ENERGY BALANCE STORAGE TERMS IN A MATURE MIXED FOREST AT PETAWAWA, ONTARIO - A CASE STUDY

J. H. McCAUGHEY

Department of Geography, Queen's University, Kingston, Ontario, Canada, K7L 3N6

(Received in final form 27 June, 1984)

Abstract. The energy storage terms for a mature mixed forest at Petawawa, Ontario are reported for 38 days in the summer of 1982 when the forest was in full leaf. Hourly, daily and daytime values of the storage terms are documented. The biomass storage term, Q_v , should be calculated from measurement of biomass temperature change. For hourly periods, the storage terms can be of significant size with respect to net radiation, Q^* . This is especially the case at night, in the early morning after sunrise, and near sunset. The importance of the storage terms is still pronounced when daytime totals are considered - the ratio of the total storage (Q_s) to Q^* varied from 1 to 15% for the whole sample, but is typically between 5 and 10%. For daily totals when the canopy is dry and the net radiation high, Q_s is typically 2 to 3% of $Q[*]$. However, it can be up to 10% of Q^* under particular conditions (overcast days, or during or immediately following rainfall).

1. Introduction

In the measurement of the energy balance of tall vegetation canopies, it is often assumed that the storage terms are negligible. In part, this may be the result of measurement considerations because some of the storage terms are difficult to estimate. This is especially the case with the biomass storage term which requires measurement of the biomass temperature change, as well as the mass of the vegetation. The latter requires detailed vegetation sampling. Tajchman (1971) evaluated heat storage in the biomass, soil and canopy air for a 70-yr old, Norway spruce, 27.2 m high canopy near Munich, West Germany. Total heat storage in the canopy was found to be small, and on cloudy days it "had no practical significance in energy balance calculations". Stewart and Thom (1973) report values of the energy storage terms for Thetford Forest, a canopy composed of Scats and Corsican pine with a mean height of 15.8 m. The results from 7 fine days showed that hourly storage is an important term in the energy balance. For all days, total storage was positive in the morning after sunrise with a maximum value of around 40 W m⁻². It then had a downward trend toward zero at midday, remained close to zero in the early afternoon, became negative in the late afternoon, and reached a maximum negative value of around 40 W m^{-2} close to sunset. Munro (1979) reported total daytime storage values for the Beverly Swamp for five days in August and September 1977. Total daytime energy storage varied from 3 to 7% of Q^* for the mixed deciduous and cedar canopy at this site.

This paper reports measurements of the canopy and soil storage terms for the mature mixed forest at Petawawa, Ontario. A total of 38 days of data have been analyzed for three periods in the summer of 1982 when the trees were in full leaf. The sample periods were chosen to reflect times of both high soil moisture content and low soil moisture content. Also, the difference between storage terms for a wet and dry canopy, as well as hourly, daily and daytime patterns of energy storage are described.

2. Calculation of Storage Terms

If one assumes the photosynthetic storage to be negligibly small, the overall storage (Q_s) is given as

$$
Q_s = Q_a + Q_w + Q_c + Q_g, \qquad (1)
$$

where Q_a is the sensible heat storage in the canopy air, Q_w is the latent heat storage in the same layer, Q_v is the heat storage in the vegetation, and Q_e is the storage rate in the soil, evaluated as the surface value of soil heat flux. All values are in W m^{-2} , and the convention of positive values signifying transfer of energy to storage is adopted. Formally, the terms on the r.h.s. of Equation (1) are found from

$$
Q_{a} = \int_{0}^{z_{r}} \rho C_{p} \frac{dT}{dt} dz,
$$

\n
$$
Q_{w} = \int_{0}^{z_{r}} \frac{\rho C_{p}}{\gamma} \frac{de}{dt} dz,
$$

\n
$$
Q_{v} = \int_{0}^{h} \rho_{veg} C_{veg} \frac{dT_{b}}{dt} dz,
$$

\n
$$
Q_{g} = Q_{g(z)} + \int_{0}^{z} \rho_{s} C_{s} \frac{dT_{s}}{dt} dz,
$$
\n(2)

where ρ and ρ_s are air and soil density, respectively (kg m⁻³), ρ_{veg} is density of vegetation (kg m⁻³ of column), C_p , C_s , and C_{veg} are the specific heats (J kg⁻¹ °C⁻¹) of air, soil, and vegetation respectively, γ is the psychrometric constant (mbar $^{\circ}C^{-1}$), e is vapour pressure (mbar), T, T_b , and T_s are dry-bulb air temperature, biomass temperature, and soil temperature, respectively (°C), $Q_{g(z)}$ is measured soil heat flux at depth z, z, is the height of net radiation measurement, and h is canopy height. It is quite reasonable to assume ρ , γ , and C_n to be constant in the canopy layer, and following Thom (1975), the relations for the above-ground storage terms reduce to

$$
Q_a = 0.33z_r \delta T,
$$

\n
$$
Q_w = 0.5z_r \delta e,
$$

\n
$$
Q_v = 0.8m_{\text{veg}} \delta T_b,
$$
\n(3)

where m_{vec} is the mass of vegetation over unit horizontal area, and δT , δT_b , and δe are hourly rates of change of air and biomass temperatures and of vapour pressure. The expression for Q_v assumes that the specific heat of vegetation is 70% that for water. It is necessary to evaluate δT , δT_b , and δe from measurements at a 'representative' level in the canopy (Thom, 1975). In this experiment, δT is a mean value obtained from measurements taken at the base of the canopy, in the upper canopy zone, and above the canopy in the boundary layer. δe is obtained from measurements of vapour pressure at the base of the canopy and in the boundary layer above the canopy. Vapour pressure was not measured in the upper canopy zone. Ideally, the above-canopy level should be z , (21.34 m); in this experiment, however, it was 23.5 m. This does not make a significant difference because the temperature gradients above the canopy are very small (McCaughey and Brintnell, 1984). As well, the rates of change of air temperature above the canopy and at 15.24 m height are almost identical (Figure 2). δT_b is evaluated from vertically integrated biomass temperature values from five sample points on each of two trees.

The surface soil heat flux reduces to

$$
Q_{g} = Q_{g(z)} + \{ (C_{m}X_{m} + C_{0}X_{0} + C_{w}X_{w})/3600 \} \, \delta T_{s} \, \delta z \,, \tag{4}
$$

where C_m , C_0 , and C_w are the heat capacities (J m⁻³ °C⁻¹) of mineral matter, organic matter, and water, respectively. X_m, X_0 , and X_w are the corresponding volume fractions, δT_s is the rate of change of soil temperature (°C hr⁻¹), and δz is the depth of soil from the surface to level z. X_m and X_0 were determined from loss-on-ignition analysis of two soil samples (Brintnell, 1983), and average values of 2 \times 10⁶ and 2.5 \times 10⁶ J m⁻³ °C⁻¹ for C_m and C_0 were assigned (De Vries, 1963). X_w was measured each day.

3. Experimental Site and Measurements

The study was conducted at the Petawawa National Forestry Institute $(45^{\circ}58' N,$ 77° 25' W). The site is located in an extensive stand of mixed forest consisting of the following species and percent frequency estimates: white pine (*Pinus strobus* L.) (5%) ; red pine (Pinus resinosa Ait.) (1%) ; white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana (Mill.) B.S.P.) (13%); balsam fir (Abies balsamea (L.) Mill.) (35%); red maple (Acer rubrum L.) (23%); red oak (Quercus rubra L.) (6%); yellow birch (Betula alleghaniensis Britton) (7%); shrubs, principally nannyberry (Viburnum lentago L.) (6%) ; dead trees (4%) .

A detailed vegetation survey was performed in a 1050.7 m² sample area centred on the 39 m-high research tower. For each tree, the circumference and height were measured, the results being summarized in Table I. The overall density of the forest is 2664 stems ha⁻¹, and the vegetation is distributed into three layers with mean tops of approximately 3 m for the lowest layer, 13 m for the middle one, and 19 m for the upper layer.

The soil in the area is a sandy loam over a gravelly glacial till. The surface layer $(0-5 \text{ cm})$ is highly organic, being mainly coniferous needles and leaves. At a depth of

$0.61 - 1.0$	>1.0
14.64	19.27
4.05	1.69
0.2357	0.4478
0.0320	0.0935
18	11
171	105
	$0.21 - 0.60$ 11.03 3.46 0.1164 0.0369

TABLE I

Summary of tree dimensions and forest density at Petawawa. The sample plot was circular, centered on the research tower, and 1050.7 m^2 in area.

a DBH = diameter at breast height.

 b Based upon 144 stems in sample plot. The height of ten trees in this group was not measured in the field.</sup>

5 cm, there is an ash layer approximately 5 mm thick which resulted from a forest fire that occurred about 50 yr ago. Below the ash layer down to a depth of about 15 cm, there is still evidence of a high fraction of organic matter and litter. From 15 to 17 cm, there is a dark loam with a high clay content. Below 27 cm the soil changes to light sandy loam with increasing numbers of stones with depth. At 40 cm, the frequency of stones increases dramatically. The maximum rooting depth of the trees is 42 cm.

The soil heat flux was measured at 5 cm with a Middleton flux plate (Type CN-3). Soil temperature was measured with a thermocouple at a depth of 2.5 cm directly over the plate. Wet- and dry-bulb air temperatures were measured with aspirated psychrometers at two levels: 3.05 and 23.5 m. Thermocouple probes (Omega Eng. Corp.) were used, and each pair was shielded and aspirated at 5.4 m s^{-1} by 12 V Micronel fans (Model V361L). At 15.24 m, dry-bulb air temperature was measured with an unaspirated, shielded, 36 a.w.g. thermocouple. The shield allowed free flow of air through it. We are satisfied that the use of the very small unaspirated thermocouple gave representative air temperatures. Its performance was compared to an aspirated thermocouple probe prior to the experiment, and no significant differences were found. Furthermore, during the experiment, the small differences between the air temperatures at 15.24 m and those at 23.5 m, where an aspirated probe was used, were consistent with the magnitude of the measured temperature differences above the canopy. Biomass temperature was measured with a lo-junction parallel thermocouple. Each junction was encapsulated in a thin-walled aluminum tube, 15 cm long. Five of the junctions were inserted to a depth of 10 cm into a red maple tree at heights of 1.52, 3.05,4.57,6.1, and 7.62 m. The other five junctions were inserted into a white pine at heights of 2.13,4.57, 7.01, 9.45, and 11.89 m. The biomass thermocouples were oriented toward the east. Also, every attempt was made to ensure that the projecting ends of the sensors were shaded from direct radiation by the surrounding branches. Given that a 10 cm length of each probe was embedded in the trees, it is unlikely that significant heat conduction occurred down the probe to the sensor. Furthermore, an examination of the data revealed no evidence of a more rapid rate of change of biomass temperature whenever the sensors faced the sun. Net radiation was measured at a height of 21.34 m by a

Middleton net pyrradiometer (Type CN-1), which was continuously purged by nitrogen. All signals were integrated and recorded hourly with a Campbell Scientific Data System (Type CR5). The volumetric soil moisture in the top 5 cm was determined by gravimetric analysis of two, 2 10 cc soil samples each day at 0900 LAT. Precipitation was measured with a tipping bucket gauge (Sierra Mfg. Co.) on a cleared site, 4.5 km distant, and recorded on a Campbell Scientific Micrologger (Type CR21). Measurements were started on June 15 and continued until September 8.

By applying Whittaker and Woodwell's equations (1968) to the DBH data (Table I), the mass of vegetation over unit horizontal area for this forest, m_{veg} , was found to be 23.05 kg m⁻³.

4. Results and Discussion

The storage terms were evaluated for each hour for a total of 38 days: June 16 to 30, July 16 to 30, and August 7 to 14. In June, the soil moisture was high $(20-35\%$ by volume), whilst in July and August it was low for this area $(8-25\%)$. The high soil moisture in June was the result of frequent rain events, one of which was very high - 31 mm on June 19 (Figure 1). There was a clear drying cycle from July 16 to 26.

Fig. 1. Daytime totals of total heat storage (Q_*) /net radiation (Q^*) , daily volumetric soil moisture (X_{ν}) , and precipitation (P) at Petawawa, 1982.

4.1. AIR AND BIOMASS TEMPERATURE CHANGE

Thom (1975) suggested that for calculation of storage in the biomass (Q_v) , a representative δT may adequately approximate δT_b . On the basis of the data for this forest, this is not the case. The different behaviour of δT and δT_b is illustrated for two days (Figure 2). July 22 was a dry day and June 19 a very wet day. When the canopy is wet, the hourly change of air temperature is small and essentially the same at all three levels, and, as expected, when a rain event occurs, the value of δT decreases, e.g., at 0900, from 1200 to 1400, and at 2100. The δT_b values do not appear to respond directly to the

Fig. 2. Diurnal pattern of air and biomass temperature change (δT and δT_b) for June 19 and July 22, 1982. July 22 was a dry day, whereas June 19 was wet (31 mm). Air temperature was measured at 3.05, 15.24, and 23.5 m. The curves are not identified for June 19 in order to avoid clutter.

occurrence of precipitation, but rather show a slow, gradual increase from negative values in the morning to small positive values in the afternoon and back to negative values from 2100 onward. In contrast, for July 22, the δT curves reach a maximum positive value early in the morning. The curves for the middle and upper levels are highly correlated and peak at 0800, whereas the curve for the lowest level lags the other two by approximately one hour, reaching a peak at 0900. For the remainder of the daylight period, all δT curves trend downward, becoming negative at 1600. The obvious minimum at 1700 is a result of a very low value of net radiation (59 W m^{-2}) as a result of cloud build-up, followed by a recovery to 118 W m^{-2} at 1800 when the cloud dissipated. At this time, δT at the lowest level shows a smaller response than those at the higher levels because of the insulating effect of the canopy. The δT_h curve shows the same basic response as that for δT for the whole day except that it lags the δT curves by approximately three hours, and the absolute values of δT_b are smaller. δT_b peaks in the late morning at 1100, becoming negative by 2000. There is no evidence of short-term changes in δT_b as compared to δT . Clearly, if air temperature change at one level were chosen to represent the biomass temperature change, the agreement would be poor from sunrise to midday and from sunset until midnight. In the early morning, all curves are very similar, and they also agree quite well in the early afternoon, especially when the canopy is dry. However, δT should not be substituted for δT_b as a general rule.

4.2. HOURLY STORAGE TERMS

The diurnal behaviour of the storage terms is illustrated for July 22 (Table II). For the day as a whole, the overall storage (Q_s) is of greatest significance, as a fraction of $Q[*]$, at night and during the transition periods around sunrise and sunset. At night, with energy being released from all the stores, Q_s typically lies between - 20 and -40 W m⁻². Normally, Q_v is the largest individual flux. In the early morning (0100 to 0500), Q_g and Q_a are of a similar size, smaller than Q_v , and are relatively constant over time. However, Q_w is quite variable but very small. Late in the day, 2000 to 2400, Q_g is insignificant, and the other three storage fluxes are of similar magnitude. All are fairly constant in time except for Q_w at 2200 when a larger (more negative) value occurs. At night, Q_s is typically between 40 and 50% of Q^* , but values higher than this can occur. At sunrise and sunset, the ratio of Q_s to Q^* exceeds 1.0 but only because the values of both fluxes tend toward zero. In the daytime period, the storage is dominated by Q_v and Q_{g} . However, from sunrise until midday, Q_{a} is significant, as is implied in the δT distribution (Figure 2). As a term in the overall energy budget during the daytime, $Q_{\rm s}$ is most important in the forenoon and late afternoon when it is equal to or greater than 10% of Q^* . In the early afternoon, it is less than 10% of Q^* . From the point of view of accurate assessment of hourly convective fluxes for forests, using the energy balance method, it is necessary to evaluate the storage terms. In many energy balance studies, only Q_g is measured, but the results from this forest clearly show that Q_v should also be evaluated as a bare minimum. As far as sensible and latent heat storage in the air are concerned, the former is more important, especially in the forenoon.

4.3. DAILY AND DAYTIME STORAGE

Whenever the data are aggregated into daily and daytime totals, the importance of the storage terms changes compared to the hourly values. For this study, daytime is defined as the period of the day when Q^* is positive. For daily periods over the whole 38-day sample, the importance of storage is, on average, low; the mean value of Q_{ν}/Q^* is only 1.4% (Table III). However, this does not mean that storage can be ignored on a daily basis because, for overcast days when the daily total of net radiation is small $(< 10$ MJ m⁻²), and on days with prolonged precipitation or when the canopy is drying following precipitation, the comparative size of Q_s is much larger: 5-10% of Q^* . Furthermore, Q_s can be negative or positive. This is illustrated for five selected days: June 19, 25, 29, July 28, and August 10. On June 19, there was prolonged, heavy precipitation (Figure 1), and Q_g is the only positive storage flux on a daily basis. All other storage fluxes are negative with Q_n being the largest. The release of heat from the trees dominates the daily value of Q_v . It was only in the afternoon that the trees gained energy, but then by only a small amount. The daily negative values of Q_a and Q_w combined are approximately equal to the positive value of $Q_{\rm g}$, and the overall negative $Q_{\rm g}$ dominates Q_s . A similar pattern exists for June 29 and July 28. The values of Q_a and Q_w on June 29

appear too high in comparison to the other selected days. However, on this day heavy cloud persisted up to late afternoon (1600) when the sky cleared. As a result, after sunset, air temperature and vapour pressure decreased steadily under the influence of strong longwave radiation loss. It was this latter part of the day which caused the large negative values of Q_a and Q_w . On August 10, the pattern of δT_b was very similar to that of June 19. However, the negative value of Q_v is associated with a negative daily total 98 J. H. McCAUGHEY

of Q_{s} which combine to produce an overall negative value of Q_{s} which is approximately 6% of net radiation. In contrast, June 25, an overcast day with only 1 mm of rain, had trivial amounts of storage in the canopy air and the biomass, and the daily storage is dominated by the soil heat flux. Q_s accounted for 10% of Q^* , and Q_g is 9.5% of Q^* .

For daytime periods, the total storage is an important term in the energy balance of the forest (Figure l), and is positive for the whole sample period. Two distinct regimes

	or daytime totals or storage terms, I											
	Q^* (MJ)	Q_{g} (kJ)	$\varrho_{\scriptscriptstyle a}$ (kJ)	Q_w (kJ)	Q, (kJ)	Q, (kI)	$Q_{\rm g}/Q^*$	Q_a/Q^*	$Q_{\rm w}/Q^*$	Q_v/Q^*	Q_s/Q^*	
June 16	11.6	431.7	59.7	-110.7	166.0	546.7	0.037	0.005	-0.010	0.014	0.047	
June 17	17.6	623.6	313.2	100.0	577.5	1614.4	0.035	0.018	0.006	0.033	0.092	
June 18	16.2	417.4	149.4	17.7	285.5	869.9	0.026	0.009	0.001	0.018	0.054	
June 19	2.5	267.5	62.3	87.0	-39.8	377.0	0.105	0.025	0.034	-0.016	0.148	
June 20	16.8	452.3	149.4	77.2	391.7	1070.6	0.027	0.009	0.005	0.023	0.064	
June 21	14.4	484.6	175.0	99.0	258.9	1017.5	0.034	0.012	0.007	0.018	0.071	
June 22	17.1	488.3	57.2	66.6	312.0	924.1	0.029	0.003	0.004	0.018	0.054	
June 23	17.7	525.8	163.0	-14.2	365.1	1039.7	0.030	0.009	-0.001	0.021	0.059	
June 24	15.8	613.6	256.1	29.6	418.2	1317.5	0.039	0.016	0.002	0.027	0.084	
June 25	5.1	444.1	125.5	152.8	59.7	78.2	0.088	0.025	0.030	0.012	0.155	
June 26	22.7	445.1	314.1	6.5	438.1	1203.8	0.020	0.014	0.000	0.019	0.053	
June 27	20.6	760.1	379.8	154.5	597.5	1891.9	0.037	0.018	0.008	0.029	0.092	
June 28	19.0	671.4	303.0	157.0	511.2	1642.6	0.035	0.016	0.008	0.027	0.087	
June 29	4.5	391.7	63.2	71.2	-39.8	486.2	0.087	0.014	0.016	-0.009	0.107	
June 30	14.1	420.3	186.9	63.0	305.4	975.6	0.030	0.013	0.004	0.022	0.069	
July 16	14.1	670.7	207.4	334.7	345.2	1558.0	0.047	0.015	0.024	0.024	0.110	
July 17	16.9	671.1	87.1	-163.1	338.6	933.6	0.040	0.005	-0.010	0.020	0.055	
July 18	18.0	517.4	140.8	23.0	345.2	1026.4	0.029	0.008	0.001	0.019	0.057	
July 19	20.2	359.6	120.3	-167.5	205.8	518.2	0.018	0.006	-0.008	0.010	0.026	
July 20	19.6	386.9	291.9	40.9	491.2	1210.9	0.020	0.015	0.002	0.025	0.062	
July 21	20.7	472.3	448.1	121.4	677.1	1718.9	0.023	0.022	0.006	0.033	0.083	
July 22	17.6	433.0	346.5	266.1	551.0	1596.6	0.025	0.020	0.015	0.031	0.091	
July 23	20.9	299.6	280.8	-105.6	398.3	873.1	0.014	0.013	-0.005	0.019	0.042	
July 24	19.8	431.6	445.5	35.2	610.7	1541.1	0.022	0.022	0.003	0.031	0.078	
July 25	9.1	347.8	167.3	211.7	239.0	965.9	0.038	0.018	0.023	0.026	0.106	
July 26	19.9	277.6	192.0	-178.4	278.8	570.1	0.014	0.010	-0.009	0.014	0.029	
July 27	17.3	331.9	280.8	78.2	484.6	1175.5	0.019	0.016	0.005	0.028	0.068	
July 28	4.4	143.4	-8.5	24.0	-112.9	46.0	0.032	-0.002	0.005	-0.025	0.010	
July 29	17.1	444.3	242.4	-83.1	365.1	968.7	0.026	0.014	-0.005	0.021	0.057	
July 30	13.8	350.7	329.5	144.8	524.4	1349.3	0.025	0.024	0.011	0.038	0.098	
Aug. 07	13.2	462.7	122.9	289.7	331.9	1207.2	0.035	0.009	0.022	0.025	0.092	
Aug. 08	7.4	392.1	165.6	165.6	252.3	975.6	0.053	0.022	0.022	0.034	0.131	
Aug. 09	15.4	351.3	139.1	-32.6	292.1	452.9	0.023	0.009	-0.021	0.019	0.029	
Aug. 10	9.3	32.2	23.9	103.6	59.7	219.5	0.003	0.003	0.011	0.006	0.024	
Aug. 11	9.4	141.0	140.8	-13.4	172.6	441.0	0.015	0.015	-0.001	0.018	0.047	
Aug. 12	8.7	185.1	107.5	36.4	252.3	581.4	0.021	0.012	0.004	0.029	0.067	
Aug. 13	10.2	236.9	184.4	66.8	318.6	806.7	0.023	0.018	0.007	0.031	0.079	
Aug. 14	15.9	403.6	259.5	-20.2	471.3	1114.2	0.025	0.016	-0.001	0.030	0.070	

TABLE IV Summary of daytime totals of storage terms, Petawawa, 1982

are evident. In the early part of the sample period, June 16 to 30, daytime storage varies from a minimum of 5% to a maximum of 15% of Q^* . The maximum occurs on two days, June 19 and 25, when O^* was very small (Table IV). For the remainder of the sample period in late July and early August, the total storage is lower on average even though on many days the value of Q_s/Q^* is as high as for the earlier period. The relative importance of each storage term is illustrated in Figure 3. In June, the soil storage flux dominates the overall storage as a result of the very high soil moisture values at this time. The biomass storage term is next in overall importance, except for the special conditions which prevailed on June 19, 25, and 29, resulting in small and sometimes negative biomass storage. In July and August, the soil heat storage is a less important term; $Q_{\rm g}$ and Q_v are approximately the same magnitude and larger than Q_a and Q_w . Q_a is never more than 2% of Q^* and is positive for all days except for July 28 when it is insignificant but negative. The Q_w storage term fluctuates between positive and negative values which seldom are more than 1% of Q^* .

Fig. 3. Daytime totals of the energy balance storage terms as a fraction of net radiation.

5. Conclusions

The storage terms are important components in the energy balance of the forest canopy at Petawawa. The soil and biomass storage terms are usually the largest. The former is the larger when the soil moisture is high ($> 20\%$ by volume); when the soil moisture is $< 20\%$, the two are of similar size. For the hourly estimation of this forest's energy balance it is recommended, on the basis of these results, that all of the storage terms be evaluated. It is especially critical that estimates be made early in the morning when the air and biomass temperature are increasing most rapidly. Also, close to sunrise and sunset and during the night, the total storage is large ($\geq 50\%$ of Q^*), relative to the other terms of the energy balance, even though its absolute size is usually small. Careful measurement of total storage at such times could be crucial in finding accurate convective fluxes of the proper sign.

The biomass storage should be calculated from measurements of biomass temperature change; a 'representative' air temperature change should not be used because its diurnal evolution is different from that of the biomass. For days when the canopy is dry, the rate of change in air temperature peaks early, between 0800 and 0900, and the rate of change in biomass temperature lags by up to three hours. Very early in the day, before sunrise, and in the early afternoon, the hourly rates of change of air and biomass temperature are comparable in size, but for the rest of the day, the former is much larger. When the canopy is wet, there are still differences between air and biomass temperature, the former being more variable and much more responsive to rainfall. When precipitation occurs, the rate of change in air temperature decreases, whereas the rate of change in biomass temperature shows little short-term fluctuation.

Even though the importance of the overall storage, Q_s , decreases when daily totals of energy flows are considered, it is still possible for it to equal $5-10\%$ of Q^* under particular circumstances. For instance, when Q^* is low (<10 MJ day⁻¹), during overcast days or during rainfall, the relative importance of Q_s is significant. When the canopy is wet and Q^* is low, there is typically a release of energy from the biomass and Q_s is negative for the whole day. However, when the canopy is dry and the net radiation is high, the daily storage seldom exceeds $2-3\%$ of Q^* , and it can safely be ignored. Often, the small value of daily total energy storage under dry conditions results from a cancellation of one storage term by another.

On the basis of daytime totals of storage and net radiation, it was found that Q_z/Q^* was always positive. Two distinct regimes were evident for this forest. First, early in the analysis period from June 16 to 30, the soil heat storage was the largest of the storage terms as a result of high soil moisture conditions. The biomass storage was next in order of importance. In July when the soil moisture was lower, the biomass and soil storage terms were of similar size. For all days, the sensible and latent heat storages of the air in the canopy were small. Q_a seldom exceeded 2% of Q^* and Q_w was typically slightly smaller, especially when the canopy was dry and the soil moisture low.

Acknowledgements

I am indebted to Dr J. Harrington, Petawawa National Forestry Institute, who provided the experimental tower. Miss Peggy Hauschildt and Miss Wendy Saxton helped with the field data collection, and Mr Mark Publicover built the psychrometers and helped to install all equipment at the site. Mr Lome Clark's help with routine servicing of the psychrometers was greatly appreciated. Dr D. Wardle of the Atmospheric Environment Service, Toronto, kindly provided the Middleton net pyrradiometer. The manuscript was reviewed in draft form by Dr W. R. Rouse, McMaster University. Mr. Ross Hough and Mr. George Innes, Department of Geography, Queen's University, drew the diagrams and made the photographic reductions, respectively. Mrs S. McCaughey typed the manuscript. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

References

- Brintnell, D. M.: 1983, 'The Radiation and Energy Balances of Clear-Cut and Forest Sites, Petawawa, Ontario', M.Sc. Thesis, Queen's University, Kingston, Ontario, Canada.
- De Vries, D. A.: 1963, 'Thermal Properties of Soils', in W. R. Van Wijk (ed.), Physics of Plant Environment, J. Wiley and Sons, New York, pp. 210-235.
- McCaughey, J. H. and Brintnell, D. M.: 1984, 'Evaluation of a Bowen Ratio Measurement System over Forest and Clear-Cut Sites at Petawawa, Ontario', J. Tech. (in press).
- Munro, D. S.: 1979, 'Daytime Energy Exchange and Evaporation from a Wooded Swamp', Water Resow. Res. 15, 1259-1265.
- Stewart, J. B. and Thom, A. S.: 1973, 'Energy Budgets in Pine Forest', Quart. J. Roy. Meteorol. Soc. 99, 154-170.
- Tajchman, S. J.: 1971, 'Evapotranspiration and Energy Balances of Forest and Field', Water Resour. Res. 7, 51 l-523.
- Thom, A. S.: 1975, 'Momentum, Mass, and Heat Exchange of Plant Communities', in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 1, Academic Press, London, pp. 57- 109.
- Whittaker, R. H. and Woodwell, G. M.: 1968, 'Dimension and Production Relations of Trees and Shrubs in the Brookhaven Forest, New York', J. Ecol. 56, l-25.