile error (E(d)), the aggregate flux error 
uses an average over cases. 

The aggregate flux error uses the modelled flux (entrainment or surface) inte- 
grated between initial and final model integration times, divided by the length of 
the integration, 

f(4) caSe = St”,’ W4’)(e/s)~t 
of-t;) . (36) 
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Here the subscripts e and s refer to entrainment or surface values respectively. The 
entrainment flux is defined as the instantaneous minimum value of (~‘4’)) while 
surface fluxes are extracted at ~0. 

The basic element of the error measure is the difference between the model and 
LES values of the integrated flux for each case normalized by the total flux over 
all of the cases, 

e(4Lase = 
(f(4)casebBL - m%ase)LES 

y& c>gz, Lf(4)case)LES . 
(37) 

This normalization implies a weight for each case which is proportional to the 
strength of the flux for the case. The per-case error is then used to calculate an rrns 
error over the cases for each resolution, 

(38) 

Figure 11 shows the expected dependence on resolution of the surface and 
entrainment fluxes, again noting the mixed-layer model’s independence due to its 
formulation. Although it is difficult to compare directly the relative errors between 
the variables, it is clear that the entrainment flux of the C-scalar is the most sensitive 
to resolution. Given the similar entrainment behaviour of the B-scalar, the reason 
for the mean profile sensitivity to resolution shown in Figure 10 is clear. A similar 
but less direct correlation can be seen for 0 in KPRO. 

The error in uz is the smallest and shows little variation with resolution. As 
noted earlier in Section 6.5, the surface momentum flux in the models is constrained 
to be nearly that of the LES. The entrainment flux of momentum does vary, but 
its influence in these runs is substantially less than that of the surface flux or the 
horizontal pressure gradient. This leads to a rather well behaved surface flux. 

MIX does a good job of predicting all but 0 entrainment flux, showing the worst 
performance due to large NJ and the subsequent over-entrainment of temperature 
as noted earlier. 

7. Conclusions 

Motions in the planetary boundary layer range widely in scale and can be associated 
with distinctly different mechanisms of transport. The challenge in PBL modelling 
is to find closures that effectively represent this turbulent transport while using 
finite computational resources. There are two methods by which modelers attempt 
to accomplish this task. The first is the representation of the essential characteristics 
of planetary boundary-layer flow in simplified models, a number of which have 
been presented here. The second is using the models at resolutions that result in 
low computational cost. This aspect of the approximation is also represented in 
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this study. Results presented here show that these two aspects of the modelling 
process are not entirely independent; at higher resolutions, the choice of physical 
parameterization is less important than the resolution at which the model is used. 
This is not the case at lower resolutions, where there are substantive differences in 
aggregate model performance both in mean profile and flux predictions. 

One of the most important roles of any model is representing entrainment. In 
the comparison that has been presented here, it is clear that the different model 
formulations result in quite different behaviour near the entrainment zone, which 
is reflected in widely varying predictions of mean mixed-layer values. It has been 
shown that there can be significant errors produced by many of these formulations 
when compared the LES results. This is particularly true near the free convective 
limit for some models and in the weakly capped cases for other models where 
the model formulation is too simple to represent the local thermal and momentum 
distribution near the entrainment zone. 

Having identified weakness in the ability of these models to predict entrain- 
ment, it seems useful to look for methods to improve them. It is likely that the 
performance of both local and non-local models can be significantly enhanced by 
including more realistic entrainment dynamics. This might be undertaken by tuning 
or fitting model structure and coefficients to LES data. A method having a better 
foundation would be the systematic examination of a number of high resolution 
LES runs designed to quantify the role of individual structures in entrainment. This 
could help define more clearly the functional relationship between the horizontally 
averaged mean state of the mixed layer and the rate of entrainment of overlying air. 
This effort should be coupled with observations from the entrainment zone which 
are just now becoming available (Mann et al., 1995). 
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A. Appendix: Detailed model descriptions 

7.1. A. 1. MIXED-LAYER MODEL (MIX) 

Within most of the convective PBL, mean values of wind speed, conserved ther- 
modynamic quantities, and conserved scalar constituents are often found to be 
quite uniform in the vertical. This provides the basis for the mixed-layer model. 
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The values of the well-mixed variables are computed from the vertically integrated 
equations, 

~ = 1,(&q, - (&q,) atI, 
dt ^i 

where Z, is the depth of the mixed layer, the subscript ~1) represents a vertical 
average over the whole mixed layer, and subscripts 0 and i denote the surface 
and mixed-layer top, respectively. Solving of these equations requires knowing the 
surface and entrainment fluxes. 

The surface fluxes are typically calculated from a PBL similarity formulation, 
and dependent on the mixed-layer mean and the surface values (see Deardorff, 
1972b; Suarez et al., 1983). The fluxes at the PBL top can be related to the time 
rate of change of the mixed-layer depth (i.e., the entrainment rate) and the jump 
of @ across the PBL top (AcY), by vertically integrating the governing equations 
across the PBL top, assumed of infinitesimal thickness: 

Here o is any one of IT. 1.. 0, B or C’, and _Ici = O+ - o,,~ where o+ is the mean 
value of o just above the PBL top. These step changes are computed from the 
following equations, 

with additional forcing terms .f( I - - I iJ ) and .f( l-g - I-) in the case of horizontal 
momentum. Thus, the only remaining unknown is the entrainment rate. Over the 
years, various closure formulations have been proposed for the entrainment rate, 
some were derived from the layer-mean turbulent-kinetic-energy (TKE) budget 
(see Ball, 1960) while others were based on the TKE budget at the inversion base 
(e.g., Tennekes 1973; Tennekes and Driedonks 1981). 

In this study, we use the entrainment closure developed by Tennekes and Drien- 
donks (198 1) and Driedonks (1982), which is based on the governing equation for 
the TKE at the inversion base, 

(44) 
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where d is an effective depth of the entrainment layer. The first term on the right 
hand side is buoyant production, the second shear production, followed by turbulent 
and pressure transports, and finally dissipation (Zeman and Tennekes, 1977). In 
order to solve this equation, each term in Equation (44) needs to be parameterized 
in terms of mixed layer mean values. 

Although simpler parameterizations for the mixed-layer height can be arrived 
at by setting the left hand side of Equation (44) to zero, Zilitinkevich (1975) argued 
that when the mixed layer grows rapidly, this term cannot be neglected, and thus 
proposed 

d”; = c wt2 dzi 

dt T 2; dt . 
(45) 

Here the turbulent velocity scale (wt) is an interpolation between the friction 
velocity (2~,) and the convective velocity (w,), 

wt = (w5 + 8.0uy3 

where the convective velocity is 

(47) 

in the unstable PBL. In the neutral PBL ult simply scales with surface momentum 
flux, 

Wt = 2.ou* (48) 

after Zeman and Tennekes (1977). 
Using Equation (42) and a scaling argument that 7 0~ $, the shear pro&c- 

tion in Equation (44) can be written as 

and after Tennekes (1973), the turbulent and pressure transport terms are parame- 
terized as 

Although Tennekes and Driedonks (1981) point out that there is a substantial 
degree of arbitrariness in the choice of forms for the dissipation term, they choose 

E; = CDw;N, (51) 

where N is the buoyancy frequency of the air just above the PBL, 

N2 = g ‘*+ 
e oz . (52) 
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This leads to the entrainment closure we use in this study, 

(53) 

where CF, CT, CD and c,v are constants equaling 0.6, 4.3, 0.03 and 0.7, respec- 
tively. 

A.2. STABILITY-BOUNDS MODEL (STAB) 

In the model developed by Price et al. (1986), vertical mixing is accomplished by 
three mixing rules based on certain specified conditions for gravitational, mixed- 
layer entrainment, and shear (Kelvin-Helmholtz) stability. These conditions are 
neither demonstrably sufficient nor general from a theoretical point of view but 
have shown some empirical success at capturing mean profile behaviour for lim- 
ited regimes. In this model the stability conditions are tested individually and in 
sequence. If a condition is violated, all fluid properties are mixed equally uniformly 
until the condition is satisfied within a time interval that is considered instantaneous. 
In this sense the mixing prescriptions are of the adjustment type. 

The first condition is static stability, 

dp<() 
a,- - 04) 

where p is density and z is positive upward. The check for static stability is carried 
out after all the surface forcing, with the exception of the momentum flux, has been 
applied to the near surface grid level. The model column is completely mixed in all 
quantities from the surface to the interface below the first grid point that satisfies 
Equation (54). This interface is the first predicted mixed-layer depth, hr , and any 
local gravitational instabilities beyond hr are unaffected by condition specified 
in Equation (54). This mixing is intended to simulate free convection, typically 
near the surface under strong heating conditions, but it cannot penetrate into stable 
stratification. 

The second condition is for mixed-layer stability. The momentum flux is dis- 
tributed uniformly from the surface to h 1, and a second mixed-layer depth, h2 
which is determined using a bulk Richardson number (see Pollard et al., 1973; 
Price et al., 1978): 

R = gbh 
b Poiavj2 2 & = 0.65 (55) 

where n denotes the property difference between the mixed layer and the first 
layer beyond. Again, all properties are completely mixed from the surface to the 
interface below the first grid level that satisfies Equation 55; this interface then 
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defines h2. This process is meant to represent deepening of the mixed layer by 
shear-driven entrainment. 

Such entrainment generally leads to unrealistic property jumps across hi that are 
smoothed out by the parameterization of local shear (Kelvin-Helmholtz) instability. 
The associated condition, 

R = gdPlaz 
3 po(dV/&)2 1 RF = 0.25 (56) 

is applied across h2 and everywhere beyond. This region is first searched for the 
smallest gradient Richardson number, R,; then the two adjacent layers are partially 
mixed in all quantities according to 

where 4; is the value in one layer and &+I is the value in the other. We use a 
value of 0.3 for R,,,,, following Price et al. (1986). Complete mixing occurs for 
R, = 0, but since some local areas of gravitational instability could exist with 
R, < 0, some excess mixing is possible. There is also a mixing discontinuity at 
R, = 0.25, where the partial mixing in Equation (57) and Equation (58) equals 
0.17, rather than zero. After this local mixing, new R, values are computed where 
necessary and, in general, the procedure is repeated until Equation (56) is satisfied 
everywhere. 

Finally the mixed-layer depth, h nl, is diagnosed from the resulting density 
profile. The local instability mixing can occur below h,2, which leads to h, < h2. 
In practice this mixing is arbitrarily confined to only the first two layers below, so 
Equation (56) may not be satisfied across h,, . It is also not necessary for Equation 
(55) to be satisfied for h = h,,, . 

A.3. I<( Ri) (LOUIS MODEL) (KOFR) 

The I<( Ri ) scheme is after Louis (1979), and incorporates the updates and changes 
in constants and formulations from Louis et al. (1981). The basis for the Louis 
model emerged from known behaviour of surface-layer turbulence, with Ri used 
as a similarity parameter instead of z/L. Louis made the coupling to the surface 
by a drag coefficient formulation whereas in the interior of the flow he switched to 
a traditional K-formulation. 

Like the other grid-point models, the I<( Ri) model shares M-O similarity 
lower boundary condition for surface heat, momentum and scalar fluxes. Above 
the surface layer the fluxes are parameterized using Richardson number modified 
drag coefficients, 

- (TL’UJ’) = u~~;~F, 
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a2 
- (uF’,~‘) x RI’A8Fh (60) 

where R is the ratio of drag coefficients for momentum and heat in the neutral 
limit, u2 is the neutral momentum drag coefficient, 

(61) 

and Ri is the Richardson number, 

(62) 

Equations (59) and (60) can be recast in local form to give expressions for lcm 
and lih( = Ii,), the eddy diffusivities for momentum, heat and scalars above the 
surface layer, 

where, 

(63) 

(64) 

The asymptotic mixing lengths for momentum and heat, (X,,, and Xh) are given 
values of 150 m and 450 m respectively. 

Initially Louis used matching to surface-layer similarity functions to obtain FnL 
and Fh. These were later adjusted in the stable regime to provide a finite flux 
Richardson number in the limit of strong stratification. This is in agreement with 
empirical surface-layer similarity functions, so the model should be effective near 
the surface. Away from the surface the approach relies on the existence of a local 
relationship between fluxes and mean gradients, valid for arbitrary stratification. 
Although there is evidence for this in the stable case, boundary-layer diffusivities 
are not well behaved in the convective case. Furthermore, the stability functions 
obtained by Louis may not be consistent with turbulence behaviour in the mid- and 
outer regions of the stable boundary layer. 

Louis et al. (1981) used the performance of the ECMWF forecast model in the 
upper troposphere to tune asymptotic mixing lengths X,,, and Xh. Obtained values 
are thus also dependent on properties of the forecast model other than its ability to 
treat turbulent mixing. Comparisons with atmospheric turbulence data (Kim and 
Mahrt, 1992; Tjemstrom, 1993) have shown that the magnitudes of the asymptotic 
mixing lengths depend on the type of flow studied, with typically an order of 
magnitude smaller values obtained when tuned against data from boundary layers 
and thin shear layers. 
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After tuning and a number of modifications to the scheme Louis et al. (1981) 
give the following formulations for F, and Fh in the unstable case, 

F, = l.O- 
2bRi 

1 + 2bc mA23~~z,,2 { (k!$d)“3 - 1}312 , Ri ,1/z’ (65) 

Fh = l.O- 
3bRi 

1 + 2bchAz’$z,,2 { (+)1’3 - 1}3’2 1 Ri ,1/z’ (66) 

For the stable and neutral cases, the following formulations for F, and Fh are 
used, 

1 
F, = 2bRi ’ (67) 

1t (I +dRi)‘i2 

Fh = 
1 

1 + 3bRi(l $ dRi)‘/*’ 
(68) 

The constants used in the above closure equations are {b, c,, ch, d} = {5.0,7.5, 
5.0,5.0) (see Louis et al., 1981). 

A.4. K-PROFILE MODEL (KPRO) 

Turbulent mixing in a large-scale atmospheric model is often treated by a first order, 
local diffusion approach, in which the subgrid-scale turbulent, vertical kinematic 
flux of a quantity is taken proportional to the local mean gradient of the transported 
quantity, 

where 4 is one of q, 8, u, v and 1<4 is an “eddy-diffusivity” for 4, which is typically 
taken to be a function of a length scale and local vertical gradients of wind and 
potential temperature. This downgradient approach is a good approximation in the 
stable and neutral boundary layers, where mixing occurs on scales that are generally 
smaller than the depth of the boundary layer. In the convective boundary layer, 
the main mechanisms for transport of momentum, heat and scalars are buoyant 
plumes which scale with the depth of the mixed layer. Under these conditions, 
the downgradient diffusion approximation breaks down and transport can often be 
against the mean gradient or “countergradient” (Deardorff, 1972~). This is often 
the case near the top of the mixed layer where rising plumes encounter a capping 
inversion. 
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In the present evaluation of the non-local diffusion scheme, we follow the 
work by Troen and Mahn (1986) while adopting the extensions of Holtslag and 
Boville (1993). By simplifying and approximating the heat and scalar flux equations 
(Holtslag and Moeng, 1991), the flux of any scalar 4 can be described with 

(70) 

Here I{+ is an eddy diffusivity for the quantity of interest, ad/as is the local 
gradient for 4, and y& reflects the non-local transport due to dry convection. This 
formulation is non-local in two ways. The first is the countergradient term y4 which 
depends on the surface flux ((w’@)u) and the depth of the mixed layer (z;), 

(71) 

where w* and w, are turbulent velocity scales to be described later. The second 
non-local aspect of the formulation is the fact that the local diffusivity Jci, is 
dependent upon the bulk characteristics of the mixed layer rather than simply local 
properties, 

(72) 

The velocity scale used for passive scalars is the same as that for temperature(wt). 
Countergradient terms for momentum have not yet been used. 

A.4.1. Turbulent Velocity Scales 
In the surface layer, the turbulent velocity scale for scalars is 

u* lot = - 
dh 

(731 

where, in the stable surface layer, following Dyer (1974) the dimensionless tem- 
perature gradient is 

(74) 

(75) 

and L is the Obukhov length. The latter formulation provides a smooth match 
at z/L = 1 and prevents & from becoming unrealistically large (or I{+ from 
becoming too small). In the unstable surface layer & is 

$Jh={1-15tj-“2 (76) 

again after Dyer (1974). 
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The momentum velocity scale is formulated in a similar fashion. For the unstable 
case, 

u* 
W m= 

&!l 
(77) 

where 4m is given by 

orn = {I- 15;)li3 (78) 

while in the stable case, UJ~~ and U+ are assumed to be equal (see Holtslag and 
Boville, 1993). 

Above the surface layer, the velocity scales take on non-local formulations. The 
momentum turbulent velocity scale (~1~~) is a weighted combination of U, and the 
convective velocity, 

w m = (UT? + Cl wy3 

where et is a constant and 

U’, = ((g/d()){ u:‘e’),tJ’“. (W 

The scalar turbulent velocity scale (Q) is then found by scaling its momentum 
counterpart by the turbulent Prandtl number (Pr), 

U’t = ?&,/Pr. (81) 

The turbulent Prandtl number (- lCi,, /Ii,, = u,, / ~1~) is given by, 

(82) 

where n is a constant. The constants ~1, and ct are determined in the convective limit 
by matching Equations 70,7 1 and 72 at the top of the surface layer (2 = 0.1 z;). 

A.4.2. Mixed-Layer-Depth Determination 
The non-local structure of the mixed-layer diffusivities (Ii,,. I<h) as well as the 
countergradient term (TV) are dependent upon the specification of the mixed-layer 
depth (z;). Here we follow Troen and Mahrt (1986) and use and iterative method 
based on the bulk Richardson number formulated using the difference between the 
surface temperature and the temperature at the top of the mixed layer, 

(83) 

In this formulation it is assumed that parcels rise to some height of neutral buoyancy 
thus determining the vertical extent of mixing. The surface temperature ( Bs ) is 
determined using similarity arguments and matching at the top of the surface layer, 

8, = tyz,)+&Y! 
U’, (84) 
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where H( zS ) is a near surface temperature determined using similarity theory and b 
is a constant determined using arguments similar to those for a and ct. 

A.5. SINGLE-POINT MODELS 

One often used form of turbulence closure in boundary layer modelling is the 
second-order single-point closure model (Mellor and Yamada 1974; Launder et al. 
1975; Zeman and Lumley 1976; Lumley 1978). In this type of closure, equations 
for the second moments are derived by applying Reynolds decomposition and 
averaging to the heat, momentum and scalar equations. The result is a set of 
differential equations for the second moments and the mean equations. Although 
the derivation of these equations is straightforward, a number of terms in the 
equations require parameterization, specifically third-order moments, pressure- 
strain correlations and dissipation terms. With suitable approximation for these 
terms a closed set of equations results. 

The complexity of single-point closure is somewhat arbitrary in that, in prin- 
ciple, equations for turbulent moments of any order can be derived. Although 
models containing prognostic third-order moments have been used (Andre et al. 
1978; Briere 1981; Moeng and Randall 1984) these are far from practical for use 
in large-scale models. Even at second order these models are typically too complex 
for inclusion in a large-scale model due to computational cost. Additionally, it is 
questionable if the advantage of using a more physically complete closure can be 
realized at vertical and horizontal resolutions similar to those of most large-scale 
models. For these reasons, most implementations of single-point closure in large- 
scale models are based on a truncation of the second-moment equations to some 
manageable form. One such method of hierarchical simplification is described in 
Mellor and Yamada (1974, 1982) in which the equations are simplified (truncated) 
based on an anisotropy scaling. 

In this study we evaluate the Level 2 and 2.5 single-point models described in 
Mellor and Yamada (1982) and Yamada (1983). Eddy diffusivities in these models 
may be written 

I<,,, = lqs‘,,, (85) 

where o is any scalar, and (1 is the square root of twice the turbulent kinetic energy. 
Here 1 is a turbulence “master length scale” for which we use the traditional 
Blackadar ( 1969) formulation, 

(87) 
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limited to a minimum value (= OSq/N), where N is the buoyancy frequency. In 
the above, lo is an asymptotic length scale derived from an integral of the turbulent 
kinetic energy, 

lo = 0.20$;;*. 
0 z (88) 

In the Level 2 version q is obtained from the diagnostic equation that follows 
when tendency and transport are neglected in the prognostic Level 2.5 equation for 
q. In the original model by Mellor and Yamada non-dimensional eddy diffusivities 
S, and Sd were different in Level 2 and Level 2.5 versions. Use of the Level 
2.5 system can result, however, in non-realizable turbulence fields, as discussed 
by Mellor and Yamada (1982), and Helfand and Labraga (1988). Yamada (1983) 
circumvented this problem by simply using Level 2 S, and S$ also in the Level 
2.5 model. In essence this means that the Level 2.5 model, as used here, is analo- 
gous to the E-l type models common in the engineering community. This may be 
appropriate for the vertical fluxes needed in a GCM, but casts some doubt on the 
fidelity of other second moments from the scheme. 

Since the S, and S+ used here are, due to the above simplifications, diagnostic 
equations that depend only on the local gradient Richardson number, the Level 
2 model is analogous to the Louis (1979) model. Following Yamada (1983) the 
values of S, and S$ are assumed to have lower limits given by the values obtained 
at a gradient Richardson number of 0.14. These artificial lower bounds on mixing 
are likely to have a non-negligible effect on the results. 

Since our evaluation is done in terms of quasi-steady results, the tendency of 
turbulent kinetic energy in the Level 2.5 model should have only marginal effect on 
the results. The Level 2.5 model uses a downgradient-type closure for the turbulent 
transport of turbulent kinetic energy. It is well known that buoyancy effects are 
significant in third-moment budgets in the convective boundary layer. To what 
extent the neglect of this affects the results may be quantitatively examined only 
by inclusion of buoyancy in the parameterization of third moments. Common 
experience is however that the Level 2.5 model as a system provides reasonable 
results despite this deficiency. 

A.5.1 The Level 2.5 Closure (MY25) 
The version of the Level 2.5 model used in this study is after Yamada (1983), 

K, = IqS, (89) 

(90) 

where 4 is any scalar including potential temperature. 

s = 1 96(0.1912 - Rif)(0.2341- B%f), 
m - 

(1 - Rij)(0.2231 - Rif) 
Rif < o 16 

(91) 
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S, = 0.85, Rif 2 0.16 (92) 

Q = 1 3lgO.2231 - Rij 
0.2341 - Rij’ 

Rij < 0.16 (93) 

a = 1.12, Rij 2 0.16. (94) 

In this form of the closure, the flux Richardson number (Rij) is derived from the 
gradient Richardson number (Ri) using the following conversion, 

Ri j = 0.6588( Ri + 0.1776 - [Ri*- 0.3221 Ri t 0.03156]“*), Ri < R&(95) 

Rij = Rij,. Ri 2 Ri, (96) 

where Rijc(= 0.191) and Ri,( = 0.195) are critical flux and gradient Richardson 
numbers. 

The turbulent kinetic energy is determined by the integration of a differential 
equation for twice the turbulent kinetic energy (q* z ( L~;u;)), 

where P, is shear production, 

Pb is buoyancy production, 

and c is the dissipation rate, 

q3 c=-m 
where Bt (- 16.6) and S’, (S 0.2) are constants. 

(97) 

(98) 

(99) 

(100) 

A.5.2. The Level 2 Closure (MY20) 
The Level 2 model has a similar formulation for lCi, and lib but differs in the 
assumption that production of turbulent kinetic energy is equal to its dissipation. 
This allows a simple algebraic formulation for q* rather than the solution of a 
differential equation. Using the above notation, the equilibrium value of q* is 

q* = B,12 [(g)*t (a,‘] (1 - Rij)S’, (101) 

where 1 is calculated from Equation (87). 
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A.6. MULTI-STREAM EXCHANGE MODEL (TRAN) 

The multi-stream exchange model examined in this study is the transilient scheme 
(Stull 1984, 1993). It makes use of a “transilient” matrix which describes the 
material exchange between different cells within the mixed layer. That is, 

N 

3,(1$ At) = ~e,(Ll);S,(t) (102) 
j=1 

where T5’; is the state of a scalar and c;~ is the transilient matrix, the elements of 
which, after mixing, specify the fraction of air currently at level i which originated 
from level j (Stull, 1993). This method of mixing is predicated on the idea that 
mixing is advective rather than diffusive in nature and as such its description 
should encompass some form of non-local transport. In the transilient matrix, near- 
diagonal elements are associated with local mixing while off diagonal elements 
specify non-local mixing which can span the full depth of the mixed layer. Thus 
the scheme accommodates mixing due to eddies ranging in size from that of a grid 
volume to the depth of the mixed layer. 

The transilient matrix is based on the mixing potential JiJ between levels i and 
j in the column and makes use of a non-local turbulent kinetic energy equation: 

&T(j 
‘;J = (A;,.-)2 (103) 

where -1,; is a difference operator between variables at points i and j, R,( = 0.21) 
is a critical Richardson number, To (= 1000s) is a time constant, D,; dissipation 
factor and I:,, = r;,. 

The matrix I’ represents the “mixing potential”. There are a number of mod- 
ifications which 1’ undergoes before it is used to carry out mixing on the model 
variables. The first modification ensures that the elements of the matrix increase 
monotonically from the off-diagonal comers to the diagonal in both vertical and 
horizontal directions. This is accomplished by moving through the matrix, first 
by columns and then by rows from the off-diagonal comers toward the diagonal, 
and adjusting upward the matrix elements which are below the maximum of the 
previous column/row elements. The matrix diagonal elements are then set to the 
row maximum plus a reference mixing potential 1;.,f (=lOOO) which represents 
subgrid scale local mixing. 

The final step in producing the transilient matrix ci3 is to normalize the mixing 
potential matrix 1’ to satisfy continuity constraints. This is accomplished by mul- 
tiplying the upper triangle of ‘I’ by the inverse of the maximum of the RI norms 
of the rows of I’. This is followed by the generation of a symmetric lower triangle 
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and the calculation of diagonal elements of Cij. The diagonal elements (c;;) are 
then set to I .O minus the sum of the ith row to ensure conservation of mass. 
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