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Abstract. A marine stratocumulus model has been developed which has four major sub-models: (1) a 
one-dimensional version of the CSU cumulus model, (2) a partially-diagnostic higher-order turbulence 
model, (3) an atmospheric radiation model for both short-wave and long-wave radiation, and (4) a partial 
condensation scheme and cloud fractional parameterization. 

A set of numerical experiments have been performed to study the interactions among the turbulence, the 
long-wave radiation, the short-wave radiation, and the sub-grid condensation processes. The results indicate 
that surface sensible eddy heat flux and not radiative cooling is the major control on the rate of cloud-top 
entrainment. Cloud-top radiation cooling occurs principally within the upper part of the mixed layer. 
However, for the stratocumulus with numerous towers penetrated into the capping inversion, most of the 
long-wave radiation occurs within the capping inversion. It is found that cloud-top radiation cooling is 
balanced by turbulence transport of sensible heat from cloud-base levels. 

1. Introduction 

The formulation and testing of the turbulence model and the sensitivity experiments with 
the model using Wangara Day 33 data have been discussed by Chen and Cotton (1983). 
The marine stratocumulus model is an extension of that work by the inclusion of (1) 
an atmospheric radiation model for both short-wave and long-wave radiative transfer 
through a clear, fully cloudy or partly cloudy atmosphere and (2) a partial condensation 
scheme and cloud fractional parameterization. An eventual goal of this modeling work 
is to use the model or a simplified version of it as a turbulence closure scheme in a 
three-dimensional mesoscale model of cloud systems. In fact, using a computer package 
developed at NCAR, the one-dimensional (1D) model described herein is simply a 1D 
version of the 3D cloud mesoscale model described by Tripoli and Cotton (1982). 

Lilly (1968) studied the cloud-capped mixed layer by using a mixed-layer model. As 
indicated by Deardorff( 1980b), Lilly’s mixed-layer model has the following assumptions: 

(i) the boundary layer is well mixed for the semi-conservative mean variables; 
(ii) the capping inversion has negligible thickness; 
(iii) the cloud fractional coverage is 100% ; 
(iv) there is no wind shear; 
(v) there is no drizzle; 
(vi) the radiative divergence is entirely within the capping inversion; 
(vii) a 0, or 0, jump must exist across the capping inversion in order to maintain the 

stratocumulus cloud layer; 
(viii) the mixed-layer model is closed by either the maximum or the minimum entrain- 

ment rates at the top of the mixed layer. 
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From the energy budget of turbulence kinetic energy of the mixed layer, neither the 
maximum nor the minimum entrainment rate is reasonable. Schubert et al. (1979) 
modified assumptions (viii) by assuming a linear interpolation of the maximum and 
minimum entrainment rate. DeardortT (1980b) further investigated the cloud-capped 
mixed layer by using his three-dimensional model. In this paper we will attack the same 
problem using a one-dimensional model accompanied with a detailed radiation para- 
meterization and sub-grid condensation scheme. 

According to the analysis work reported by Noonkester (1979), the evolution of 
marine stratocumulus is sensitive to radiative cooling and warming. In order to obtain 
the exact profile ofthe radiative flux in the atmosphere, one may solve the monochromatic 
radiation transfer equations separately. The total flux can be calculated by the inte- 
gration over the whole spectrum. It is obvious that this integration method will put a 
heavy burden on a computer. Therefore, some parameterizations are adopted to 
represent the radiation transfer process in the atmosphere. 

The radiation model consists of two parts: short-wave and long-wave radiation. The 
parameterization of long-wave radiation flux through a clear atmosphere follows 
Rodgers (1967). Because of the presence of cloud, however, Rodgers’ clear-air emissivity 
approach is no longer valid. Stephens (1978) solved this problem by introducing the 
‘effective’ emissivity of the cloud, where the cloud-layer emissivity is parameterized from 
observations. For the emissivity of an air column containing a clear and cloudy 
atmosphere (or a partially cloudy atmosphere), Herman and Goody’s (1976) ‘mixed- 
emissivity’ assumption is adopted. 

The short-wave radiation model includes atmospheric molecular scattering, Lacis and 
Hansen’s (1974) ozone absorption, and Stephens’ (1978) parameterization of reflec- 
tance, transmittance and absorptance of a cloud layer. The structure of the short-wave 
radiation model follows that of Stephens and Webster (1979), which is a two-stream 
model (upward and downward flux). Stephens’ (1977) ‘equivalent transmittance’ is 
employed to derive the reflectance, transmittance and absorptance of a ‘clear-cloud 
mixed’ atmosphere. 

Because Stephens’ parameterization of short-wave radiation through a cloud layer 
can be ‘tuned’ to match the results from a detailed theoretical model, one can be more 
confident of its quantitative value. The exact profile of the radiative variables - 
reflectance, transmittance and absorptance of a cloud layer-is important to the diurnal 
evolution of a stratocumulus. This is because the ‘penetrative distance’ by the short- 
wave radiation is determined by the above-mentioned radiative variables. The simulation 
of summer-time Arctic stratus (Herman and Goody, 1976) shows that the penetration 
of short-wave radiation into the cloud is the source of heating which leads to the 
formation of two separate cloud layers. However, for a high water content cloud, the 
penetrative distance is very shallow. 

The ‘all or nothing’ condensation scheme is replaced by a ‘partial condensation’ 
parameterization. We adopt a scheme which is similar to Banta and Cotton (1980). The 
basic assumption of this scheme is that the variable Y - r, is distributed according to a 
probability density function. The variables Y and r, represent the total water mixing ratio 
and the saturation mixing ratio. Two types of probability density function are tested: 
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(1) uniform distribution function (Banta and Cotton, 1980), and (2) skewed distribution 
function (Bougeault, 1981). Lenschow (personal communication) points out that at the 
top of the stratus, the cloud top is usually very wavy. Thus the layer near the cloud top 
may become subsaturated after horizontal averaging. The traditional all or nothing 
condensation scheme cannot adequately treat this situation. Based on sensitivity experi- 
ments, the scheme with a uniform distribution function does not provide a satisfactory 
result either. The advantage of Bougeault’s skewed distribution function is that early 
condensation occurs at a subsaturated condition. However, the sensitivity experiment 
also indicates that Bougeault’s positively skewed distribution function cannot diagnose 
the partly cloudy coverage near the cloud top. Thus, the exact formulation of the 
distribution function near the cloud top will require further investigation. 

The primary objectives of this study are: 
(i) To compare our one-dimensional model results with Deardorff s (1980b) results 

which are derived from a three-dimensional model. 
(ii) To examine Lilly’s (1968) hypothesis that radiation is entirely within the capping 

inversion. 
(iii) To understand the mechanisms that balance cloud-top radiation cooling. 
(iv) To determine if cloud-top radiation enhances the entrainment rate. 
In Section 2, a detailed description of the model is given. In Sections 3 and 4, the 

long-wave radiation model and the short-wave radiation model is introduced, respec- 
tively. The partial condensation scheme is discussed in Section 5. In the last section, 
four case studies are compared. 

2. Description of the Turbulence Model 

The marine stratocumulus-capped mixed layer can be described by the following 
ensemble-averaged equations. 

a% a av -= -fi+fi,+-(-v”)-w- 
at az a2 

(2) 

(3) 

where the variables (u, ~1, w) are the ensemble-averaged wind in the (x, y, z) direction. 
The variables (Q, $) are the geostrophic wind in the (x,y) direction. The coriolis 
parameter is represented by J The atmospheric radiative cooling or heating rate is 
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represented by the radiational flux divergence (-(l/p& (%‘/a~)). F is the total 
radiation flux defined by F = Ft - FL, where Ft and F1 represent upward and down- 
ward flux, respectively. pO is the reference state air density. Equations (1) and (2) can 
be derived from the equations of motion. In the derivation, the velocity field is 
decomposed into ensemble-averaged mean and perturbation. ui = Ui + ti; . u,!’ repre- 
sents the small-scale fluctuations. The thermodynamic variables can also be decomposed 
into 8, = e, + (3;; ; r = 7 t r”, where 0, and r are ice-liquid water potential temperature 
and total water mixing ratio, respectively. A double superscript prime notation is used 
for turbulent fluctuations since in the 3D parent model (see Tripoli and Cotton, 1982) 
a single prime represents an average departure from the reference state. 

In order to close Equations (1) to (4), we need to determine the turbulent flux terms, 
such as m, mw)), n, and w)). The detailed description of the formulation of 
the higher-order turbulence model can be seen in the companion paper (Chen and 
Cotton, 1983). The turbulent fluxes or the Reynold’s stress equations and other second- 
order moment equations are expressed as: 

a ? -a_ a- -2 = --M;&24y -q- 1 

at az az az ( 
uI)u;w” + $-p”w” 

PO 1 

1 r a 4- +- 2-4-4-p”w” -?E; 
( 1 

i = l-2 
PO axi az 

a:= -wai7-2~a- 2gm a,, 1 
SW 

--w--P w -- w az az ( 
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PO az PO > 

a -uilw)I= a -a ~ 
at 
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aZ 

7*_2u1w”3+ wl12L,-~~;,~~2 

aZ 

-gp+~ w-yptc . 
PO ( 

i = l-2 I 
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(5) 

(6) 

(7) 

(9) 
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a -m= a a- -aa_ a-- -~-~w”a”~w”a”w-w”2 --a - - ).$/‘2QU 
at h az az az 

-gp”a” + 1 W’ a” (10) 
PO PO (2 

u))L’II 
( ) 
E+5 = -m a a -jj-v”w”-u 
az z az az 

a- a m(C$T) = -$57-Q-m-&. ; i= l-2. 
az az 

(11) 

(12) 

_- 
where Z? is defined as u” 2 + VI’ 2 . The scalars a and b represent either 0;, or Y. The isotropy 
terms represent the corelations between pressure fluctuation (p”) and velocity (uy) or 
pressure fluctuation and thermodynamic variables (r”, 0,) and are parameterized 
following Zeman and Lumley (1976) as: 

1F 

-( 

r 2 a,, -uu;+-u;‘-36i~-p w = 
p. axxi ah az ) 

5 b, q2 - ; R , (UI’ 6,, + m Liji - fm 6,) 
T 

IF co ” = - w” a 
Pn 22 

“-+(~,8:;a”+ ~,r”a”+R,r:(a”) 
T 

(13) 

where 6, = m/q2 - f c!I;~ and q2 is defined by q2 = uI)uII = F + w”~, c, = 1.0, 
cc, = 2.17. z is the turbulence time scale for the second-order moments, which is defined 
by z = pq2/E, p = 0.3 1, E is the mean rate of turbulence energy dissipation. By the same 
token, ELIb represents the mean destruction rate of a”b”, i.e., the destruction of 8;;2, rfr2, 
or WY,, Eah is defined by Eab = wT/rO where z0 is the turbulence time scale for all 
thermodynamic variables. Equations (6) (9), and (10) have a term which is the 
correlation between density fluctuation p” and other turbulence variables. The 
covariance with density fluctuations p” can be written as: 

-gpll 
-= -R,v-R,r”sc”-R,v 

PO 
(15) 
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where 2” can be any turbulent fluctuation. The coefficients R, , R,, and R, are given 

by 
R, = -g/h 

R, = -R/R, - 1)s (16) 

R, = - LIcJo - WLlg 

where the subscript ‘0’ denotes the reference state and R,, R, are the gas constants for 
dry air and water vapor. L,, is the latent heat of evaporation. 

The above second-order moment equations are closed with third-order moment 
equations. The procedure to parameterize the third-order moments follows Chen and 
Cotton (1983) which is an extension of the model originally developed by Zeman and 
Lumley (1976). The following equations are a summary of all the third-order moment 
equations. 

Wlla))bl) 
az az dZ 

-R,m-R,r"a"b"-R,r:(a"b" (17) 

___ l,!!! wI12a11 
( 1 

-a a- = -2W"2-&T--Wl)allw"2 
7, 32 az az 

-5/3 (R, w,, + R2ii%? + R, w) (18) 

-3 (R, ~“~8:; + R, w”‘r” + R, w”2rf’) (19) 

~ L,!!! 4' w" 2 ( > 
a- -a 

z, 32 = 
-ui w ,r,,w’f2-2wf’2-$57; i= l-2. 

az az (20) 

Equation (17) represents the diagnostic equation for w”r”2, w”0:;‘, and w”. 
Equation (18) represents the equation for w”‘r” and w”?$. Equation (20) is the 
diagnostic equation for u” w”~ and V” w”~. In order to have a reasonable redistribution __~ 
of energy among w”~, u”~w”, and v”~w”, we use a simple approximation that 

W u3 ~~ = &2wfl, uu2w” = v II 2 1) 3 w” = + w . (21) 
- 

The skewness terms 8;;3, Oii’r”, &r”‘, and r”3 are described as follows: 

-( 
e;; 3 (22) 
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r~5, 3 _ 3-COw~ r c3 ~ 3z o ~ ( D  I RI ,,,, , , ~  (25) 

2. 2. AI 741 ) 

1 2 .  
A I = + - -  (26) 
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B1 = _w,, 2 _0 A,,~ - 2w"Oj'l 0 w,,Oj, t (27) 

C~ = - w  "2 0 0 0 & O~'lr" - w" O;'~ az w"r" - w"r" - -  w" (28) 

O 1 = - w ''2 £ r "2 - 2 w " r "  ~ ~'r". (29) 
& & 

In the companion  paper  (Chert and Cotton, 1983), we have compared  the parameteri-  

zations of  dissipation given by Andr6 et al. (1978) and Sun and Ogura (1980). As a 

consequence of  the results of  that  study, we adopt  Andr6 's  scheme which can be 
summarized as follows. 

The dissipation of  turbulence kinetic energy is defined by 

= 0.3 lq3/ l  (30) 

where l is the turbulence length scale which is defined by 

l = M I N  (18, ln) (31) 

where l~ is the Blackadar ' s  length scale for the surface related unstable layer: 

18= kz/(1 + kz/Zo) (32) 
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I, is the characteristic length scale 

i=O.l+$. (33) 

The coefficient k = 0.35 is the Von Karma constant. As for the stable stratification near 
the top of the mixed layer, the associated length scale is parameterized by ID,, where 

ID = 0.75 [o’,i,( -R, ~iqy’- (34) 

The turbulence time scale can then be defined by r = pq2/E. From the discussion 
mentioned in the companion paper, ru and r3 are defined by 

z. = r/2, z, = r/2.17. 

Furthermore, EO, E,, and &,,. can be parameterized as 

(35) 

With the atmospheric radiation model activated, radiation cooling may occur at cloud 
top and radiation warming at cloud base. The radiative flux divergence can thus produce 
a convectively unstable layer inside the cloud layer. Blackadar’s formulation is not 
applicable to these conditions since the source of convective instability is not heat flux 
from the earth’s surface, but is diabatic heating within the mixed layer. 

We therefore adopt the following formulation inside the cloud layer when @,/az < 0. 
The turbulence scale is then defined as 

z = wn2/B (36) 

where B is the buoyancy production of turbulence kinetic energy, which can be 
expressed as 

B= -2(R,m+R,w”r”+R,m). (37) 

We define Equation (36) based on the fact that the buoyancy production of turbulence 
kinetic energy (B) is always a dominant term. Dissipation therefore should always adjust 
to B. Equation (36) indicated that the dissipation is about 60% of B. Kaimal et al. (1976) 
found that the mid-layer dissipation rate is about 0.4-0.5 times the buoyant production 
rate. 
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3. Long-Wave Radiation Model 

3.1. RADIATIVE TRANSFER EQUATION 

The radiative transfer equation (RTE) can be expressed in the integral form, i.e., 

(38) 

where F&) is the long-wave radiative flux at the boundary p,, , E is the emissivity, the 
variable p denotes pressure, aT4 represents the source function of the long-wave 
radiative flux which is Stefan-Boltzmann black-body radiation. 

The above mentioned RTE can be converted to the following form when it is applied 
to a grid-point model, 

N-l 

(39) 
k=l 

where k denotes the number of layers, and the outmost layer is denoted by N. EN is the 
total emissivity of the combined layers (k = 1 to N). EN can be expressed by 

EN=E(;;; %,2) 

where U,+ 1/2 is the optical path length between the Ith and I + lth layer. The optical 
path length is defined by 

4 + I /2 = PO’or,~(Z, + l/2) (ZI + 1 - 4 (40) 

where p0 is the density of the air, r,. is the mixing ratio of water vapor. Equation (40) 
indicates that the optical path length U,, ,,2 is just the total water vapor content per 
unit area between the I + lth and fth layers. 

In Equation (39) AEk+ ,,2 represent the ‘actual’ emissivity of the k + 4th layer and is 
defined by 

(41) 

It is important to note that the actual emissivity AEk + ,,2 has different values for upward 
and downward fluxes. 

Based on observations, Stephens (1978) formulated the RTE through a cloud layer 
as 

FBl = F,l (1 - E,Jd + “,. aT4 
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where the subscripts T and B denote cloud top and cloud base. The upward and 
downward emissivities of a cloud layer are denoted as ~l"~fr and eJ, efr, respectively; they 
are determined from observations and will be discussed in the next two sections. 

3 . 2 .  P A R A M E T E R I Z A T I O N  O F  E M I S S I V I T Y  O F  A C L E A R  A T M O S P H E R E  

Rodgers (1967) parameterized the emissivity of a clear atmosphere by a simple algebraic 
expression of the form. 

4 

e'~ $ = ~ a,ff ,~ U "/2, U <  lO-3gmcm -2 
n = l  

4 (43) 

b,,T,L (ln U)", U >  10-3 gm cm 2 
n = 0  

where U is the water vapor optical path length, an and bn are coefficients which are given 
in Table I, and the arrow direction is either up or down, respectively. 

TABLE I 
Values of the coefficients in Equation (43) 

a I a 2 a3 44 bo bl b2 b3 b4 

T 9.32 - 4 4 6 . 4  824 259700 0.5983 0.15068 3.4041 x 10 -2 6.5535 x 10 -3 4.887 x 10 -4 

,~ 8,857 -332 .8  14607 - 2 6 1 9 0 0  0.6558 0,12175 1.4976x 10 -2 1.4981 x l0 -3 0.49 x 10 4 

Rodgers claims that this emissivity parameterization can give a good solution to the 
upward and downward radiative flux through a clear atmosphere. 

Due to the absorption of water vapor in the 8-13/~m, we correct Rodger's emissivity 
according to the formulation described by Stephens and Webster (1979). The emissiv- 
ities calculated by Equation (43) are modified by adding ~' t and ~' ~ to the upward and 
downward emissivities, e'l" and e'$ are determined by 

4, 
e"f = ~ a', [loge(UPe) ~] 

n=O 

4 
g"~ = 2 b" [lOge ( U  Pe)'~]. 

n = o  

Where Pe iS the ratio of partial water vapor pressure, which can be computed from 

P r~ 

0.622 x 1013.6 

The variable p denotes pressure. The coefficients a,; and b'~ are given by Stephens and 
Webster (1979, Table I). 
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3.3. PARAMETERIZATION OF EMISSIVITY OF A CLOUDY ATMOSPHERE 

The effective emissivity (E,fff~) of a cloud layer as determined from observations 
(Stephens, 1978) can be given as follows: 

&tJ = 1 - exp (-a,tlW) (44) 

where W is the liquid water optical path length (g m-“) given by W = jp,r, dz. a,? and 
a,1 are coefficients for upward and downward emissivity and are given as 

a,? = 0.13 and a,1 = 0.158. (45) 

3.4. EMISSIVITYOF A MIXEDCLEAR ANDCLOUDYATMOSPHERE 

In the stratocumulus model, the vertical extended air column contains water vapor, and 
cloud water. Both Rodgers’ and Stephens’ emissivity cannot represent the actual 
emissivity of this volume of air. A simple parameterization used by Herman and Goody 
(1976) is adopted, which is called ‘mixed emissivity’. The mixed emissivity is defined 
by 

Cl’- c?J = (1 - La,) (1 - G&nax) (46) 

where E, is the mixed emissivity. Eclear and Eeff are the emissivity for a clear and cloudy 
atmosphere, respectively. H,,, is the maximum cloud fractional coverage of the clear- 
cloud mixed layers. 

Another approach to computing long-wave flux in the ‘clear-cloudy mixed’ layer is 
to adopt Stephens’ empirical radiative equation if there is a cloud layer. This scheme 
is not a ‘continuous’ process when compared to the mixed emissivity approach. 
However, those two schemes are essentially the same whenever the cloud-water mixing 
ratio is greater than 1 g kg-‘. Differences between those two schemes appear when the 
cloud-water mixing ratio is less than 1 g kg- ‘. The differences, however, are very small. 

3.5. BOUNDARY CONDITIONS FOR THE RADIATION MODEL 

An intermediate layer is placed between the top of the model and the top of the 
atmosphere in which zero flux is assumed for the downward long-wave flux at the top 
of the atmosphere. Sensitivity experiments show that the downward long-wave flux at 
the top of the model is sensitive to the water vapor content and the thermal temperature 
within the intermediate layer. The total water vapor content of this intermediate layer 
is assumed to be 0.3 gm cmm2. The thermal temperature is assumed to be the tempera- 
ture of the layer above the top of the model, because most of the downward long-wave 
flux at the top of the model is contributed by the black-body radiation from the nearby 
layers. 

4. Short-Wave Radiation Model 

4.1. Radiative transfer equation 

Once the reflectance, absorptance and transmittance are known for a given layer, a 
two-stream (upward flux and downward flux) radiative transfer model can be con- 
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F+(I) 

I 
I &I),Re(l),A(l) 

2 
2 8(2),Re(2),A(2) 

Re(l,3) 

3 
. 

F&(n) : 

. . 
n yFf(n+l) e(n), Re (nl, A(n) 

c Re (I,n+l) 

. 

N 
0s Q (N+Il &N),Re(N),A(N) 

N+I ,,,,,,,,/,,///,/,/ 

Fig. 1. The short-wave radiative transfer model, F1 and Ft denote downward and upward fluxes. Re(n) 
and A(n) represent respectively the reflectance, absorptance at the n th layer. Re( 1, n + 1) is the multiple 

reflectance from all layers above the (n + 1)th layer. 

strutted. Figure 1 (from Stephens and Webster (1979)) re p resents a simple illustration 
of such a radiative transfer model. In Figure 1, downward and upward flux are denoted 
by FL and FT respectively and can be written as 

FJ(n + 1) = Re(1, n + 1) FT(n + 1) + I’J(n + l/2) (47) 

Ft(n) = Wn) Ftb + 1) + Vt(n + 1,2j 
1 - Re( 1, n) Re(n) 

(48) 

where the number of layers is denoted by n; Re(n), A(n), and T?(n) represent, respectively, 
the reflectance, absorptance and transmittance. Re(1, n + 1) represents the ‘multiple’ 
reflectance from all layers above the (n + 1)st layer, defined as 

Re(1, n + 1) = h(n) + 
Trl(n) W(n) Re(l, n) 

1 - Re( 1, n) Re(n) 
(49) 

The second term on the right-hand side of Equation (49) represents the internal doubling 
effect between layers (Stephens, 1977). 

Vl(n + i) represents the flux transmitted from the upper layer, computed as 

vl(n + ‘) = Trl(n) vl(n - l/2) 
2 

1 - Re(1, n) Re(n) ’ 

Vf(n + !J represents the flux transmitted from the lower layer, calculated by 

(50) 

VT(n + 4) = 
Re(n) Vl(n - 4) 

1 - Re( 1, n) Re(n) ’ 
(51) 
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The boundary conditions for this short-wave radiative transfer model are: 

Re(1, 1) = 0 

w$ = F1(1) 

FT(n + 1) = a,Fl(n + 1) 

where a, is the surface albedo. A value of 0.0667 is used for the albedo over the sea 
surface (Neumann and Pierson, 1966). 

4.2. PARAMETERIZATION OF REFLECTANCE,TRANSMITTANCE AND ABSORPTANCE 

4.2.1. Parameterization of Absorptance of a Clear Atmosphere 

Similar to the models formulated by Oliver and Lewellen (1978), Lacis and Hansen 
(1974) and Herman and Goody (1976), we adopt Yamamoto’s (1962) parameterization 
of the absorptance through the clear atmosphere. Thus, the absorptance is defined by 

A,(m,) = 2.9mJ[(l + 141.5M m,)“.635 + 5.925M mZ] (53) 

where m, is the optical path length of water vapor above layer z and can be written as 

JCI cc 

m, = 
s s 

p, dz = Por,.dz 

z z 

where p,, p. are the density of water vapor and air, respectively and r, is the water vapor 
mixing ratio. 

The magnification factor M (Rodgers, 1967) accounts for the slant path and 
refraction. M is defined by 

M = 35/(1224& + 1)1’2 

when cl0 = cos $, $ is the zenith angle. 
There is a limitation to using Equation (53), however. When the atmosphere contains 

a cloud layer, it is very difficult to evaluate the actual absorptance for a clear-cloud mixed 
atmosphere. In a later section, a scheme is introduced to parameterize the absorptance 
for a clear-cloud mixed atmosphere. 

4.2.2. Atmospheric Molecular Scattering 

Most of the atmospheric molecular Rayleigh scattering occurs in the lower atmosphere. 
When integrated through the atmosphere, the Rayleigh scattering provides a total 7% 
reflectance in the troposphere which corresponds to the climatological mean reflectance. 
Stephens (personal communication) parameterizes the atmospheric reflectance of each 
layer due to Rayleigh scatter as 

Reclear(P) = (0.219 x 0.517) P/[ 1 + 0.816~~) x 3039 x 103] 

where P is the pressure. 

(54) 
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4.2.3. The Ozone Absorption 

The parameterization of the absorptance due to ozone absorption in the intermediate 
layer above the model top follows Lacis and Hansen (1974), and is given by 

A,,W = A%) + A%) (55) 

where A,, represents the total absorptance. The optical path length of ozone above the 
Ith layer is denoted by X,. Superscripts uu and uis denote the ultraviolet and visual 
spectral range, respectively. A;; and A$ can be defined as follows 

AZ;@,) = 
l.OSur, 

(1 + 138.6XJ”.*05 + 

0.0658X, 

1 t (103.6XJ3 

A;;(&) = 
0.02118X, 

1 + 0.042X1 + 0.000323X: ’ 

(56) 

4.3. PARAMETERIZATION OFREFLECTANCE,TRANSMITTANCEANDABSORPTANCEOF 

A CLOUD LAYER 

In order to model the specular variation due to the main short-wave absorbers in the 
atmosphere (i.e., water, ozone and carbon dioxide), Stephens (1978) parameterized the 
reflectance, transmittance and absorptance of a cloud layer by considering two bands 
in which the wavelength 1 is either less or greater than 0.75um. Water vapor absorbs 
in the near infrared region where 0.7um I 1 I 2. lum, ozone absorbs in the ultraviolet 
and visual region where A I 0.35um and 0.5um 5 il< 0.7um. Carbon dioxide absorbs 
in the region which overlays with water vapor absorption where 2.1um I 1 I 2.9um. 
Therefore, the 0.75um wavelength is an appropriate line of demarcation. Ozone 
absorption is dominant for A < 0.75um while water vapor and carbon dioxide absorption 
are significant for A > 0.75um. This approach allows the partitioning of the specular 
variation of reflectance, transmittance and absorptance such that 51.7% is at wave- 
lengths less than 0.75um and 48.3% for A > 0.75um. 

Following Stephens (1978), the parameterization of reflectance, transmittance and 
absorptance of a cloud layer is as follows: 

(1) In the ultraviolet and visual region (A < 0.75um), the reflectance (Re,), trans- 
mittance (Tr,) and absorptance (A,) are parameterized as 

(58) 

Tr,(clo) = 1 - Re,(po) (59) 

A,+,) = 0. (60) 

(2) In the near infrared region (A > 0.75um), the reflectance (Re,), transmittance (Tr,) 
and absorptance (A,) are evaluated as 
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Re2bo) = (u’ - l)[exp(d - ev(h)llR 

772&J = 4ulR 

where 

A2bJ = 1 - Re2(po) - Tr2bJ 

u2 = [ 1 - 0, + 2/?*0&(1 - w(J 

Lff = { (1 - 00) [ 1 - mo + aGo) > “2 ?v/Po 

R = (u + 1)’ exp (z,J - (U - 1)2 exp (- r,J; 

z, is the optical thickness of the cloud layerwhich is defined by 

log,,(r,,) = 0.2633 + 1.7095 log, [log,, (IV)] 

when 1< 0.75um. Also 

log,,(r,,) = 0.3492 + 1.6518 log, [log,, (II’)] 

when 1> 0.75um, where W is the liquid water path length (g rn-‘) defined by 
AZ 

w= 

s 
PJ, dz 

0 
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(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

where AZ is the thickness of the cloud layers. o. is the single-scattering albedo, /?, and 
D2 are the back-scattered fraction of monodirectional incident radiation at zenith 
angle $. 

Coefficients o,, pi, and p2 are a function of z, and pO. Stephens (1978) developed 
a regression equation for co,, 0, , and p2 from observational data. In this paper, a simple 
linear interpolation method is used to calculate those coefficients. 

A brief summary of the above mentioned scheme is as follows: 
(i) Two bands are considered. The wavelength for the line of demarcation is 0.75pm. 
(ii) Absorption by cloud droplets in the ultraviolet and visual region (2 < 0.75um) is 

ignored. 
(iii) Absorption by cloud droplets only occurs in the near infrared region 

(A > 0.75um). 
(iv) Reflectance, transmittance and absorptance are functions of the cloud optical 

thickness, droplet single-scattering albedo, backward scattering fraction and zenith 
angle. 

Finally, the integrated reflectance, transmittance and absorptance of the cloud layer 
can be written as 

Re = 0.517Re, + 0.483Re, (70) 

Tr = 0.517Tr, + 0.483Tr2 (71) 

A = 0.4834,. (72) 
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4.4. PARAMETERIZATIONOFREFLECTANCE,TRANSMITTANCEANDABSORPTANCEOF 

A‘CLEAR-CLOUD MIXED' ATMOSPHERE 

When the air column contains a cloud layer, the ‘Yamamoto’ type parameterization of 
absorptance for a clear atmosphere [Equation (53)] fails to function properly. Stephens 
(personal communication) overcame this shortcoming by assuming zero absorptance 
underneath the cloud layer. However, a new scheme is developed in this paper as 
follows : 

The transmittance of a clear atmosphere can be defined by the summation of 
exponential functions (Stephens, 1977) as: 

Tr(m) = i W, exp (-J&m) (73) 
,,= I 

= .,$, W, Tr,(m) 

where Tr,(m) = exp (- K,m), m is the optical path length of water vapor, K, is the 
equivalent extinction coefficient, and W,, is the weighting function. The coefficients W, 

and K, are derived from an experimental fit of the ‘Yamamoto’ absorption function and 
are given in Table II. 

TABLE11 

Values of the parameter in Equation (73) 

n 1 2 3 

WH 0.12096 0.80556 0.07348 
K, 0.19649 0.00132 7.8179 

Following this procedure, the entire solar spectrum can be imagined to be divided into 
three bands. In each band, the transmittance (Tr) can be represented by the exponential 
function. The advantage of this scheme is that the transmittance between the fth and 
(I + 1)th layer can be simply represented by 

Tr,,, = exp (-Kim, + 1 - ml>) (74) 

where m, (g cm-‘) is the total optical length of water vapor above the Ah layer. 
Yamamoto’s absorptance [Equation (53)] can also be represented by 

A(m) = 1 - Tr(m). (75) 

Because Tr(m) is partitioned artificially into three bands, the absorptance in each band 
can then be written as 

A,(m) = 1 - Tr,(m). (76) 

Thus, the ‘actual’ absorptance between the Ith and (1+ 1)th layer in each band can be 
expressed as 
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A n// = A,h+ J - Ah) 

= (1 -exp(-K,m,+, N-U -exp(-Km,)) 

(77) 

where Z’r,(m,) is the transmittance of the atmosphere above the Ith layer. For a clear 
atmosphere, TrJrnJ can be expressed by 

Tr,(m,) = exp (- k,m,). (78) 

For the ‘clear-cloud mixed’ atmosphere, the expression is somewhat different, 
I- 1 

Tr,(m,) = n Ty,,j. (79) 
i= I 

Equations (78) and (79) are identical if there is no cloud layer in the atmosphere. The 
total optical path length of the water vapor (m,) can also be written as 

Equation (79) can simulate the presence of a cloud layer. If the ith layer is a deck of 
cloud, the transmittance of the cloud layer can be calculated by Stephens’ (1978) 
parameterization. 

The following equations represent the procedure to compute radiative variables (A,, , 
Tr, , and Re,) in the clear-cloud mixed atmosphere. 

Tr,,, = H(OS17Tr, + 0.483TrJ + (1 - H) exp (-K,(m,+ , - m,)) (81) 

A n/l = 0.483% + A,,.,/ + (1 - H)Tr,,h)(l - Tr,,,) (82) 

%/I = H(OS17Re, + 0.483ReJ + (1 - H)Reclea, (83) 

Tr,,, = 1 - A,,, - Re,,, (84) 

Ty,(ml+ J = n TY,,, (85) 
i= I 

where H is the cloud fractional coverage, and Equation (81) represents the first 
estimation of the transmittance. The radiative variables Re,,,, Tr,,,,, and A,,,[ are the 
‘actual’ reflectance, transmittance and absorptance between the Ith and I+ lth layer. 
Tr,,(m,+ ,) represents the total transmittance above the I+ lth layer. 

5. Partial Condensation Scheme 

Traditionally, various cloud models have been formulated such that the amount of cloud 
water is diagnosed by an ‘all or nothing’ scheme (see for example, Orville and Kopp, 
1977; Klemp and Wilhelmson, 1978; Cotton and Tripoli, 1978). According to this 
scheme, condensation occurs only when the mixing ratio of the air, averaged over a 
horizontal domain, reaches the saturation mixing ratio determined from the average 
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temperature over the domain. As pointed out by Sommeria and Deardot (1977), the 
sudden release of latent heat may produce a ‘shock’ to the model. Moreover, the 
entrainment of dry environmental air may dissipate parts of a cloud instead of the entire 
cloud layer as the ‘all or nothing’ scheme would predict. Also, it will be shown that in 
conjunction with the radiation model, the partial condensation scheme alters the 
evolution of the stratocumulus-capped mixed layer. 

Several partial condensation schemes have been described in the literature. Sommeria 
and Deardorff (1977), Mellor (1977), and Bougeault (1981) assume that the joint 
probability density function for t3, and r is distributed normally. Manton and Cotton 
(1977) and Banta and Cotton (1980), however, assume a normal distribution for r - r,, 
where Y and r, are the total water mixing and saturation mixing ratio, respectively. 

Although Mellor (1977) assumes a bi-normal distribution for f3, and r, he re-derived 
the equation and obtained a new variable which is normally distributed. This new 
variable can be expressed as ar” - bt$“, where a and b are coefficients, rn and 0: are 
the fluctuation of total water mixing ratio and liquid water potential temperature. The 
positive fluctuation of Y” and the negative fluctuation of l?;l are associated with the 
positive fluctuation of rJ . 

The following scheme to represent partial condensation is adopted. The cloud water 
mixing ratio r,. can be expressed as 

r, = r - r,(T) (86) 

where r is the total water mixing ratio and r,(T) is the saturation mixing ratio at 
temperature T. r and r,(T) can be decomposed into a mean quantity and turbulence 
fluctuation, i.e., 

r = V + r” (87) 

r,(T) = r,(T) + ri . 

Therefore, r, can be written as 

r, = (Y - r,(T) + r” - rj 

= Fco + r: . 
(88) 

The amount of the condensed cloud water in the traditional ‘all or nothing’ is simply 

rco = 7 - r,(T). The fluctuation of cloud water is given by r: = r” - r," . 

The turbulence fluctuation of saturation mixing ratio rl can be derived as follows. 
From the equation of state, 

es = R,PJ (89) 

where e, is the saturation water vapor pressure, R, is the specific gas constant for water 
vapor, and p, is the saturation vapor density. The linearized form of (89) can be written 
as 

e I’ P” T ‘I x=2+- (90) 
e so P To SO 
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where the subscript ‘0’ denotes a reference state. From the Clausius-Clapeyron 
equation, the following equation can be obtained 

L _ LJ” e” 

e so RJ; 
(91) 

where L,, is the latent heat of evaporation. Substituting Equation (91) into Equation 
(90) we obtain 

The turbulent fluctuation of the saturation mixing ratio r:’ can be defined as 

PJ r:’ = - 
pd 

where p(, is the dry air density. Equation (92) then becomes 

where rs,, = pJpd. Fluctuations in eil can be written as 

s _ 8’ L,, 

@ilO 

- 8,-c,,,7,(rL’ + ri + ry) 

(92) 

(93) 

(94) 

(95) 

where vi; and q” are fluctuations of rain water and cloud ice mixing ratio. Substitution 
of Equation (95) into Equation (94) allows us to represent t$’ as 

ri =rso(&-l)(~+~(r~ +ri+r:)). (96) 

In this paper, rain and ice are not included; thus r; = 0, r,!’ = 0. 
As shown in Equation (88) the turbulence fluctuation of cloud water mixing ratio is 

defined by 
ri = r” - rt+ (97) 

Substitution of Equation (96) into Equation (97) and rearranging allows us to rewrite 
r,! as 

if = a,(r” - c#) (98) 
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The normalized form of Equation (98) can be written as 

t = 5 = ; (y” - g,q;;) 
c c 

(99) 

where a, is the standard deviation of rf’ , and can be defined by 
- 

0, = [a;(r”2 + af t$;’ - 2a, lpyy. uw 

In Equation (99), t is the normalized variable which is assumed to be distributed 
according to a probability density function (G). 

The following equations represent the scheme to diagnose the cloud fractional 
coverage (H), mean cloud water mixing ratio (7,) and cloud water variance (Y:,‘~): 

Lc 

H= 
s 

G(t) dt 

-81 

(101) 

r;2/iJc = s 6% + Ot G(t) dt (103) 

-Q, 

where Q, = ?,,,/a,, G(t) is the probability density function. 
Usually the probability density function G is normally distributed. However, some 

simplifications of this probability density function have been tested by Banta and Cotton 
(1980) and Bougeault (198 1). In this paper, two types of probability density function 
are adopted and tested. Figure 2 is a schematic representation of those two functions. 
Table III represents the parameterization of cloud fractional coverage (H), mean cloud - 
water mixing ratio (F,) and cloud water variance (r12) for the uniformly distributed 
probability density function and the positively-skewed distribution function. 

(A) 

A-L 
(B) 

Ii t 
G(t)= 2+3 G(t)= H (t+l)e-(‘+‘) 

Fig. 2. Schematic representation of the probability density function (PDF). (A): Uniformly distributed 
PDF (B): Skewed PDF. 
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TABLE III 

Parameterizations of H, ?Ju, and ?/c,Z 

h(l + 1) e-“f 1) 

Finally, the second-order and third-order cloud water correlations are approximated 
as: 

m = (a2 m - b, cc”))H (104) 

ppy= (a2 CI,, - b, ,,,)H (105) 

where a” and j3” are any turbulent variable, and 

b, = a2a2. 

6. Initial Conditions and Description of Experiments 

The initial conditions are derived from the numerical results at the end of Wangara Day 
33 experiment (Chen and Cotton, 1983). Since this is a dry case, no cloud formation 
can be expected. In order to initiate a stratocumulus layer, the boundary layer is cooled 
by 3” K and warmed by 3.75” K above the boundary layer. This produces a sharp 
inversion across the top of the boundary layer. In addition, 2.5 g kg-’ of moisture are 
added within the boundary layer and 1.6 g kg-’ of moisture are added above the 
boundary layer. A steady surface heat flux is maintained at 8.8 x lop2 K m s-‘. The 
surface moisture flux is also maintained at 1.0 x 10e2 g kg-’ m s-l. No large-scale 
subsidence is imposed. In keeping with our long-range goal of adapting this turbulence 
model to a ‘sophisticated’ mesoscale model with horizontal resolution between 5 and 
20 km, we have selected a vertical grid interval of 100 m. Using stretched vertical 
coordinates, such vertical resolution can be achieved in a mesoscale model run on a 
class 6 type computer. Finer vertical resolution than this would be impractical for use 
in such a model. The initial conditions described above are very similar to DeardoMs 
(1980b) simulation of a stratocumuli-capped mixed layer. However, DeardortI’s simu- 
lation of the Wangara data had a deeper mixed layer; thus the initial height of the mixed 
layer in the following experiments is not as deep as Deardorff’s. 
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TABLE IV 

Design of the 5 numerical experiments 

Exp. L.W. radiation S.W. radiation 
activated activated 

PDF 

1 No 
2 Yes 
3 Yes 
4” No 
5b Yes 

No 
No 
Yes 
No 
No 

uniform 
II 
,I 
I, 

skewed 

a Rapid entrainment experiment. 
b Results not shown. 

Table IV shows the design of the five case studies. Experiment 1 represents the case 
without long-wave (L.W.) and short-wave (S.W.) radiation. This experiment is compared 
with DeardortI’s (1980b) case 4 study. Experiment 2 is a case with only L.W. radiation 
activated, while experiment 3 has both L.W. and S.W. radiation activated. 

Experiment 4 represents a simulation of rapid entrainment as discussed by Deardortf 
(1980a) and Randall (1980). In experiments (l-4) the uniformly distributed probability 
density function (PDF) is used. Experiment 5 is like experiment 2 except that the PDF 
is skewed as discussed by Bougeault (198 1). 

7. Results 

7.1. EXPERIMENT 1 - NO ATMOSPHERIC RADIATION PROCESSES 

Figure 3 illustrated the profiles of g[, 0,) ,,, , q, II, r,, r, WII, ,,,,:( for 
experiment 1 at the end of the 30 min simulation time. The predicted height of the mixed 

Z 
(km) 

Potential Temp (“K) 0 Flux 
(cm C’ ‘K) 

Moisture Flux 
(cm s-1 g/kg) 

Fig. 3. Vertical profiles of mean ice-liquid water potential temperature (a;,) and its vertical flux, vertical 
potential temperature (8”) and its vertical flux, cloud fractional coverage (H), total water mixing ratio (?) 
and its vertical flux, cloud water mixing ratio 7, and its vertical flux. This result is at f = 30 min, for the case 

without L.W. and S.W. radiation. 
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Z 
(km) I 

Gj,2) 
i L 

1111111~1111111111 I I I1 I / 1 I I, 

’ 285 290 295” 0 20 40 60 80- 100 ‘! 0 IO 20 

POT TEMP 8 FLUX MOIST FLUX 
(deg K) (mm s-l K) (mm s-l g/kg) 

Fig. 4. From Deardorff (1980b). Vertical profiles of mean liquid-water potential temperature (0,) and its 
vertical flux, vertical potential temperature and its vertical flux, cloud fraction (u<) at a given height (stippled 
area), total specific moisture ((I,,) and its vertical flux, and liquid-water specific humidity (q,) and its vertical 

flux for the case without L.W. and S.W. radiation. 

layer is 1300 m while Deardorff s model predicted a height of 1400 m (Figure 4). The 
difference is due to the initial condition as mentioned before. No significant residual tails 
for m, wIIy)I can be found above the mixed layer. In general, however, the results 
shown in Figure 3 are in good agreement with Deardofls (Figure 4). As in Deardorff s 
simulation, the vertical heat flux w” is a linear function with respect to height. The 
buoyancy heat flux w” has a slight jump near the cloud base, which is due to the 
release of latent heat by condensation. As shown in Figure 4, this jump of q is not 
as greai as that obtained by Deardorff. The weaker jump in buoyancy flux in our case 
corresponds to an underestimation of m near the cloud base. The predicted 
magnitude of the negative q near the top of the mixed layer is about 50% of the 
surface heat flux while it is about 55 y0 in Deardorff s case. The small difference between 
our result and Deardorff s could be attributed to the differences in initial conditions. By 
contrast, the predicted negative ,,, in the Wangara dry case (Chen and Cotton, 1983) 
was only 5% - 14% of the surface heat flux. Thus, the larger magnitude entrainment 
rate in the stratocumulus layer is a consequence of a positive feedback mechanism due 
to cloud top evaporational cooling. That is, the entrained dry air evaporates cloud water 
and intensifies the vertical mixing near the cloud top. As a result, the buoyancy heat flux 
,,, does not have as large a negative value as w”. 

The vertical profile of cloud fraction shows that the whole cloud layer is quite solid 
(100% coverage). In Figure 4, DeardorlI’s case exhibits ‘broken’ cloud (less than 100% 
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coverage) near cloud top and cloud base. Based on the difference in the cloud fractional 
coverage profile, we suspect that the uniformly distributed probability density function 
may not be adequate for use in a stratocumulus cloud layer. The predicted cloud water 
mixing ratio c exhibits a steady increase from cloud base to cloud top and has a peak 
magnitude around 0.86 g kg- ‘, which is similar to DeardorII’s result. 

The vertical total water flux m exhibits a positive value within the entire mixed 
layer, which indicates the vertical mixing is ‘moist up, dry down’. Since the vertical cloud 
water flux e is parameterized as a function of WI) and 3, w”y:’ should have 
the same order magnitude as m. As mentioned before, this fl profile indicates 
some underestimation near the cloud base when it is compared with Deardorffs case 
(Figure 4). This underestimation can be traced back to the less intense Wlr near the 
cloud base. The positive value of w”rf’ can be interpreted as ‘up condensation, down 
evaporation’. Both processes can increase the buoyancy heat flux. 

7.2. EXPERIMENT 2 -THE CASE WITH L.W. RADIATION 

The result of introducing L.W. radiative cooling is shown in Figure 5. The main effect 
is to produce radiation cooling at the cloud top and relatively small warming at cloud 
base. The magnitude of the maximum cooling and warming are - 97 K day-’ and 
12” K dayy ‘, respectively. Brost et al. (1982) indicate that the L.W. radiation cooling 
is found within the uppermost 50 m of the cloud. Our use of a 100 m vertical grid spacing 
spreads the cooling effect over a somewhat deeper layer near cloud top. 

1 ’ - 1 

Potent~ol Temp I”K) 8 Flux Mo~.ture Flux Rod~at~on Ccdng or Worming Rate 

(cm s-l “K) (cm 5.’ g/kg) ideg/dayl 

WITH L.W. RADIATION 

Fig. 5. As in Figure 3 except for the case with L.W. radiation. Vertical profile of the L.W. radiation cooling 
or warming rate is also shown. 

In this simulation, the cooling occurs entirely within the upper mixed layer (where 
H = 100%) which doesn’t agree with Lilly’s (1968) hypothesis that the radiation cooling 
is entirely within the capping inversion. The definition of the capping inversion is rather 
ambiguous in the literature. However, Deardorff (1980b) indicated that the capping 
inversion is the layer between the uppermost cloud-top domes and the lowermost 
cloud-top cusps. The cloud fraction within this layer varied with height between 100% 
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and 0%. According to DeardorlI’s definition for the capping inversion, Figure 5 
illustrates that L.W. cooling doesn’t occur within the capping inversion and the thick- 
ness of the capping inversion is negligible. During the transition period however, the 
cloud layer propagates upward another grid point. The diagnosed cloud fraction at the 
uppermost grid when the cloud is present is less than 100 %. We can thus imagine that 
some cloud elements penetrate into the capping inversion. The thickness of the modelled 
capping inversion is only one grid interval (100 m). This results in some radiation cooling 
within the capping inversion. We will discuss this subject more fully later in this paper. 

As a consequence of radiative cooling at the cloud top and radiative warming at the 
cloud base, the entire cloud layer becomes slightly unstable. Both q and m exhibit 
sharp departures from linearity just above cloud base in the L.W. radiation case. The 
field study of nocturnal stratocumulus reported by Caughey et al. (1982) indicates that 
large positive heat flux can be found near the cloud top. The destabilization of the cloud 
layer near the cloud top is the cause of the large positive heat flux. 

In contrast to Figure 3, the entrainment rate (i.e., the negative heat flux -0:;) is 
increased only slightly from 50% to 58% of the surface heat flux in the L.W. radiation 
case. This is a consequence of our assumption that the surface heat flux is constant over 
the ocean throughout the integration. Thus when L.W. radiation cooling destabilizes the 
cloud top and initiates entrainment, the entrainment cannot be maintained continuously 
without the supply of kinetic energy from beneath the cloud top. However, since the 
surface heat flux is fixed, the additional energy cannot be obtained from the ocean 
surface. Instead, the kinetic energy needed to support entrainment must be produced 
within the convectively unstable cloud layer. Since radiation cooling causes only a slight 
destabilization of the entire cloud layer, the kinetic energy gain is relatively small, leading 
to only a slight enhancement of the rate of cloud-top entrainment. 

The mean ice-liquid water potential temperature i$ shows a ‘dip’ near the cloud top 
(Figure 5). The results presented by Brost et al. (1982) and DeardorlT (1980b) do not 
indicate any convective unstable layer near the cloud top. Thus, in the real world, this 
‘dip’ may not exist. However, as will be discussed later, this feature is consistent with 
the physics of the model. 

The mean cloud water profile < is altered only slightly by L.W. radiative transfer. 
Figure 5 indicates that L.W. radiative cooling at cloud top produces a slightly larger 
amount of c (0.12 gm kg- ‘) near the cloud top. The wl)rll profile shows 10 to 15 p0 more 
dry air entrained into the mixed layer compared with experiment 1 (Figure 3). In 
comparison with Deardorff s (1980b) result, the negative m does not seem realistic. 
However, the negative e is a result of the much larger w)I within the lower 2/3 
of the cloud layer, i.e., positive fluctuations of 0, tend to produce negative fluctuations 
of r,. 

7.3. EXPERIMENT 3 -THE CASE WITH BOTH L.W. AND S.W. RADIATION 

In this experiment, both the L.W. radiation model and the S.W. radiation model are 
activated. Throughout the entire simulation time, there is no time variation of solar 
zenith angle ($), such that cos # = 0.7. 
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Poient~al Temp (‘Kl 0 Flux Mmture Flux Rcdatlon Coding or Warmmg Rote 
km s-’ OK) km s“ g /kg) (deglday) 

WITTH L.W. and S.W. RADIATION 

Fig. 6. As in Figure 3, except for the case with L.W. and S.W. radiation. Vertical profiles of the L.W. and 
S.W. radiation cooling or warming rate are also shown. 

We are interested in comparing the short-wave radiation models of Oliver et al. (1978, 
hereafter referred to as OLW) and Stephens (1978). The absorption coefficient CC-’ for 
OLW is 16 cm2 gg ‘, while the interpreted oc’ for the Stephens case is about 75 cm2 g- ‘. 
For a cloud with 1.0 g kg-’ cloud water content, the short-wave penetration distance 
estimated by OLW is 500 m, while for Stephens’ case it is 111 m. The vertical profile 
of short-wave radiation warming rate shown in Figure 6 indicates that the major 
warming occurs at the upper 100 m (1 grid point). This is consistent with the analysis 
of the penetration distance. As shown in Figure 6, the cloud top L.W. radiation cooling 
is thus partially compensated by the S.W. radiation warming. The O,, profile shows that 
the cloud layer is somewhat less unstable than in experiment 2. As a consequence, the 
vertical heat flux inside the cloud layer is smaller than that in experiment 2. The 
magnitude of negative heat flux at the cloud top is almost the same as in experiment 2. 
The small difference in the negative heat flux at the cloud top among the three experi- 
ments (1, 2, 3) suggests that cloud-top entrainment rate is principally controlled by the 
surface heat flux. Because of the less intense heat flux inside the cloud layer, w)IT:( is 
positive and increases in magnitude from cloud base to cloud top. 

Using Stephen’s short-wave radiation parameterization, we find that there is little 
diurnal variation in the simulated cloud layer. This is a result of the fact that long-wave 
radiation cooling and short-wave radiation warming both take place in a relatively short 
distance from cloud top. Because of the strong L.W. cooling near the cloud top, S.W. 
heating is not able to dissipate the cloud. Large-scale subsidence is considered to be the 
most important contributing factor to the diurnal variation of stratocumulus in coastal 
regions. The current sensitivity experiments, however, do not include this factor. 

OLW found that the diurnal variation of the cloud layer is significant in their 
sensitivity experiments. They claimed that clouds are evaporated away by turbulent 
transfer of solar energy captured in the cloud interior. This is a consequence of the small 
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-Exp I 
--Exp 2 

‘.‘..Exp 3 

’ 12345 

Fig. 7. Vertical profiles of the normalized vertical velocity variance, at I = 30 min. Solid line represents 
the case without radiation, while the dotted line represents the case with both L.W. and S.W. radiation model 

activated. Dashed line is the case with L.W. radiation model activated. 

absorption coefficient d they employed. As a result, the S.W. radiation can penetrate 
deeper into the cloud layer. 

7.4. A COMPARISON OF EXP. 1, EXP. 2, AND EXP. 3 

Figure 7 shows the normalized variance of vertical velocity (w”~/w*~) for the three 
experiments, where w* is the surface convective velocity. It is defined by 
w* = (g m Z,/gjJJ/3. Z, is the height of the inversion, s denotes surface. The profile 
of WV2 is consistently smaller in magnitude in Exp. 1. Moreover, the maximum of w”~ 
is located below the cloud base where Z/Z, 1: 0.3. This maxima is associated with the 
surface heat flux. In the companion paper (Chen and Cotton, 1983), our Wangara 
numerical experiments show that the mid-convective boundary layer has a maximum 
of w’12 near Z/L, = 0.25 - 0.3. Here, the largest magnitude of w”’ occurred in Exp. 2. 
Both Exp. 2 and Exp. 3 have a maximum of w”* near the cloud base. There is a slight 
appearance of a near-secondary maximum at 1.0 km for all three experiments. This is 
consistent with Deardortf’s (1980b) 3D simulation of the stratocumulus-capped mixed 
layer where he found a strong secondary maximum of w”~ near the cloud top. He 
claimed that the secondary maximum is caused by the entrainment-induced evaporative 
cooling. The lesser intensity of the secondary maximum in our experiments, however, 
may indicate that evaporation cooling is not as large as in DeardorIT’s simulation. 

The budget analysis of the heating rate for all three experiments is shown in Figures 8, 
9, and 10. In the left panel of the figures, the heating rate due to sensible heat for the 
entire boundary layer is calculated by m/(Z, - Z,). The heating rate for the cloud 
layer only, is calculated by q/(Z, - Z,). This explains why SH into cloud top has 
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Fig. 8. The budget analysis of the heating rate for the case without radiation. SH denotes the heating rate 
due to the sensible heat. Z represents the summation of various heat sources. The left panel is the analysis 

for the entire boundary layer, while the right panel is only for the cloud layer. 
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Fig. 9. As in Figure 8, except for the case with L.W. radiation. 

different values. Exp. 1 exhibits the largest net heating rate, while Exp. 2 produces the 
smallest. The entrainment-induced sensible heating rate differs little among the three 
experiments. Thus, the cloud top L.W. radiation cooling does not significantly intensify 
the entrainment rate. It is thus obvious that entrained warmer air cannot balance the 
cloud top radiation cooling. As shown in Figure 9, the largest sensible heating rate 
imported from the cloud base occurs in Exp. 2. This suggests that the vertical heat flux 
is modulated by radiation cooling and warming. Thus, the cloud-top radiation cooling 
is balanced by the enhanced eddy heat flux from cloud base. Brost et al. (1982) infer 
in their case study that the cloud top radiation cooling is balanced by the entrainment 
of warm air. In their case, however, strong wind shear across the cloud top may have 
been a contributing factor to their different conclusion. 

7.5. FURTHER ANALYSIS OF EXPERIMENT 2 

Figure 11 represents the simulation of Exp. 2 at time 2.5 hr. The main feature is that 
the cloud water starts to appear at a height of 1400 m (one grid upward) where the cloud 
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Fig. 10. As in Figure 8. except for the case with L.W. and S.W. radiation. 

fraction is less than 100%. As mentioned before, during the steady period of the cloud, 
L.W. radiation cooling is entirely within the upper mixed layer. However, during this 
transient period, most of the radiation cooling is within the capping inversion. This is 
consistent with Lilly’s assumption in his mixed-layer model. 

In Figure 11, a relatively large negative w” and positive m can be found at the 
top of the mixed layer. This indicates the presence of vigorous entrainment at the top 
of the mixed layer. Because radiation cooling is within the capping inversion, the 
temperature at the capping inversion falls rapidly. Thus the requirement for cloud-top 
entrainment instability that Ae, = - 1 to - 3’ K is satisfied (Deardorff, 1980a; Randall, 
1980). This enhanced entrainment is actually a special case of the occurrence of ‘rapid’ 
entrainment. 

2.0 - 
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lkml IO- 

8 Flux 
km s-’ OKI 

WITH L.W. RADIATION 

Mmture Flux Radloim Coolong or Womng Rate 
lml s-1 q/kg) ldeg/day) 

Fig. 11. As in Figure 9, except at t = 2.5 hr. 
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As discussed before, the cloud-top radiation cooling can not be balanced by the 
entrainment of warm air. The only mechanism to remove this cooling is the enhanced 
vertical heat flux from the cloud base. The vertical heat flux always acts to decrease the 
local instability near cloud top. However, it does not always respond fast enough to 
destroy the local instability. Therefore, the ‘dip’ of ai1 at the cloud top noted in 
Section 7.2 is physically reasonable for this model. This result does not agree with Brost 
et al. (1982) and Deardorff (1980b), however. A likely source of this discrepancy is the 
scheme to predict the cloud fractional coverage near the cloud top. The diagnosed cloud 
fractional coverage at the cloud top in experiment 2 is 100%. Deardorff (1980b) applied 
radiation cooling at the uppermost grid volume in each vertical column for which mean 
cloud water exceeded 0.01 gm kg- ‘. His figure 7 shows that the radiative cooling occurs 
within the mean capping inversion (which includes cloud-top domes) and the upper part 
of the cloud layer where the cloud fractional coverage is less than 100 %. Thus, .a better 
scheme to diagnose the cloud fractional coverage at the cloud top is needed. 

Bougeault’s (1981) positively skewed probability density function is also tested. The 
results, similar to Figure 3, indicated that the prediction of cloud fractional coverage at 
the cloud top is not altered very much. The selection of the appropriate probability 
density function for cloud cover certainly requires further investigation. Both obser- 
vational studies and large-eddy explicit cloud simulations are needed. 

7.6. THE RAPID ENTRAINMENT EXPERIMENT 

In order to initiate rapid entrainment, cooling is applied between 1300 and 1200 m. 
Similar to Deardorlf (1980b) the magnitude of the cooling is about 10’ K and can be 
seen in the gil profile shown in Figure 12. The slight warming within the mixed layer is 
due to surface heating and warming by the entrained air. A very significant negative 
w” and positive e indicate that evaporation of descending air is a dominant 
feature in the upper part of the cloud layer. Because of the larger evaporative cooling, 
the buoyancy flux m no longer has a negative peak near the top of the mixed layer 
as seen in experiments 1, 2, and 3. Compared to Deardorff (1980b, case 5), some 
similarity can be found. However, the magnitude of the entrainment for this experiment 
is larger than that of DeardorfI’s. The reason may be due to more cooling applied above 
the boundary layer. The orders of magnitude of a, ,,, , m, and w” between 
this experiment and Deardorffs case are very close. 

The cloud fraction profile shows that the cloud grows much higher following the 
cooling of the upper layer. The entire cloud layer is not a solid deck, however, since 
regions of cloud fraction less than one are evident inside the cloud layer. Both the ?,. 
and H profiles show fluctuations with height. These fluctuations can be traced back to 
the 0, profile which also exhibits the same pattern. These fluctuations are probably a 
consequence of the nonlinear coupling among the processes of entrainment and cloud 
fraction. 

The profile of w”~ also exhibits a dramatic change. The magnitude of w”~ is much 
larger in the rapid entrainment experiment than in the previous experiments. Morcer, 
the maximum w” 2 is elevated to well within the cloud layer. This higher level of w”~ is 
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due to the large amount of evaporational cooling or buoyant production of turbulence. 
Deardorff s case 5 (his Figure 9) shows that the maxima MJ”~ is located near the cloud 
top, which is due to the cloud-top evaporative cooling. The maxima of w” 2 in our case 
is within the cloud layer. It seems to us that in Figure 12, the cloud-top evaporative 
cooling extends far down into the cloud. 

8. Concluding Remarks 

The following conclusions can be drawn from this study: 
(i) The small difference in the rate of entrainment among experiments 1, 2, and 3 

indicates that for these cases, surface heating is the primary mechanism controlling the 
rate of entrainment. 

(ii) Cloud-top radiative cooling is not balanced by the entrainment of warmer air. 
Instead it is mostly compensated by enhanced heat flux from cloud base. 

(iii) Due to the vertical distribution of radiation warming and cooling, w” is highly 
nonlinear within the cloud layer. 

(iv) During the transient period, the capping inversion is cooled very rapidly by 
radiative cooling. 

(v) Consistent with the findings of Deardorff (1980a) and Randall (1980) rapid 
entrainment occurs when the 8e jump at the cloud top is between - 1 to - 3’ K. 

(vi) The experiments with L.W. radiation cooling exhibit larger w”* and the maxima 
of wl12 . is then located near the cloud base. 

e,, (“K ) e Flux MoIstwe Flux 
(cm 5.’ OK) (cm s-’ g/g I 

RAPID ENTRAINMENT 

Fig. 12. Vertical profiles of mean ice-liquid water potential temperature (fi,,) and its vertical flux, vertical 
flux ofvertical potential temperature (m, m), cloud fractional coverage (H), mean cloud water mixing 
ratio (?J and its vertical flux, vertical flux of total water mixing ratio, and the normalized vertical velocity 
variance. The dashed lines represent the case before the onset of rapid entrainment, solid lines represent 

the case after the onset of rapid entrainment. 
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(vii) The selection of the probability density function may be very important for the 
prediction of cloud fractional coverage near the cloud top. 

(viii) The evolution of the cloud layer after the initiation of rapid entrainment involves 
a complicated nonlinear coupling among entrainment, cloud fraction and radiative 
cooling. 

Overall, the model appears to be a very general model of the transient behavior of 
stratocumulus cloud layers. The parameterization of the turbulence time scale introduced 
here for the unstable layer inside the cloud seems to function reasonably. This one- 
dimensional model has been able to reproduce a number of features predicted by 
Deardorff s three-dimensional model at a reduction of computational cost of approxi- 
mately two orders of magnitude. We recommend that both modelling approaches (i.e., 
Deardorffs large-eddy simulations and higher-order 1D models) be tested against 
actual observations of stratocumulus layers. 
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