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Abstract.  The expecta t ion-based 4D approach to dynamic machine vision exploiting integral spatio- 
temporal  models  of  objects in the real world is discussed in the application domains of  unmanned ground 
and air vehicles. The method has demonst ra ted  superior  per formance  over  the last half decade in au- 
tonomous  road vehicle guidance with three different vans and busses,  with an AGV on the factory floor 
and with complete ly  au tonomous  relative state estimation for a twin turboprop aircraft in the landing 
approach to a runway without any external support ;  in all application areas only a small set of  conven-  
tional microcomputers  was sufficient for realizing the system. This shows the computat ional  efficiency 
of the method combining both conventional  engineering type algorithms and artificial intelligence com- 
ponents  in a well balanced way. 

The modular i ty  of  the approach is demonst ra ted  in a simulation set-up serving both the ground- and 
the air vehicle applications. Exper imenta l  results in both areas are discussed. 
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1. Introduction 

The problem of cognition has long bothered hu- 
mans with respect  to the dualistic aspects  of  the 
' real '  external  and the 'mental ly  imagined'  inter- 
nal world. For  many  centuries,  phi losophers had 
tried to adjust the mental  interpretation to the 
' t rue '  external  world. It was I. Kant  who, about  
two centuries ago after all the frustrating efforts 
over  millennia, inverted the problem and here- 
with laid the foundation for a consistent  scientific 
interpretation model.  He recognized that reason- 
ing has to start  with the mind of  an individual, 
embodied in a biological sys tem having sensory 
contact  to the real world outside. So, his main 
task was to clarify, what types of  s ta tements  
about  the world could be made on safe ground. 
His main works 'Cri t iques o f . . . '  are dedicated 
to this problem. 

He asked,  what do we carry  into the world 
with our sensing and analysis system,  indepen- 
dent of  objects and subjects which we observe?  
The conclusion was that 3D space and time are 

fundamental  ( 'a  priori ' )  propert ies  of  our cogni- 
tion system;  they are not at tr ibutes of  objects.  

In evolution-oriented modern  terms we would 
say that successful survival of  our species is a 
solid foundation for the assumpt ion that our 
sensing sys tem is reasonably well adapted to the 
real world and that, therefore,  we are justified to 
rely on the sensory signals f rom the outside 
world, in general. It is well known,  however,  that 
there are some flaws and that one has to be very 
critical with respect  to the internal interpreta- 
tions which have evolved over  t ime from this. 
The multitude of cultural forms to be observed  
and the resulting different interpretation schemes 
for the same events  (perceived signals) give an 
indication of the mental variety developed.  

The idealist philosophers after Kant  even 
turned the world upside down with their interpre- 
tation that the outside world is created by the 
mind. In this mental environment ,  it was A. 
Schopenhauer  about  175 years ago who 'wanted  
to put the world back to its feet again'  and who 
clearly stated the misinterpretat ions since Kant.  
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In his main work 'Die Welt als Wille und Vor- 
stellung' (freely translated: 'The  world as evolv- 
ing process  and internal representat ion ' )  he em- 
phasized and further  elaborated the hypothesis  
of  the dualistic relationship between mind and 
mat ter  in one whole (unified) world. 

Now that we are about  to create machines 
with both material and mental  components  we 
should take advantage of basic insights gained 
formerly,  which have been deepened in some sci- 
entific disciplines in the meant ime.  The natural 
and the engineering sciences have developed 
very good models for many  processes  in the real 
world exploiting the mathematical  tool of  differ- 
ential equations (deq). Modern  technology sim- 
ply would not exist without numerical  simulation 
on this basis. A set of  deq describing a process 
in the real (4D) spat io- temporal  world is called a 
dynamical  model of  the process.  

Based on these dynamical  models,  recursive 
est imation techniques have been developed over  
the last three decades in order to optimally re- 
cover  the process state from noisy measurements  
of  some output variables.  In this very successful 
technique originally due to Kalman [1], missing 
measurements ,  e.g., complete  state variable time 
histories, may be substi tuted by knowledge via a 
model,  observabil i ty  given. The 4D approach to 
dynamic  machine vision developed at UniBwM 
over  the last decade extended the recursive esti- 
mation technique to image sequence processing. 
The required perspect ive  inversion f rom the 2D 
image to 3D space is achieved at no extra cost 
once the Jacobian matrix of  the imaging process 
has been determined.  

The dynamical  models  are well suited for re- 
covering the actual state of  generically known 
motion processes;  these models  become  useful 
for decision making only when solution integrals 
are known (at least some ones, possibly only lo- 
cally valid); approximate ly  valid solutions are 
often sufficient for practical applications. These 
solutions link process states over  longer dis- 
tances of  t ime in the sense of state transitions. 
This step may  form the missing link between the 
deq-based engineering type methods and the ar- 
tificial intelligence methods which usually do not 
refer to time except  for a t ime tag. This will be 
discussed in the next section. 

The following section will then give a brief re- 
view on the 4D approach to dynamic vision. The 
essential points of  view for grouping and modu- 
larizing activities in the overall approach will be 
treated next. The fast and efficient transition 
from high- level models to low-level features and 
vice versa will be discussed in the subsequent  
section exploiting the 'Gesta l t '  idea of  psychol-  
ogy which has been incorporated into the ap- 
proach. Then the resulting sys tem architec- 
ture will be discussed. Following a section on 
the modular  simulation facility developed at 
UniBwM for real-time dynamic machine vision, 
applied to a wide range of problem areas, the 
real-world exper iments  with road vehicles and 
aircraft will be reviewed. 

2. The Sliding Point 'Here and Now' 

A sensor sys tem in the real world always is at a 
certain point in space at the one and only 'pre- 
sent '  time; this point in t ime is part  of  a contin- 
uous ' t ime ray ' .  A physical object cannot  be at 
two different locations at the same time. In order 
to move from one location to another,  energy is 
required for ac- and deceleration, and time will 
go by because the energy available to effect lo- 
comotion is bounded. These facts consti tute con- 
straints on the motion process which may help 
considerably when tracking locomotion of ob- 
jects ,  especially when ac/decelerations are very 
limited in magnitude as is the case in most  of  the 
occurrences  in our natural and even technical en- 
vironment  (exceptions being bullets shot by guns 
or the driving hit of  a golf ball for example).  

Therefore,  we are in a much bet ter  position to 
understand the next image of a real-time se- 
quence if an internal representat ion is available 
which allows us to predict how the process under 
observat ion is going to evolve over  time, taking 
certain control or per turbat ion inputs into ac- 
count. I f  this prediction model is approximate ly  
correct  one can concentrate  the limited data pro- 
cessing capabilities on the data originating in the 
local environment  of  the predicted spot, there- 
by making the sensing process much more effi- 
cient; in addition, also the data processing algo- 
rithms may be adjusted to the predicted situa- 
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tion, thereby further increasing efficiency. This 
positive feedback favors the evolution of power- 
ful prediction capabilities since, in spite of addi- 
tional computing resources required for predic- 
tion, the overall requirements may be decreased 
for the same performance level; on the other  
hand, completely new performance levels and 
new qualities of deeper  understanding of envi- 
ronmental processes may be achievable with this 
approach. 

It might be argued, that human culture and its 
achievements are an outgrowth of nature having 
discovered this positive feedback during evolu- 
tion of the human species. 

In fig. 1 a qualitative display of  internal rep- 
resentation density over  the sliding time axis 
which moves from right to left is given. At the 
point 'here and now' (shown stationary at the 
cross-section of the two orthogonal axes) sensors 
provide data on the actual state of  the real world. 
These data are interpreted taking high-level spa- 
tio- temporal world models into account.  These 
dynamical models are derived from those devel- 
oped for system design and analysis in engineer- 
ing. In addition, it is taken into account  that mea- 
surement data, usually, are superpositions of 
actual process states (the desired quantities to be 

recovered) and of measurement  noise which is to 
be deleted. In order to be able to make this dis- 
tinction, the models representing temporal be- 
havior have to contain both the 'eigen- 'charac- 
teristics (that means how states change over  time 
when left on their own) and the response char- 
acteristics with respect to control- or pertubation 
inputs. 

Once this is represented,  predictions of the 
state evolution over  time may be obtained at rel- 
atively low cost. Since usually neither the control 
nor the perturbation inputs of the future are 
known, prediction usually stops at one cycle (for 
the normal prediction-error-feedback state esti- 
mation process) or after only a few cycles in or- 
der not to incur too much uncertainty. For  well 
known feedforward control time history inputs in 
order  to perform some maneuver  element (for 
example lane change in road vehicle guidance 
with a sine-like steering angle time history input 
with appropriate parameters for period T and 
amplitude A), reliable predictions over longer 
temporal ranges (seconds) are possible. Taking 
standard perturbation statistics into account,  
even longer ranges of  prediction over  entire ma- 
neuver  sequences may be meaningful, at least for 
some aspects of the process (like prediction of 
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the time needed to go from point A to B). In the 
average, however,  the number of  predicted 
events will vanish on the future time scale to the 
right. 

If good internal models are available for gen- 
erating rich actual internal representations from 
the actual data measured,  it will be impossible to 
store all these data as a 'personal history of ad- 
ventures ' ;  it is not necessary, though. Since the 
time histories of  all state variables may be regen- 
erated from stored initial conditions and control 
as well as perturbation time history inputs, once 
a proper  model for the dynamic behavior  is avail- 
able, only the latter (reduced) data sets need be 
stored. For  these again, instead of  pointwise 
storing each individual time history, parameter- 
ized generic models as functions over  time would 
allow very efficient storage since a dense data in- 
put vector  may be replaced by a few parameters 
needed to feed the proper  function call. This 
shows that proper  temporal models may be very 
efficient in reducing memory  requirements if 
things are properly organized. Past process state 
time histories and events may then be recon- 
structed actively from combining only a few 
stored historical data with stored model knowl- 
edge. This principle is the basic advantage of  the 
4D approach combining space and time in an in- 
tegrated manner. 

This type of data compression into valid 
models is symbolized in fig. 1 by the formation 
of  a reduced tail on the past time axis (left). 
Quasi-static knowledge resulting from this is 
used later on for triggering proper  control ac- 
tivities depending on the situation encoun- 
tered. Standard perturbations are counter-acted 
by feedback control laws which are implemented 
by a direct loop from the sensory data to the cor- 
responding actuators via internal state variables 
of  recognized objects (see center  of fig. 1); this 
allows stable behavior under perturbed condi- 
tions without the explicit knowledge levels hav- 
ing to interact with the high frequency data 
stream. Only unforseen situations and unpre- 
dicted new features discovered lead to an acti- 
vation of  the more knowledge based hypothesis 
generation part controlling the active set of  inter- 
nal dynamical models (one for each object, lower 
left in fig. 1). 

Seen from this point of view, the entire 'men- 
tal' internal world of representations has as its 
purpose to provide the system with capabilities 
of data interpretation well suited for control out- 
puts which enable the system to achieve its 
goals; previous experience may be exploited for 
this purpose contributing to the rating of a sys- 
tem as being intelligent or not. 

3. The 4D-Approach as the Core of 
Expectation-Driven Vision 

The dynamical models link time to spatial mo- 
tion, in general. 3D shape models exhibit the spa- 
tial distribution of  visual features which allow 
objects to be recognized and tracked. In order to 
exploit both dynamical and shape models at the 
same time, the prediction error feedback scheme 
for recursive state estimation developed by Kal- 
man and successors in the 1960's has been 
extended to image sequence processing by 
our group [2]. There are many publications on 
this approach so that only a short summary 
will be given here (see e.g., the survey articles 
[3,4]). 

Fig. 2 shows the resulting overall blockdi- 
agram of the real-time core of  the vision system 
based on these principles. To the left, the real 
world is shown by a block; control inputs to the 
vehicle carrying the camera may lead to changes 
in the visual appearance of the world either by 
changing the viewing direction or through ego- 
motion. The continuous changes of objects and 
their relative position in the world over time are 
sensed by CCD-sensor arrays (shown as con- 
verging lines to the lower right, symbolizing the 
3D to 2D data reduction). They record the incom- 
ing light intensity from a certain field of view at 
a fixed sampling rate. By this imaging process 
the information flow is discretized in several 
ways: There is a limited spatial resolution in the 
image plane and a temporal discretization of 16 
2/3 or 20 ms, usually including some averaging 
over time. Bifocal vision with a wide angle lens 
for a large viewing area nearby, and a tele-lens 
for good resolution further away, has become 
standard for road vehicle applications; active 
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Fig. 2. Survey block diagram of the cybernetic 4D approach to vision 

viewing direction control with fast pan and tilt 
platforms has been studied and applied since 
1984. 

Instead of trying to directly invert the per- 
spective projection in the image sequence for 3D- 
scene understanding, a different approach by 
analysis through synthesis has been selected. 
Based on previous human experience,  generic 
models of objects in the 4D-world have been in- 
stalled in the interpretation process.  This com- 
prises both 3D shape, recognizable by certain 
feature aggregations given the aspect conditions, 
and motion behavior  over  time. 

In an initialisation phase, starting from a col- 
lection of features extracted by low level picture 
element (pel) processing (lower center  left in fig. 
2), object hypotheses  including aspect conditions 
and motion models in space (transition matrices) 
have to be generated (upper center  left). They are 
installed in an internal 'mental '  world represen- 
tation intended to duplicate the outside real 
world, at least in the aspects relevant to the task 
at hand. This is sometimes called 'world_2' as 
opposed to the real 'world_l ' .  

Once an aggregation of  objects has been in- 
stantiated in the world_2, exploiting the dynami- 
cal models, the object states can be predicted for 
that point in time when the next  measurement  is 
going to be taken. By applying the forward per- 

spective projection to those features which will 
be well visible, using the same mapping condi- 
tions as the TV-sensor, a model image can be 
generated which should duplicate the measured 
image if the situation has been understood prop- 
erly. The situation is thus ' imagined' (right and 
lower center  right in fig. 2). The big advantage of  
this approach is that due to the internal 4D-model 
not only the actual situation at the present time 
but also the sensitivity matrix of the feature po- 
sitions with respect to state changes can be de- 
termined, the so called Jacobian matrix (upper 
block in center  right, lower right corner).  This 
rich information is used for bypassing the direct 
perspective inversion via recursive least squares 
filtering through feedback of the prediction er- 
rors of the features. This means that the perspec- 
tive inversion can be achieved at no extra cost 
once the Jacobian has been computed;  based on 
the dynamical model, the spatial state is esti- 
mated in a least squares error  sense including its 
spatial velocity components .  Note that this signal 
to symbol transition from pels via edge features 
to a high-level spatio-temporal object state is 
achieved in just  two steps; however,  both data 
driven bottom-up and model-driven top-down 
components  are traversed in each of the frequent 
(12.5 or 25 Hz) cycles in this approach, as will be 
explicated in the next section. 
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This approach has several very important 
practical advantages: 
- N o  previous images need be stored and re- 

trieved for computing optical flow or velocity 
components  in the image plane as an interme- 
diate step in the interpretation process; one 
might consider the method to exploit a 'virtual '  
optical flow, if one likes this notion, where the 
reference is stored not in a previous image but 
in a symbolic, predicted spatio-temporal state 
of objects in 4D; 

- the transition from signals to symbols (spatio- 
temporal motion state of  objects) is done in a 
very direct way, well based on scientific knowl- 
edge, that is the 4D world model integrating 
spatial and temporal aspects; 

- intelligent nonuniform image analysis becomes 
possible, allowing to concentrate limited com- 
puting resources to areas of interest known to 
carry meaningful information; 

- the position and orientation of well visible fea- 
tures can be predicted and the extraction algo- 
rithms can be provided with information for 
more efficiently finding the desired features; 
outliers can easily be removed,  thereby stabilis- 
ing the interpretation process; the 'Gestalt '  idea 
of 'objects in motion'  allows the elimination of 
combinatorial explosion in feature aggregation 
which otherwise would hamper object recogni- 
tion in natural environments (especially in en- 
vironments with many shadows); 

- viewing direction control can be done directly 
in an object-oriented manner; known egomo- 
tion can be compensated for in order to achieve 
bet ter  fixation performance.  

Processing a variable number of features mea- 
sured from frame to frame is alleviated by using 
the sequential filtering version. For  improving 
numerical performance,  the UD-factorized 
version of the square-root-filter is used [5]. 
Details may be found in [2, 6-8]. By ex- 
ploiting the sparseness of the transition matrix 
in the dynamical models a speedup can be 
achieved. 

Special care has to be taken in the initializa- 
tion phase when good object hypotheses are in 
demand. From feature collections which may 
have been compiled in a systematic search cov- 
ering extended regions of the image, the exis- 
tence of objects has to be hypothesized. 

4 .  S t r u c t u r i n g  P o i n t s  o f  V i e w  

The main problem in image sequence processing 
is data reduction without loss of  information. 
Humans (and possibly most biological systems) 
have good capabilities in this respect: an image 
of  homogeneous gray values is immediately char- 
acterized as uniformly gray. In a I K by 1K pel 
image with 1 Byte (B) per pel for intensity cod- 
ing, the amount  of 1 MB of data is directly re- 
duced to a few Bytes of information by specify- 
ing the average gray value and the range of 
validity ' everywhere ' .  In an average image, this 
is not true all over, but regionwise for certain 
areas, usually in correlation with object surfaces. 
Therefore,  one might say that the information in 
an image rests in nonuniform intensity changes 
(or, in general, in color intensity changes). That 
it is not just  the intensity gradients by them- 
selves, may be seen immediately from regular 
repetitions of intensity or shape patterns; they 
have received a special term and are called ' tex- 
ture' .  It is always the relationship from local to 
global which determines efficient characteriza- 
tion. 

With the processing power available in the 
past, there was no hope to achieve full image pro- 
cessing at video rate with an extraction of texture 
features; therefore, we confined ourselves to in- 
tensity edge features as the carrier of information 
in the image plain. Larger regions with (constant) 
gradients may be handled efficiently by resorting 
to pyramid image representations. 

Knowledge about the real world has been ac- 
cumulated by human culture around the physical 
units termed objects or subjects. In order to un- 
derstand more complex processes involving sev- 
eral objects or subjects, the term situation is used 
for grouping classes, which may be handled in a 
similar manner. In correspondence to this well 
proven scheme, the structuring points of view of 
features, physical objects (subjects) and situa- 
tions have been adopted in the integrated 4D ap- 
proach. 

4.1. Features 

Since the absolute intensity level of light in out- 
door  scenery may vary very frequently due to 
sunshine, clouds and time of day as well as year, 
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robust methods for image processing should con- 
centrate on invariants in the image plane at least 
approximately independent  of  these changes. 
The most prominent ones are intensity edge fea- 
tures measured against a common standard and 
evaluated relative to each other. Ternary corre- 
lation [3, 6, 9] has been developed to a standard 
tool. The presence in abundance of neural recep- 
tive fields in vertebrate  vision systems perform- 
ing similar functions hint to the adequacy of this 
operator.  

Correlation masks of different length (from 3 
to 16 pel) and orientation (up to 32 for a half cir- 
cle) are being used, depending on the situation, 
for searching local correlation extrema along 
simply defined search paths (horizontal, diagonal 
to left and right, and vertical). Corners may be 
evaluated by proper  coupling of  two edge masks. 

This technique coupled with intelligent control 
of the evaluation parameters  exploiting the 'Ge- 
stalt' idea for objects, to be discussed in the 
next section, allows efficient real-time image se- 
quence processing with today's  microprocessors.  

4.2. Objects 

The units to which humans attach their knowl- 
edge about the real world are objects, usually 
character ized by being coherent  entities; they 
may be composed of parts and may be parts of 
larger units. It has taken a relatively long time 
until in computer  science an equivalent construct  
has been introduced; now that it is available as a 
programming paradigm, it is rapidly taking over  
for handling complex tasks. 

Objects may be stationary or movable with re- 
spect to angular orientation or translation; with 
respect to shape they may be rigid, flexible or 
deformable.  Stationary objects are completely 
described by their 3D shape, orientation and lo- 
cation. Movable objects need a full rotational 
and translational state vector  including the veloc- 
ity components  at each point in time in order to 
be fully defined; when at rest, they may be 
treated as stationary as long as no forces or mo- 
ments move them. 

When moving, objects usually have a specific 
characteristic over  time in addition to shape. 
Therefore,  in order to be efficient with respect to 
motion analysis, both these properties constitut- 

ing essential knowledge about objects should be 
taken into account;  this is captured in the struc- 
ture and the values of  the parameters of dynam- 
ical models. Through these models, time is intro- 
duced directly into the interpretation system as a 
basic property characterizing processes in the 
real world. 

4.3. Subjects 

This notion has been introduced in [10] in order 
to be able to properly characterize systems ca- 
pable of  starting actions in the real world 'at 
will'. Exploiting high-gain power magnification 
in properly constructed units, a transition from 
the information level (micro- or milliwatt) to real- 
world control actuation (kilowatt-level) is possi- 
ble. An electro-hydraulic power amplifier, for ex- 
ample, bridges six orders of magnitude in power 
in just  one unit. 

This enables autonomous systems to become 
active dependent  on sensory signals and on the 
results of  their processing. Therefore,  in order to 
completely describe such a 'subject ' ,  its internal 
'mental '  state has to represented and to be 
known in addition to the states needed for ob- 
jects. 

Specific subjects usually react according to 
some generic prototypical schemes; if the basic 
structures of these schemes and their triggering 
conditions depending on the external situation 
are known, the reaction of a subject may become 
predictable, at least in a fuzzy (probabilistic) 
way. Including the effects of  control actuation 
into the dynamical model as is usually being 
done, movements  to be expected may be pre- 
dicted which again may alleviate the real-time 
data processing task if properly organized. 
Therefore,  the control actuation patterns avail- 
able to subjects and their triggering conditions 
constitute essential knowledge for intelligent au- 
tonomous systems; they should be exploited for 
characterizing specific classes. 

4.4. Situations 

An arrangement of objects and subjects in the 
f ramework of a specific task context  is called a 
situation. Note that due to the internal states and 
to the task dependence,  the same arrangement of 
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objects and subjects may constitute a different 
situation for the different subjects. 

All this knowledge combined yields the back- 
ground against which an intelligent subject will 
evaluate the sensory signals received in order to 
come up with good results in dynamic scene un- 
derstanding. In an actual situation, the 'Gestalt '  
idea including all dynamical aspects of  other ob- 
jects and subjects is the unifying consideration. 

5. The 'Gestalt' Idea for Object Recognition 
and Tracking 

In order  to be able to efficiently recognize and 
track objects in image sequences of a dynamic 
environment,  their spatio-temporal invariances 
including the constraints resulting from the map- 
ping process should be exploited. 

Temporal invariances are captured in the dy- 
namical models which link the changing aspect 
conditions over  time. Spatial invariances are the 
3D shapes of rigid objects under observation. 
Combining both via the laws of perspective pro- 
ject ion yields the basis of dynamic scene under- 
standing with the 4D-approach. Thus, dynamic 
image sequences are interpreted by exploiting a 
priori knowledge on objects and relevant motion 
processes in 3D space. 

Measurable features on the surface of objects 
constitute the link between picture element 
(pel-) processing in the image plane and a sym- 
bolic reconstruct ion of an analog internal repre- 
sentation of the mapped object in the interpreta- 
tion process within the computer.  

Measuring and collecting all features in every 
image and then trying to match groups of those 
with all possible object interpretations in every 
frame would lead to combinatorial explosion. In- 
stead, relying on the temporal continuity condi- 
tions in certain task domains and motion pro- 
cesses, considerably reduces the number of  
meaningful interpretation possibilities. Objects 
move steadily and usually in a well predictable 
manner; images of objects behave similarly ex- 
cept for occlusion effects. If an independent mo- 
tion of the camera is superimposed on dynamic 
changes in the scene, an internal representation 
of the camera motion as linked to another  bodily 
motion process (egomotion) is required. 

For  an autonomous vehicle, therefore,  both 

the egomotion and the motions of other objects 
have to be represented separately. Both motion 
components  may change the aspect conditions of 
the objects observed.  Inertial measurements may 
give independent information on the egomotion 
in a fast and reliable way so that image interpre- 
tation can be alleviated taking this informa- 
tion into account.  The corresponding effects of 
changing aspect conditions of other objects 
through egomotion may thus be eliminated, at 
least roughly. This reduces the search area for an 
object in the new frame. Actively predicting the 
remaining changes in aspect conditions and cor- 
responding changes in feature appearance for a 
known 3D shape (not 2D in the image plane 
which is not invariant) allows to considerably re- 
duce the amount of image processing workload. 

In natural environments under sun shine con- 
dition, shadow boundaries may yield much more 
pronounced intensity edges than do body bound- 
aries; for moving objects these shadow bound- 
aries move over  the body surface. Under these 
conditions the 'Gestalt '  idea of looking for a rea- 
sonably coordinated set of features indicative of 
the object searched or tracked, oftentimes is the 
only chance for re-cognizing the object amongst 
a multitude of distracting similar features. One 
has to know what one is looking for in order to 
find it. This approach will be detailed in the se- 
quel for road and road vehicle recognition in out- 
door scenery. It allows to interpret rather com- 
plex scenes with comparatively simple image 
processing schemes, however,  with frequent bot- 
tom-up and top-down traversal of the system hi- 
erarchy encompassing low- to high-level process- 
ing and knowledge representations (12.5 resp. 25 
Hz). 

In [11] this approach has been extended to ge- 
neric object models with unknown shape param- 
eters. First simulation results indicate the viabil- 
ity of  this approach for simultaneous motion and 
body shape recognition, at least for some re- 
stricted classes of technically fabricated objects 
like road vehicles. 

6. System Integration 

The method described above lends itself to a well 
structured system integration as shown in table 
1. This is being implemented at present on a 
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t 

relative goal state ~ planning, 
evaluation decisions 

t t 

situation assessment I~ situation 
i parameter adaption 

t t 
feature aggregation ~ objects in 

space/time 

t t 

feature extraction * features in 
image plane 

Table 1. Modular processing structure for complex tasks 

t ransputer network added to the existing BVV/ 
PC-system (compare [3]). From each of  the fea- 
ture extraction groups called 2D object proces- 
sors, a transputer link exists into the network for 
communicating data in parallel between the 
higher and the lower levels. The 4D object pro- 
cessors are all T800-transputers at present. Once 
transputers had been integrated into the system, 
they started to take over  also lower level func- 
tions from the BVV. Therefore,  the system is 
likely to become an all-transputer system in the 
near future. 

Feature extraction (lowest line in table 1) and 
its control from the higher levels has remained 
unchanged, in essence. For  the task of 4D object 
recognition, specialists for certain classes of ob- 
jects like lanes, crossroads and vehicles have 
emerged (4D- OP, formerly GPP); at this level 
(second lowest line), time is introduced into the 
interpretation process and exploited for avoiding 
the combinatorial  explosion during feature aggre- 
gation to objects. A large amount  of implicit 
knowledge about the appearance of  real world 
objects in perspective images is represented at 
this level. 

A dynamical object data base collecting all in- 
formation on actual objects constitutes the inter- 
face to the higher levels. There,  the situation is 
assessed taking the own task into account  (mid- 
dle line, table 1); decisions are being made 
whether  to continue with the control mode run- 
ning or to switch to a different maneuver  element 

(second line from top). Note,  that these high lev- 
els do not directly act on the controls but that 
there is a special control level implemented 
which closes the loop (shown in top line, table 1 ; 
a more appropriate way of displaying the physi- 
cal organization and the signal flow is given in 
figures 3 and 4 to be discussed below). In order 
to incur as little time delay as possible into the 
actuation process,  feedback control works di- 
rectly upon data in the dynamical data base. This 
way, the higher levels are somewhat decoupled 
from direct actuation, alleviating them from hard 
cycle time constraints. The control output is, 
however,  fed back to all internal state represen- 
tation and prediction instances in order to com- 
pute corresponding expectations.  

Fig. 3 shows an overall block diagram which 
bet ter  indicates the signal flow in the system. 
The inner core represents the lower two levels 
and the uppermost  one of  table 1. The shaded 
areas implement the recursive estimation and 
single step prediction of object center  of gravity 
states (engineering type methods).  The 'geomet- 
ric reasoning' block (lower right center) adds the 
shape aspects. This and the peripheral functions 
(outer inverted U-shape) might be called the 
artificial intelligence parts of the system. Ini- 
tialization (right bar of inverted U in fig. 3) is 
achieved by matching feature groups with projec- 
tions of an hypothesized object. Three ingredi- 
ents are always necessary for instantiation of  an 
object model: the dynamical model for the tem- 
poral evolution of  motion, the shape model for 
feature distribution around the center  of the 
body, and the aspect conditions for computing 
the perspective projection. The generic object 
models will be kept in an object data base under 
development  (upper right corner).  

The upper bar of the inverted U in fig. 3 rep- 
resents the real-time monitoring and decision 
making part of  the system. If prediction errors 
(arrow upwards between the inner and outer  
right blocks) are consistently large, object hy- 
potheses will have to be adjusted; this may be 
done by parameter  changes or by switching to a 
completely different model. The method pre- 
sented in [11] may allow to perform the parame- 
ter adjustment for known generic objects in a 
recursive way similar to and with the same meth- 
ods as for state estimation. 

Since the scene is time varying and new fea- 



260 Dickmanns 

P a r a m e t e r a d a p f a t i o n (low frequency} 
goals mnd~l 
planning 

mission 
elements 

s±orage of 
tgood, 
control 
time 
histories 

performanca 
index 
evaluation 

FiE. 3. Block diagram of dynamic vision; control oriented AI (4D prediction error mJnJmizatJ( minimization 

tures belonging to yet unknown objects may oc- 
cur, a steady monitoring has to be done in order 
to detect  those and to generate proper  object hy- 
potheses.  In ambivalent cases, several object hy- 
potheses may have to be started in parallel; they 
will be pruned over  time when enough informa- 
tion has been collected for dropping the less 
likely ones. 

The main task of the situation recognition 
level is to trigger proper  use of the generic con- 
trol procedures in the inner block for transform- 
ing measurements into actuator outputs. This 
may be done by either feedback or feedforward 
modes. The regulatory control tasks like lane 
keeping and convoy driving are realized by state 
feedback (lowest shaded block); maneuvering 
control tasks like lane change and turning off are 
realized by parameterized feedforward control 
time histories (block attached to the right of the 
left vertical bar in fig. 3). Proper  feedback may 
be superimposed during later parts of feedfor- 
ward control maneuvers for compensating distur- 
bances which might have occurred.  All control 
outputs are sent to both the real-world vehicle 
and the internal models (lower center  left). 

The left vertical bar is reserved for future au- 
tonomous learning capabilities based on state 
time histories exper ienced (lower input to left 
bar), caused by control time history inputs (at- 
tached block to the right). Both have to be eval- 

uated in conjunction with respect to some 
performance index (goal function for mission ele- 
ments) in order to be able to select favorable con- 
trol time histories. More information on the in- 
telligent control aspects may be found in [12], 
from which fig. 4 shows yet another  way of dis- 
playing the system architecture; it emphasizes 
temporal structuring with low cycle times at the 
bot tom (full or 1/2 to 1/4 video rate for feature 
extraction and 1/2 to 1/4 video rate for state es- 
timation and control computation) and large ones 
(possibly asynchronous) at top. The intermediate 
level is purely event-driven. 

7. Implementational Aspects 

The overall system architecture sketched above 
has evolved over  a decade of research in the field 
of autonomous visual guidance of vehicles based 
on the engineering approach of recursive esti- 
mation. The artificial intelligence aspects for vi- 
sual object recognition had to be incorporated 
into this approach. 

There are two distinctly different phases of op- 
eration: 1. The initialization phase, when nothing 
is known about the scene to be interpreted, and 
2. the real-time operation phase in which spa- 
tin-temporal models are available, alleviating 
the frame-to-frame interpretation considerably. 
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Fig. 4. Hierarchical scheme for adaptable fast control de- 
termination with temporal structuring 

Phase one is much more difficult than phase  two, 
and solutions are available only for very special 
cases and task domains.  On the other  hand, dur- 
ing initialization, usually, there is no strict t ime 
limit for the orientat ion to be per formed;  it may 
last for several  seconds or even minutes,  whereas  
in real-time operat ion the cycle t ime is less than 
one tenth of  a second,  normally, if the perfor-  
mance  level of  humans  is taken as standard for 
compar isons .  

Since initialization may be very involved, it is 
not discussed here due to space limitations; the 
interested reader  is referred to [6] for road vehi- 

cle initialization. For the example  of  real-time 
road recognition with shadows on the road, the 
realization of  the 'Ges ta l t '  idea and the handling 
of uncertainties in object  recognition will be dis- 
cussed in this section. 

Fig. 5 shows a campus  road in summer  with 
shadows from trees crossing the road almost  nor- 
mally; due to the leaves, there are almost  homo- 
geneous shade areas on the road. From previ- 
ous interpretations,  the sys tem knows the lane 
width, the curvature  parameters  of  the road and 
the own position and orientation relative to the 
lane center  line. With the known elevation of the 
camera  above the ground and the known camera  
mapping parameters  the appearance  of both lane 
border  lines in the next f rame can be predicted 
taking the last control input to the vehicle into 
account.  F rom lateral position on the lane and 
f rom the curvature  parameters ,  areas of  interest 
for the collection of meaningful information on 
both lane boundaries  are predicted; the digitized 
video image is stored by the feature extract ion 
(parallel) processors  in these regions only. The 
predicted slope of the boundaries  is used for se- 
lecting proper  mask orientat ions for controlled 
ternary correlation in each window individual- 
ly; due to road curvature  which is part  of  the 

Fig. 5. Application of the 'Gestalt" idea to road recognition 
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'Ges ta l t '  idea, the tangent direction changes 
smoothly  with look-ahead distance,  that is with 
decreasing line number  in the image. The corre- 
lation, then, is pe r formed in a restricted region 
around the predicted spot along a search path, in 
this application usually along the horizontal axis; 
the length of the search path may be adjusted ac- 
cording to the uncer ta inty of  the prediction, 
which of course  is a function of the cycle time. 
This may  lead to the fact that shorter  cycle times 
with fewer  correlation evaluations to be per- 
formed,  may be advantageous  relative to longer 
ones with high search loads and the increasingly 
difficult problem of feature cor respondence  f rom 
frame to frame.  

Since correlation of larger areas is more im- 
mune to noise corruption,  long masks  of  16 or 17 
pel edge length have proven to be beneficial in 
natural environments  with high spatial noise fre- 
quencies.  Note  that in fig. 5, due to this selectiv- 
ity in intensity gradient direction and window po- 
sition, the amount  of  features and data to be 
handled could be reduced considerably. 

For  each lane boundary  feature to be deter- 
mined,  a couple of  candidates will be delivered 
by the extract ion processes;  these per form the 
search for the predicted and the two neighboring 
mask orientations.  It is not even tried to decide 
on this level which of the candidates are good 
ones and which are not; the information for this 
decision is missing on this purely data driven 
level. (Therefore,  f rom this point of  view, the 
question of an 'op t imal '  feature detection does 
not make sense. For example,  in natural scenes 
with hard sunshine, the shadow boundaries  very 
often yield higher intensity gradients than the 
transitions from road to shoulder.) In fig. 5 some 
candidates for edge features are marked by line 
segments.  

Up to 24 feature candidates from 8 windows 
may be presented to the interpretation process.  
From these,  at most  one per  window will be se- 
lected yielding a least squares error sum fit for 
the curvature  model with slightly adjusted pa- 
rameters  (adaptation of the 'Ges ta l t '  idea). I f  the 
measured feature position in some windows is 
outside the 3 sigma region of the predicted value, 
the contr ibution f rom this window will be dis- 
carded for the actual cycle; sigma is the standard 
deviation evaluated as a side product  during re- 

cursive estimation. The measured feature posi- 
tion will also be discarded if the correlation value 
is below a preset  threshold in magnitude. For  this 
reason, a many-fold redundancy in feature ex- 
traction has been introduced with the specifica- 
tion of  four window areas on each side of  the 
lane. In the case of  fig. 5, the measured features 
of  only 5 windows have been considered suffi- 
ciently good for inclusion. 

In fig. 6 from a winter day with low standing 
sun, there are many perturbat ions f rom branches 
without leaves yielding many  spurious features; 
in cases like this one, the features of  more than 
half of  the windows may be rejected because  the 
many shadow boundaries prevent  the real road 
(lane) boundary  from being extracted.  With the 
BVV_2 image sequence processing sys tem [3, 6], 
speeds up to 30 km/h have been achieved under  
these conditions. In these situations, longer look- 
ahead ranges with a tele-lens and a wider range 
of  feature extractors  (multiple scales) would 
probably yield bet ter  results. However ,  without 
the 'Ges ta l t '  idea projected into image evaluation 
and the uncertainty t reatment  by the recursive 
estimation procedure,  situations like these could 
hardly be handled with that low computing 
power  in real t ime at 25 Hz.  

These types of  images also are very hard for 
initialization because  the shadow from the trunk 
of  the tree yields an extended linear intensity gra- 
dient and would well qualify for a candidate of  
one road boundary;  only the missing adjacent 
boundary  according to the 'Ges ta l t '  idea of  a per- 
spectively mapped  road, with a pair of  converg- 
ing lines including a large area nearby, allows to 
eliminate these shadow boundaries  from the can- 
didate list. 

In the rest of  the paper,  the spat io-temporal  
modeling and experimental  results in two appli- 
cation examples  will be discussed. 

8. Application Examples 

The area of  au tonomous  mobile robots or un- 
manned vehicle sys tems has at t racted the atten- 
tion of many  researchers  over  the last years.  The 
majori ty of  activities seems to be in the ground 
vehicle area, but also underwater ,  air and space 
vehicle applications are being studied; numerous  
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Fig,. 6. D i f f i c u l t  w i n t e r  s c e n e  w i t h  s h a d o w s  o n  t h e  r o a d  

conferences  and technical journals  are devoted 
to these fields. With [13] a collection of articles 
giving an overview over  major  ground vehicle ac- 
tivities has appeared  just  recently;  references to 
many  of the existing projects may be found there. 
In the USA, the DARPA project  on autonom- 
ous land vehicles drew much attention; in Eu- 
rope, EUREKA-pro j ec t s  like 'P rometheus '  and 
ESPRIT  projects have spurred much interest in 
road and ground vehicle guidance. All of  these 
have fostered activities in this application area 
worldwide. 

In the sequel, some of our application results 
with the 4D approach to dynamic vision will be 
discussed. 

8.1. Real-Time Hardware-in-the-Loop 
Simulation 

For software development  it is essential to have 
facilities available which allow exact  reproduc- 
tion of test  conditions; with vehicles in real world 
envi ronments  this is a lmost  never  given. There-  
fore, it has been decided in 1976 when dynamic 
machine vision as research subject has been 
picked, to build a unique simulation facility for 

this purpose,  similar to those known for human 
pilot training in aviation. Fig. 7 shows the ac- 
tually existing version of  this simulator which, in 
the meant ime,  has been used in various configu- 
rations over  more than a decade for developing 
visual dynamic scene understanding and control 
algorithms both for road vehicle guidance and for 
the aircraft landing approach.  The rotational and 
translational motion of the sys tem to be investi- 
gated (road vehicle or aircraft dynamics)  is sim- 
ulated numerical ly in all relevant degrees of  free- 
dom on the simulation processor  exploiting a 
nonlinear set of  differential equations (upper left 
block in fig. 7). Input to this simulation process  
is exact ly the same control output as will be used 
for the real vehicle. This control input is numer-  
ically integrated over  one step in time (40 ms typ- 
ically), in order to obtain the next set of  state 
variables;  per turbat ions may  be added during 
this process for improved similarity to real world 
processes  (like gusts in aircraft flight). For  this 
state, the camera  position and orientation is com- 
puted; these ' eyepoin t  condit ions '  determine the 
perspect ive  view on the synthetic landscape in 
the graphics processor  of the Compute r  Gener-  
ated Image sys tem (CGI,  upper  right block in fig. 
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Fig.  7. Hardware in the loop simulation for machine vision at UniBw Mtinchen 

7). This image is projected onto a cylindrical 
screen with 2.5m radius (bot tom right) by a video 
projector.  

In front of  this screen on the cylinder axis, the 
sensors are mounted on a three axis angular mo- 
tion simulator which is servo-control led accord- 
ing to the angular rate and position of the simu- 
lated process:  Sensors are the TV-cameras  on the 
viewing direction control pan and tilt platform, 
and a set of  angular rate and linear acceleration 
sensors.  These and the parallel processors  for 
data evaluation are exact ly those to be used in 
the real vehicle. Therefore,  the entire sensing and 
guidance hard- and software f rom signal pick-up 
till control output  on the information level, can 
be tested in this loop. The control output  deter- 
mined, instead of being power-amplif ied and ap- 
plied to the real world, is fed back into the sim- 
ulation processor ,  and the loop is closed. 

Just by adapting software in the system, the 
application area may be changed f rom road ve- 
hicle to aircraft guidance (or to guidance of ships 
as well as space vehicles). The very important  
advantage beside a nice indoor environment  is 
that the actual state to be recovered,  the so called 
'ground truth '  is not only available (at a lmost  no 
cost) but that it is so in the best  possible form for 
the purpose  at hand, namely as data in the sim- 

ulation computer .  In field experiments ,  this ref- 
erence is usually very expensive to collect, es- 
pecially when strong perturbat ions are present.  

A very high percentage of  development  work 
for our real world systems has been per formed 
using this simulation facility with the corre- 
sponding simulation models of  the real systems.  
Some results will be discussed below after the 
models have been explained. 

8.2. Road  Vehicle Guidance 

In the f ramework  of the German  information 
technology program since 1982 and of the Euro- 
pean EUREKA-pro j ec t  P R O M E T H E U S  since 
1988, this application has been very much ad- 
vanced over  the last half decade in cooperat ion 
with our industrial par tner  Daimler-Benz AG. 
Three areas are of  u tmost  importance  for safe ve- 
hicle guidance: 1. Recognition of road geometry  
in a larger look-ahead range, 2. determination of 
the own position and orientation relative to the 
road, and 3. detection of obstacles and estima- 
tion of  the own relative position and velocity. 

Tasks 1 and 2 can only be solved in conjunc- 
tion since the road is being viewed from the ve- 
hicle while driving along it. A hybrid repre- 
sentation of the road using both differential 
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Fig .  8. Vehic le / camera / road-geomet ry  

g e o m e t r y  (for e s t i m a t i o n  and  con t ro l  p u r p o s e s )  
and  C a r t e s i a n  in tegra l s  (for p e r s p e c t i v e  p ro jec -  
t ion and  the  m e a s u r e m e n t  a s p e c t s )  has  p r o v e n  to 
be  m o s t  eff icient•  F o r  de ta i l s  see  [14] and  [4]. 
Fig.  8 s h o w s  the  b a s i c  r e la t ions .  

M o d e r n  high s p e e d  roads  are  bui l t  a c c o r d i n g  
to so ca l l ed  c l o t h o i d  m o d e l s  w h e r e  c u r v a t u r e  
C(C = l /R,  R = rad ius  o f  c u r v a t u r e )  c h a n g e s  
l inea r ly  wi th  a rc  length ;  this  r esu l t s  in c o n s t a n t  
s t ee r  angle  r a t e s  for  tu rn ing  into a c u r v e  at  con-  
s tan t  s p e e d  V. The  d y n a m i c a l  m o d e l s  for  the  road  
and  the  o w n  veh ic l e  a re  (with a = ax le  d i s t a n c e  
(3.5m),  X = s t ee r  angle ,  [3 = la te ra l  slip angle ,  
Yv = la te ra l  pos i t i on  on road  ( lane) ,  % = veh ic l e  
head ing  angle ,  V = veh ic l e  ve loc i ty ,  kr = la te ra l  
t i re  fo rce  coe f f i c i en t  (150 k N / r a d ) ,  kx = s t ee r  
ra te  gain  fac to r ,  ux = s t ee r  ra te  con t ro l ,  L = 
l o o k - a h e a d  range ,  m = veh ic l e  m a s s  (4000 kg), 
p = k , / (m .V ) ,  C0/ .... = local  ho r i zon t a l  road  cur-  
va tu r e  o f  the  ave r age  mode l ,  Clhm = h o r i z o n t a l  
c u r v a t u r e  ra te ,  Co ..... = loca l  ve r t i c a l  road  cu rva -  
ture ,  Ch.m = ve r t i ca l  c u r v a t u r e  ra te ,  n~.~h = dr iv-  
ing no i se  for  ho r i zon t a l  c u r v a t u r e  e s t i m a t i o n ,  nd,. 
= d r iv ing  no i se  for  ve r t i ca l  c u r v a t u r e  e s t ima-  
t ion):  

l a t e ra l  veh ic l e  d y n a m i c s  

V/a - p - 2p 0 
= , 4- 

0 V 0 Yv 
[*vJ  V/a 0 0 qj 

• bl x 4 -  "Coh m 

road  c u r v a t u r e  ho r i z on t a l  

,,,,,,,= - 3 v / L  3 - ] c, , , , . l+ 
C l h ]  0 L C i h j  kn~.ld 

v e r t i c a l  

I>,q=[°o 
Since  the  m e a s u r e m e n t  equa t i ons  for  the  gene ra l  
case  wi th  ver t ica l  c u r v a t u r e  a re  r a the r  i nvo lved ,  
the  i n t e r e s t e d  r e a d e r  is r e f e r r ed  to [4]. The  inte-  
gral  r e l a t i onsh ip  e x p l o i t e d  in ho r i z on t a l  cu rva -  
ture  m e a s u r e m e n t  is the  fo l lowing:  The  c l o t h o i d e  
m o d e l  wi th  a l inear  change  o f  c u r v a t u r e  C o v e r  
arc  length  1 m a y  be w r i t t e n  as  

C(l) = Co + C~ .1. 

The  f i rs t  in tegra l  y ie lds  the  he a d ing  d i r ec t ion  X o f  
the  road  

X( l )  = No 4- C o "  l Jr- C l  • 12/2. 

A s s u m i n g  X X0 to be  smal l  ove r  the  l o o k - a h e a d  
range ,  the  cos ine  o f  this  e x p r e s s i o n  is a p p r o x i -  
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mated by 1 and the sine by its argument;  then the 
second integral yields for the lateral offset of  the 
road boundary  at the look-ahead distance L due 
to curvature  y~ relative to the tangent direction at 
the vehicle location (Yc0 = 0) 

y~ = C o • L2/2 + Cj " L3/6. 

From fig. 8 there follows as measurement  equa- 
tion 

b 
+- - + Y ~  - Yv 

2 

= YR + e rR"  ( L + e )  + t~Kv'L; 

perspect ive  mapping of YR as YsR into the image 
plane at focal distance f yields: 

Y~R = +- ~L2 + I Co" L /2  + Cl " L2/6 
I _  

- ~bVR(1 + e/L)  - t~z~v-  y v / L ]  

i 

J 

8.3.  O b s t a c l e  A v o i d a n c e  

The 4D approach,  integrating measurement  re- 
suits over  t ime and substituting knowledge about 
motion processes  in 3D-space for determining 
state variables not directly measured,  has the in- 
herent proper ty  of  motion stereo. This is ex- 
ploited for monocular  range est imation relative 
to obstacles.  Real-t ime per formance  has been 
achieved by assigning this task to an additional 
group of parallel processors  consisting of  a set 
of  special feature extract ion processors  (16 bit 
word length) and one 4D-object  processor  (32 
bit). 

In the search mode for obstacle  detection,  the 
feature extract ion processors  look for combina-  
tions of  features above the road surface indica- 
tive of  a larger obstacle;  as soon as some candi- 
dates are found and remain stable over  time, this 
group is compared  to some generic model;  during 
this step, false alarms are eliminated as far as 
possible. With these feature data a 4D recogni- 
tion process  is then started. A typical simple fea- 
ture a r rangement  is shown in fig. 9. 

For road vehicle recognition, pairs of  features 
center  each other  crosswise in the horizontal and 
in the vertical direction; symmet ry  conditions 
may be imposed for feature acceptance  if the as- 
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Fig,. 9. Feature based obstacle recognition, image geometry 

pect conditions are from the back or front. Since 
the lateral position of  the obstacle relative to the 
lane is of  importance  for the own reaction, the 
lane boundaries  at the location where the object 
touches the ground are also measured whenever  
possible. 

For other vehicles, simple second order dy- 
namical models  for decoupled longitudinal (ra- 
dial) and lateral motion are adopted (for details 
see [15]). With r = range to the other object,  
Vo = object  speed, Yo = lateral position relative 
to lane center  of  lane, V o = lateral speed of ob- 
ject ,  ni = driving noise terms,  B = width and H 
= height of  object,  the dynamical  model is 

Yo = Vyo k = V o - V 

9~o = nl,,(t) i/o = nto,~, (t) 

B = O  /4 = 0  

The measured quantities in the image plain may 
be seen f rom fig. 9. Specific estimation results 
have been discussed in [15, 16]. 

With a tele-lens of  25 m m  focal length, passen- 
ger cars can typically be detected at distances of  
about  100m; at distances of  around 50m, range 
estimation by passive monocular  vision typically 
is around 5 percent  accurate.  This is considered 
sufficient for longitudinal control at modera te  
speeds of  around 50 to 80 km/h if the other object  
moves  smoothly. For  stat ionary obstacles and 
oneself  driving at high speed, the per formance  
has to be improved by using larger focal lengths. 
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9 .  E x p e r i m e n t a l  R e s u l t s  

9.1. Road Vehicles 

The approach described above has matured dur- 
ing half a decade of experimentat ion with three 
autonomous vehicles: 1. VaMoRs, the experi- 
mental vehicle of  UniBwM for autonomous mo- 
bility and machine vision, a 5-ton van in opera- 
tion since 1986; 2. since 1988 a 10-ton bus of  
Daimler-Benz, our industry partner in the frame- 
work of  the German information technology pro- 
gram for 'Autonomous Mobile Systems' ,  and 3. 
VITA, an autonomous 6-ton van of the Daimler- 
Benz AG in the E U R E K A  project PROME- 
T H E U S  since 1991. Different sets of  computers 
have been used over  the years; in [3] the devel- 
opment  of the custom made image sequence pro- 
cessing systems BVV_i has been sketched. Re- 
cent developments favor Transputer hardware 
for easy expandability even before video-busses 
will become standard in the future. 

Always inexpensive PC-type computers have 
been used for the higher levels: initially, one PC 
based on the Intel 80286 microprocessor  in addi- 
tion to the BVV_2 with a few 8086 single board 
computers  sufficed for guiding VaMoRs at its 
maximum speed of 96 km/h on an empty Auto- 
bahn in 1987 exploiting the 4D approach. Only 
through the powerful  and intelligent interpreta- 
tion constraints introduced by the integrated spa- 
tio-temporal models has it been possible to 
achieve these results with that low computing 
power on board. Since 1989 the Intel 80386 single 
board computer  has been introduced on an inter- 
mediate hierarchical level in the BVV_2 [17] re- 
sulting in much more robust road recognition un- 
der heavily per turbed environmental  conditions 
through shadows from trees; here, the newly 
introduced 'Gestalt '  idea of a perspectively 
mapped curved road was essential for achieving 
the performance level demonstrated.  

At this stage, also the module for obstacle rec- 
ognition has been introduced forming a second 
processor  group as discussed above (see [15]). 

In 1991 all application software developed up 
to that point in different computer  languages was 
translated into C and ported onto transputers.  In 
a transition phase now, both BVV_3 and transpu- 
ters are used jointly; with the availability of  tran- 

sputer processors and corresponding software 
the BVV will disappear. 

The performance level achieved and demon- 
strated at the PROMETHEUS-disp lay  at Torino 
in September  1991 encompasses the following 
capabilities of the autonomous vehicles: 
- lane keeping on roads with ample shadows from 

trees under hard sunshine conditions; speed ad- 
justment  to road curvature in order not to ex- 
ceed a preset lateral acceleration limit (for ex- 
ample 0.2 Earth-g) 

- driving at night with normal headlights 
switched on 

- detection of obstacles at distances up to about 
100m; monocular  distance estimation through 
motion stereo with sufficient accuracy up to 
about 50m 

- stopping in front of  an obstacle at a preset dis- 
tance from speeds up to 50 km/h 

- convoy driving behind a vehicle at a speed-de- 
pendent  distance (2 seconds rule) 

- ' s top-and-go '  maneuvers behind a preceding 
vehicle 

- lane changes to the l~ft and right triggered by 
the human operator  who has to take care for 
other vehicles in the neighboring lanes. 

With the increased computing power available on 
board now, work is under progress for coping si- 
multaneously with several other objects and for 
recognizing object classes from more detailed 
spatial shape understanding under changing as- 
pect conditions. 

The same method has also been applied suc- 
cessfully to the problem of landmark navigation 
for indoor vehicles on the factor floor (AGV's) 
[18]. A special kind of landmark navigation in six 
degrees of freedom will be discussed next. 

9.2. Aircraft Landing Approach 

One of  the most crucial maneuvers  in autono- 
mous flight is the final approach phase to the 
landing strip. Under good visual conditions, hu- 
man pilots are able to land an aircraft safely with- 
out any support  from the ground by using just  
visual cues from the airport environment  and the 
runway. In 1982 we started studying this problem 
in the simulation loop with the goal to develop 
methods which would allow autonomous un- 
manned aircraft with the capability of machine 
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Fig. /0. Simulated landing approach with subareas evalu- 
ated for information extraction 

vision to do the same. G. Eberl in his dissertation 
work [19] laid the foundation for the solution 
available now. From 1987 onward, R. Schell con- 
tinued the development  till the first flight exper- 
iments successfully performed in 1991. 

The initial nine years of development  have 
been performed in the simulation loop discussed 
above,  exclusively. Results have been published 
in [20, 21]. Over the years, realism in simulation 
and the use of  real image processing hardware 
has been steadily increased. Space does not al- 

lOW to describe the system developed in detail; 
the interested reader is referred to [22] and forth- 
coming publications in English. 

The achievements may be considered a break- 
through in machine vision application. It has 
been shown that full spatial motion in all rotatory 
and translatory degrees of  freedom can be con- 
trolled by onboard autonomous dynamic ma- 
chine vision with a relatively small set of today's 
micro-processors,  using the 4D approach. In sim- 
ulation, the control loop has been closed and 
landing approaches have been performed from 
about 1.5 km distance till touchdown,  including 
wind effects and gusts. Fig. 10 shows a simulated 
approach situation with the hashed squares indi- 
cating the image areas evaluated for information 
extraction. In both the simulation loop and in the 
real flight experiments the camera was sus- 
pended on a two-axis pan-and-tilt platform for vi- 
sual runway fixation. 

In the flight experiments,  funded by the Ger- 
man Science Foundation (DFG) and performed 
with the twin turboprop aircrft Dornier  Do-128 of 
the University of Braunschweig (see fig. 11), in- 
ertial angular rates and orientations have been 
measured by gyros and were fed into the inter- 
pretation system, with data fusion performed 
through the two sixth order dynamical models 

Fig. I1. Test aircraft Do-128 of TU-BS 
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separated for the longitudinal and lateral degrees 
of  f reedom. 

Since the aircraft was not yet certified for ac- 
tive compute r  control,  only the real-time state es- 
t imation part  exploiting dynamic vision could be 
tested. This, however ,  has been surprisingly suc- 
cessful; after only one week of  installation work 
and interface testing, due to the careful prepara-  
tions pe r fo rmed  in the simulation loop with the 
comple te  vision system, first t ra jectory and state 
est imation results could be achieved.  

Fig. 12 shows the visually est imated altitude 
as compared  to a radio-al t imeter  measurements  
and those f rom the Differential Global Position- 
ing Sys tem (D-GPS). The landing approaches  
were abandoned at about  5m altitude in order to 
make a f ly-around for the next  trial. It can be 
seen that visually es t imated altitude and radio- 
al t imeter  measurements  agree very well in the vi- 
cinity of  the runway (time > 13 sec); aircraft 
speed was about  55 m/s ( - 2 0 0  km/h). Est imat ion 
quality of  the longitudinal position was consid- 
ered sufficiently good whereas  lateral position 
est imation f luctuated with about  2m ampli tude 
relative to the D-GPS-resul ts ;  this will have to be 
studied fur ther  but seems to be due to delays in 
data processing and viewing direction control. 

1 0 .  C o n c l u s i o n s  

The 4D approach to machine vision has been de- 
veloped with the goal in mind to achieve dynamic 
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Fig,. 12. Estimated altitude time history 

vision per formance  similar to the human one, at 
least in motion control. Introducing time as an 
independent  variable right from the beginning as 
the basis for integral spat io- temporal  object 
models,  allows to develop very efficient data pro- 
cessing schemes.  Unlimited image sequences 
may be processed without the need for storing 
previous images; the effects of  temporal  devel- 
opment  of  the process under considerat ion are 
accumulated in the state of  physical objects,  in- 
ternally represented in 3D space and time. 

It has been shown in several application areas,  
that microprocessors  available today, already al- 
low surprising pe r fo rmance  levels when exploit- 
ing this method as compared  to quasi-steady 
approaches  usually studied in Artificial Intel- 
ligence. For  high level pe r fo rmance  in complex 
scenes,  these engineering-based methods need to 
be complemented  with ones well suited for ex- 
plicit knowledge representat ion and decision 
making. First steps in this direction have been 
proposed in the architecture discussed. 

Even though our sys tems developed up to now 
always have a human opera tor  on board,  the 
principles applied are easily adapted to fully au- 
tonomous  unmanned systems.  Designing the sys- 
tem according to human ways of thinking in- 
cluding action sequences over  time, makes  the 
interface to humans for interaction or for moni- 
toring relatively simple. 
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