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Abstract. The dynamical characteristics of concentration fluctuations in a dispersing plume over the 
energetic and inertial-convective range of scales of turbulent motion are studied using a multiscale 
analysis technique that is based on an orthonormal wavelet representation. It is shown that the 
Haar wavelet concentration spectrum is similar to the Fourier concentration spectrum in that both 
spectra exhibit an extensive inertial-convective subrange spanning about two decades in frequency, 
with a scaling exponent of -5/3. Analysis of the statistical properties (e.g., fluctuation intensity, 
skewness, and kurtosis) of the concentration wavelet coefficients (i.e., the concentration discrete 
detailed signal) suggests that the small scales are always more intermittent than the large scales. The 
degree of intermittency increases monotonically with decreasing scale within the inertial-convective 
subrange, reaching a plateau at the very small scales associated with the beginning of the near- 
dissipation subrange. The probability density function (pdf) of the concentration discrete detailed 
signal displays stretched exponential tails with an intermittency exponent (tail slope) q that increases 
as ra, where r is the scale or dilation and a is a power-law exponent that is dependent on downwind 
distance, plume height, and stratification strength with typical values in the range from about 0.25 
to 0.35. It is shown that the concentration variance cascade process requires a phase coherency of 
eddies between different scales at the small-scale end of the inertial-convective subrange. 

The variation of the concentration wavelet statistics with height above the ground is investigated. 
The increased mean shear near the ground smooths the fine-scale plume structure for scales within the 
inertial-convective subrange, producing a weaker spatiotemporal intermittency in the concentration 
field compared to that measured higher up in the plume. The pdf of the concentration detailed signal 
at a fixed scale possesses less elongated tails with decreasing height z. The intermittency exponent q 
is found to decrease roughly linearly with increasing z. 

Finally, the results of the wavelet decomposition are combined to provide a conceptual model of 
the turbulent transport, stirring, and mixing regimes in a dispersing plume. The implications of the 
results for contaminant texture in a plume are discussed. 

1. Introduction 

The dispersion of contaminant material in the atmospheric boundary layer is depen- 
dent on a continuous spectrum of interacting turbulent motions imposed by the 
background velocity field. The turbulent velocity generates high levels of variabil- 
ity in plume concentrations over a large range of scales and, indeed, the source 
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size and the evolving width of the instantaneous plume introduce additional length 
scales that interact with the scales of the hydrodynamic field. A major obstacle to 
the study of the atmospheric dispersion of a scalar in a turbulent plume or jet is 
the lack of an exact or rigorous theory of turbulent diffusion owing to our poor 
understanding of the nonlinear interactions between the large number of scales of 
motion involved. At present, the intrinsic nature of the phenomenon is too complex 
to be adequately described. Nevertheless, an understanding of the spatiotemporal 
structure of turbulent plumes, clouds, jets, wakes, and mixing layers is essential 
for a variety of applications. These include atmospheric microstructural transport 
and dilution (e.g., prediction of the spatiotemporal distribution of a contaminant 
substance in an environmental flow), problems related to the effectiveness of tur- 
bulent combustion and chemical reactions in many industrial and environmental 
processes (e.g., formation of acid rain, NOz, etc.), effects of a turbulent atmosphere 
on the propagation of electromagnetic and acoustic waves, and a plethora of more 
specific subjects that requires a knowledge of the detailed structure of mixing 
layers, wakes, jets, plumes and clouds. 

Because of these important and diverse practical applications, a number of 
empirical and observational programs for the measurement of concentration fluctu- 
ations in dispersing clouds and plumes has been undertaken in recent years. These 
experimental investigations include both laboratory and full-scale field studies. 
Warhaft (1984) and Stapountzis et al. (1986) investigated line source dispersion in 
decaying grid turbulence in a wind tunnel; Fackrell and Robins (1982) and Bara et 
al. (1992) studied point source dispersion in a turbulent, neutrally stable boundary- 
layer in a wind tunnel and water channel, respectively; and, Deardorff and Willis 
(1984) made measurements of concentration fluctuations in buoyant and non- 
buoyant plumes under convective conditions in a water tank. In conjunction with 
these studies, a number of full-scale atmospheric measurements of concentration 
fluctuations in plumes and clouds has been made under a variety of meteorological 
conditions ranging from convective to extremely stable stratification (e.g., Hanna, 
1984; Sawford et al., 1985; Dinar et al., 1988; Peterson et al., 1990; Mylne and 
Mason, 1991; Mylne, 1993; Yee et al., 1993,1994a,b, 1995). Most of these studies 
have concentrated on providing a purely statistical description of concentration 
fluctuations. This analysis is usually based on a number of descriptive statistics 
such as various higher-order moments (e.g., fluctuation intensity, skewness, kur- 
tosis, etc.) of the fluctuating concentration. Frequently, the latter information is 
summarized in terms of a concentration probability distribution that combines all 
the statistical moments into a single function. This phenomenological approach 
to concentration fluctuation research is necessary because no comprehensive the- 
ory of turbulent diffusion exists at present; and, it is anticipated that this area of 
investigation will remain largely empirical for some time to come. 

This is not too surprising because turbulent diffusion in real flows (e.g., non- 
stationary and inhomogeneous turbulent flows such as those in the atmospheric 
boundary layer) is an extremely complex nonlinear dissipative dynamical pro- 
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cess that involves a tremendous range of spatial and temporal scales between the 
large eddies (at which concentration variance is produced) and the small eddies 
(at which concentration variance is dissipated). It is the enormous range of scales 
and nonlinearity of the interactions between scales that make the measurement, 
interpretation, and modeling of concentration fluctuations in dispersing plumes 
extremely difficult. In consequence, most of the analyses of concentration fluc- 
tuation data have focussed on a gross statistical description of the phenomenon 
based on a number of concentration moments, often with the implicit understand- 
ing that these techniques are insufficient to describe accurately its fundamental 
aspects. More recently, a spectral description of concentration fluctuations based 
on the Fourier transform has provided some valuable information on the dominant 
(energy-containing) time and space scales of motion in a dispersing plume (Hanna 
and Insley, 1989; Mylne and Mason, 1991; Yee et al., 1993, 1994a, 1995). How- 
ever, conventional spectral analysis discards detailed phase information and, as a 
consequence, is rather limited in that it does not allow identification of the position 
(or time) of occurrence and characteristic scale of the concentration events that pro- 
vided the principal contributions to the observed global statistical plume properties. 
The latter information would be very useful for obtaining physical insights into the 
kinematics and dynamics of the fluctuation phenomenon, a necessary ingredient 
if we are to develop models of concentration fluctuations that incorporate greater 
physical reality. 

In view of the large hierarchy of eddy sizes (scales) that is responsible for the 
observed fluctuating concentration, it would be instructive to apply a multiscale 
analysis to concentration fluctuation data. This form of analysis allows the various 
physical space structures at each eddy size (scale) that contribute to the fluctuating 
concentration to be isolated and studied. Hopefully, this approach would lead to a 
more detailed understanding of the interaction of the various time and space scales 
that produce the fluctuating concentration, as well as the dynamics of the concen- 
tration variance cascade process that transfers fluctuation variance (energy) from 
the large scales to the small scales. The principal objective of the present work, 
then, is to apply a multi-scale or multi-resolution analysis to some concentration 
data based on an orthonormal wavelet representation (local transform). In view 
of the local and non-periodic nature of concentration eddies, a signal processing 
tool such as the wavelet transform that allows both a time and scale (or frequen- 
cy) localization offers a convenient and natural method for the investigation of 
concentration fluctuations. 

2. Experimental Details and the Dataset 

The data for this study were collected in May 1994 during Phase IV of a coopera- 
tive Concentration Fluctuation experiment (CONFLUX) project involving defence 
research establishments in the United States, United Kingdom, and Canada. The 



176 E. YEE ET AL. 

experiments were conducted over flat and homogeneous terrain near Tower Grid 
on U.S. Army Dugway Proving Ground, Utah (40’06’ N, 112”59’ W), about 2 km 
west of Camel Back Ridge on the edge of the Great Salt Lake Desert. Booms were 
installed at 16 levels between 0 and 16 m on the 100-m high tower at the site, and 
used to accomodate 16 fast-response concentration sensors used for measurement 
of the instantaneous concentration at various positions in a vertical cross-section 
through a dispersing plume at downwind distances ranging from 12.5 to 100 m. 

The concentration sensor used was a recently developed fast-response pho- 
toionization detector (TIP-SJ2, S & J Engineering, Inc.). The response time of the 
detectors, obtained by measuring the rise time (5-95%) of the leading edge of a 
narrow pulse of gas delivered to the sampling inlet of the detector, was about 10m3 s. 
The effective detection cell length of the sensor, normal to the flow, was about 1.7 
mm which should be compared to a typical Kolmogorov length scale of about 1 mm 
in the atmosphere. The temporal and spatial resolution of the detector allowed most 
of the dynamically relevant scales responsible for plume dispersion to be measured 
(e.g., the energetic and inertial-convective subrange fluctuations, and some of the 
near-dissipation subrange). The concentration detectors were operated in all the 
experiments at above-ground heights of 0.5, 1, 1.5,2,2.5,3,4,5,6,7,8,9, 10, 12, 
14, and 16 m on the tower. In addition, simultaneous measurements of the horizon- 
tal (u, v) and vertical (w) components of the instantaneous wind velocity were made 
with three-axis sonic anemometer/thermometers (model RSWS-201/3A, Applied 
Technologies, Inc.) at 3 and 10 m, and horizontal components of the instantaneous 
wind velocity were made with two-axis sonic anemometer/thermometers (model 
RSWS-201/2A, Applied Technologies, Inc.) at 1.5 and 16 m. 

Propylene (C3H6) was used as the tracer; it was released continuously from a 
point source at various heights between 1 and 5 m. A wind vane, collocated with the 
source, was used to position the source in each experiment so that the vertical array 
of concentration detectors was situated as close as possible to the mean-plume 
centerline. In all the experiments, we estimated that the detector array was less 
than about O.l(y/a,) from the mean-plume centerline, where y is the transverse 
distance from the mean-plume centerline as determined from the observed mean 
wind direction, and oy is the mean-plume dispersion. A detailed description of the 
site and instrumentation was given in Yee et al. (1993, 1994a). A comprehensive 
analysis of the statistical characteristics of plume concentration fluctuations in 
vertical plume profiles obtained during Phase IV of the CONFLUX project has 
been documented in Yee et al. (1995). 

The data used in this study have been taken primarily from two field experiments: 
experiment CC05 conducted from 00:39:00 to 01:14:00 UTC on May 19, 1994, 
during slightly convective meteorological conditions at a downwind distance z = 
50 m with a 1 m source height; and, experiment CC24 conducted from 05: 10:00 to 
05:45:00 UTC on May 24, 1994, under slightly stable meteorological conditions 
at a downwind distance x = 12.5 m with a 1 m source height. The concentration 
fluctuation time series obtained from these field experiments were first low-passed 
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TABLE I 
Summary of turbulence statistics measured with a 3-axis sonic anemometer at 3 m. Here U 
is mean wind speed; bU, uV, and bW are the standard deviations of velocity fluctuations in 
the alongwind, crosswind, and vertical directions, respectively; 2~~ is friction velocity; L is the 
Monir-Obukhov length; c is the mean rate of dissipation of turbulent kinetic energy; and za is 
the roughness length 

Trial U 
(m s-‘) Ti s-l) Ft s-l) 

UtL L 
(m s-‘) :ZI s-l) (m) ;rn’ sm3) YZi) 

cc05 4.0 1.062 0.879 0.458 0.421 -269 0.065 0.07 
CC24 5.5 1.238 0.704 0.478 0.419 147 0.085 0.015 

filtered with eight-pole Butterworth filters with a comer frequency (-6 dB point) 
at 1000 Hz to prevent aliasing, and then digitized at a sampling frequency of 
4000 Hz using a 16-bit analog-to-digital (A/D) converter (HSDAS 16, Analogic 
Inc.). Turbulence statistics from the two field experiments obtained from the sonic 
anemometer/thermometer at 3 m have been summarized in Table I. 

3. Orthonormal Wavelet Transform and Wavelet Statistics 

In recent years, the wavelet transform has been developed by a growing and 
enthusiastic community of applied mathematicians as a tool for signal analysis, 
synthesis, and decomposition. The continuous wavelet transform has been applied 
successfully to geophysical data by a number of researchers. Argoul et al. (1989) 
applied it to turbulence data in order to provide some visual evidence for the 
existence of the Richardson (turbulence) cascade. The transform has been used 
by Vergassola and Frisch (199 1) to study self-similar random processes. Everson 
et al. (1990) and Farge (1992) used it to extract local scaling exponents from 
turbulence data. It has been applied for the identification of coherent structures 
or events in a sheared and heated boundary layer by Mahrt (1991), and in flows 
within and above a canopy by Gao and Li (1993) and Collineau and Brunet 
(1993). To overcome certain limitations arising from the intrinsic redundancy 
of representation provided by the continuous wavelet transform, an orthonormal 
wavelet representation that conserves the signal information has been developed 
and applied recently to both simulated and observed geophysical data (e.g., Yamada 
and Ohkitani, 1990; Yamada and Ohkitani, 1991; Meneveau, 199 1; Kumar and 
Foufoula-Georgiou, 1993; Katul et al., 1994; Hayashi, 1994). 

In this section, certain aspects of the orthonormal wavelet transform that are 
relevant to the present study are briefly reviewed. More detailed treatments of 
the wavelet transform (both continuous and discrete) and wavelet-based multi- 
resolution (multi-scaling) analysis can be found in the excellent monographs by 
Daubechies (1992) and Chui (1992) to which the reader is referred for more detail. 
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3 .l. ORTHONORMAL WAVELET TRANSFORM 

Consider a signal x(t) (e.g., the fluctuating concentration) that is uniformly sampled 
every 6t s over a sampling time T to yield N data samples (i.e., T = Nbt). 
Furthermore, let N = 2M where A4 is an integer. Because it is not possible to 
perform an analysis at a resolution coarser than some fixed scale determined by 
the sampling time T, it is convenient to scale time by T, and expand the discrete 
signal into an orthonormal wavelet basis as follows: 

M-1 23-1 

X(‘Z/T) = s~#(ti/T) + C C Wj,k$j,k(ti/T), (1) 
j=o k=O 

where t; q it% (i = 0, 1,. . ., N - 1). Here, c$(t) is a basic scaling function that 
determines the gross (average) structure of the signal over the sampling time, and 
$j,k(t) are orthonormal wavelet basis functions. The wavelets $j,k(t) are smooth 
wiggly functions of scale 2-j and position k/23 (measured in units of the sampling 
time T). These functions are constructed from binary dilations (with scale index 
j) and dyadic translations (with translation index 5) of a single function g(t) in 
accordance with the following: 

$y$(t) = 23/2$(2h - Jo, (2) 

where G(t) is the mother wavelet. Furthermore, $(t) is chosen so that its transla- 
tions and dilations are orthogonal to each other, i.e., 

where 6j,k denotes the Kronecker delta function. The wavelet coefficients Wj,k of 
Equation (1) are given by 

wj,k = 
s 

X(+b,j,k(t) dt, (4) 
R 

with the appropriate orthogonal subsampling and scaling applied for finite-duration 
discrete-time data (e.g., Taswell and McGill, 1994). 

The wavelet decomposition of the discrete signal {x( t;)}zG’ provides a time- 
scale representation of the signal with scale and position given by the indices j 
and b, respectively. The decomposition consists of two components: (1) a discrete 
approximation SM of x at the coarsest available scale (determined by the sampling 
time T); and, (2) the discrete detailed signals (wavelet coefficients) { wj,k}~z~l at 
scales 2-jT (j = O,l, . . ., M - 1) that embody the information relevant for “predic- 
tion” of the detailed structure of x. The reference signal SM can be interpreted as a 
weighted global mean of x(t) over the sampling time T. Each j-level in the discrete 
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detailed signal corresponds to a temporal scale (period) rj E 2-j N6t = 2-3T s 
(or, equivalently, to a spatial scale rj = Urj on application of Taylor’s frozen 
turbulence hypothesis using the local mean windspeed U). Hence, the wavelet 
decomposition (SM, {Wj,k : j = 0, 1, . . . , M - 1; k = 0, 1, . . . ,2j - l}) pro- 
vides a multiscale representation of x. This representation conserves information 
because the wavelet decomposition has the same number of samples (N) as the 
original signal. Indeed, the total number of wavelet coefficients Wj,k is 

M-l 

c 
2L2M-1=&l, 

j=o 

which in addition to the global DC offset, SM, leads to a conservation of informa- 
tion. 

Obviously, a mother wavelet $ whose discrete binary dilations and dyadic 
translations form an orthonormal basis set must satisfy a rather restrictive set of 
conditions. In the present study, we will consider only the simplest wavelet basis 
generated by the Haar wavelet given by +(t) = J(c,t,21(t) - J(t,z,t](t), where 

IA(t) E 1, ift E A; 
0, otherwise, 

is the indicator function (cf. Figure 1). The scaling function 4(t), corresponding 
to the Haar wavelet, is the indicator function of the unit interval (0, 11, viz. 4(t) = 
I(o,t]( t). Although a series of more regular (smoother) orthogonal wavelets with 
compact support (i.e., they are zero everywhere outside a finite interval) and a 
finite number of vanishing moments can be constructed (e.g., Daubechies, 1988), 
we found that the results of the ensuing analysis were not particularly sensitive to 
the choice of the particular wavelet basis set, in agreement with the conclusions of 
Meneveau (1991). 

3.2. WAVELET COEFFICIENT STATISTICS 

At a given scale index j, all standard statistical measures can be determined for 
the discrete detailed signal Wj,k; for example, the wavelet coefficient standard 
deviation, 

a(W; j) = pqk):“; 

the wavelet coefficient skewness, 

(5a) 

Sk(W;j) = tw;k)k . 

ayw; j)’ (5b) 
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Fig. 1. The Haar wavelet function 4(t). 

and the wavelet coefficient kurtosis 

Ku(W; j) E WJ$)k 
04(W;j)’ 

1 t 

PC) 

at scale index j. Here (.)k denotes the time average over all time (or translation) 
positions (indexed by k) within the sample record at a fixed scale j. 

The variance (energy) contributed by a signal event at time index k and scale 
index j is equal to the squared detailed component W,&. The total variance (energy) 
density contributed by variations with time scale ri (or, equivalently, with cyclic 
frequency fj E ~~7’ ) is E( fj) = 2j (W&),/N. The wavelet power spectral 
density, @(fj), at frequency fi is the energy density E( fj) per unit frequency, 
which can be obtained by dividing E(fj) by Sfj E 23(&)-l In 2/N: 

We can define a number of statistical measures for the signal variance at various 
scales. Some examples include: the standard deviation of the signal variance at 
scale index j (which measures the variability of the signal energy at scale index j), 

,(W2;j) = $(W$k - (w$2,1”2; 

and non-dimensional statistics such as fluctuation intensity 

a(W2;j). 
i(W2d> = $(fi) ’ (7b) 
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skewness 

Sk(W2;j) = (7c) 

and kurtosis 

4 (cw;k - (w;kh-)4h; 
c4( w2; j) (74 

of signal variance (energy) at scale index j. The pair of signal variance statistics 
Q(fj> and @(fj) + a(W2; j> was referred to as the “dual spectrum” by Mene- 
veau (199 1). Finally, with reference to Equation (l), the following signal variance 
(energy) conservation equation holds for the discrete signal: 

N-l M-123-1 c x2(t;/T> = SL t c c Wik. (8) 
i=o j=O k=O 

In addition to wavelet statistics at a fixed scale, we can consider also the 
correlation of the instantaneous scale-conditioned signal variance W$ between 
two adjacent scales. To this end, consider the following normalized signal energy 
variation at scale or period rj : 

,$‘k’ - l”;:k . 
twik)k 

Now, define the “correlation” $3’ of ,l3;:2 between two adjacent scales j and 0’ + 
1) as follows (Yamada and Ohkitani, 1991): 

(9) 
k=O 

(2) where LxJ denotes the integer part of 2. Hence, Rj is the time “correlation” 
of the second-order signal difference (i.e., variance or energy distribution) at two 

consecutive (adjacent) octaves over scales indexed by j and G + 1). Actually, Ry) 
is not really a true correlation coefficient in the strict sense (it is more properly 
interpreted as a similarity measure and, in this sense, should perhaps be more 
appropriately referred to as a pseudocorrelation coefficient between scales). 

4. Multiscale Statistical Analysis of Concentration Data 

4.1. SCALE-CONDITIONED PLUMECONCENTRATION STATISTICS ATAFIXED 
HEIGHT 

An example of a multiscale decomposition of a fluctuating concentration signal x 
is shown in Figure 2. The concentration time series, taken from experiment CC05 
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from the detector at 1.5 m height, is shown in the top panel of Figure 2. The Haar 
wavelet decomposition of this signal was computed for N = 2M points with M = 
23. The bottom panels of Figure 2 display the discrete detailed signal IVj,k (wavelet 
coefficients) plotted as a function of time t for 5 different scales, namely j = 5, 
7, 9, 11, and 13 (providing, as such, a visual indication of the irregularity of the 
signal at resolutions rj = 65.536, 16.384,4.096, 1.024, and 0.256 s for j = 5, 7, 9, 
11, and 13, respectively). 

The time series provided by the Haar wavelet coefficients Wj,k at a fixed scale 
index j (cf. Figure 2) resemble the concentration increments (differences) Ax(r, 

9 = x(t •t 4 -y X(4 over a time interval r that is 2-J times the sampling time 
T (i.e., r = 2-'T). The basic difference is that the Haar wavelet transform (cf. 
Equation (4)) evaluated at scale index j (i.e., wj,k) is equivalent to averaging 
x(t) over the two half-widths defined by a dilated version of the Haar wavelet 
shown in Figure 1 (with dilation width 2-jT), and then computing the difference 
between these two means. It is noted that the latter operation partially removes the 
concentration variations on all time scales smaller than 2-jT and, as such, can be 
interpreted as providing a band-pass filtered version of the original signal with the 
centre of the passing band located at the frequency fj = rJr’ = 2j/T, and a filter 
bandwidth A fj equal to one octave centred about the midband. Hence, the discrete 
detailed signals wj,k in Figure 2 can be interpreted as time records of band-pass 
filtered versions of the original signal with midband frequencies fj = 2j /T. 

From this perspective, we note that the low-frequency (or large-scale) concen- 
tration variations appear to be more space-filling in the sense that there are no 
quiescent parts in these variations. However, the variations at higher frequencies 
or smaller scales (i.e., higher scale index j) clearly exhibit more quiescent periods 
(e.g., note the erratic, bursting nature of the detailed signals at the smaller scales 
in which bursts of high turbulent activity are followed by long relatively quiescent 
periods). Hence, the degree of intermittency or “spottiness” in the concentration 
variations increases with decreasing scale, suggesting that the distribution of con- 
centration events becomes progressively more nonuniform both temporally and 
spatially at the smaller scales. The spotty regions at the small scales appear to 
be located near sharp jumps in the original concentration signal, suggesting that 
sharp gradients in concentration localized at these jumps contribute directly to the 
observed fine-scale structure. 

The degree of intermittency of the small scales can be quantified in terms of 
the kurtosis of Wj,k shown in Figure 3. The latter was obtained from the concen- 
tration data shown in Figure 2. Note that the wavelet coefficient kurtosis increases 
with decreasing scale (or increasing frequency); it possesses a Gaussian value of 3 
(approximately or better) at the large scales, and increases roughly monotonically 
with decreasing scale approaching a value of about 70 at a frequency of 250 Hz 
(or, period 0.004 s). Hence, the concentration variations become increasingly inter- 
mittent and non-Gaussian at progressively smaller scales. Here, non-Gaussianity is 
identified as a manifestation of intermittency, namely, that large-amplitude events 
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Fig. 2. Multiresolution decomposition of a fluctuating concentration time series. (a) A concentration 
time series taken from Trial CC05 for the detector at 1.5 m height. Discrete detailed signal, Wj,k, of 
concentration time series obtained from a Haar wavelet transform are shown for scale indices (b) j 
=5;(c)j=7;(d)j=9;(e)j=ll;and,(f)j=13. 

occur much more frequently than in a random sample drawn from a Gaussian 
distribution. 

Now consider the scale-dependence of the concentration variance (energy). 
Figure 4 shows the Haar wavelet concentration power spectrum (cf. Equation (6)) 
for the concentration time series shown in Figure 2. The latter spectrum is compared 
with that obtained from the usual Fourier basis. The spectra are plotted on a double 



184 E. YEE ET AL. 

Fig. 3. Dependence of the Haar wavelet coefficient kurtosis, Ku(W; j), on frequency f(or, equivalent- 
ly, scaie index j) for the concentration time series shown in Figure 2. The frequency f  corresponding 
to scale index j is defined as f  = f,  = Z3T-‘, where T is the sampling time. 

logarithmic plot with f@(f), normalized by the concentration variance o:, as 
the ordinate. The Haar and Fourier concentration spectra have similar shapes; in 
particular, these two spectra agree very well at the intermediate frequencies, and the 
frequency of the peak of maximum fluctuation energy (variance) (which occurs at 
about 1 Hz) is the same for both spectra. Compared to the Fourier spectrum, the low- 
frequency end (51 Hz) of the Haar spectrum contains more energy. Furthermore, 
the two spectra also differ significantly at the high-frequency (small-scale) end, 
where the Fourier spectrum is seen to decrease much more rapidly with increasing 
frequency than the Haar spectrum. Hence, there appears to be a relative shift of 
concentration variance to small scales in the Haar spectrum that is probably related 
to the local bandpass nature of the Haar wavelet transform. Both spectra exhibit the 
well-known -5/3 inertial-convective subrange (i.e., f@(f) N f-‘j3). Deviations 
from the -5/3 scaling law in the inertial-convective subrange in the Fourier and 
Haar spectra are negligible, supporting the robustness of this scaling law with 
respect to the choice of the basis sets. The inertial-convective subrange for the 
Fourier spectrum extends over about 2 decades in frequency (e.g. from about 1 to 
100 Hz), whereas that for the Haar spectrum extends over a larger frequency range 
(e.g., over about 8 octaves from j = 11 to 19). The shift in concentration variance 
to smaller scales in the Haar transform (as noted above) may explain why the -5/3 
scaling law extends into the very small scales (e.g., toward scales smaller than 
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Fig. 4. Normalized Fourier and Haar wavelet concentration power spectra, f@(f)/& obtained 
from the concentration time series shown in Figure 2. A straight line, corresponding to a slope of 
-2/3, has been included to show the extent of the inertial-convective subrange. 

the Taylor microscale) that correspond to the near-dissipation range in the Fourier 
spectrum. 

Although the robustness of the -S/3 scaling law over the inertial-convective 
subrange has been established in Figure 4, it is important to emphasize that whereas 
the scaling of the concentration spectrum remains constant within this range, the 
degree of non-Gaussianity of the concentration eddies (scales) varies significantly 
over this range of scales (cf. Figures 2 and 3). Figure 5 shows more clearly 
the variability (or the magnitude of the fluctuations) of the concentration variance 
(energy) with scale as embodied in various statistics extracted from the time records 
of Wfk (wavelet energy). Here, the scale-dependent fluctuation intensity, skewness, 
and kurtosis of W,$ (cf. Equations (7b), (7c), and (7d)) are displayed for the 
concentration data shown in Figure 2. Note that all the statistical measures of 
the scale-conditioned concentration variance increase with decreasing scale (or 
increasing frequency), suggesting an increasing “activity” in the local concentration 
energy at progressively smaller scales. This implies that the fluctuation variance 
cascade process that produces the constant -5/3 scaling law that is characteristic 
of the inertial-convective subrange (cf. Figure 4) is not statistically self-similar. In 
particular, the statistical law governing the turbulent cascade process is self-similar 
only if the probability distribution of the concentration variations is the same at 
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all scales, and the results of Figure 5 suggest otherwise since the measurements 
show that the fluctuation intensity, skewness, and kurtosis of the concentration 
energy increase as the resolution or scale decreases. These results suggest that 
the probability distribution of the concentration variations at the various scales 
is not self-similar, becoming progressively more non-Gaussian at smaller scales. 
Moreover, the fluctuation intensity of I+‘& at a fixed value of j (which provides 
a measure of the degree of irregularity of the local concentration variance at a 
particular scale) is about one at the large scales, increasing to about 8 at the 
small scales (cf. Figure 5(a)). Hence, the local concentration variance (energy) 
at a particular scale can differ significantly from its mean value at that scale. 
At the statistical level, these results are consistent with (but do not prove) the 
notion that there is some cascade process (or, multiplicative effect) which transfers 
concentration variance from the large scales where it is produced to the small scales 
where it is dissipated, with the fluctuations building up as the cascade proceeds to 
smaller scales. 

4.2. VERTICALPROFILES OFWAVELET COEFFICIENT STATISTICS 

In this section, we will explore the effect of height above the ground on the 
concentration wavelet coefficient statistics. To this end, a number of vertical profiles 
of concentration wavelet coefficient statistics for various scales will be shown, with 
the objective of providing some insight on the effect of increased mean shear near 
the ground on the statistical characteristics of fluctuating plume concentrations at 
each scale. 

Figures 6 and 7 show the vertical profiles of the concentration variance (energy) 
fluctuation intensity, i(W2; j), skewness, Sk(W2; j), and kurtosis, Ku(W2; j), 
at a number of scales for Trials CC05 and CC24, respectively. These figures 
provide evidence of the fine-scale variability of the concentration variance cascade 
which transfers variance from large to small scales. In particular, at a given scale 
in the inertial-convective subrange (i.e., j 5 11 corresponding to periods less 
than about 1 s), the concentration variance fluctuation intensity, skewness, and 
kurtosis roughly increase with increasing height from the ground. Furthermore, at 
a given height, these statistical measures increase with decreasing scale within the 
inertial-convective subrange. This pattern is consistent for all scales in the inertial- 
convective subrange at a fixed height, and for all heights in the plume at a given 
scale. The latter implies that at any fixed scale, the intermittency of the instantaneous 
concentration variance is greater at higher levels in the plume; or, at any fixed height, 
the level of intermittency in the local concentration variance increases as the scales 
decrease. In consequence, those portions of the plume near the ground appear to 
be more thoroughly mixed, resulting in a reduction in the irregularity or degree 
of intermittency in concentration variance events for all scales within the inertial- 
convective subrange. Variation of the concentration variance ff uctuation intensity, 
skewness, and kurtosis with z is similar for all inertial-convective subrange scales, 



MULI-XXXLING PROPERTIES OF CONCENTRATION FLUCTUATIONS 187 

0 

0 

OO 

00 

0 

0 0 
0 

A 

* AA 

A 

n 

l&2 10-l loo 10’ lo2 103 

f U-W 

Fig. 5. Wavelet statistics of the squared discrete detailed signal W;,k versus frequency, f:  (a) 
fluctuation intensity, i( W’; j); (b) skewness, Sk(W’; j); and, (c) kurtosis, Ku(W’; j). The frequency 
f  corresponding to scale index j is defined as f  = f, E 23T-‘, where T is the sampling time. 

suggesting that the effect of the ground on mixing concentration fluctuations acts 
equally at all scales within this range. Moreover, it appears that scales much larger 
than those of the inertial-convective subrange (i.e., j 5 7 which corresponds 
to periods greater than about 16 s) are not as greatly affected by the presence 
of the ground. The latter scales are most likely associated with the longer-term 
fluctuations arising from plume meandering. In summary, the small-scale turbulent 
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Fig. 6. Vertical profiles of wavelet statistics of the squared discrete detailed signal W;,+: (a) fluctuation 
intensity, i(W’; j); (b) skewness, Sk@%‘*; j); and, (c) kurtosis, Ku@%‘*; j) for j = 6, 8, 10, 12, 16, 
and 20. The data were taken from Trial CCO5. 

velocity eddies near the ground appear to be more effective at mixing concentration 
fluctuations at scales in the inertial-convective subrange (associated with in-plume 
mixing) than they are in destroying fluctuations at the larger scales of the energetic 
subrange (associated with plume meandering). 
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Fig. 7. Vertical profiles of wavelet statistics of the squareddiscrete detailed signal Wf,,,: (a) fluctuation 
intensity, i(W*; j); (b) skewness, Sk(W*; j); and, (c) kurtosis, Ku(W*; j) for j = 6,8, 10, 12, 16, 
and 20. The data were taken from Trial CC24. 

Figure 8 illustrates the correlation between consecutive octave scales for the 
second-order wavelet coefficients (wavelet energy), Ry) (cf. Equation (9)). This 
information reflects the temporal correlation of the concentration variance (energy) 
between adjacent scales j and j + 1. At a given height, the correlation increases 
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with increasing frequency (increasing j, or decreasing scale). The strong correlation 
between scales suggests the presence of a concentration variance cascade process 
in which in-plume mixing of clean air with plume material transfers fluctuation 
variance from the larger scales to the smaller scales. Furthermore, at a fixed scale, 
the correlation is seen to increase generally with increasing height from the ground. 
In particular, the correlation rises steadily in the scales corresponding to the inertial- 
convective subrange. Hence, the more thorough mixing of plume material by the 
intense small-scale turbulence near the ground leads to a reduction in the interscale 
correlation between concentration variance events. 

4.3. PROBABILITY DENSITY FUNCTION OF WAVELET COEFFICIENTS 

It is apparent from Figure 2 that the mean and variance of Wj,k contain little 
information about the detailed signal. In consequence, we consider the pdf of the 
discrete detailed signal wj,k normalized in root-mean-square (rms) units (viz., the 
pdf of oj,l, E Wj,k/a(W; j)) at a fixed scale index j. This pdf was estimated by 
the kernel method (Silverman, 1982). The kernel estimate of the pdf at the point 
cy, given the rms normalized detailed signal oj,k at a fixed scale index j, has the 
following form: 

where n E 2j is the number of detailed signal samples at scale j, K is the kernel 
function, and h is the width of the kernel function. The pdfs were estimated with 
the standard Gaussian kernel function (i.e., K(z) = exp( -x*/2)/1/12;;) with h 
chosen in accordance to the maximal smoothing principle as described by Terre11 
(1990). The number of samples n decreases with the scale index j, and it was 
judged that the pdf of oj,k cannot be accurately estimated for j 5 10. 

Figure 9 shows the semi-logarithmic plots of pdfs of oj,k for scales from j = 
10 to 20 (corresponding to periods from 2.048 to 0.002 s). The standard Gaussian 
pdf has been included in the plots for comparison. The data were taken from 
Trial CC05 for the sampling height at 1.5 m (cf. Figure 2). The pdfs are nearly 
Gaussian at the larger scales, but the tails of the pdfs grow progressively longer 
at the smaller scales (viz., the tails are more strongly spread when compared 
with a Gaussian pdf). The long tails of the pdfs arise from rare, large-amplitude 
fluctuations interspersed among the periods of small turbulent activity, and the 
latter characteristics are evident at the smaller scales on examination of the discrete 
detailed signals exhibited in Figure 2. The long tails of the pdfs at small scales 
are consistent with the increasing intermittency and wavelet coefficient kurtosis 
(cf. Figure 3) of the detailed signal at these scales. Finally, the pdfs of the wavelet 
coefficients are roughly symmetric, although there is a small departure from perfect 
symmetry, as demonstrated by the wavelet coefficient skewness (not shown) which 
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Fig. 8. The correlation, Rc2), of the second-order wavelet coefficients between scales j and j + 1 
(equivalently, frequencies jJ and f3+1) for (a) Trial CC05 and (b) Trial CC24 at a number of heights 
z above the ground. The frequency f corresponding to scale index j is defined as f = f, E 23T-‘, 
where T is the sampling time. 

typically gave absolute values between about 0.1 and 1 with higher values to the 
large-scale side (i.e., small j), and lower values around zero at the smallest scales. 

Figure 10 illustrates the change in the pdf shape of oj,k for a fixed scale index 
j = 20, at a number of heights above the ground. The data for this example are 
taken from Trial CC05 At a fixed scale, the pdf tails are more elongated higher up 
in the plume. In particular, the fine-scale plume structure near the ground appears 
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Fig. 9. Semi-logarithmic plots of the pdfs, P( CY), for the normalized discrete detailed signal (wavelet 
coefficients) cy = WJ,k/~(W; j) for six different scales ranging from j = 10 to 20. The pdfs are 
compared with a standard Gaussian pdf shown by the solid curve in each plot. The data were taken 
from the concentration time series shown in Figure 2. 

to be more smoothed out, leading to pdfs of aj,k with noticeably shorter tails. 
Hence, the change in the pdf shapes with z at a fixed scale is consistent with a more 
intermittent structure of concentration fluctuations higher up in the plume. 
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Fig. 10. Semi-logarithmic plots of the pdfs, P(Q), for the normalizeddiscrete detailed signal (wavelet 
coefficients) cy E WJ,k/u( W; j) for six different heights above the ground at a fixed scale index j = 
20. The pdfs are compared with a standard Gaussian pdf shown by the solid curve in each plot. The 
data were taken from the Trial CC05 

We now explore quantitatively the tail behaviour of the detailed signal pdfs with 
scale at a fixed height, and with height at a fixed scale. Towards this objective, we 
fit the pdf tails with a stretched-Gaussian pdf with the form 

P(D) = P(O)exp(-Ala14), Wa> 



194 E. YEE ET AL. 

where the values of P( 0) and X are determined by the constraints J-“, P( cr)da = 1 
and (cY~) = 1, so 

p(o) = 2r(l,n)[r(l4in)r(3,u)1”2’ 
and 

x = W/d q’2 1 1 ro . 

(lob) 

(1Oc) 

Here, I( Z) is the gamma function and 4 is a “stretching” exponent that characterizes 
the tail slope of the pdf. We interpret Q as a measure of the degree of intermittency 
of the underlying signal (viz., the smaller the value of Q, the longer the pdf tail, and 
the more intermittent the underlying signal). Note here that the term intermittency 
should be taken to indicate an elongated tail in the pdf for concentration variations 
at a given scale, rather than the fraction of non-zero concentration against zero 
concentration as sometimes defined. We refer to the stretched-Gaussian form of 
Equation (10) as the generalized q-Gaussian (gqG) pdf. Clearly, the gqG pdf reduces 
to the standard Gaussian and Laplacian (two-sided exponential) pdfs when Q = 2 
and 1, respectively. 

The intermittency exponent, Q, was determined by plotting ln(ln(P(O)/P(ac))) 
versus ln( 1 Q I). If the pdf tails of Q z ayj,k are well represented by the gqG pdf, then 
a straight line with slope 4 will be obtained. A typical example of such a plot is 
shown in Figure 11 for data taken from Trial CC05 at a detector height of 1 m for 
the detailed signal at scale index j = 17 (0.016 s period). The example shown here 
corresponds to the left-side or negative tail of the pdf (i.e., cr < 0). On this plot, it is 
readily seen that the pdf consists of two parts (regions), each of which is associated 
with a particular linear regime. The central region of the pdf, corresponding to 
values of Q around zero, consists of an extruded peak. This pointed central region 
of the pdf corresponds to Region I shown in Figure 11. This region is restricted 
roughly to Ja( 5 2.7 (cf. Figure 9) or, equivalently, to the region ln( ICYI) 5 1 (cf. 
Figure 11). The tail region of the pdf is associated with Region II shown in Figure 
11. The transition between Regions I and II occurs at ICYI M 2.7, and corresponds 
to a break in the pdf shape from the pointed central region to the more elongated 
tail region. A very good straight-line fit can be obtained in the tail region, as shown 
in the inset of Figure 11. Typically, the coefficient of determination for the least- 
squares fit is greater than about 0.995. A least-squares fit to Region II then yields 
the tail slope or intermittency exponent, 4 (cf. inset of Figure 11). It is noted that the 
organization of small-scale intermittency in plume concentrations is different from 
the hyperbolic intermittency (i.e., P(Q) N CX- 9 for large a) obtained by Lovejoy 
and Schertzer (1985) for atmospheric dynamics. 

Figure 12 shows the intermittency exponents (tail slopes) q plotted versus time 
scale or period r for a fixed height z in the plume. The data have been taken 
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Fig. 11. A typical plot of hr(hr(P(O)/P(a))) versus hr(lal) for data taken from Trial CC05 at a 
detector height of 1 m. The plot was constructed from the negative tail (a < 0) of the detailed 
signal pdf at the fixed scale index j = 17. The tail slope or intermittency exponent q is obtained by 
determining the slope of the linear least-squares fit to the points in Region II corresponding to ln( 1 a I) 
2 1 (inset). 

from Trial CC05 for z = 2 m (Figure 12(a)), and Trial CC24 for z = 1.5 m 
(Figure 12(b)). The tail slopes from both sides of P(a) are shown in Figure 12. 
Generally, the asymmetry in the positive and negative tails of the pdfs is small. 
Hence, we ignore the small differences between the positive and negative tails, 
and report the tail slope q as the average of these two estimates. When plotted on 
a double logarithmic plot as in Figure 12, it is seen that q(r) can be fitted roughly 
by 2 straight lines. At the intermediate time scales associated with the inertial- 
convective subrange, the dependence of q on r can be described by a power-law 
of the form q(r) N ra (a > 0). The value of the power-law exponent a appears 
to vary with downwind distance, plume height, and stability stratification, but 
typically was found to lie in the range from about 0.25 to 0.35 for the datasets we 
examined. For r 5 rt (cf. Figure 12), q is approximately constant, and the effects 
of molecular diffusion begin to become important. The large-gradient regions that 
are generated at these small scales are also the regions most strongly affected by 
molecular diffusion. This preferential smoothing leads to the near constancy of q 
with scale here. We found that the time scale 71 is comparable to the Taylor micro- 
time scale, TT = [2~7~/(&/&)~]‘~~ (indicated by the arrows in Figure 12). Hence, 
q or TT can be interpreted as the time scale below which dissipation begins to 
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become important and, as such, marks the small-scale end of the inertial-convective 
subrange and the large-scale beginning of the near-dissipation subrange. Finally, 
the fact that 4 is not a constant in the inertial-convective subrange implies that the 
pdf of concentration increments over this range of scales is not self-similar, and 
provides evidence for (but does not prove) the multifractal scaling nature of plume 
concentrations in the inertial-convective subrange. Indeed, Vainshtein et al. (1994) 
demonstrated that tails of the pdf with the stretched-Gaussian form exhibited in 
Equation (1 Oa) can be associated with a monofractal scaling behaviour only if q is 
a constant that does not depend on scale. 

Figure 13 shows the vertical dependence of the tail slope q at a fixed scale (j = 
18, or 0.008 s period) for Trials CC05 and CC24. The tail slopes shown in Figure 13 
represent the average from the negative and positive pdf tails. The higher up in the 
plume, the more extended the tails of the pdf appear to be. This effect is most likely 
due to the increased intermittency higher up in the plume (viz., the fluctuations 
near the surface are subject to more vigorous small-scale mixing which tends to 
homogenize the plume internally by mixing small plume elements together). The 
data in Figure 13 suggest that q decreases approximately linearly with increasing 
height z above the surface. This is indicated by the solid lines in Figure 13 which 
show the linear least-squares fit of q to Z. 

4.4. miASE COHERENCY AND CONCENTRATION VARIANCE CASCADE 

Eddies (scales) smaller than the instantaneous plume width result in internal mix- 
ing of the contaminant and entrained clean air. This process transfers concentration 
variance (energy) from large scales to small scales producing the inertial-convective 
subrange behaviour observed in the concentration spectrum. The fluctuation vari- 
ance transfer between scales produces an extremely complex and intermittent 
structure of contaminant elements on scales smaller than the instantaneous plume 
width. The variance cascade process that generates the small-scale in-plume inter- 
mittency must impose a definite phase coherency between the many different-sized 
eddies that participate in this process. 

In order to demonstrate the relationship between phase coherency and the cas- 
cade process, we Fourier transformed the concentration time series shown in Figure 
2, randomized the phase uniformly in [0,2n) while preserving the amplitude, and 
inverse Fourier transformed the result to produce a phase-randomized concentration 
signal. Because the Fourier concentration amplitude is unchanged, the concentra- 
tion Fourier power spectra for the original and phase-randomized concentration 
signal are identical. Furthermore, the Haar concentration spectra of the two signals 
are virtually identical (not shown), each exhibiting the characteristic -5/3 slope of 
the inertial-convective subrange. 

Despite the presence of the -5/3 slope in the spectrum, the phase-randomized 
signal does not appear to exhibit the properties characteristic of a variance cascade 
process in physical space. Figures 14(a) and (b) display the wavelet coefficient 
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Fig. 12. The dependence of the intermittency exponenent, Q, on time scale, r (or, equivalently, on 
the scale index j) for concentration data obtained from (a) Trial CC05 at detector height z = 2 m 
and (b) Trial CC24 at detector height z = 1.5 m. The intermittency exponents obtained from the 
negative (CY < 0) and positive (CX > 0) tails of P( (Y ) are shown, as well as the values of q obtained 
by taking the average of the estimates from the negative and positive pdf tails. The error bars shown 
for the latter values of q have been estimated from the standard errors in q obtained from the linear 
regressionofht(ht(P(O)/P(cY))) onht(lal)(cf. F‘g I ure 11). The time scale rt below which q remains 
approximately constant with decreasing scale is indicated by the dashed vertical line. Arrows mark 
the corresponding Taylor micro-time scales, TT. 
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Fig. 13. The dependence of the intermittency exponent, q. on height, z, at the fixed scale index j = 
18 (0.008 s period or dilation) for (a) Trial CC05 and (b) Trial CC24. The straight lines correspond 
to the linear least-squares fits of q to z. The error bars shown represent the estimated standard errors 
in q obtained from the linear regression of In(ln(P(O)/P(a))) on In(lal) (cf. Figure 11). 

kurtosis and the correlation of the second-order wavelet coefficients at consec- 
utive scales, respectively, for the original and phase-randomized concentration 
signals. Unlike the original signal whose wavelet coefficient kurtosis increases 
with decreasing scale (increasing frequency f or scale index j), the wavelet kurto- 
sis of the phase-randomized signal remains nearly constant at about 3 for all scales. 
This implies that the pdf of the wavelet coefficients is approximately Gaussian at 
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all scales for the phase-randomized signal; hence, the increasing spatiotemporal 
intermittency at decreasing scales that is characteristic of the original concentration 
signal is destroyed completely by the phase randomization. The latter is confirmed 
in the wavelet coefficient pdfs of the phase-randomized signal shown in Figure 
15. Note that these pdfs show close to Gaussian behaviour at all scales, in sharp 
contrast to the strongly non-Gaussian behaviour of the corresponding pdfs for the 
original signal (cf. Figure 9 where the pdfs are seen to exhibit very distinctive 
extended exponential tails at the small scales). Moreover, the strong correlation 
between wavelet coefficients of different scales within the inertial-convective sub- 
range of the original signal is completely absent in the phase-randomized signal (cf. 
Figure 14(b)). In summary, it appears that the intermittent concentration structures 
created by the nonlinear straining of the turbulent velocity field and leading to 
the concentration variance cascade in the inertial-convective subrange requires (or 
generates) a phase coherency in the concentration signal. In other words, a random 
phase is not consistent with the concentration variance cascade process. 

5. Epilogue: Unified Picture of Plume Dispersion and Contaminant Texture 

In this study, we applied a scale-conditioned data analysis method based on the 
orthonormal wavelet representation to some very high-resolution plume concentra- 
tion data. This representation can be interpreted as the decomposition of the signal 
into a set of independent frequency channels in scale space (wavenumber space) 
while preserving the structure of the signal in physical space. In consequence, 
the wavelet decomposition can provide insights into the concentration fluctuation 
phenomenon that would not have been possible otherwise by more conventional 
methods (e.g., those based on extracting global concentration statistics such as 
mean concentration, concentration variance, etc.). 

The results of the wavelet decomposition of the fluctuating concentration 
described in Sections 4.1 to 4.4 can be combined together to give a very detailed 
picture of plume concentration structure and texture. The concentration fluctua- 
tions observed in a dispersing plume are the result of turbulent motions on a wide 
range of scales that reflect the simultaneous effects of many different-sized eddies. 
At a fixed distance (travel time) from the source, turbulent eddies that are large 
compared to the instantaneous plume width result in bulk meandering of the plume 
(external fluctuations). The latter scales will waft around the entire plume, but not 
result in any nonlinear cascade of the concentration variance onto smaller scales. 

Scales comparable to or smaller than the instantaneous plume width will break 
up the plume to initiate a turbulent cascade of concentration variance from the 
larger-scale motions onto the smaller-scale motions. This intermediate range of 
scales with negligible dissipation corresponds to the stirring process inside the 
instantaneous plume boundaries which produce the internal fine-scale fluctuations. 
These scales correspond to the inertial-convective subrange of plume dispersion 
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Fig. 14. A comparison of the behaviour of (a) the wavelet coefficient kurtosis, Ku(W; j), and 
(b) the correlation of the second-order wavelet coefficient between consecutive scales, Ry), for an 
observed fluctuating concentration signal and a phase-randomized concentration signal. The data for 
this example were taken from Trial CC05 for the detector at z = 1.5 m (cf. Figure 2). 

with its characteristic -5/3 scaling law (cf. Figure 4 where the -5/3 scaling law 
in the concentration spectrum was found to be robust with respect to the choice of 
a basis set). Within the inertial-convective range of motions, turbulent eddies with 
scales in the large end of the range (i.e., scales comparable to the instantaneous 
plume width a;) cause progressive distortion of the plume boundary as packets 
of clean air are entrained into the body of the plume. On the other hand, scales 
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Fig. 15. Fig. 15. Semi-logarithmic plots of the pdfs, P(Q), for the phase-randomizeddiscrete detailed 
signal (wavelet coefficients) CY g W,,, /CT( W; j) for six different scales ranging from j = 10 to 20. 
The pdfs are compared with a standard Gaussian pdf shown by the solid curve in each plot. The 
original data used in the phase-randomization were taken from the concentration time series shown 
in Figure 2. 

in the smaller end of the range (i.e., scales smaller than CT;) result in mixing 
of the contaminant and entrained clean air, producing complicated non-Gaussian 
instantaneous distributions of in-plume concentration. 

Although the -5/3 scaling law remains constant throughout the entire inertial- 
convective subrange of scales, we found that the degree of intermittency and 
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non-Gaussianity of the eddies varies considerably within this range (cf. Figures 
3, 5, and 9). The latter observation is important for determination of the nature 
of contaminant texture (i.e., organization of fine-scale structure) in dispersing 
plumes. In particular, we found that eddies corresponding to the larger scales of 
the inertial-convective subrange were more space-filling in physical space (cf. Fig- 
ure 2), and that the fluctuating concentration at these scales was approximately 
Gaussian (cf. Figures 3 and 9). The space-fillingness and Gaussian behaviour of 
these “eddies” (scales) is manifested in the high degree of phase decor-relation 
(randomness) between consecutive octave scales measured at the larger inertial- 
convective scales (cf. Figure 14). The latter behaviour is observed also in a phase- 
randomized concentration signal (cf. Figures 14 and 15), and may be intimately 
related to the “global” nature of the in-plume concentration structure signal at the 
larger inertial-convective scales. More importantly, our detailed analysis demon- 
strated the increasing intermittency (or decreasing space-fillingness of eddies) and 
non-Gaussianity of the fluctuating concentration (cf. Figure 9) over progressively 
smaller scales in the inertial-convective subrange. The latter behaviour appears 
to be intimately connected with some form of phase organization (i.e., coherency 
or non-randomness of phase) between consecutive octave scales at the smaller 
inertial-convective scales (cf. Figure 14). We associate the latter behaviour with 
the presence of localized coherent plume concentration structures (eddies) at the 
smaller inertial-convective scales. 

The distribution of concentration variance (energy) and phase in the inertial- 
convective scales as revealed by the wavelet decomposition suggests the following 
conceptual model of in-plume concentration structure in physical space. The small- 
er inertial-convective scales appear to be associated with some small-scale coherent 
(phase-correlated) and non-Gaussian concentration structures that are highly inter- 
mittent in space. These localized structures are evolving and interacting with the 
surrounding Gaussian (approximately) and diffuse (phase-scrambled) background 
concentration component that is space-filling; and, the latter “global” component 
of the in-plume concentration structure appears to be associated with the larger 
inertial-convective range scales. In summary, the picture of the in-plume concen- 
tration structure that emerges is as follows: there are local coherent small-scale 
concentration structures that are evolving in a global diffuse background concen- 
tration component. This picture of concentration structure in a dispersing plume is 
consistent with the structure of homogeneous scalar fields developed by Batchelor 
(1952), Batchelor (1959), Batchelor et al. (1959), and Townsend (1959). Along the 
same lines, a two-state physical model for the concentration probability density 
function based on the “picture” of strands or sheets of high concentration embedded 
in a low concentration background (and, predicated on the separation of the time 
scales of the short-term turbulent convective motions and the long-term molecular 
diffusion) has been proposed by Chatwin and Sullivan (1990). 

This picture of the two component in-plume concentration structure is most 
likely the direct consequence of the simultaneous effects of turbulent stirring (i.e., 
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strain-induced stretching of the inter-material surface) and molecular mixing (i.e., 
molecular diffusion of contaminant across the inter-material surface). It is this 
two-stage process (viz., stretching and convolution of inter-material surfaces by 
the turbulence followed by molecular mixing across a thin layer) that ultimate- 
ly determines the contaminant texture in a dispersing plume. Indeed, for scales 
representative of the inertial-convective subrange, contaminant blobs are simulta- 
neously distended, folded, and distorted by the turbulent convective motions into 
ever thinning and convoluted strands or ribbons. This causes the area of a concen- 
tration isopleth to grow roughly exponentially in time, resulting in greatly enhanced 
gradients arising from the interleaving of material surfaces. It is plausible but not 
obvious to associate the stretching and folding effect with the turbulent cascade 
of fluctuation variance down the scales of the inertial-convective subrange, but it 
must be emphasized that the latter process is quite unlike the usual Kolmogorov- 
type cascade picture involving an eddy breakdown or fragmentation process. In the 
present scenario, we associate the ever thinning strands of contaminant material 
(e.g., small-scale filamentary structures) arising from the compressive straining 
motions with the local small-scale coherent (phase-correlated) concentration struc- 
tures deduced from the wavelet decomposition. The latter connection would follow 
if we regard the contaminant strands as wavepackets consisting of a large num- 
ber of flow modes with wavelengths less than the mean diameter of the strand. 
Mechanically, the turbulent convective stirring can increase the concentration gra- 
dients until the thinning of the contaminant strands is balanced by the thickening 
due to molecular diffusion, which acts most effectively at the smallest scales of 
the flow. Mixing by molecular diffusion begins to become important at the Tay- 
lor microscale, which marks small-scale end of the inertial-convective subrange, 
and beginning of the near-dissipation subrange (cf. Figure 12). Note the Taylor 
microscale is not the characteristic size of the dissipative eddies themselves, which 
would be determined by the much smaller Batchelor scale (the latter would be sim- 
ilar to the Kolmogorov scale at which viscous effects in the velocity field become 
important, as the Schmidt number (- Y/D, where v is kinematic viscosity and D 
is molecular diffusivity) is about 1 for the diffusion of propylene in air). 

When the ever thinning strands of contaminant material permeate the instan- 
taneous plume boundaries to the extent that their mean separation is less than 
the distance over which molecular diffusion is effective (e.g., the Batchelor dif- 
fusive cut-off length), neighbouring strands will begin to merge to form groups 
of merged filaments. The merging process destroys the phase organization in the 
individual contaminant strands (or, more precisely, the phase-coupling of local 
regions of high-wavenumber Fourier space that we associate with the ever thin- 
ning strands of contaminant in physical space). Eventually, the merged strands 
will approach a length scale comparable to the instantaneous plume width, and 
the concentration of the merged groups would, at this stage of evolution, become 
uniformly mixed to form the diffuse (phase-scrambled) background concentration 
component described earlier. Also, the relaxation of regions of intense gradient by 
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molecular diffusion, and the merging of these regions to form the low background 
concentration would be expected to generate a Gaussian distribution. Hence, the 
simultaneous action of turbulent stirring and molecular diffusion appears to produce 
a plume texture that is consistent with that deduced from a wavelet decomposition 
of the fluctuating concentration; namely, the in-plume concentrations are com- 
posed to two components (viz., a high concentration component localized in thin 
filaments of material (e.g., the localized, coherent, small-scale concentration struc- 
tures) surrounded by an approximately Gaussian background concentration “sea” 
made up of independent strands that have merged again due to molecular diffusion 
to form a low concentration component of contaminant material fully molecularly 
diffused into the entrained ambient air). Finally, the thickness and density of a con- 
taminant strand that “floats” in the Gaussian background concentration “sea” must 
reflect the rate-of-strain history encountered by the contaminant element because 
the history of the concentration gradient in the element can depend only on the 
straining experienced by that element along its Lagrangian trajectory. 

This work also demonstrated that increased mean wind shear (such as that which 
exists near the ground) can alter the contaminant texture in a dispersing plume 
through the action of continued stretching of plume material. In this case, the mean 
shear or large-scale strain can act on scales larger than the instantaneous plume 
width to distend blobs of contaminant into elongated structures over most of the 
volume occupied by the instantaneous plume. Here, it is plausible that the small- 
scale mixing (e.g., the process that counteracts the growth of the intermaterial 
surface) in the plume is controlled by the large-scale strain rate (e.g., the mean 
wind shear) since the small-scale velocity modes (e.g., stretching of vortex tubes), 
responsible for the enhanced diffusivity of the scalar, are present only because of 
the large-scale strain acting on them. 

What is the correspondence between the effects of the mean wind shear on 
the concentration structure in the physical space and on the scale-conditioned 
wavelet coefficient statistics? The net effect of the increased mean wind shear 
near the ground is to smooth the concentration structure in the plume, leading 
to less intermittent distributions of concentration structure at all scales in the 
inertial-convective subrange compared with those measured higher up in the plume 
(cf. Figures 6, 7, 10, and 13). This large-scale strain-induced mixing along the 
Lagrangian trajectory of contaminant elements (e.g., scalar-marked fluid elements) 
moving through regions of enhanced mean shear (e.g., near the ground) is expected 
to decrease the mixing time of the elements. The influence of the large-scale strain 
on the mixing time of contaminant elements is reflected in the tails of wavelet 
coefficient pdfs (cf. Figures 10 and 13) that embody information on the distribution 
of concentration increments over a given length scale. Indeed, the latter quantities 
must simply reflect the particular strain histories of the contaminant elements; and, 
contaminant elements that have been highly strained (such as near the ground) 
thereby decay more rapidly, leading to shorter tails in the wavelet coefficient pdfs. 
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The strain-enhanced mixing near the ground can be pictured as follows. The 
increased mean shear causes the area of the inter-material surface to grow at a 
greater rate (since the surface area growth rate is proportional to the root-mean- 
square of the strain), and the latter accelerated growth can greatly facilitate the 
merging of neighbouring contaminant strands (ribbons) to form groups of merged 
streaks in which the concentration is fully mixed (viz., regions that have been 
highly strained typically experience stronger diffusion than other regions). This 
accelerated merging of strands is consistent with the reduction of the interscale 
correlation between concentration variance events in regions of the plume subject- 
ed to increased mean shear (cf. Figure 8). The latter effect is expected because 
phase correlation is intimately linked to intermittency and the presence of small- 
scale coherent concentration structures. The merging of these small-scale structures 
reduces the phase organization, producing a stronger diffuse background concen- 
tration; and, the latter is consistent with a contaminant texture that is observed to 
be more thoroughly mixed in the presence of an increased mean wind shear. What 
cannot be inferred from the present analysis is the dynamical role that is played 
by vertical structures (e.g., vortex tubes and sheets) in the turbulent diffusion and 
mixing of plume elements near the ground (e.g., in regions of increased large-scale 
strain). There is clearly a need for further experimentation in this area, requiring as 
such simultaneous and highly resolved spatial and temporal measurements of the 
plume concentration, velocity, and vorticity fluctuations near the ground. 
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