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Abstract. The problem of formulating and numerically solving the equations of motion for a multibody system undergoing 
large motion and elasto-plastic deformations is considered here. Based on the principles of continuum mechanics and the 
finite element method, the equations of motion for a flexible body are derived. It is shown that the use of a lumped mass 
formulation and the description of thc nodal accelerations relative to a nonmoving reference frame lead to a simple form of 
these equations. In order to reduce the number of coordinates that describe a deformable body, a Guyan condensation 
technique is used. The equations of motion of the complete multibody system are then formulated in terms of joint 
coordinates between the rigid bodies. The kinematic constraints that involve flexible bodies are introduced in the equations 
of motion through the use of Lagrange multipliers, 
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Notation 

In this paper the following general rules will apply: 
(a) Matrices and higher order tensors are in boldface upper-case characters. 
(hi Column and algebraic vectors are in boldface lower-case characters. 
(c) Scalars are in lightface characters. 
(d) Summation convention is applied when tensors are written on component form. 
(c) Left superscript denotes the configuration in which an event occurs. 
(f) Left subscript denotes the configuration to which an event is refcred to. 

1. Introduction 

Procedures based on multibody dynamics have shown to be powerful tools for the analysis of 
systems undergoing large displacements and rotations, and some level of structural deformations, 
Ride stability, maneuverability and crash simulation of vehicles are examples of such systems. 
Some of the objectives in the analysis of flexible multibody systems are evaluation of trajectories, 
impact forces, reaction forces, kinetic energy absorption, structural deformation, and injury and 
survivability indices for occupants. These objectives suggest that the methodology developed for 
the dynamic analysis of multibody systems must include some of the structural characteristics of 
the system components. 

Hybrid models have been popular for representing the flexibility of multibody system 
components. This approach first introduced by Kamal [1, 2] and later explored by Ni and Song [31 
considers a system as a collection of rigid masses and springs. The flexibility of the system is 
represented by nonlinear springs, which characteristics are obtained from experimental tests. 
Nikravesh and Chung [4, 5] proposed a 3-dimensional hybrid model where the relative motion 
between the rigid bodies is constrained by kinematic joints. This was the first model where a 
general multibody methodology and an elasto-plastic hinge model were used to represent the 
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nonlinear structural characteristics of a system. As in the previous methodologies, this model can 
only be used for the simulation of cases where the plane or line of the deformation of a hinge 
coincides exactly with the plane (or line) of the deformation of the actual test specimen. 

A more general formulation for the representation of the flexibility of the components of a 
multibody system is obtained through the use of the finite element method. In fact Thompson and 
Sung [6] stated that virtually all simulations of flexible multibody systems employ the finite 
element method. The problem of inertial coupling between the gross rigid body motion and the 
structural deformation of the system have been successfully addressed by Song and Haug [7], by 
Sunada and Dubowsky [8] and by Shabana [9]. However most of the developed methodologies 
can only deal with linear elastic behavior of the flexible components of a system. 

With the use of finite element method, the number of degrees of freedom of the multibody 
system is greatly increased. Furthermore, the form of the equations of motion is such that none of 
the matrices involved in such equations is constant. These features add up to high computational 
costs. A popular approach for reducing the dimension and the size of the problem is the use of 
modal superposition technique [8-11]. However there are two important drawbacks in this 
technique. First, a high number of modes of vibration is required to describe the system if forces 
with high frequency components are applied to the flexible bodies, or if the spectrum of natural 
frequencies of the flexible bodies is compact. The second drawback is that the use of the modal 
superposition technique restricts the practical applications of such methodologies to cases where 
the components have an elastic behavior (generally linear). 

Some attempts have been made to describe the nonlinear structural behavior in the flexible 
bodies of multibody systems. The problem of the coupling between the axial forces and transverse 
deformations has received considerable attention. Kane et al. [12] addressed this issue by 
developing a comprehensive model for a beam that accommodates for the effects of centrifugal 
stiffening and vibrations induced by gyroscopic forces. In a later paper, Ryan [13] compared this 
methodology with several methods using the modal superposition technique and concluded that 
due to the premature linearization of the equations of motion, the results provided by such 
methods may lead to very large errors. 

All the methodologies that are referred to in this paper have two points in common. First they 
only deal with linear elastic material laws. Second they confine the analysis to problems of small 
strain, Several advances in the finite element method have provided tools for the analysis of 
nonlinear structural systems [14-17]. Bathe et al. [17-19] developed a general formulation for 
finite elements which accommodates for large displacements, large strains and material non- 
linearities. Such a methodology contains most of the ingredients necessary for kinematic descrip- 
tion of flexible bodies. They discussed the advantages and drawbacks of using a total Lagrangian 
formulation or an updated Lagrangian formulation for formulating this type of problem. They 
concluded that though both formulations theoretically lead to the same result, there are computa- 
tional advantages to use the updated Lagrangian formulation when the material law is elasto- 
plastic. 

This paper presents an updated Lagrangian formulation of the equations of motion for a 
flexible body undergoing large displacements, rotations and deformations. The deformation of the 
flexible body is always related to a corotated configuration, to which a body fixed referential is 
attached. Special attention is paid to the evaluation of elasto-plastic constitutive equations to 
describe the material behavior. In order to simplify the form of the equations of motion, absolute 
nodal accelerations are used instead of accelerations relative to the body fixed coordinate system. 
Furthermore, a lumped mass formulation is used to calculate the mass matrix of a flexible body. 
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The reduction of the number of degrees of freedom necessary to the description of the flexible 
body deformation is achieved through the use of a Guyan condensation technique. Finally the 
formulation of the equations of motion of the flexible multibody system in terms of a set of joint 
coordinates is discussed with special emphasis on the treatment of the nodal coordinates of the 
flexible bodies. 

2. Kinematics of  a Flexible Body 

Let XYZ denote a fixed cartesian coordinate reference frame. In order to define the position and 
the orientation of a flexible body with respect to XYZ  let a new coordinate system sc~Os r be defined. 
This new coordinate system is rigidly attached to a point of the flexible body as depicted in Figure 
1. 

The motion of the flexible body involves a continuous change of its shape and generally large 
displacements and rotations. Such complex motion is described by Figure 2. The initial configura- 
tion of the flexible body is denoted as configuration 0. The configuration t + At denotes the current 
equilibrium configuration, which is generally unknown. The last known equilibrium configuration 
is here denoted as t and referred in the text as the updated configuration. 

The principle of the virtual displacements can be used to express the equilibrium of the 
flexible body in the current configuration. Such principle is written as 

f ~ ' v  (8 ,+~,e) r = ( 1 ) [+At T f+AfdD ,+a,R, 

where the external virtual work '+a'R is given by: 

'+a'R = '+a'p(3h)r '+-~'[i '+a'dv + +~ v ¢2,tV p [  n )  t+Atlb 

f (6h)" . + .a, A '+a'r,+a,-, '*a 'da (2) 

x ¢ 
Fig. 1. Inertial reference frame XYZ and body fixed coordinate system ~:~. 
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klnitial configuration 0 ~ * { /  
o, '~  /:' / '  ; '. ~ .  / Updated equilibrium 

°t 

O'r "=" t÷.~t ~ l  

X Current configuration t+~t 

Fig. 2. Gross motion of a flexible body. 

In equations (1) and (2) 6h is a virtual variation in the current displacements, i.e., 6h • 6'+'~'h, 
while 6,+a,e is the correspondent variation in the vector of infinitesimal strains. The vector ' ' ' ' r  
denotes the Cauchy stresses which are measured in the current configuration. '+a'V, '+atA and ,+a~p 
are respectively the volume, area and mass density of the flexible body in the equilibrium 
configuration t + At. The vectors of body forces and surface forces are respectively denoted by 
~+a'r and "a t f  
t ' - ~ t t b  t + A t  ,~ " 

Equation (1) cannot be solved in the form presented if it is referred to the current 
configuration which is unknown. However, if the quantities involved in the virtual displacement 
equation are referred to a previously known configuration, then a solution for such equation may 
be obtained. In practice the choice for such reference configuration is taken between initial 
configuration and the previously known equilibrium configuration. The option for the former leads 
to a total Lagrangian formulation while the latter leads to an updated Lagrangian formulation. In 
this paper an updated Lagrangian formulation is adopted. 

The Cauchy stresses, that appear in equation (1), are always referred to tile configuration in 
which they occur and therefore they cannot be referred to any previous equilibrium configurations. 
This implies that another stress measure must bc used if equation (1) is to be referred to the 
updated equilibrium configuration. The 2rid Piola-Kirchhoff stress is the appropriate stress 
measure that must be adopted for this formulation. The strain measure must be energy conjugate 
to the stress measure. In this sense thc Green-Lagrange strain must be used instead of the 
infinitesimal strain. Equation (1) becomes 

(~ ~__a,e)T t+a, ,+a,dv f (8 ,+a, , r ,+a,~,dv , (3) "7" = t&') t + & t ~  
+&¢V V 

where '+alS is the 2nd Piola-Kirchhoff stress tensor corresponding to the current configuration but 
measured in the updated configuration. The components  of such stress tensor are 
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~P O'hi '+~' O'hi (4) 
'+ ~;  S "r . - -  . [ + ~ t ~  I + A f t  " 

t - - i /  t + ,5.t 0 0 I'1 ~ 0 t l  

The variation of the Green-Lagrange strain tensor is denoted by 6 '+ale. The components of this 
tensor are written as: 

. ~ t + A t  ~ t + A t  . t + A t  
0 t ' l j  O bl k ,+±, 1 ( o t, i .,+.At c) llk ] 

+ o'h- 7 - +  o'h, / ,  (sl 

where the vector of displacements '+"'u is calculated as: 

'+a'u = '+ '~ 'h-  'h.  (6) 

It has been shown by several researchers [20-221 that referring equation (3) to a corotational 
coordinate system presents great advantages over the traditional updated Lagrangian formulation. 
If finite elements with rotational degrees of freedom are used to discretize the body, the use of 
such system is particularly important. A natural corotational frame is the #t/~ body fixed 
coordinate system. Furthermore, let a ghost configuration of the flexible body be associated with 
such coordinate system. For the purpose of this alternative updated Lagrangian formulation, let 
such ghost configuration be equal to the updated configuration, but translated and rotated like a 
rigid body as depicted in Figure 3. The updated ghost configuration is referred to as t'. 

Nygard and Bergan [22] show that the Green-Lagrange strain tensor components '+aieij 
measured in the current configuration and referred to the updated configuration are equal to the 
components of the same strain tensor referred to the corotated ghost configuration and expressed 
in the body fixed coordinate system, i.e., 

t+2~t ~ t+~ . t  t 
t El )  t '  Eij " 

o I ~ Updated equilibrium I n i t  ~ n f i g u r a t i o n  t 

°t ~ "  't " '11 ~ - - -  - - ~ ' I  I,+~,~ 
Ghost updated .-.:----... configuration t .."- : . . . . .  

::)i !) 
: : . . /  

Z . , . :  / /  

x . . . . .  ~_!..:i)(.L-: ....... 

Fig. 3. Representation of the ghost configuration associated with the body fixed coordinate system. 
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t+At t 
In such case the strain tensor components ,,e o are written as 

,+a, , = 1 ( ot+Atld'i q- a t+Atu' -~ O"'+Atldk' ot+Atldk, ) 

,,eo ~ \ Orb; O"b'~ O"b; O"b; ' 

where the displacement vector '+a'u' is now defined as 

(7) 

'+a'u' = t+atb' - Cb'. (8) 

A similar relation holds for the components of the 2nd Piola-Kirchhoff stress tensor. The 
components of such tensor referred to the corotated ghost configuration and expressed in the body 

fixed coordinate frame are written as 

'+a 'S ' -  'p 3Cbl ,+~,, O"b} 
,'--ij /+Atp a,+a,b, r,r ,+a, , "  (9) 

- - s  3 b r 

Equation (1) is finally written as: 

f+~,v (6 '+a'e)r'+a'r'+~'dv=f (6'+a' ce , ,,~ . (10) 

,+ate, be decomposed into At this point let the stresses ,,_ 

*+a' s, = ' ' ,  (11) , ' -  ' r '  + c S 

where "r '  is the Cauchy stress tensor of configuration t' in body fixed coordinates, and ,,S' denotes 
the increment of the 2nd Piola-Kirchhoff stress tensor referred to the updated ghost configuration. 
Similarly the Green-Lagrange strain can be decomposed into the sum of the strain in configuration 
t' and an increment. Using equation (7) it is observed that: 

,+a,,.e ' =- ,,e' . (12) 

The Green-Lagrange strain increment ,,e'  can be decomposed into the sum of a term linearly 

dependent in the displacement increments and in a nonlinear term, i.e., 

,,e' = ,,e' + , , r / .  (13) 

The linear and nonlinear terms are written respectively as: 

, 1 ( Ou; Ou;] (14) 
"e° = 2 \ o"bj + Orb;/ 

1 ou'~ ou; (15) ¢ 
t'3)ij ~--- -2 .t '  , 0 b i O"b I 

where the increment of displacement u', expressed in the body fixed coordinate system, is given by 

u '  = ' + a ' u '  - " u '  • ( 1 6 )  
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Now the strain increments are related with the stress increments by the constitutive equation: 

= ~ ' .  ( 1 7 )  ,,S' , ,C, ,  

Finally equations (10) through (17) can be substituted in equation (1) heading to 

f : f (6 ,.e') r , ,C, ,  (6 ,.~7') r ' '7 '  "dv ' * a ' R -  v (6 ,.e ) r , ' r , ' dv  . (18) 
'V 

In equation (18) the virtual work '+a'R must also be expressed in terms of the updated ghost 
configuration. For this purpose the integrands of the integrals on the right hand side of equation 
(2) are written as 

t t+Atf "~0 t+,atf '<du ~-Atp t+Atih t + a t d o  = t,ib 

,+a,f  ,+a,da = '+A t f  "da (19)  
I + A l .~ I ' - - ~  

where it is assumed that the surface and body forces are independent of the configuration in which 
they are represented, i.e., the loading conditions are independent of the deformation. Now the 
virtual work is written as 

f f ''p (dh)T '+a'r v ""> f (dh)T '+A'f 'A "-" ,+a, R = _ ,,p (~h)T ,+a,h "do + t'do + "da (20) 

where "V, "A and "p are respectively the volume, area and specific mass of the flexible body in the 
updated configuration. 

The nonlinear equilibrium equation (18), resulting from the updated Lagrangian formulation, 
it is not linear in the increment of displacements. This implies that a direct solution of such 
equation is not possible. An approximate solution can be obtained by assuming 6,,e' = 6,,e'. In 
addition an approximate incremental constitutive equation must be used instead of equation (17), 
i.e., 

,,S' : ,,C ,,e' . 

Substituting these approximate relations into equation (18) results in: 

f (6 , T , f (6 , , r , '  , ,+a,R_ ; (dce , ) r , ,7 , ,dv v , ,e) , ,Cce " d r +  'v <'~ j r Cdv= 'v (21) 

which is the linearized equation of motion of the flexible body for the updated Lagrangian 
formulation. 

3. Finite E lement  Equat ions  of  Mot ion  

In the formulation that follows, it is assumed that isoparametric finite elements are used. 
Furthermore, the matrices describing the flexible body are obtained from the assemblage of the 
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Ghost updated t+/tt 
configuration t . . i  .......... "-... Current configuration 

.,/~.'x .............. "" d / ' " \Ghost initial 
I~ " ~ , . . _  ............. ~ ¢.onfiguration 0 

t+At V '::": .. ! ..... ::~ t 

_ - % ;  ...... :.:.. .............. . (  ":.,:: ...... 

X 

Fig. 4. Position of a point in a flexible body. 

matrices of each finite element in the standard way. In this sense what follows is referred to each 
finite element. 

Referring to Figure 4, the position of a point included in the domain of a finite element is 
written as: 

t+:~th  = r + A t+"Xtb '  , (22 )  

where r is the position of the body fixed coordinate system '+" ' (~g ')  associated with the current 
configuration. In equation (22) A denotes the transformation matrix from the body fixed 
coordinate system to the inertial frame XYZ. Since r and A are always referred to the body fixed 
coordinate system associated with the current configuration, the left superscript t + At is ignored 
for simplicity. Now the position of the point relative to the body fixed reference frame (denoted as 
'+a'b') can be decomposed in 

'+A'b' = "b' + v ' ,  (23) 

where v' denotes the increment of the displacement of the point from the previously known ghost 
configuration to the current configuration. 

In isoparametric finite elements, the coordinates and displacement fields are interpolated 
using the same shape functions. In this sense the position of each point in terms of nodal 
coordinates is written as: 

M 

I '  ¢ 1' k b i = ~ N  k x,  
k - I  

M 
t + A t  # t + A t  k 

b i =  ~'~ N k x i ,  
k ~ l  

(24)  
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t '  k where xj is the ith coordinate of the kth node for the updated ghost configuration t'. M is the 
number of nodes of the finite element, and the shape function for node k is denoted by Nx,, The 
displacement field and the increment of displacements are given by 

M 

k = l  

M 
J y ,  [' k t  

r v i =  ~ N k U i (25) 
k = l  

M 
t 4~At t y ,  t ~ A t  k ,  

O i = ~ N k  11 i , 

k ~ l  

where '+a~u' and "u' denote the vectors of nodal displacements in the current configuration and in 
the updated ghost configuration respectively, u' is the vector of nodal displacement increments 
calculated as: 

u'= '+Z'u'-%'. (26) 

Now equations (23) through (26) can be substituted in equation (22) yielding: 

' +~ 'h  = r + A N ( r x  + u ' )  . (27) 

The virtual displacement of the point in terms of the nodal displacements is written as: 

F "l 
8 '+~'h : [I -Ab '  AN]/87r , | ,  

LSu J 
(28) 

where w' is a small rotation of the body fixed coordinate system, and b' is evaluated for the 
current configuration. The left superscript t + At is omitted for simplicity, and the overscore 
represents a skewsymmetric 3 x 3 matrix made of the components of a 3-vector. The acceleration 
of the point is obtained by differentiating equation (27) twice with respect to time, i.e., 

,+Z,h___ [I - A b '  AN] &' + A ~ ' ~ ' b ' +  2A~'Nd' 
l i i ' /  

(29) 

where o~' and &' are the angular velocity and the angular acceleration of the body fixed coordinate 
system. 

The virtual work due to the inertial forces can now be evaluated. Assume that the mass of the 
flexible body is conserved throughout the motion. In such a case ° o = ~p and °V= 'V, which implies 
that 

f 'v '~p(6h)T '+a'fi ')dr = f v  "P(Sh)r '+A'ii " d r .  (3o) 

Consequently, the term of equation (20) equated with the inertial forces is written here as: 
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F t "  

Jov °p(~h)T '+~'Ji °dr = JOy Op ~¢r' [I AN] &' °dr 
 u'J LN A J ii' 

t "  

+ lo v 0p 37r' (AoS'oS'b' + 2AoS'Nu') °dr .  (31) 
au'J LN ATJ 

Now equation (31) can be written in a more compact form as: 

fo v °p(6h)r = t%-' M &' +s  , (32) t + At(- 1 °du 
au'J Lfi'J 

where the mass matrix M is symbolically written as: 

Mrr M,~ turf ] 
M =  Md, r M,~¢ M,~/ . (33) 

Mfr mf6 Mff J 

The mass matrix is a symmetric matrix with its coefficients: 

Mrr = I f'v Op °du 

Mr, = - A  fo 
Op~ °du 

v 

M 4 = A for ~N °du 

°du 

M4, / = fo v °P/)'N °d v 

Mff = fov °pNrN °dv . 

The vector s in equation (32) denotes the terms that depend on the square of velocities 
(gyroscopic forces). In full, such vector is written as: 

S= 

Ag)'w' ~o v °pb' °dv i 

f'v °Pb'~'~'b' °dr + 2 
I 

- ;v  °PNr°5'°5'b' °dv ] 

Ao~' f~v °PN °dr- 

Iv °dr a'. 

o v °pNro5 'N °dv 

(34) 

The rest of the terms of the virtual work are now evaluated for the updated Lagrangian 
formulation by substituting equation (28) into equation (20). The vector of the external applied 
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forces is evaluated over the updated configuration as 

t ' g =  

f f "p t÷atf" rdv i+-~tf  r da + 'v 
'A t ' - s  t 'Xb 

b'A T'+~tf  "da + 'v ,'-h 
'Z t ' 8 

f NTAr ,+a,f f "pN/A T'+a't" "de ,,_, "da + 'v 'A t '  ~h 

(35) 

In order to form the flexible body equations of motion, the variation of the internal energy 
associated with the virtual displacement must be evaluated. For the updated Lagrangian formula- 
tion such terms are associated with the integrals of equation (21). For a finite element such 
integrals are written as: 

I r] [i 0 0 ]E00] f'v (6"e')r ,,C ,,e' = &rr' 0 0 t'do 
L 6u' 0 ,t,K L u' 

T O0,o 01[ ] 
Lau'J Lo o ,'KNI - 

~ ~3r,]rF 0 7 

f 'v(/"r')r6"e't 'dv=| 6rr | | 0 1. 
L Su'J L,'FJ 

(36) 

(37) 

(3s) 

In equations (36) and (37) the matrices ,fK L and /.KNL denote respectively the linear stiffness 
matrix and the nonlinear (or geometric) stiffness matrix. In full, the stiffness matrices are written 
a s :  

I ~ t  t 7" t "KL = "v `'BE ,.C,,B c "dv (39) 

( t 7" t , t 
/, K,¥ L 'v 'BNL "'r ,,B,~L "dr . (4(/) ), 

In equation (38) ,',F denotes the nodal forces due to the actual state of stress, i.e., 

' F - f  , T , ~ ,  ~' - 'v rBL ''~" " d r .  (41) 

The finite element equations of motion for the flexible body can now be assembled. For such 
purpose equations (36) through (38) are substituted into equation (21) yielding: 

I I' I°lEi ° ° lI°ol M ~ ,  M~,e, M ~  &, = - 

Mr, My+ MT~ ii' LgfJ sf.] ,,F 0 /,K L + /,KNL_ILU' 
(42) 

The two first rows in equation (42) are related to the motion of the body fixed coordinate frame. 
Note that such motion does not depend explicitly on the deformation of the flexible body. 
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However the motion of the body fixed coordinate flame and the deformation of the body are 
effectively coupled due to the form of the mass matrix and the gyroscopic terms. 

The form of equation (42) can be substantially simplified if: (a) a lumped mass formulation is 
used to calculate equations (33) and (34), and (b) the vector nodal accelerations with respect to 
the body fixed coordinate system (vector ii') is replaced by a vector of nodal accelerations with 
respect to the inertial frame (vector it'r). Such procedure is used in this paper. 

The vectors of nodal accelerations can be partitioned in translational and angular accelera- 
tions as 

[d] 
t ; q f  = a '  

The relation between the relative nodal accelerations ii' and the absolute nodal accelerations q'I 
for a node k is given by 

["o ~,(Ok), ] .  (43) 

Equation (43) is evaluated for every node of the finite element mesh (n nodes) and the result is 
substituted into equation (42). Rearranging the outcome of such substitution leads to 

(md')k = g; ( 4 4 )  
k = l  

[m(~' + g'ah'l = ~' (45) 
] u  ] k  ~ 0  

k = l  

• " !  _ _  t t t ! 

Mffq~ - g¢- - / F  - (t ,KL + ,,KNL)U . (46) 

Equation (44) is the equation of motion for a system of particles. It can be shown [23] that 

( m d ' ) k  = m k r e ,  
k = l  

where i~ is the acceleration of the center of mass of the system of particles. Equation (45) 
indicates that the time rate of change of the angular momentum about the origin of the body fixed 
coordinate system is equal to the total moment, of the external forces acting over the flexible 
body, about the origin of the body fixed coordinates. Then, assuming that the body fixed 
coordinate system is fixed to the center of mass of the flexible body, equations (44) and (45) are 
simply the translational and rotational equations of motion of the body fixed coordinate frame. 
Equation (46) is the equation of motion of the nodes of the flexible body in reference to the body 
fixed coordinate frame. Note that due to the use of a lumped mass formulation the mass matrix 

M~z can be written as 

Mir = D i a g ( m l l ,  0 . . . . .  m,I,  0) ,  

where m k is the lumped mass of node k, and I and 0 are 3 x 3 identity and null matrices associated 
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with the translational and rotational accelerations respectively. If the finite elements used in the 
discretization of the flexible body do not have rotational degrees of freedom, then no null matrices 
will appear in the mass matrix M#. 

In the derivation of equations (44) through (46) no assumption was made about the location 
of the body fixed coordinate frame on the flexible body. However it was observed that if the body 
fixed coordinate system is fixed to the center of mass of the flexible body then equations (44) and 
(45) have a simple interpretation. Very often it is desirable to locate the origin of the body fixed 
frame in a point different from the center of mass. For this purpose assume that there is a region 
of the flexible body (as small or large as desired) that is rigid and to which the body fixed frame is 
attached, as illustrated in Figure 5. Let the mass of the rigid part be denoted by m and its tensor of 
inertia by 3. If the rigid part is separated from the rest of the flexible body, then the 
Newton-Euler equations of motion for such region are written as 

mi; = f (47) 

J ' & '  = n '  - g ) ' J ' w '  , (48) 

where f and n are the external forces and moments applied over the rigid part. 
Equations (47) and (48) can now be used instead of equations (44) and (45) provided that the 

proper kinematic constraints between the flexible and rigid parts of the body are enforced. Such 
kinematic constraints affect the nodes in the boundary between the rigid and flexible parts and can 
be written as: 

a ' = a ' = a ' = 0 ' = 0 ' = 0 ' = e  (49) 

Consequently the relation between the absolute accelerations of the boundary nodes and the 
acceleration of the body fixed coordinate frame is found by substituting equation (49) into 

Updated configuration 

rigid __part 

J Flexible part . ~ . _ . _ ' ~ . ~ ,  
? • ~ ../~.:x,,.---~ N.._._XLZX . . . .  ,..,, 

I " t -- ",:, 

\ __ ( "T ~/ k~ -Lk~p.' Node k 

/ / I 
/ _  / -,,. / -Z. ;"~i 

~'k . . . .  

X Current configuration / 
(a) (b) 

Fig. 5. Flexible body with an undeformable region. 
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equation (43) to get 

- ,  o1 , (50) 

where 

U =  
A r (~2), ;s=/ /; 
A T ] L (~")' j 

I =  ; S,o = 
~ '~3x°) ' / .  

~'oY'(x")'j 

The dimension of these matrices is (3n x 3), where _n is the number of boundary nodes. Now 
equation (49) can be directly used in equation (46), and through the use of the Lagrange 
multiplier technique the constraints represented by equation (50) are appended to equations (46), 
(47) and (48). The outcome of such substitution is 

I f+AC  ] - ( ~ - - ; s )  ~ j '  + STM*S 0 ,~' = n', - 05'J',o', ,- STC~, - FC;, , 
0 M# /t g~ - , , F -  (,,K L + ,.KuL)U 

(51) 

t 
where M* is a diagonal mass matrix containing the mass of the boundary nodes. Vectors C a and C o 
represent respectively the reaction force and reaction moment of the flexible part of the body over 
the rigid part. These reaction force/moments are written as 

t ! t t ( ~ t  f ! 
C a = g~ - M * s , o  - tt, F~ - ( t . g L  + t,KNL)_~6 -- ( / K  L + t,KNL)~O0_ (52)  

t t t t t t t t t 

Co = -g_o + t'Fo + ( , 'KL + ,,KNL)_0~ + (,,Kc + t'KNL)_O0 0 • (53) 

In these equations the subscripts 8 and 0 refer to the partition of the vectors and matrices with 
respect to the translational and rotational nodal degrees of freedom. The underlined subscripts are 
referred to the boundary nodes between the rigid and flexible parts. For more details on the 
derivation of equations (51) through (53) refer to reference [24]. 

Equation (51) is the finite element equation of motion for the flexible body. However when 
finite elements with rotational degrees of freedom are used to discretize the flexible body some 
null elements appear in the diagonal of the submatrix Mry. Therefore, equation (51) cannot be 
solved explicitly for the accelerations. Two approaches may be used to solve this problem. In the 
first approach an alternate formulation for the submatrix M# is used. The rotational inertias of the 
nodes are obtained by lumping the off-diagonal terms of the consistent mass matrix Msr according 
to the methodology of Surana [25]. The price paid for this approach is that the contribution of the 
rotational inertias of the nodes for the inertial coupling between the nodal coordinates and the 
reference coordinates must be neglected, otherwise the mass matrix of equation (51) will no 
longer be diagonal. In the second approach, a static condensation of the nodal rotational degrees 
of freedom is used. Let the last row of equation (51) be written in the following partitioned form: 



°]I" '  = 
0 c~'] 
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g0J / ' F 0 ] -  L,'K0~ ,'K00 0' ' (54) 

where /K =/ ,K L + /,KNL. The relation between the translational degrees of freedom and the 
rotational coordinates is given by 

o' : /K,; '  (g; - / r ;  -/K++ ~'). (55) 

Finally the equations of motion for the flexible body is written as: 

t (AM__*--S) T J ' +  ST_MM*S O o5' 
o 0 M~s d' 

I f + n c ;  
n' o3'J'co SrC~ - r  , . . . . .  I C o 

t t ~ ' t - - |  t t ! t t l - - [  t 
g~ - ,,V~ - ,,K~o ,,Koo (go - , ,Fo)  - ( , , K ~  - ~,K~o ,,Ko0 , , K . ~ ) 8 '  

J , (56) 

By a proper choice for the location and orientation of the body fixed coordinate frame in the rigid 
region, the mass matrix in equation (56) can be turned into an invariant diagonal matrix. In this 
sense the position of the origin of the body fixed coordinate system must be coincident with the 
center of mass of the rigid part plus the boundary nodes of the flexible part. Furthermore such 
coordinate system must be aligned with the principal inertia directions of the rigid part plus the 
boundary nodes. 

4. Elas to-Plas t ic  D e f o r m a t i o n s  

A multibody system may experience elasto-plastic deformations of one or more of its flexible 
components. An example of this type of behavior is the structural impact and crash analysis of 
vehicles. For these problems an elasto-plastic constitutive tensor ~,C must be used to evaluate the 
linear stiffness matrix in equation (39). 

If isotropic hardening and isothermal conditions are assumed, the material yield condition is 
given as 

f(rr ,  "K) = 0 (57) 

where "~- is the Cauchy stress tensor and c'K is the hardening parameter (which is a function of the 
state of strain). Yielding occurs when equation (57) is satisfied. In such case the strain increment 
,,e is partially elastic and partially plastic. Assume that the strain increment can be decomposed 
into the sum of a plastic part and of an elastic part, which is written in terms of differential strain 
increments as 

d ~,e = d,,e e + d,,e E (58) 

Furthermore, assuming associated plasticity, the differential plastic strain increment is related to 
the yield surface by 
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d t,e e = A Of 8"---~" (59) 

where A is the plastic multiplier (still unknown). The relation between the differential elastic strain 
increment and the differential stress increment is 

d , e  E = (,,CE) -l d , S ,  (60) 

where t,C E is the elastic constitutive tensor. Now equations (59) and (60) can be substituted in 
equation (58) to obtain 

d t,e : ( t , c E )  -1 dt,S +/~ 0...f_f (61)  
ot'.l. • 

During the plastic deformation f = 0 and consequently 

df-= d vS + d"K = O, 

or after rearranging 

0 t"r /  

where H =-A- l (Of /O "K)d ~'K. The plastic multiplier can now be eliminated between equation 
(61) and equation (62) (being careful not to divide or multiply anything by H) ,  which yields 

d , S  = ,,C d , e ,  (63) 

where the elasto-plastic constitutive tensor is written as 

0 v i 
(64) 

The parameter H remains unknown and needs to be solved for. Zienckiewicz [26] shows that if the 
Huber-Van Mises yield surface is used in equation (57), and if the simple work hardening rule is 
assumed, then H is the slope of the plot of the stress versus plastic strain for a uniaxial test. 

Note that the formulation of the constitutive relations for elasto-plastic analysis is very similar 
to the small displacement analysis. This feature turns the updated Lagrangian formulation quite 
attractive for studying this type of problem. 

5. Equations of Motion for a Multibody System 

A multibody system is a collection of rigid and flexible bodies joined together by kinematic joints 
and force elements as depicted in Figure 6. For the ith body in the system qi denotes a vector of 
coordinates which contains the Cartesian translational coordinates r i, a set of rotational coordi- 
nates, and a set of nodal coordinates q~ or 3' (if body i is flexible). A vector of velocities for a 
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Ball joint 

Fig. 6. Schematic representation of a multibody system. 
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rigid body i is defined as vi, which contains a 3-vector of translational velocities i" i and a 3-vector of 

angular velocities % (defined in the XYZ coordinate system). If body i is flexible then the vector 

of velocities v~ contains /'i, to'~ (defined in the ~-qf~ coordinate system) and a vector of nodal 

velocities dl} or 6'. The vector of accelerations for the body is denoted by +i and it is simply the 
time derivative of vi, For a multibody system containing b bodies, the vectors of coordinates,  
velocities, and accelerations are q, v and # which contain the elements of qi, vi and /es, 

respectively, for i = 1 . . . . .  b. 
Let  the kinematic joints between rigid bodies be described by m r  independent constraints as 

• (q) = 0 .  (65) 

The first and second derivatives of the constraints yield the kinematic velocity and acceleration 

equations. 

=- Dv = 0 (66) 

~ Di, + Dv = 0 ,  (67) 

where D is the Jacobian matrix of the constraints. The equation of motion for the system of rigid 
bodies are written (see reference [27]) 

Mi, = DTA = g ,  (68) 

where M is the inertia matrix, A is a vector of Lagrange multipliers, and g = g(q, v) contains the 

gyroscopic terms, and the forces and moments that act on the rigid bodies, 
The constrained equations of motion expressed by equations (65) to (68) can be converted to 

a smaller set of equations in terms of a set of coordinates known as joint coordinates. Such 
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transformation is briefly discussed here, (for more detail refer to Nikravesh and Gim [28, 29]). 
The relative configurations of two adjacent bodies are described by a set of relative coordinates, 
known as joint coordinates, equal to the number of relative degrees of freedom between the 
bodies. The vector of joint coordinates for a system of rigid bodies is denoted by/3 and it contains 
all the joint coordinates and the absolute coordinates of the floating base bodies. The vector of 
joint velocities is defined as/3, which is the time derivative of/3 and its relation with v is given by 
[281 

v = B/3. (69) 

Matrix B is the velocity transformation matrix and it is orthogonal to the Jacobian matrix D. The 
time derivative of equation (69) provides the formula for the transformation of the accelerations, 

+= B~ + B/3. (70) 

Substituting equation (70) into equation (68), premultiplying by B v, and using the orthogonality 
between B and D yield 

MB = f ,  (71) 

where 

3 / =  BrMB (72) 

f :  Br(g - MB~) .  (73) 

Equation (71) represents the generalized equation of motion for an open-loop system of rigid 
bodies. Equation (71), which contains the minimum number of second-order differential equa- 
tions, can be used instead of the mixed set of differential-algebraic equations given by equations 
(65) through (68). For the equations of motion of a system containing closed kinematic loops, the 
interested reader may refer to reference [29] where more detail and further discussion is provided. 

If there are rigid and rigid-flexible bodies in the multibody system, and the kinematic joints 
are only between the rigid parts, then equations (71) can be used to describe the motion of the 
system. The only difference is that now the vector of velocities v and the vector of joint velocities 
/3 also contain the nodal velocities ~lf. Consequently a part of the velocity transformation matrix B 
that relates the nodal velocities in vector v with the nodal velocities in vector/3 in equation (69) 
must be an identity submatrix. Furthermore, it is convenient to rewrite equations (42), (51) or 
(56) in terms of o3 rather than o)'. 

It is possible that some of the kinematic joints are between flexible bodies or between flexible 
and rigid bodies. In order to derive the equations of motion for such a system, these particular 
kinematic joints may temporarily be removed. For this reduced system, the equations of motion 
are written as in equation (71). A vector/3" is then defined as a new vector of joint coordinates 
containing the vector of joint coordinates /3 (these are the joint coordinates between rigid 
bodies/parts) and the nodal coordinates q~. Now if the removed kinematic constraints involving 
the flexible bodies are reintroduced to the system, then mf independent holonomic constraint 
equations in the form 
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'It( 13 * ) =0  (74) 

can be defined. The time derivative of these constraints yield 

'~ ~ C~* = 0 ,  (75) 

where C is the Jacobian for the constraints. Similarly the time derivative of these equations yields 
the acceleration constraints for the flexible bodies as 

q, --- e l ; *  + : 0 .  (76) 

Now the equations of motion for this multibody system are obtained by introducing the mf 
kinematic constraints in equation (71) through the use of a set of mf Lagrange multipliers u as 

.ill */3' - c r y  :/-* , (77) 

where the superscript * denotes the fact the generalized mass matrix and the generalized force 
vector are augmented by appending the nodal equations of motion of the flexible bodies to 
equation (71). Now equation (76) and (77) can be solved for the joint accelerations/3" and for the 
Lagrange multipliers v. 

6. Discussion and Conclusions 

In this paper the equations of motion for a flexible body experiencing nonlinear deformations as a 
result of large strain and nonlinear material law are derived based on a finite element procedure. 
A modified updated Lagrangian formulation is used to provide a simpler form of the elasto-plastic 
constitutive relations. The difference between the traditional updated Lagrangian formulation and 
the one described here is that a corotated ghost configuration, coincident with the updated 
configuration, is used. The advantage of this procedure is that the need for objectivity in the 
material law is lowered once the average large rotation of the finite elements is extracted from the 
stress and strain measures. 

In order to simplify the form of the flexible body equations of motion, a lumped mass 
formulation for the evaluation of the mass matrix and the gyroscopic force vector is used. Such 
formulation, combined with the reference of the nodal accelerations to the inertial coordinate 
frame, greatly simplifies the form of the equations of motion. The point of attachment of the body 
fixed coordinate frame is defined in the rigid part of the rigid/flexible body. The result of this 
methodology is a form of the equations of motion where the inertial coupling between the gross 
rigid body motion and the deformation of the body is preserved while the mass matrix is diagonal 
and constant. When finite elements with rotational degrees of freedom are used in the discretiza- 
tion of the flexible body, the explicit use of the nodal angular accelerations is eliminated by a static 
condensation process. 

Finally the equations of motion for a multibody system with flexible components are 
presented. A set of joint coordinates is used to describe the kinematic relation between rigid 
bodies and the rigid parts of the flexible bodies. Constraints involving the nodal coordinates of the 
flexible bodies are introduced in the system through the use of Lagrange multipliers. 
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