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Abstract. A method for performing nested grid calculations with a large-eddy simulation code is 
described. A common numerical method is used for all meshes, and the grid architecture consists of a 
single outer or coarse grid, and nested or fine grids, which overlap in some common region. Inter-grid 
communication matches the velocity, pressure and potential temperature fields in the overlap region. 
Resolved and sub-grid scale (SGS) turbulent fluxes and kinetic energy on the fine grid are averaged to 
the coarse grid using a conservation rule equivalent to Germano’s identity used to develop dynamic 
SGS models. 

Simulations of a slightly convective, strong shear planetary boundary layer were carried out with 
varying surface-layer resolutions. Grid refinements in the (z, y, z) directions of up to (5, 5, 2) 
times were employed. Two-way interaction solutions on the coarse and fine meshes are successfully 
matched in the overlap region on an instantaneous basis, and the turbulent motions on the fine 
grid blend smoothly into the coarse grid across the grid interface. With surface-layer grid nesting, 
significant increases in resolved eddy fluxes and variances are found. The energy-scale content of the 
vertical velocity, and hence vertical turbulent fluxes, appear to be most influenced by increased grid 
resolution. Vertical velocity spectra show that the dominant scale shifts towards higher wavenumbers 
(smaller scales) and the magnitude of the peak energy is increased by more than a factor of 3 with 
finer resolution. Outside of the nested region the average heat and momentum fluxes and spectra are 
slightly influenced by the fine resolution in the surface layer. From these results we conclude that 
fine resolution is required to resolve the details of the turbulent motions in the surface layer. At the 
same time, however, increased resolution in the surface layer does not appreciably alter the ensemble 
statistics of the resolved and SGS motions outside of the nested region. 

1. Introduction 

Although large-eddy simulation (LES) is a well established and powerful tool 
for the investigation of turbulent flows (Wyngaard, 1984; Reynolds, 1989), it is 
hindered by the enormous range of scales present in the planetary boundary layer 
(PBL). Simulations typically employ a single fixed grid or at most a stretched 
vertical grid (for a comparison of PBL codes see Nieuwstadt et al., 199 1 and And& 
et al., 1994) which is only capable of resolving a limited range of scales; scales 
smaller than the grid mesh are delegated to sub-grid scale (SGS) motions, and are 
modeled using semi-empirical methods (e.g., Moeng, 1984; Sullivan et al., 1994). 
Near boundaries this problem is exacerbated since the dominate energy containing 
scale is much smaller than the most energetic scales of the mid-PBL. Hence with 
a single fixed computational grid a large fraction of the eddy variances and fluxes 
near a boundary are SGS motions. Undue reliance on imperfect SGS modelling 
inhibits our ability to study turbulent flows at high Reynolds numbers. A means of 
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reducing the SGS motions and at the same time increasing the resolved motions in 
LES is to employ multiple grids of varying resolution in the computational domain, 
i.e., grid nesting. 

Grid nesting is often pursued for a variety of objectives. For instance, the 
flexibility of grid nesting, i.e., the use of multiple grids, permits analysis of flow in 
complex geometry. This is often the case in engineering applications (for instance 
Perng and Street, 1991; Henderson and Karniadakis, 1991; Danabasoglu et al., 
1994). On the other hand, the geometry may be simple, but the larger computational 
domain is subdivided because of the need to resolve small-scale physics. Grid 
nesting, in a variety of forms, as practiced in numerical simulation of geophysical 
flows and weather prediction is a means of resolving a wider range of scales 
than can be typically captured with a single fixed grid. This then allows one 
to study the interaction between Aow regimes of widely disparate length scales. 
Nested grids have been used in geophysical applications to study supercell storms 
(Skamarock and Klemp, 1993), flow over topography (Clark and Hall, 1991), 
downslope windstorms (Clark and Farley, 1984) and nested grid technology is a 
central ingredient in numerical weather prediction (Phillips and Shukla, 1973), and 
in other mesoscale models (Walk0 et al., 1995, Grell et al., 1994). 

The objective of this paper is to apply grid nesting techniques to large-eddy 
simulation of planetary boundary-layer turbulence, and to study the effects of high 
resolution in the surface-layer region. Grid nesting reduces the grid spacing and 
thereby increases the resolved eddy energy and fluxes and lessens the dependence 
on the SGS model. In the context of LES, grid nesting is expected to present new 
problems because of its focus on turbulent flows, turbulent flows near boundaries, 
and the use of nonlinear grid dependent parameterizations for SGS physics. For 
instance, our SGS model uses an eddy viscosity ut that depends on the SGS energy 
and the mesh spacing. It should be noted that many of the cited references use 
large constant eddy viscosities as SGS parameterizations. These types of SGS 
parameterizations, although satisfactory for their particular application, are not 
well suited to the simulation of turbulent flows. 

The proposed grid nesting scheme uses fixed overlapping grids; the location of 
the nested grids is part of the problem specification. Our strategy for coupling the 
solutions on the different grids relies on the explicit nature of the solution proce- 
dure and determines the pressure “by an elliptic procedure” over all meshes. The 
proposed method evaluates the momentum equations on each mesh and incorpo- 
rates the information from the nested meshes into the source term of the Poisson 
equation for the pressure on the coarsest mesh. A global solution of this Poisson 
equation is found by taking advantage of horizontal periodic boundary conditions. 
The net effect of this solution procedure is to couple the coarse and nested meshes. 
Once the pressure is determined the velocity field on the different meshes at the 
new time step can be constructed. A consequence of this procedure is that turbulent 
fluxes of momentum and heat are conserved and the velocity fields match in the 
common region of the different grids. Our use of pressure to achieve a matching 
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of fine and coarse meshes however, prevents us from using temporal refinement, 
i.e., the same minimum time step is used for all meshes. In the current paper, we 
adopt the nomenclature of Clark and Hall (199 1) and refer to solutions as either 
“one-way” interaction, i.e., when the fine grid is driven solely by coarse mesh 
boundary conditions with no feedback from the fine grid or “two-way” interaction, 
i.e., when the fine mesh solution is incorporated in the coarse mesh. 

It should be noted that the proposed nesting scheme differs from the method 
advocated by Clark and Hall (1991). In a series of benchmark experiments, they 
compare results from so called “post-insertion”, i.e., where fine mesh resolved fields 
are simply inserted into the coarse mesh, and from a “pressure defect correction” 
method which matches the pressure in the different meshes. Clark and Hall (199 1) 
show that the two methods produce identical results for resolved low Reynolds 
number flows, and further point out that post-insertion has advantages in that 
it allows temporal refinement on the fine mesh and is simplier to implement. 
We initially pursued post-insertion but found that to be properly applied in a 
LES both the resolved and SGS motions should be post-inserted into the coarse 
mesh in order to conserve the total flux from the fine grid. This adds considerable 
coding complexity and is slightly more expensive than the alternate nesting method 
described in this paper. 

2. Governing Equations 

In LES, equations for the large scale (resolved) motions are obtained from the fun- 
damental conservation laws by the convolution of the velocity, pressure and tem- 
perature fields with a spatial filter function. The equations governing the resolved 
motions are 

v-ii = 0, (1) 
dii - _ 
dt= 

uxw-V?r-V.7t+~(e-Bo)+fx(U,-u), 

as 
dt= -v . @I) - v * Tf . 

In the above, the velocity vector ii has components (ii, V, ti) or (at, 212, ‘L13) in the 
coordinate directions (z, y, Z) or (21, 22, 23) the vorticity vector W = V x ii, 
the reference potential temperature is 00, the gravitational vector g = (0, 0, g), the 
Coriolis vector f = (0, 0, f), the geostrophic wind vector U, = (U,, V,, 0)) and 8 
is the virtual potential temperature. The averaged resolved motions within a grid 
volume are denoted by an overbar, n. The generalized pressure i? is (Moeng, 1984) 

- 
2 ii*U 

f=Ifp+- 
PO 2 ’ (4) 
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where ji is the resolved pressure, po is the density and e is the SGS energy. Mean 
pressure gradients are externally imposed by the specification of the geostrophic 

wind. In the above expressions T t t and r0 are SGS terms. 
Equations (1x3) along with appropriate boundary conditions uniquely deter- 

mine the resolved motions once the SGS fluxes are prescribed. The SGS model 
used here was first proposed by Deardorff (1980), implemented by Moeng (1984) 
and was further modified by Sullivan et al. (1994) to yield more accurate agree- 
ment with MoninObukhov (M-O) similarity theory in the vicinity of a bounding 
surface. 

3. Computational Method 

Our numerical method solves Equations (1 j-(3) in a computational box with exter- 
nal forcing and boundary conditions representative of an atmospheric or oceanic 
PBL. The basic approach for atmospheric PBLs was developed by Moeng (1984) 
and extensions to the oceanic regime are described in McWilliams et al. (1993) and 
McWilliams et al. (1996). Here we generalize the numerical method in terms of 
how the vertical velocity boundary conditions are imposed, allow for communica- 
tion between overlapping nested meshes, and improve the time integration scheme 
as described in following sections. 

The numerical method is identical for all meshes and is a mixed spectral-finite 
difference scheme with solution variables advanced in physical space. Horizontal 
derivatives are evaluated with pseudospectral methods while vertical derivatives 
are approximated with second order centered finite differences. A staggered grid 
is used in the vertical direction with the location of U grid points midway between 
neighboring W grid points. Variables stored at U grid points are the velocity 
components ti and V, virtual potential temperature 8, and pressure p. Vertical 
velocity W and SGS energy e are stored at W locations. 

The grid architecture consists of a single outer (or coarse) grid, and nested (or 
fine) grids, which overlap the coarse grid in some common region. The nested 
domains can be arbitrarily positioned in the vertical direction, but are required to 
span the same horizontal extent, i.e, the same 2 - y dimensions, as the outer grid. 
This constraint is imposed because of the desire to use horizontal periodic boundary 
conditions for all meshes; different spectral basis functions would be required if 
this condition was not imposed. We also allow the possibility of multiple nested 
meshes, i.e., any nested mesh can itself contain even finer meshes. The use of a 
staggered vertical mesh impacts the nesting procedure since the bounds of the fine 
mesh need to coincide with some portion of the outer coarse grid; here it is natural 
to collocate the upper and lower faces of the fine mesh at coarse mesh W locations. 
This choice of grid geometry permits the same solution procedure to be followed 
independent of the mesh with only a slight change to the form of the upper and 
lower boundary conditions. 
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Figure I. Sketch illustrating grid architecture in (a) coarse and (b) fine grids for coarse-to-fine spacing 
of 2 : 1 in all directions. In the x - y  plane all mesh variables are evaluated at the intersection of grid 
lines, while in the x - .z plane U and W variables are staggered. 

A sketch showing the orientation of outer and nested grids in a 3-D perspective 
for a coarse-to-fine grid spacing AxJAx:f = Ay,/Ayf = AzJA.z~ = 2 (the 
subscripts c and f denote coarse and fine meshes) is given in Figure 1. The location 
of the staggered U and W nodes for an arbitrary vertical column passing through 
the coarse and fine meshes is shown in Figure 2. Here the ratios AxJAxG~ and 
Ay,/Ayf can take on arbitrary values greater than unity, while in the x direction 
the ratio AzJA.z~ is required to be an integer. 

The imposed boundary conditions are unique to the particular mesh. In the 
coarse grid, boundary conditions at the surface are no slip conditions with Ma 
similarity theory used to relate conditions at the first computational grid point to 
the surface conditions. At the upper boundary of the coarse grid, the boundary 
conditions are zero SGS turbulence fields, ati/ax = 0, &lay = 0, and @/& 
= constant and a radiation boundary condition (Klemp and Durran, 1983) which 
ties together vertical velocity and pressure. In the fine mesh, Dirichlet conditions 
derived from the coarser mesh are used for U, e, and 6 variables along the upper 
and lower faces. However, if the lower boundary of the nested grid happens to 
coincide with a solid surface then M-O boundary conditions are used similar to the 
coarse grid. For all meshes, the flow is assumed to be statistically and horizontally 
homogeneous and thus periodic boundary conditions are used along the sidewalls 
of the computational domain. 

A grid nesting algorithm requires inter-grid communication in order to advance 
the solution on the different meshes. The inherent different grid densities dictate 
that algorithms be available for interpolation of coarse mesh data to the fine grid and 
similarly averaging of the fine mesh data to the coarse grid. For the latter operation 
we have coined the term anterpolution. We define anterpolation as restriction using 
an operator that is an inverse for any previous interpolation for sufficiently smooth 
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Figure 2. Position of grid nodes in coarse and fine grid for an arbitrary vertical column passing 
through both grids, coarse to fine spacing of 2 : 1, upper boundary of fine grid node M coincides with 
coarse grid node K. 

fields. In the text, an interpolation operation is indicated by (“) and anterpolations 

by 0. These operations are carried out using a combination of spectral filtering 
in the 2 - y directions and when required simple averaging in the z direction. 
The particulars of the interpolation and anterpolation schemes are described in 
Appendix A. 

3.1. TIME STEPPING SCHEME 

The main elements of the time integration scheme are briefly mentioned to better 
understand the pressure solution scheme described in Section 3.2, the nested grid 
solution matching outlined in Section 3.3, and the determination of the time step for 
cases with multiple meshes of different density. We have adopted the explicit third- 
order accurate multi-stage Runge-Kutta scheme (RK3) with a variable time step 
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developed by Spalart et al. (199 l), with some modifications. Previously, Moeng 
(1984) employed a second order accurate AdameBashforth (AB2) method with a 
fixed time step as the time integration scheme. In our implementation of RK3, all 
terms in the momentum equations are treated explicitly owing to the complexity 
of the viscous term and because of the computational similarities between explicit 
RK3 and AB2, i.e., only modest changes to the code are required to implement 
FX3. 

In the RK3 method, the rule for advancing any of the velocity components, tii In, 
at time t to tii In+’ at time t + At, consists of three substeps (or stages): 

Gil’ = f&y + At[y,RJn + (]Rp], (5) 

ui I” = %I’ + At[yzRil’ + C2Riln], (6) 

Gil TL+’ = f&l” + At[~&l” + C3~$], (7) 

where 

Here S/Sxi is the discrete divergence operator and the right-hand side term ri 
includes all terms of the momentum equations (2) except the pressure %. Spalart et 
al. (199 1) chose the weights so that the entire scheme is third-order accurate and 
suggest: 

8 5 
Yl=jj’3/2=E’ 73 = ;, Cl = 0, (2 = -g, (3 = -A. 

A Courant-Friedrichs-Lewy (CFL) number of 0.2 1 was typically used at each 
stage (or CFL=0.63 for an entire step); this CFL number is more than a factor 
of 2 larger than for AB2. Since the CFL number is held constant, the maximum 
allowable time step is computed dynamically at each iteration. Here the CFL 
number is defined as 

CFL=max ICI I,4 IFI - -,- 
Ax’ Ay AZ 1 At, (10) 

where the grid spacings are Ax, Ay and AZ. The same CFL test is used for all grids 
and for both atmospheric and oceanic simulations. In the case of nested grids, the 
minimum time steps on the fine and coarse meshes At, and At, are first found from 
(10) and their minimum value At = min( At,, At,) is used for all meshes. Thus the 
same time step is used for all grids. The adaptive time stepping algorithm used here 
for the nested grid simulations has clear advantages over a fixed time step. In the 
case of atmospheric simulations where u -+ 0 as z -+ 0, and u + U, as z + 21, a 
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Galilean transformation is applied to the coordinate system such that the grids are 
advected in the x direction at a constant speed equal to l/2 of the geostrophic wind 
to further increase the permissible time step. The conservation equation for virtual 
potential temperature Equation (3) and the prognostic equation for the SGS kinetic 
energy (Moeng, 1984; Sullivan et al., 1994) are time advanced with the same 
scheme as the velocity variables, but without the complications associated with 
the pressure. At each stage of the RK3 integration, the same boundary conditions 
described in Sections 3 and 3.2 are used. 

3.2. THEPRESSUREEQUATIONANDITS BOUNDARYCONDITIONS 

The pressure field is determined to maintain V f ii = 0 at each stage of the RK3 
integration. Here we describe details of the pressure computation at the initial stage 
of the RK3 method; identical steps are followed at other RK3 substeps. Given 

(11) 

the pressure field is the solution of 

which follows from applying S/Gxi to the discrete form of the momentum Equations 
(5). Vertical boundary conditions for the pressure equation for the coarse and all 
nested meshes follow from the application of Equation (11) at the boundary nodes. 
For the staggered vertical grid used, with nodes m = 0, 1, . . . , A4 as shown in 
Figure 2, the vertical discretization of (11) at the upper boundary is 

(13) 

Substitution of the time discretizations for U t I’M-, ,*, 2L2 j’M- ,,2, and U3 I’M-1 from 

Equation (5) into Equation (13) leads to the pressure boundary condition equation 
at the upper node M - l/2, 

d2?i 62% n [ 1 1 6% ?x 

622+22 -aZK I 2 M-112 3 M-l 
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Cl R3 n-’ 

YI AZ M-1’ 

A similar expression can also be written for the lower boundary by applying the 
divergence free condition at the nodes m = 0, l/2 and 1: 

s2.rr cY2n n [ 1 1 s?i n 

6Z2+SZ2 I 2 ,,*+=G, 

Some general observations about Equations (14) and (15) are worth mentioning. 
First, the pressure boundary conditions derived above are applicable to meshes 
which have natural physical boundaries such as a solid surface and also to meshes 
with an interior boundary, i.e., where the vertical boundary of a particular mesh lies 
within the interior of another mesh. Also, when the pressure gradients bii/&3 I$-, 
and &r/S23 1;” are expanded, only nodes within the interior of the computational 
domain are referenced. The pressure boundary conditions (14) and (15) can then 
be implemented if the vertical velocity along the upper and lower boundaries can 
be specified at the new time level, i.e, provided 631; and G31’M are known. In our 
solution method, these particular vertical velocities are in fact known for the coarse 
and nested meshes, and thus the pressure is uniquely determined. For instance in 
the coarse grid, at z = 0 the noflow condition ti(~, y, 0, t) = 0 is used. Meanwhile, 
for nested grids, where the vertical boundaries are not physical boundaries, these 
same vertical velocities are also known at the upper and lower boundaries of the 
fine mesh since coarse grid variables are determined at the new time level prior to 
updating the fine mesh variables (see Section 3.3). In the coarse grid, the radiation 
boundary condition at the upper boundary couples vertical velocity and pressure 
and is used in place of Equation (14). Thus, a general method for specifying the 
pressure boundary conditions on any mesh is available. 

The Poisson equation for the pressure is solved using standard methods. First, 
Equation (12) and the boundary conditions (14) and (15) are Fourier transformed 
in the 2 and y directions which leads to a one-dimensional Helmholtz problem in 
the vertical direction for each pair of horizontal wavenumbers. Expansion of the 
centered vertical differencing operator 62%/6~: results in a tridiagonal system of 
algebraic equations which is inverted using a vectorized version of the Thomas 
algorithm. After the above step is repeated for all wavenumbers the resulting wave- 
space pressure solutions are then inverse Fourier transformed to get the physical 
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space pressure. V . U = 0 is satisfied to machine precision on all grids at each stage 
of the time stepping scheme. 

3.3. MATCHINGOF COARSEANDFINEGRID SOLUTIONS 

Velocity, potential temperature and SGS energy boundary conditions are also 
required on the upper and lower bounds of the nested meshes. These boundary 
conditions are Dirichlet conditions derived from coarse grid variables. Along the 
upper boundary of the nested grid, the fine mesh w  and e at node M are determined 
by z - y spectral interpolation of coarse mesh vertical yelocity and SGS energy at 
node K (see Figure 2); thus zU(G = W& and els = E(&, here uppercase letters 
denote coarse mesh variables. Fine mesh variables at node M = l/2 are found by 
spectrally interpolating coarse mesh variables at nodes K + l/2 and K - l/2 and 

then averaging, for example $&+,,2 = -tijG-,,2 + !?[&+,,z + fij~-,,z. Similar 

Dirichlet conditions are used on the lower boundary of the nested mesh except for 
the case where the lower boundary is a solid surface. 

In order to provide for two-way interaction between the meshes, information 
from the nested mesh needs to be incorporated in the outer mesh. Our algorithm 
for two-way interaction is referred to as pressure matching (PM), and follows from 
a compatibility condition between the coarse and fine mesh fields at the next time 
step in the integration. At each stage of the integration we equate the coarse mesh 
field and its fine mesh counterpart anterpolated to the coarse grid, i.e., in the overlap 
region we set Ui I’ = Ei 1’. In terms of the general rule for advancing the velocity 
field, for example Equation (5), this matching condition between coarse and fine 
meshes is 

Equation (16) is satisfied provided a consistent pressure 51” is found. The correct 
pressure can be determined by using anterpolated fine mesh velocity and right- 
hand sides in the Poisson equation for the global coarse mesh pressure. In other 
words, in the overlap region we insert &In, ?iln, and Ri In-’ into the source term of 
Equation (12) for the coarse mesh pressure. In this manner, the effects of the fine 
mesh solution are fully accounted for in the coarse mesh solution prior to the next 
RK3 substep. Notice that because anterpolated fine mesh variables are used in the 
source term of Equation (12), the same general solution procedure for the pressure 
can be used for cases with and without interaction. Once the coarse mesh pressure 
is found the coarse mesh velocity field Ui I’ at the next substep is constructed from 
Equation (5). 

The last step in the PM method is computation of the pressure and velocity 
field at the next substep in the fine mesh. Because the coarse mesh vertical velocity 
field WIk is now known, the fine mesh pressure is simply computed using the 
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scheme described in Section 3.2. Once the fine mesh pressure is found, the fine 
mesh velocity field at the new time step &I’ can be computed, again according to 
Equation (5). The above grid nesting procedure ensures that the anterpolated fine 
mesh velocity field matches its coarse mesh counterpart in the overlap region. In 
addition, the current nesting method automatically conserves the total flux from 
the fine grid, i.e., the sum of resolved and SGS fluxes from the fine grid is felt in 
the coarse mesh, as shown in Section 3.5. The virtual potential temperature on the 
nested grid is accounted for in the outer grid by inserting the anterpolated fine mesh 
potential temperature and its right-hand side into the coarse grid at each stage of 
the integration. 

A detail remains with regard to the nesting scheme described above. In order to 
prevent discontinuous behaviour in the SGS eddy viscosity at the grid interface we 
adopted a blending rule for the length scale which appears in the eddy viscosity 
model. Recall that the eddy viscosity function used involves both the SGS energy 
e and a length scale A (Moeng, 1984; Sullivan et al., 1994). At the grid interface, 
our boundary conditions for SGS emergy already equate the coarse and fine mesh 
SGS energy, and thus to maintain a smoothly varying eddy viscosity the length 
scale A was continuously varied from its value in the coarse grid A, to its final 
value in the fine grid A, over a few gridpoints. The blending rule for A(Z) is a 
cubic polynomial that matches A, and A, at the endpoints of the blending interval 
with zero slope. A(Z) = A, at the grid interface and all blending is done in the 
fine grid. By requiring that A(z) = A, at the grid interfaces the eddy viscosity 
in the fine grid is then equal to its coarse grid value. Furthermore, this blending 
procedure imposes continuity on the SGS dissipation e since E = e3j2/A (Moeng, 
1984), and permits quite large jumps in grid density between coarse and fine grids. 

3.4. RELATIONSBETWEENEDDY FLUXESONFINEANDCOARSEGRIDS 

An LES that employs grid nesting must treat both resolved and SGS fluxes in the 
region where the grids overlap. Here we develop the relationship that can be used to 
convert total eddy fluxes on the fine mesh into total eddy fluxes on the overlapping 
coarse mesh. 

The proper expression for conservation of total flux between grids of different 
density follows by applying different spatial filters to the governing equations. For 
any mesh, the average effective grid spacing A is a natural choice for the filter cutoff 
scale, i.e., only motions with scales larger than A can be adequately resolved. In 
terms of the actual mesh spacings, A = ((9/4) AX Ay AZ) ‘I3 which accounts for 
de-aliasing of the upper l/3 of the wavenumbers. For a computation with multiple 
meshes, we assign filters to the nested grid 0, associated with the fine mesh length 

scale Af, and to the outer grid u associated with the coarse mesh length scale 
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A,. Here A, 2 A,. The SGS momentum and heat fluxes (or stresses) for the fine 
mesh are respectively; 

and 

(18) 

while their counterparts for the coarse grid are 

Tt G Tii = s - &f&, (19) 

and 

Filtering (or anterpolating) Equation (17) to the coarse mesh resolution, and com- 
bining the result with Equation (19) leads to an expression for the coarse mesh 
SGS fluxes in terms of fine mesh variables 

Tij = ?ii + (&$i - CiGi). (21) 

Contraction of this tensor produces an expression for the coarse mesh SGS energy 

E = ij + f(Gxi - GiGi). (22) 

Similar manipulations leads to an expression for the coarse mesh heat flux 

Tei = ?ei + (G - C&i). (23) 

How Equations (21H23) are satisfied by our nesting scheme is described in the 
next section. 

3.5. COARSEGRID SGS PHYSICS 

Expressions (2 l), (22), and (23) describe how SGS fluxes and energy in the coarse 
grid are related to motions in the fine grid. In these equations, the coarse mesh 
SGS flux or energy has contributions from fine mesh SGS motions and resolved 
eddies. The first term on the right-hand side of Equations (2 I), (22), and (23) is the 
contribution to the coarse mesh SGS flux or energy from its fine mesh counterpart. 
Since this term is typically modelled in terms of fine mesh resolved motions it 
must be filtered before use on the coarse grid. The second term on the right-hand 
side of Equations (21), (22) and (23) only involves fine mesh resolved motions, 
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and represents conversion of fine mesh resolved motions of length scale 1 which 
fall between A, 5 1 5 A, into coarse mesh SGS fluxes. In other words, motions 
of length scale 1 which fall between A, 5 I 5 A, in the nested grid are no longer 
resolved in the outer grid, but appear naturally as SGS motions in the coarse mesh. 
Since the coarse mesh resolved velocity and potential temperature are Ui = &i 

and 0 = 8, Equations (21), (22), and (23) can also be interpreted as conservation 
rules for total momentum flux, total kinetic energy and total heat flux between a 
nested and coarser mesh. This balance applies on a gridpoint basis and also to the 
ensemble average. 

Equations (21), (22) and (23) are the conservation laws that should be obeyed 
by a grid nesting scheme. The SGS motions on a coarse grid are not simply 

obtained by substituting the anterpolated fine mesh resolved fields 6i and 8 into 
the SGS model. The nonlinearity of most SGS models and the nonlinear transfer 
associated with a turbulent cascade process require that Equations (2 l), (22), and 
(23) be used in order to maintain conservation of fluxes and energy on the coarse 
grid. Inspection of our PM method (see Section 3.3) reveals that the above total 
turbulent flux conservation rules are implicitly enforced when the fine mesh right- 
hand sides Ti are anterpolated to the coarse grid; note that ri is proportional to the 
divergence of the total flux, i.e., ri N V. [Tij + u+] so that ?i - V. [?ij + tizj] = 
V. [Tij + UiUj] . An advantage of the PM method of Section 3.3 is that only a single 
evaluation of the SGS model on the fine grid is required in order to enforce the 
total flux conservation rules. Grid nesting methods which rely on post-insertion of 
fine mesh data into the coarse grid should anterpolate both the fine mesh resolved 
and SGS motions to the coarse grid in order to conserve the total flux from the 
fine grid. In other words, Equations (21x23) need to be explicitly enforced by a 
post-insertion method which is computationally complex. 

It should be noted that approximations to the conservation rules (21), (22), 
and (23) have been employed in other nesting methods associated with mesoscale 
models. For instance, Skamarock and Klemp (1993), Clark and Hall (1991) and 
Walko et al. (1995) all assume that in their nested applications the SGS motions in 
the coarser grid are simply evaluated from the resolved motions in the coarse grid; 
in other words, Tij in (21) is approximated by the SGS model in the coarse mesh 
which is a reasonable assumption when the resolved motions are much greater than 
the SGS motions. Near boundaries however the resolved flux disappears, the SGS 
contributions are large, and consequently this approximation breaks down. 

Finally, we are fully aware that Equation (2 1) is formally identical to Germano’s 
identity (German0 et al., 1991) which is used to develop dynamic SGS models. 
Thus, this important relation also naturally appears in a nested grid LES application 
and is implicitly enforced by our nesting method. 
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3.6. SOLUTION ALGORITHM 

The details associated with our nested solution procedure are described in Sections 
3.1 through 3.5. An overview of the basic steps are included here to summarise the 
method. 

1. Coarse mesh solution variables are advanced up to a certain time level n where 
it is desired to turn on the nesting solution. Typically, this time is selected such 
that the coarse solution is reasonably spun up to a fully developed turbulent 
state. 

2. Coarse mesh variables at time level n are spatially interpolated onto the nested 
mesh along the upper and lower faces of the nested mesh, and serve as fine 
mesh boundary conditions. 

3. Right-hand sides of the governing equations for the velocity field (minus the 
pressure), potential temperature, and SGS energy are computed for all fine and 
coarse grids, e.g., see Equation (5) for the velocity. At this step either one-way 
or two-way interaction can take place. 

4. For two-way interaction, the right-hand sides of the fine mesh equations for 
u, TJ, w, and 13 from step 3 are anterpolated to the coarse grid. Thus, in the 
overlap region coarse grid information is replaced by anterpolated fine grid 
information. The coarse mesh solution then proceeds in the usual manner. 

5. Solve the Poisson equation (12) for the coarse grid pressure (with the anter- 
polated fine mesh fields in the overlap region if two-way intertaction) and 
construct the coarse mesh velocity and temperature fields at the new time step. 

6. Use the coarse mesh vertical velocity at the new time step IV& to determine 
the fine mesh pressure boundary conditions (14) and (15), solve for the fine 
mesh pressure using (12), and update the fine mesh velocity and temperature 
fields. 

7. In the overlap region, construct the coarse mesh SGS energy E from the fine 
mesh fields using Equation (22) for later analysis. 

8. For one-way interaction skip steps 4 and 7. 
9. Repeat steps 2-8 for all RK3 substeps. 

4. Examples and Results 

4.1. SIMULATIONS 

In order to test the nesting algorithm developed in Section 3, a series of simulations 
with a fixed outer grid and a single nested grid in the surface layer of varying 
resolution were performed for an atmospheric PBL. The intent of these simulations 
is twofold; (1) to illustrate that the method works and produces smooth solutions 
across the nested interface, and (2) to study the consequences of surface-layer 
nesting on both surface layer and mixed-layer PBL physics. Another example of 
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the present grid nesting method applied to an oceanic PBL is briefly described in 
McWilliams et al. (1996). 

Our study of the effects of one-way and two-way grid nesting in the surface layer 
utilizes both qualitative and quantitative measures. A qualitative impression of the 
scale and intensity of the turbulent motions is obtained from instantaneous flow 
pictures while the effects of grid nesting are quantified by comparing ensemble 
statistics (variances, fluxes and spectra) inside and outside the surface layer of 
the PBL. Ensemble statistics are the correct quantitative measures for judging the 
effects of nesting but are clouded by the uncertainties associated with the averaging 
process. Because of the stochastic nature of turbulence we have no exact standard 
for comparison, but expect that our solutions with high resolution (smaller SGS 
motions) are more faithful representations of high Reynolds number turbulent flows 
than simulations with larger SGS motions. In order to further clarify this issue we 
plan to compare statistics from our fine mesh nested solutions to a benchmark LES 
of fine resolution everywhere in the domain in the future. 

The particulars of the simulations are presented in Tables I and II. Parameters 
in these tables are; the geostrophic wind (U,, V,), surface heat flux Qo, Coriolis 
parameter f, initial capping inversion height zi, computational domain size (Xl, 
x, Zl), surface friction velocity u*, convective velocity scale w*, temperature scale 

9, = &o/w, Obukhov length L, large eddy turnover time 7, = zi/w*, and the 
location of of the upper boundary of the nested grid z,. All the simulations were 
carried out for the same external forcing conditions, viz., (U,,, Vg) = (15,O) m s-’ 
and Qo = 0.03 K m s-’ (~30 W m-‘). Overall the general properties are equivalent 
to the simulations with strong shear and weak buoyancy described in Moeng and 
Sullivan (1994). The nested grid is located in the surface layer region of the PBL, 
and ranges from 0 5 z 5 O.l8zi, or in terms of gridpoints, the lowest 10 points 
in the outer coarse grid. Note that for case N5, the simulation with the finest 
resolution, the number of gridpoints in the z and y directions are each increased 
by a factor of 5 and in the z direction by a factor of 2 compared to the outer coarse 
grid simulation N 1. 

The simulations were constructed by first running the coarse mesh simulation 
N 1 for about 3000 steps, which corresponds to about 5300 s or about 8.3 large eddy 
turnover times 7,, to reach a full developed turbulent state. At this point, the flow 
fields from N 1 were used to start all the simulations in Table II; each simulation 
was then integrated for another 7.507,. Ensemble statistics were gathered from the 
last 3.5 to 4.0 turnover times of the simulations. 

4.2. SOLUTIONMATCHINGINTHESURFACELAYER 

The two-way nesting algorithm is designed such that in the overlap region, at any 
instant in time, coarse mesh variables are direct descendants of their fine mesh 
counterparts. If the two-way algorithm has been implemented correctly then the 
anterpolated fine mesh solution should match the coarse mesh solution at the same 
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Table I 
Simulated flow properties 

Geostrophic wind (U,, V,) (15,O) m s-’ 
Surface heat flux Qs 0.03 K m s-l 
Coriolis parameter f 1o-4 s-’ 
Initial capping inversion height zi 500 m 
Domain size (Xl, x, 21) (1500, 1500,900) m 
Surface friction velocity ‘1~~ 0.553 ms-’ 
Convective velocity scale w* 0.788 m s-’ 
Temperature scale 8, 0.038 K 
Obukhov length L -431.0 m 
Large eddy turnover time re 634 s 
Upper boundary of nested grid zu 0.182, or 90 m 

Table II 
Grid resolutions of simulations 

Case Coarse mesh Coarse mesh spacing Fine mesh 
gridpoints (Ax, AY, AZ> m gridpoints 

Nl 50X50X 100 30X30X9 
N2 50X50X 100 30X30X9 150 x 150 x IO 
N3 50 x 50 x 100 30 x 30 x 9 150 x 150 x IO 
N4 50 x 50 x 100 30 x 30 x 9 150 x 150 x 20 
N5 50 x 50 x 100 30 x 30 x 9 250 x 250 x 20 

Fine mesh spacing Interaction 
(Az, Ay,, AZ) m 

IO x IO x 9 
IO x IO x 9 
IO x 10 x 4.5 
6 x 6 x 4.5 

None 
One-way 
Two-way 
Two-way 
Two-way 

instant in time. In order to test the correctness of our algorithm, 3-D fine and coarse 
mesh flow fields were saved and analyzed after several large eddy turnover times. 
Snapshots of the resolved vertical velocity field w  in z - y and x - z planes from 
the coarse and nested grids for case N3 are pictured in Figures 3 and 4. In Figure 
3, the vertical location is z = 0.072xi (or gridpoint 4 in the coarse grid) while in 
Figure 4 the spanwise location y is at the center of the computational domain. For 
clarity, only a fraction of the entire vertical extent of the PBL is displayed in Figure 
4a. Inspection of the results shows that nesting increases the resolved motions to an 
appreciable extent, the amount of small-scale resolved motion is visibly increased 
in Figures 3b and 4b compared to their counterparts in Figures 3a and 4a. Moreover, 
the anterpolated fine mesh fields shown in Figures 3c and 4c match their coarse mesh 
counterparts shown in Figures 3a and 4a, thus validating the general correctness of 
our two-way interaction algorithm. We found that all resolved velocity components, 
generalised pressure and potential temperature equally satisfy this same test in the 
overlap region. 

In contrast to simulations with two-way interaction, the dynamical fields obtained 
from simulations with one-way interaction are not constrained to match in their 
common overlap region. The extent to which the coarse and nested flow fields 
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Figure 3. Vertical velocity ti contours in an z - y plane at z = 0.072zi for case N3 with two-way 
grid nesting; (a) coarse grid 50 x 50 x 100, (b) nested grid 150 x 150 x 10, and (c) nested grid filtered 
to coarse grid resolution; contours (-1, -0.5, 0.5, I), dark (light) shading values larger (smaller) 
than 0.5 (-0.5). 

differ is illustrated in Figure 5 for an 2 - z slice through the domain. Here the 
resolved vertical velocity on the different meshes is shown along with the anterpo- 
lated fine mesh field at the same time step. Inspection of the results indicates that 
the coarse and fine mesh w  flow fields are of comparable magnitude, but otherwise 
differ markedly in the orientation and location of regions of strong vertical veloc- 
ity. Similar results were found for other slices through the computational domain. 
This one-way interaction result shows that the fine mesh field, despite being driven 
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Figure 4. Vertical velocity W contours in an x - .z plane at y = 750 m for case N2 with two-way 
grid nesting, grid resolution in (a), (b), and (c) same as in Figure 3; contours (-1, 0.5, -0.2,0.2,0.5, 
I), dark (light) shading values larger (smaller) than 0.5 (-0.5). 

Figure 5. Vertical velocity G contours in an x - z plane at y = 750 m for case N2 with one-way 
grid nesting, grid resolution in (a), (b), and (c) same as in Figure 3; contours (-1, -0.5, -0.2, 0.2, 
0.5, I), dark (light) shading values larger (smaller) than 0.5 (-0.5). 

by coarse mesh boundary conditions, differs considerably from its coarse mesh 
counterpart on an instantaneous point-by-point basis away from the boundaries. 

4.3. ENSEMBLE STATISTICS IN THE SURFACE LAYER 

Ensemble averaged heat flux profiles in the surface-layer region for cases N2, N3, 
and N5 are depicted in Figure 6. In this figure, the vertical coordinate is normalized 
by zi, while the total (&?)rota, resolved (&Z) R, and SGS (k),,, heat fluxes are 
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Figure 6. Heat flux profiles for cases; (a) N2 one-way nesting, fine grid 150’ x IO, (b) N3 two-way 
neeing, fine grid 1 502 x 10, and (c) N5 two-way nesting, fine grid 2502 x 20; in each total heat flux 

P4tota, is solid line T, resolved heat flux (8ti)R dashed line R, and SGS heat flux (k)sas is dotted 
line S; coarse and fine meshes are labeled c and f. 

shown nondimensionalised by Qc. The total heat flux is observed to be a smooth 
function across the grid interface for both the one-way and two-way solutions 
for the grid resolutions considered. Here the effect of nesting is quite apparent in 
the separation between resolved and SGS heat fluxes. For instance, the vertical 
location where the resolved and SGS heat fluxes cross occurs at about 0.04zi for 
case N2 in the coarse grid and at about O.Olzi for the finest resolution considered 
(case N5). At a given height, say x = O.O2zi, the resolved heat flux increases 
from about 25% to more than 75% of the total with increasing grid refinement. In 
the case of one-way interaction, the resolved and SGS fluxes in the fine grid are 
reasonably well behaved and roughly comparable to their counterparts in case N 3 
with two-way interaction. This might be expected since the fine mesh density in 
N2 and N3 are identical. Notice that for one-way computations, see Figure 6a, two 
solid lines are shown for the total heat flux in the surface layer which result from 
separate computations on the coarse and fine meshes. The average total heat flux 
in the fine grid is quite close to the value obtained on the coarse grid. In the cases 
with two-way interaction only one curve is shown for the total heat flux since by 
definition (see Section 3.5) the total flux on the coarse and fine grids are identical. 

The ensemble statistics for the vertical momentum flux (2Lti) are next shown 
in Figure 7 for the same simulations as in Figure 6. Here the momentum flux is 
presented normalized by UT. Similar trends are observed as for the heat flux, with 
the resolved momentum flux perhaps contributing an even bigger portion to the 
total flux as the grid spacing decreases. For case N5, the resolved momentum flux 
is more than 80% of the total flux down to about z = 0.03zi. Again a smooth 
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Figure 7. Same simulations as in Figure 6, but for vertical momentum flux (U3); (GU),,,,, is solid 
line T, resolved (C8), is dashed line R, and SGS (GGJ)~~. is dotted line S; coarse and fine meshes 
are labeled c and f. 

variation in the fluxes occurs as the upper boundary of the nested grid is crossed. 
(Because of Coriolis effects (VW) # 0 and hence (-JG~~)~,,~~,/u~ 5 1.0 at the 
surface.) Again, the one-way results are roughly comparably to the results with 
two-way interaction for the same resolution. 

In Figure 8, ensemble averages of the 2, y and z variances (Us), (ti2), and (We), 
respectively, normalized by wz are displayed for the various nested simulations. 
Several points are noteworthy in this figure. First, grid nesting is observed to 
have a pronounced effect on the magnitude of all the variances. For example, at 
x = 0.03.q for case N5, the resolved variance (U2) increases from about 1.7 to 2.4 
a 40% increase as the grid spacing decreases from 30 x 30 x 9 m to 6 x 6 x 4.5 m. 
At the same z location the W variance is increased by more than a factor of 3 in the 
fine grid. Also, two-way interaction has a favorable effect on the flow properties 
near the grid interface; with two-way interaction a smooth transition from the fine- 
to-coarse grid is observed for all three velocity variances. With one-way nesting, 
(2L2) and (V2) d’ pl 1 IS ay oca maximums at the last U grid point in the nested mesh, 1 
i.e., at grid node M - l/2 in Figure 2. Moreover, this behaviour is not localised 
and appears to propagate downward through the surface-layer region. We found 
that the magnitude and exact position of this local maximum varied depending on 
the aspect ratio of the two meshes, i.e., the amount of refinement in the nested grid 
compared to the coarse grid, and also whether the upper boundary of the nested 
mesh was collocated at a W or U grid level. This behaviour associated with one- 
way interaction schemes reduces the allowable integration time step & compared 
to cases with two-way interaction, 
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Figure 8. Same simulations as in Figure 6, but for velocity variances (G’) is solid line u, (6’) is 
dotted line V, and (**) is dashed line w; coarse and fine meshes are labeled c and f. 

The root-mean-square (rms) resolved pressure @r2) ‘I’, normalized by 212, shown 
in Figure 9 provides additional evidence for the non-physical behaviour observed 
near the grid interface with one-way interaction. The variation of the rms pressure 
suggests that turbulent motions are trapped in the nested mesh and are being reflect- 
ed back into the domain at the upper boundary with one-way interaction. Mean- 
while, with two-way interaction, the pressure and velocity are matched throughout 
the overlap region and thus the pressure displays a smooth transition across the 
grid interface. 

All higher order resolved moments were found to increase with grid refinement. 

This is illustrated by the vertical velocity skewness (lii3)/(C2)3/2 depicted in 
Figure 10. The total skewness (resolved plus SGS) is not shown since the SGS 
contribution to the skewness is not available. As a result, we cannot state whether 
the total skewness remains the same for the fine and coarse simulations. Notice that 
on the fine grids this triple moment remains positive throughout the entire surface 
layer region. Previously in coarser LES, unrealistic negative values of the skewness 
were found (e.g., Schmidt and Schumann, 1989). 

4.4. EFFECTOFSURFACENESTINGONOUTERREGION 

An important issue is the extent fine scale motions in the surface layer impact 
the PBL as a whole. For instance, if the global properties of the PBL are very 
sensitive to the details of the fine scale motions near the surface then the rational 
for performing LES is questionable. A means of gauging the importance of fine 
scale motion to the whole PBL is to compare ensemble statistics obtained from the 
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Figure 9. rms pressure (ir2)“2 for same simulations as in Figure 9; solid line coarse mesh and dashed 
line fine mesh. 
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Figure 10. Vertical velocity skewness for same simulations as in Figure 6; solid line coarse mesh and 
dashed line fine mesh. 

different simulations with and without surface-layer nesting. Comparison results 
are presented in Figures 11, 12, and 13 for the heat flux, vertical momentum 
flux ( aw), and turbulent kinetic energy, respectively. In each figure, results from 
simulations N 1, N3 and N5 are compared over the vertical extent 0 < z 5 1.1 zi. 
It is important to point out that in the surface-layer region of the two-way nested 
calculations the resolved and SGS motions shown are the result of anterpolation of 
the fine mesh solutions, i.e., the fine mesh solutions are anterpolated to the coarse 
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Figure II. Ensemble averaged heat fiux (&I) for; (a) XX, (b) resolved, and (c) total; in each solid 
line N5, dashed-dotted line N3, and short dashes Nl. 

mesh resolution in the overlap region. Thus the results we present are for identical 
coarse mesh resolutions. The only changes in the resolved and SGS motions in the 
coarse grid come about as a consequence of the coupling with the fine scale motions 
in the surface-layer region, and statistical uncertainity associated with averaging. 

The first impression from these results is that the total heat and momentum flux 
in the outer region of the PBL, i.e., z > 0.2zi, are nearly independent of the surface 
layer resolution at least for the cases considered. (8W)tota, and (UW)tora, exhibit 
linear variations with height as expected for a quasi-steady state. The level of 
statistical uncertainity in computing the fluxes prevents clear trends from emerging 
as the surface resolution is increased. However, closer inspection of the results in 
the surface layer region suggests that the coarse mesh resolved fluxes contribute 
less to the total flux as the surface resolution is refined. At the same time, the SGS 
contribution exhibits an opposite trend with resolution in order to keep the total 
flux the same for the different cases. This trend is most visible in the results for 
the vertical momentum flux. For instance, at z = O.O54zi, (Uti)Juz = -0.56 
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Figure 12. Ensemble averaged vertical momentum flux (‘ILZU) for same simulations as in Figure 1 I; 
(a) SGS, (b) resolved, and (c) total. 

and (u@),,/u~ = -0.35 in case N5 while at the same position for case N2 the 

momentum flux breakdown is (UW)R/~2 = -0.69 and (fiti),sJ~f = -0.22. 

The TKE normalised by wz, seen in Figure 13, displays slightly more variation 
than the fluxes for the different simulations. For z 2 0.2.q, the SGS, resolved and 
total eddy energy are nearly independent of the surface layer resolution. Meanwhile 
in the surface layer, the resolved TKE appears to decrease as the surface layer 
resolution is refined, i.e., case N5 has less resolved TKE than case N2, similar to 
the trend observed for the momentum flux. Also in the surface layer, the SGS energy 
shows a clear increase as the resolution is refined. The net outcome of these trends 
is to keep the total TKE in the surface-layer region reasonably steady although 
the total eddy energy appears to increase slightly with increasing grid refinement. 
Overall from these results we conclude that the average global properties of this 
particular PBL are only slightly influenced by substantially increasing the grid 
resolution in the surface layer. 
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Figure 23. Ensemble averaged turbulent kinetic energy for same simulations as in Figure 11; (a) 
SGS, (b) resolved, and (c) total. 

4.5. SCALE DISTRIBUTION OF EDDY ENERGY AND FLUXES 

Grid nesting increases the resolved energy and flux motions in the surface layer 
which is a consequence of the length scale dependence in our SGS model (e.g., 
Moeng and Wyngaard, 1988). It is then important to investigate in greater detail 
the scale content of the increased resolved motions, i.e., in simulations with surface 
layer nesting (fine resolution) do the increases in resolved eddy variance and fluxes 
come only from scales 1 2 A, or from all turbulence scales. 

One-dimensional longitudinal spectra of the U and W velocity components 
and potential temperature, i.e., c&(K~), c&,~(K~), and &s(~t), where ~1 is the 
wavenumber in the z direction, were computed to discern the effect of mesh 
resolution on the energy content of the turbulence. These 1-D spectra were found 
by first computing 2-D Fourier transforms in a horizontal plane, then summing 
over all y-component wavenumbers ~2, and finally averaging over multiple time 
steps. 

Spectral estimates as functions of the dimensionless wavenumber KI zi at several 
heights in the PBL are depicted in Figures 14 and 15 for simulations with and 
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without surface layer nesting, N5 and Nl, respectively. In Figure 14, the u and 
6 spectra are displayed at z/zi = (0.027,0,063,0.099), and w  spectra at .z/,zi = 
(0.036,0.072,0.108). In the outer region, Figure 15, u and @ spectra are &played 

at z/zi = (0.207,0.495,0.837) and at z/zi = (0.216,0.504,0.846) for w  spectra. 
Note that all spectra are multiplied by the wavenumber K: 1, to emphasise the small 
scale motions, and are normalised, as appropriate, by U; and 0:. In the surface layer, 
inspection of these spectra reveals that the influence of fine surface layer resolution 
is not localised to high wavenumbers (small scales) but alters the energy across all 
wavenumbers. For the U and # spectra, the energy at wavenumbers ~1 zi > 12 is 
greatly increased as the mesh resolution becomes finer. Also, the G and 6 spectra 
obtained with grid nesting, all have broader and lower peaks than their no-nesting 
counterparts. The most dramatic change is, however, observed in the 2ii spectra, 
where the fine mesh resolution results display a shift in both magnitude and location 
of the peak energy. For example, in the no-nesting case the peak energy in the w  
spectra occurs at ICI zi = 10 but peaks at rit zi = 30 in the case with nesting; at 
.z/zi = 0.036 the spectral peak is increased by more than a factor of 3 as the 
resolution becomes finer. It should be noted that the analysis of Peltier et al. (1995) 
also suggests that the W field is more sensitive to grid resolution than the other 
velocity components. 

Outside of the nested region, seen in Figure 15, the ii and 8 spectra with and 
without surface-layer nesting are quite similar despite the statistical uncertainty 
associated with the averaging. The intermittency of the fi signal makes estimation 
of the small wavenumbers (large scales) difficult. Here, the ul specta show more 
influence of surface nesting extending out to perhaps x/zi 2 0.22; recall that the 
upper boundary of the nested grid is located at z/zi = 0.18. Near the capping 
inversion (z/xi = 0.84) the spectra for all three variables with and without surface 
layer nesting are nearly identical. 

The spectral results provide evidence that grid nesting intensifies the eddy 
motions at high wavenumbers and shifts the peak energy scale in the W spectrum 
to smaller scales. These same trends are also visible in instantaneous contour plots 
of U, W, and t?, pictured in Figure 16. In this figure, the left hand panels are results 
from no-nesting simulation Nl and the right hand panels the fine-mesh nesting 
simulation N5; for a particular variable the same contour levels are used across 
the simulations. These typical cross sectional x - 1~ snapshots of the flow field are 
taken at z/zi = 0.072 within the nested region. Examination of the fields reveals 
considerable more small-scale activity in the fine mesh simulation; especially 
noticeable is the decrease in dominant scale in the W field. Similar findings were 
also observed in a study of Langmuir turbulence in the ocean (McWilliams et 

al., 1996). Also, noticeable in Figure 16 is an apparent shift in orientation of the 
dominant structure (like convective rolls) in the G and 8 fields. Previously, Moeng 
and Sullivan (1994) found that for a comparable simulation, using 963 gridpoints the 
dominant roll structure was oriented west-east. In the current no-nesting simulation 
this structure appears to be roughly oriented from southwest-northwest, and we 
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Figure 14. Longitudinal spectra of velocity components ti and ti and potential temperature 8 
in the surface layer. Spectra of ti and 8 are at Z/Z% = (0.027,0.063,0.099), and W spectra at 
z/zi = (0.036,0.072,0.108). All spectra are multiplied by wavenumber IEI and normalized by 
either u’, or 0:; solid line fine mesh simulation N5 and dashed-dotted line coarse mesh simulation 
IV I. The data are scaled by the factors on the left of each plot to avoid overlap. 

speculate that the spectral peaks in the coarse resolution simulation in Figure 14 
are associated with this structure. Apparently grid refinement serves to realign the 
structure roughly west-east as seen in the fine mesh ii and 6 fields. At the same 
time, the spatial organization of these large roll structures appears to be weakened 
by small-scale resolved motions. In the outer region, the U, W and 6 fields are 
comparable in appearance (results not shown). This illustrates that for this particluar 
flow the effects of nesting are localised and do not propagate substantially to the 
outer region. 

w  is most influenced by the enhanced grid resolution in the surface layer, and 
thus has important consequences for the vertical eddy fluxes. Cospectra of the 
vertical momentum flux &W (~1) and heat flux $ow (~1) are displayed in Figures 
17 and 18 using log-linear coordinates at several different heights; the cospectra 
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Figure 15. Longitudinal spectra of velocity componen@ G and 4 and potential temperature e for 
the same simulations as in Figure 14. Spectra of ti and 6’ are at z/a = (0.207,0.495,0.837) and at 
z/zi = (0.216,0.504, 0.846) for W spectra. 

are normalized by U: and Qc appropriately and multiplied by K 1. Once again with 
grid nesting the spectral peak in the fluxes shifts to higher wavenumbers primarily 
as a consequence of the energy-scale content of W. At wavenumbers n t .zi > 15 the 
cospectra of the fine mesh fluxes are of considerably greater amplitude compared 
to the no-nesting simulation. 

4.6. IMPLICATIONS OF GRID NESTING FOR COHERENT STRUCTURES 

Much evidence, both experimental and numerical, has been accumulated that tur- 
bulent flows at sufficiently large Reynolds or Rayleigh numbers are highly inter- 
mittent, under both buoyant and shear dominated conditions. These intermittent 
processes are generally believed to be associated with what are loosely termed 
“coherent structures”; these are recurrent, spatially local flow patterns which are 
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Figure 16. Velocity and potential temperature contours at z/z< = 0.072 from coarse mesh Nl (left 
panels) and fine mesh NS (right panels). U. contours (-2.0, -0.75,0.75,2.0) with light (dark) shading 
for values below (above) -0.75 (0.75), CJ contours (-1 .O, -0.50, 0.50, I .O) shading -0.50 (0.50), 
8 contours (-0.09, -0.06, 0.06,0.09) shading -0.06 (0.06). 

long lived in a Lagrangrian reference frame (i.e., moving with the local fluid 
velocity). 

Further, it is also believed that coherent structures are the agents responsible for 
the production and maintenance of strong flux fields in the PBL (e.g., McWilliams et 
al., 1996; Gerz et al., 1993; Mahrt and Gibson, 1992; and Schmidt and Schumann, 
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Figure 17. Longitudinal cospectra of momentum flux fi8 normalized by ~1 at different heights 
in the PBL. All spectra are multiplied by wavenumber ~1; solid line fine mesh simulation IV.5 and 
dashed-dotted line coarse mesh simulation Nl. Note expanded horizontal scale in outer region. 

1989). The present LES results suggest that as the surface-layer grid resolution 
is refined the resolved vertical velocity and flux fields are intensified, are more 
intermittent, and the dominant scale becomes smaller. Hence we are led to speculate 
that the scale and properties of the coherent structures have also changed, i.e., the 
structures are of smaller scale and are more intense. Future studies will explore the 
relationship between coherent structures and fluxes in the surface layer of the PBL 
using LES and grid nesting. 
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Figure 18. Longitudinal cospectra of heat flux &Z normalized by &O at different heights in the PBL. 
All spectra are multiplied by wavenumber ~1; solid line fine mesh simulation N5 and dashed-dotted 
line coarse mesh simulation Nl. Note expanded horizontal scale in outer region. 

5. Summary and Conclusions 

Large-eddy simulation (LES), with fixed grid resolution becomes less reliable 
near bounding surfaces because of the increasing importance of the sub-grid scale 
(SGS) motions compared to the resolved motions. In order to increase the resolved 
motions, and at the same time decrease the SGS motions, a grid nesting procedure, 
based on overlapping meshes, was implemented into our LES code. Inter-grid 
communication allows the coarse mesh solution to impose boundary conditions on 
the fine mesh (one-way interaction), and furthermore permits feedback from the fine 
mesh to the coarse mesh (two-way interaction). The two-way interaction scheme 
matches the velocity, pressure and potential temperature fields in the overlap region. 
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In the overlap region, the SGS motions on the coarse grid can be expressed in terms 
of fine mesh resolved and SGS motions through Germano’s identity (German0 et 
al., 199 1) used to develop dynamic SGS models. Our procedure for diagnosing the 
SGS motions in the coarse grid in the overlap region conserves the total flux from 
the fine grid and thus differs from other nesting schemes which compute the SGS 
motions in the coarse grid using approximate rules. 

Qualitative and quantitative measures are used to study the effects of one-way 
and two-way grid nesting. Instantaneous flow visualisation provides an overall 
impression of the changes in flow structure brought about by nesting while these 
effects are quantified by comparing ensemble statistics (variances, fluxes and spec- 
tra). Because of the stochastic nature of turbulence we have no exact benchmark 
flow field for comparison, but expect that our solutions with high resolution (smaller 
SGS motions) are a more faithful representation of high Reynolds number turbulent 
flows than simulations with coarser resolution. 

Simulations of a slightly convective, strong shear planetary boundary layer 
(PBL) were carried out with varying surface-layer resolutions. Grid refinements 
in the surface layer up to (5, 5, 2) times finer in the (z, y, z) directions were 
investigated. Two-way interaction solutions on the coarse and fine meshes are 
successfully matched in the overlap region on an instantaneous basis, and the 
turbulent motions on the fine grid blend smoothly into the coarse grid across the 
grid interface. In the surface layer, the resolved heat flux on the finest nested mesh 
is increased by more than a factor of 3 compared to its value on the coarse mesh. 
Similar increases in the resolved vertical momentum flux (titi) and turbulent kinetic 
energy (TKE) are also found. 

Simulations with one-way interaction suggest that the fine mesh fields, despite 
being driven by coarse mesh boundary conditions, differ considerably from their 
coarse mesh counterparts on an instantaneous point-by-point basis. A spurious 
maximum was found in the U and V velocity variances just below the nested grid 
interface. 

Velocity and temperature spectra illustrate that the effect of surface-layer grid 
nesting is not confined to high wavenumbers, but spills over into the small wavenum- 
bers (large scales). Most significantly the spectra of the vertical velocity ti show 
that the magnitude of the peak energy is increased by a factor of 3 very near the 
surface and the peak energy scale shifts towards higher wavenumbers. This shift 
in scale and intensification of eddy fluctuations is also visible in a comparison of 
instantaneous flow fields between nesting and no-nesting simulations. Cospectra of 
the vertical momentum and heat fluxes also display a similar shift in scale content 
with fine surface-layer resolution. 

In the mixed layer of the PBL, the average heat and momentum fluxes as well 
as the spectra of velocity and temperature are nearly identical with and without 
surface-layer nesting. This suggests that the effects of the small scales in the surface 
layer do not propagate very far upward into the PBL. 
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From these results we conclude that fine resolution is required to resolve the 
details of the turbulent motions in the surface layer. Typical modest resolution LES 
in the surface layer underpredicts the magnitude and scale content of the vertical 
velocity fluctuation and thereby masks the dominant flux-carrying structures. At the 
same time, however, increased resolution in the surface layer does not appreciably 
alter the ensemble statistics of the resolved and SGS motions outside of the nested 
region. 
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Appendix A. Interpolation and Anterpolation Rules 

In any z-y plane, trigonometric polynomials (or Fourier series) are used to perform 
all interpolations and anterpolations. For instance, any coarse mesh variable @ 
discretized at N coarse mesh grid nodes 

27rj 
X3=7 j=O,...,N-1, (Al) 

can be represented by 

N/2- I 

Q(q) = 1 &eikXJ j =O,...,N- 1, 
(4 

k=-N/2 

where the coarse mesh discrete coefficients 6k are 

(A3) 

and Ic are dimensionless wavenumbers. A fine mesh variable 4 results from applying 
the coarse-to-fine interpolation rule 

k=-M/2 
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at the M fine mesh nodes 

(A5) 

where the fine mesh discrete coefficients & written in terms of coarse mesh 
coefficients 8, are 

& = ibk -N/2+1<k<N/2-1 
n 

&=2 k=fN/2 

& = 0 -M/2 5 k < -N/2 

& = 0 N/2<k<M/2-1. 

646) 

Note that the fine mesh coefficients are set equal to their coarse mesh counterparts 
where available, otherwise they are simply set equal to zero. 

In a similar fashion, fine-to-coarse mesh anterpolations involve three steps. First, 
fine mesh data is transformed into Fourier space, then the fine mesh Fourier series is 
truncated and finally an inverse transform yields coarse mesh data in physical space. 
Given fine mesh discrete coefficients & at wavenumbers M/2 5 k < M/2 - 1 
the coarse mesh coefficients are 

& = & -N/2+1<k<N/2-1 

& = 2& k = -N/2. 
(A7) 

Identical steps are followed in performing interpolations and anterpolations in 
the y direction. In physical space these coarse-to-fine interpolations and fine-to- 
coarse anterpolations yield identical results at all common grid nodes Xj = zt, 
and furthermore are reversible. The proposed anterpolation rule is equivalent to 
applying a sharp cutoff filter to the fine mesh variables at the smallest scale of the 
coarse grid. Fast Fourier Transforms (FFTs) are used to sum the series in the above 
expressions. 

The use of finite differences in the vertical direction requires special treatment 
in the anterpolation operator. For resolved and SGS variables which are needed at 
W grid levels (vertical velocity ti and SGS energy e) only the horizontal spectral 
interpolation and anterpolation described above is applied. On the other hand, for 
variables required at U grid levels (horizontal velocities U and V) some form of 
anterpolation in the vertical direction is required. A vertical integral of fine mesh 
data between two coarse W levels is performed 

where Ax, = ZM - ZM-Z in Figure 2. This integral is discretised using a midpoint 
rule. Application of (AB) to resolved fine mesh data (E and a) satisfies the coarse 
mesh incompressibility condition. 
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