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SUMMARY 

A new method is presented to calculate the Molecular Lipophilicity Potential (MLP). The method is 
validated by showing that the MLP thus generated on the solvent-accessible surface can be used to back- 
calculate log P. Because the MLP is shown to be sensitive to conformational effects, the MLP/log P relation 
is best sought by taking all conformers into account. The MLP method presented here can be used as a 
third field in CoMFA studies, as illustrated with two series of cq-adrenoceptor ligands, In the first series, 
the steric, electrostatic and lipophilic fields are highly intercorrelated, and taken separately yield comparable 
models. In the second series of ligands, the best model is obtained with the lipophilic field alone, aJlowing 
insights into ligand-receptor interactions. 

INTRODUCTION 

Interactions between bioactive molecules and receptors are governed by different inter- 
molecular forces, classified as steric, electrostatic and hydrophobic. While steric or electrostatic 
complementarity between a receptor and its ligand can easily be modelled at the molecular level 
(standard 3D QSAR with CoMFA), the description of hydrophobic interactions is much more 
difficult to handle. These difficulties arise not only from the physical complexity of such forces 
but also from a nonrigorous use of vocabulary. 

It should be noted that drug-receptor interactions involve fundamentally the same inter- 
molecular forces as those acting on the partitioning of a solute between water and an immiscible 
organic phase [1]. Hence, it is not surprising that the molecular parameter describing partition 
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(log P) can often be correlated with biological activity. In other words, a deeper understanding 
of the partition behaviour of a compound, i.e., its lipophilicity, must shed light on the inter- 
molecular interactions it can elicit. A number of contributions have shown that lipophilicity is 
a physicochemical property which encodes two major structural contributions, namely a bulk 
term reflecting cavity formation, hydrophobic and dispersive forces, and a polar term reflecting 
more directional electrostatic interactions and hydrogen bonds [1-4]. According to our definition, 
the first contribution is called hydrophobieity, and the second polarity. As lipophilicity is an 
equilibrium property, its two contributions describe the balance between all intermolecular 
solute-solvent interactions in both phases. Because water is highly structured as compared to 
organic solvents, hydrophobicity mainly expresses water-solute interactions and can be repre- 
sented by a single molecular parameter of the solute, e.g. its molecular volume or its water- 
accessible surface area. 

In contrast, the polarity part of lipophilicity takes into account the intermolecular interactions 
in the two phases. Thus, the balance between these forces is mainly dependent on the nature of 
the organic phase and the physicochemical meaning of the polarity term changes from one 
organic solvent to another. Based on these considerations, we have recently shown that lipo- 
philicity can be factorized as follows (Eq. 1): 

log  P = a V  - A (1) 

where V is the molecular volume and A is the polarity parameter [3,4]. 
The above analysis shows the complexity of lipophilicity and how misleading it is to identify 

this parameter with a combination of hydrophobic and electrostatic terms only. In particular, the 
polarity contribution to the partition of a solute between water and an organic phase encodes 
forces that are poorly described by an electrostatic field. Thus, we have looked upon the use of 
a quantitative 3D description of lipophilicity as a fruitful additional component in recent 3D 
QSAR methodologies such as CoMFA. 

Pioneering work by Dubost [5], Fauch6re [6] and Furet [7] has clearly demonstrated the ability 
of the Molecular Lipophilicity Potential (MLP) to describe qualitatively the 3D distribution of 
lipophilicity, either in space or on a molecular surface. Unfortunately, the first uses of MLP in 
3D QSAR [8] were not fully convincing, principally because of high correlations between MLP 
and volume descriptors in the sets of investigated compounds. We now present an approach 
based on the concept of MLP and integrated into the SYBYL software environment [9]. 

MLP definition 
Lipophilicity is the resultant of steric and polar intermolecular interactions. The MLP defines 

the influence of all lipophilic fragmental contributions of a molecule on its environment. The 
MLP value at a point in space is generated as the result of the intermolecular interactions 
between all fragments in the molecule and the solvent system, at that given point. To calculate 
the MLP, we therefore need a fragmental system of log P [10-12] and a distance function [6,13]. 
Thus, the MLP is expressed by the following general equation: 

N 

MLPk = Z fi fct (dik) (2) 
i=l 
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where k = label of a given point in space, i = label of the fragment, N = total number of frag- 
ments in the molecule, f~ = lipophilic constant of fragment i, fct = distance function and d~k = 
distance between fragment i and space point k. 

The MLP is therefore a potential of log P, i.e., of relative affinity for two solvents. Unlike for 
the electrostatic potential, it is not necessary to have a probe charge to reveal the MLP in space, 
since all necessary information is implicit in log P. 

The MLP approach was introduced by Dubost et al. [5] who used first the fragmental system 
of Rekker [14] and a hyperbolic distance function. Their second version was based on the 
fragmental system of Broto and Moreau [10] and an exponential distance function on the molecu- 
lar surface. Fauch6re et al. [6] used the fragmental system of Rekker [14] and/or Hansch and Leo 
[15] and an exponential distance function to study qualitatively the spatial distribution of lipo- 
philicity on the molecular surface. The system of Cohen et al. [7] was based on the fragmental 
system of Ghose and Crippen [11] and a hyperbolic distance function, the MLP being represented 
on the molecular surface. Kellog et al. [8] used the fragmental system of Hansch and Leo (multi- 
plying these values by the solvent-accessible surface of each atom) and an exponential distance 
function (HINT program). They applied their MLP system to 3D QSAR to identify comple- 
mentarity lipophilic zones in ligand-receptor interactions. Kim et al. [16] used the GRID program 
to generate a so-called 'hydrophobic' potential with an H20 probe on all lattice points surround- 
ing the molecule. Partial Least Squares (PLS) calculations generated orthogonal latent variables 
which were correlated with biological data (QSAR). 

In this paper, we present a new MLP approach and two applications, one meant to validate 
our proposed MLP by using it to recalculate log P, and the second to interpret 3D QSAR. 

METHOD 

The present MLP is based on the atomic lipophilic system of Broto and Moreau [10] and a 
modification of the distance function used by Fauchtre [6], i.e., Eq. 2 with a distance function 
of e-'f2: 

Nat 

MLPk = Z fi e-dik/2 (3) 
i=l 

The atomic lipophilic system of Broto and Moreau 
Moreau et al. decomposed 1868 log P (octanol/water) values into 222 atomic contributions of 

log P which take into account the nature of the atom and the connected bond types. We have 
defined a code label for each atomic fragment for automatic attribution of a lipophilicity atomic 
constant, a code that is close to the one published by Dubost et al. [17]. 

Distance function 
A distance function is needed to describe the decrease in space of the lipophilic atomic contri- 

butions (Fig. 1). At the atom core, the MLP value must be maximal and at large distances, it 
must approach zero. 

Fauchtre's distance function (e -d) [6] or Audry's distance function (l/(l+d)) [13] (Fig. 1) do 
not appear to be adequate beyond the Solvent-Accessible Surface (SAS), because at these dis- 
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Fig. 1. Graph of three different distance functions characterising the decrease in lipophilicity in 3D space. 

tances (i.e., between ca. 2.6 and 4 A) they vary by less than 10%. A slightly modified function 
(e -d/z) overcomes this limitation. In addition, we have restricted the distance function by a cutoff 
at 4 A to avoid influence of too-distant fragments (Fig. 1). 
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Fig. 2. Algorithm of the MLP program interfaced with the SYBYL software. 
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MLP COLOUR SCALE 
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Region Actual value Normalised values Colour 

Polar - ~ -0.50 to -0.39 Red 
-0.39 to -0.28 Magenta 
-0.28 to -0.17 Orange 
-0.17 to -0.06 Yellow 

0.0 -0.06 to 0.06 White 

Nonpolar 0.06 to 0.17 Cyan 
0.17 to 0.28 Green 
0.28 to 0.39 Green-blue 

+c~ 0.39 to 0.50 Blue 

SYB YL interface 
A FORTRAN program was written to generate the MLP and was interfaced with some com- 

mon molecular modelling software, such as SYBYL. The algorithm of this program and its 
interface with SYBYL are shown in Fig. 2. The algorithm uses three data files, generated by the 
molecular modelling software, i.e., a file containing the molecule geometry, a file containing the 
coordinates of points on the molecular or solvent-accessible surface, and a file describing the 
tridimensional grid used in CoMFA. According to Eq. 3, the program can calculate the MLP 
either at each dot on a surface area or at each node of a 3D grid. 

SYBYL Programming Language (SPL) macro commands were introduced to integrate the use 
of MLP into SYBYL. The dot surface is coloured with normalised values in order to obtain a 
relative scale of MLP, independent of the molecule (Table 1). This allows a qualitative compari- 
son of the 'lipophilic shape' of molecules (Fig. 3). 

Validation of  the MLP 
If spreading out lipophilicity over a given space is valid, the original logP values should be 

recovered by integration of the MLR Because the solvent-accessible surface should represent how 
the molecule is perceived by the environment, it appears to be suited well for integrating the MLP 
[18,19]. However, a prediction of logP can only be made if a preliminary correlation with experi- 
mental lipophilicity is established. 

For this purpose, three parameters were derived from the MLR generated on the solvent- 
accessible surface of the molecule. The first parameter (}]MLP) is a global parameter, obtained 
simply by summing all MLP values on the surface. The second and third parameters (2MLP* 
and 2MLP-) are the partial summations of the positive and negative MLP values, respectively. 

The parameters ~]MLP + and ]~MLP- represent the 'lipophilic' and 'hydrophilic' parts of the 
molecule, respectively, i.e., the regions of the surface where positive and negative atomic values 
of lipophilicity are expressed. It should be noted that the MLP is dependent on the 3D structure. 
Thus, the log P generated by the MLP integration is sensitive to intramolecular factors, such as 
proximity between polar groups and, significantly, molecular conformation. 

MLP in 3D QSAR 
For each molecule, the MLP values calculated at each point of the 3D grid were imported into 
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TABLE 2 
MLP-DERIVED PARAMETERS FOR AMINOPHENOL 

Exp. log pa ~ M L P  ~MLP ÷ ~MLP-  

Ortho 0.52 204 455 -251 
Meta 0.16 168 382 -213 
Para 0.04 167 378 -211 

" See Ref. 21. 

a SYBYL QSAR table for creating a new field. Thus, three different CoMFA columns now exist 
in a QSAR table: a first column with the steric field (van der Waals interactions), a second one 
with the electrostatic field (Coulombic interactions) [20], and a third column with the imported 
lipophilic field. The energy cutoff value of the first two fields was 30 kcal/mol, while the lipophilic 
field was taken into account only outside the van der Waals surface. 

APPLICATIONS 

Validation of the MLP 

Aminophenols 
MLP integration by summation over the solvent-accessible surface distinguishes ortho-, meta- 

and para-disubstituted benzenes in a quantitatively correct manner. Consider, for example, the 
aminophenols (Table 2). The larger lipophilicity of the ortho-isomer is predominantly due to a 
larger contribution of ~]MLP +. To understand better the origin of these interactions, the EMLP + 
and EMLP- parameters were calculated for benzene, phenol and aniline (Table 3). As expected, 
the addition of a polar group (hydroxy or amino) to benzene decreases the ZMLP + and increases 
the ZMLP-. When para to each other, the two groups behave additively, as seen experimentally 
[21]. For the ortho-isomer, the increase in EMLP + and ZMLP- is due to the so-called OH/NH2 
'ortho effect' [22,23]. In fact, the contribution of the two groups in an ortho-orientation shows 
that ZMLP + is decreased less than for the para-isomer (-355 instead of -432), while the EMLP- 
is increased more (+247 instead of +209). The first effect is due to the fact that the ortho-interac- 
tion of polar groups increases the solvent-accessible surface having MLP > 0. The second effect 
is due to the fact that ortho-interactions render more negative the MLP < 0 points. The balance 
of the two opposite contributions corresponds to a global increase in lipophilicity, as observed 
for ortho- relative to para-aminophenol. 

TABLE 3 
DIFFERENCES IN MLP VALUES BETWEEN BENZENE AND SUBSTITUTED BENZENES 

Compound ~MLP ÷ YMLP- 

Benzene 0 0 
Phenol -169 +25 
Aniline -257 +183 
p-Aminophenol -432 +209 
o-Aminophenol -355 +247 

OH---NHz interaction +77 +38 
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Cyclopeptides 
A series of 13 cyclopeptides (11 dicyclopeptides and 2 tetracyclopeptides) was studied, three 

of which are shown in Fig. 3. Visual inspection of the MLP of cyclopeptides reveals large differ- 
ences and allows their qualitative ordering by increasing lipophilicity. Clearly, the more lipophilic 
molecule (M1) has a greater lipophilic surface (coloured in blue), in contrast to the more hydro- 
philic molecule (M3) where the surface is very hydrophilic (coloured in red). 

In a preliminary correlation study between MLP and experimental log P values, the two 
parameters ~]MLP + and ]~MLP- were derived for the most stable conformer of each molecule 
(Fig. 4A). A good correlation coefficient of 0.95 is seen for this model, where the two classes of 
cyclopeptides are taken together. It should be noted that the prediction of log P by the program 
CLOGP [21] (based on the fragmental system of Leo and Hansch) does not allow to mix the two 
classes of cyclopeptides (not shown). However, cyclopeptides are flexible molecules. We therefore 
analysed the conformational space of the 13 molecules with a molecular dynamics-based strategy 
to be described elsewhere [24]. The MLP integration on the solvent-accessible surface was then 
calculated for all conformers thus generated. The calculated log P variation for all conformers of 
a single molecule shows that flexible compounds are poorly described by their minimum-energy 
conformer. This is not surprising, since the gas-phase energy is a very poor descriptor of the 
conformational behaviour in solution, which may be greatly different from that in the gas phase. 

Fig. 3. Illustration of the qualitative order of lipophilicity of the MLP, generated on the solvent-accessible surface of three 
cyclopeptides. 
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Fig. 4. (A) Linear correlation for 13 cyclopeptides between experimental and estimated log P, derived by integration of 
the MLP on the solvent-accessible surface of the lowest energy conformers. The range of estimated log P for the entire 
conformational space of each molecule is represented by vertical bars. (B) Linear correlation between experimental and 
estimated log P, calculated as the mean of Y, MLP + and ]~MLP- values generated from the whole conformational space 
of each cyclopeptide, 

Therefore, the MLP-logP correlation was refined by averaging for each compound the ~ M L P  + 
and ]~MLP- of all its calculated conformers [25]. The correlation thus obtained is described by 
Eq. 4 and shown in Fig. 4B: 

log P = 6.10 x 10-4(+ 3.50 x 10-4) ]~ MLP- + 3.09 x 10-3(± 3.70 x 10 -4) ~ MLP + - 1.61 (+0.68) 
n = 1 3 ,  r 2=0.988,  q2=0.977,  F = 4 3 9 ,  s=0 .151  

(4) 

This statistical model is a clear improvement over the first one. It is also conceptually better, 
because it takes conformational behaviour into account. In other words, the gas-phase preferred 
conformation cannot represent the complex behaviour of  a solute in a biphasic system. Moreover, 
even if one hypothetical conformer could describe these multiple interactions with two solvents, 
we show here that the mean parameters, generated for all conformers of a molecule, allow a 
better calculation of log R 

As mentioned above, such an approach of lipophilicity prediction is restricted by the existence 
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Fig. 5. Orthographic view of the alignment of the 38 derivatives of 3-aryl-4,5,6,7-tetrahydro-lH-pyrazolo[4,3c]pyridine [26]. 

of a correlation between the generated parameters (MLP integration) and the experimental 
lipophilicity measurements. In addition, such an approach will always be limited by the 
fragmental lipophilic system used and its approximations (for example, the implicit treatment of 
hydrogen atoms, partially corrected by using the atomic solvent-accessible surface). 

CoMFAs with lipophilic field included 

To examine the information added by the MLP field to a CoMFA analysis (version 5.5 of the 
SYBYL software), we analysed the affinity of two series ofligands of the ~l-adrenoceptor [26,27]. 
In the CoMFA, a grid spacing of 1 ]~ and a dielectric function of 1/r were used. The maximum 
steric and electrostatic field value was set to 30 kcal/mol. The charges generating the electrostatic 
field were calculated by the Gasteiger-Marsili method [28]. For the cross-validated analysis, the 
minimum sigma value was set to 2.0, with the number of cross-validated groups being equal to 
the number of compounds. For the final analysis, the minimum sigma value was set to 0.0 and 
the number of components was chosen to correspond to the first r-squared maximum found in 
the cross-validated analysis. 

Derivatives of 3-aryl-4,5,6, 7-tetrahydro-l H-pyrazolo [4,3c ]pyridine 
The first CoMFA was that of a series of 38 analogues, selected by Singh et al. [26]. These 

molecules were aligned by superimposing the polycyclic moiety and giving a common orientation 
to the side chains (Fig. 5). The analysis revealed that the lipophilic field (MLP) did not give more 
information than the steric field (Table 4 and Fig. 6), suggesting that steric interactions alone 
explain the variations of (z I affinity in this series of compounds. This example demonstrates, first, 
the danger of statistical overfitting of the explanatory variables, and second, the danger of 
misinterpreting statistical results. 

Indeed, the statistical results (Table 4) indicate that each field separately gives a good correla- 
tion with the oq affinity, suggesting intercorrelation between the three fields. Moreover, the 
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Fig. 6. Graphical representation of the major features (steric, electrostatic and lipophilic) of the 3D QSAR for eq affinity 
of the 38 derivatives of 3-aryl-4,5,6,7-tetrahydro-lH-pyrazolo[4,3c]pyridine [26]. Green (red) contours surround regions 
where higher (lower) steric interactions increase cq affinity. White (magenta) contours surround regions where higher 
(lower) electrostatic interactions with a positive charge increase cq affinity. Cyan (yellow) contours surround regions where 
higher (lower) lipophilic interactions increase al affinity. The contour levels are 0.01 for green, white and cyan and -0.01 
for red, magenta and yellow. The molecule represented is a good a 1 ligand. 

(- 
/ 

Fig. 7. Orthographic view of the alignment of the 33 miscellaneous o~ 1 ligands selected by Timmermans et al. [27]. 
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Fig. 8. Graphical representation of the model showing the major lipophilic features of the 3D QSAR for o~ I affinity. Cyan 
(yellow) contours surround regions where higher (lower) lipophilic interactions increase cq affinity. The contour levels are 
0.01 for cyan and -0.01 for yellow. The molecule represented is a poor cq ligand. 

Fig. 9. The same graphical representations as in Fig. 8 for the model, showing (left) the most active molecule and 
(right) the least active molecule in the series. The contours in green and red show the MLP field of the molecule 
(green: MLP > 0, red: MLP < 0). Therefore, the best cq ligand of this series possesses lipophilic features in the same 
space regions as for the model. In contrast, the least active molecule of the series presents exactly the opposite features, 
i.e., lipophilic regions in the polar regions of the model. 
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TABLE 4 
STATISTICAL RESULTS OF THE CoMFA WITH DERIVATIVES OF 3-ARYL-4,5,6,7-TETRAHYDRO-1H- 
PYRAZOLO[4,3 c]PYRIDINE [26] 

Field q2 a nb P~I StericC Electrostatic° Lipop hilic~ 

Steric only 0.76 5 0.92 100 - - 
Electrostatic only 0.68 4 0.86 - 100 - 
Lipophilic only 0.77 7 0.94 - - 100 
Steric and electrostatic 0.73 5 0.91 72 28 - 
Steric and lipophilic 0.76 5 0.92 66 - 34 
Electrostatic and lipophilic 0.69 (0.74) d 3(8) d 0.85 - 43 57 
Steric, electrostatic and lipophilic 0.72 (0.73) d 4(6) a 0.90 52 22 26 

Cross-validated r-squared measuring the predictability of the model (if q2< 0.4, the model is considered as non- 
significant). 

b Optimal number of PLS components chosen for final analysis. 
c Relative contributions of each field in the QSAR. 
d Values in parentheses are defined by SYBYL as 'optimal values'. 

models with two fields show an optimal number of  components (values in parentheses) that is 
higher than the chosen number of components. In fact, in the model with the three fields, the 
first cross-validated r-squared maximum (corresponding to the first local minimum of s, the 
standard deviation) is found after four components, while the global maximum of the cross- 
validated r-squared maximum is found after six components. 

The CoMFA method in SYBYL defines the optimal number of  components by the absolute 

maximum of  the cross-validated r-squared. Here, however, there is danger of overfitting beyond 

four components, meaning that the additional component contains no pertinent information 

which would increase the quality of  the model. Second, the three fields together give a good 
model (the predictive quality of  a model is derived from the cross-validated r-squared, which is 
here 0.72), but graphic analysis of this result (Fig. 6) reveals that the regions of space where 
lipophilic interactions increase affinity are not different from those where a high steric field has 
the same effect. Therefore, the information described by the lipophilic and steric fields are the 

same or are represented by the same regions of space. It must be noted that the same is true for 
the electrostatic field. In fact, the fragments themselves, and not their structural information, are 
sufficient to explain the variation in affinity of this series of  ligands. 

Singh et al. [26] proposed a QSAR equation correlating the al affinity with three types of 
parameters: (a) the van der Waals volume of substituents; (b) the sum of electronic effects (~ 

Hammet constant) for all aromatic substituents; and (c) the hydrophobic constant rc 4 (Hansch 

et al.) of  the para-phenyl substituent. Careful examination of the data set and of the QSAR 
equation shows that the contributions of g and re 4 are low and that steric parameters alone 
explain most of the variance. 

Heterogeneous ~zl-adrenoeeptor agonists 
The second CoMFA study was dedicated to a highly heterogeneous series of 33 compounds 

as selected by Timmermans et al. [27]. These compounds were aligned by superimposing the 
aromatic ring and the basic nitrogen, the rest of  the molecule being geometrically fitted to cloni- 
dine (Fig. 7). The CoMFA model obtained revealed large differences between the steric, electro- 



TABLE 5 
STATISTICAL RESULTS OF THE C o M F A  W I T H  M I S C E L L A N E O U S  cx~ L I G A N D S  [27] 

Field q2, n b R~,a ~ Stcric ~ Electrostatic ~ Lipophilic c 

95 

Steric only 0,23 6 . . . .  
Electrostatic only 0.07 3 - - 
Lipophilie only 0.55 2 0.84 - - 100 
Steric and electrostatic 0.15 4 - - - 
Steric and lipophilic 0.58 7 1.00 34 - 66 
Electrostatic and lipophilic 0.55 (0.57) d 3(8) d 0.93 - 42 58 
Steric, electrostatic and lipophilic 0.53 (0.56) d 3(8) d 0.95 20 33 47 

Cross-validated r-squared measuring the predictability of  the model (if q2< 0.4, the model is considered as non-  
significant). 

b Optimal number  of  PLS components  chosen for final analysis. 
° Relative contributions of  each field in the QSAR. 
a Values in parentheses are defined by SYBYL as 'optimal values'. 

static and lipophilic fields (Table 5). 
It first appears that there is a good correlation between the al affinity and the lipophilic field 

alone, in contrast to the steric and electrostatic fields. The graphical results (Figs. 8 and 9) show 
that the information encoded in the MLP is related to a large area near the aromatic ring of 
clonidine, where an increase in lipophilicity enhances al affinity (cyan contours), and to a large 
area near the imidazole ring of clonidine, where a decrease in lipophilicity enhances a~ affinity 
(yellow contours). Figure 9 illustrates the lipophilic fields of the most and least active compounds, 
respectively, superimposed on the lipophilic regions of the model. In these figures, the green and 
red regions represent the MLP field of the compound, i.e., the lipophilic and hydrophilic regions 
of the ligands as generated by the MLP program. 

The left side of Fig. 9 represents the best ligand in the series, with green and cyan regions well 
superimposed. This indicates that the lipophilic characteristics of the compound fit well with the 
lipophilic regions of the model. This is also true for the red regions of the compound superim- 
posed on the yellow region of the model. In contrast, the right side of Fig. 9 represents the 
poorest ligand in the series, with the green regions (lipophilic characteristics of the compound) 
being superimposed on the yellow regions (hydrophilic regions generated from the model). 

We thus conclude that near the aromatic ring, an increase in lipophilicity enhances receptor 
affinity, while near the imidazole ring of clonidine a decrease in lipophilicity enhances affinity. 

CONCLUSIONS 

The MLP presented here is able to predict quantitatively the 3D lipophilicity variation as a 
function of connectivity and conformation. MLP can also add significant information to 3D 
QSAR and CoMFA, emphasising the composite nature of lipophilicity and assessing the relative 
contribution of its components to receptor affinity. 

Because the lipophilicity field encodes the steric and electrostatic fields, the set of compounds 
under study dictates which of the contributions, i.e., steric, electrostatic and/or lipophilic, is 
correlated with activity. However, care must be taken to avoid 'overfitting' by using cross-corre- 
lated properties, and not to misinterpret the statistical results. 
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NOTE ADDED IN PROOF 

The necessity to have a more sensitive distance function beyond the van der Waals radius was 
also recognized by Brickmann and co-workers [29]. 
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