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Abstract .  Let random samples of equal sizes be drawn from two exponential 
distributions with ordered means ),~. The maximum likelihood estimator A~ 
of ~ is shown to have a smaller mean square error than that of the usual 
estimator .~,  for each i -- 1, 2. The asymptotic efficiency of A* relative to Xi 
has also been found. 
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1. Introduction 

The maximum likelihood estimator (MLE) f~ of a nondecreasing regression 
function has been studied in detail (see Barlow et al. (1972), Robertson et al. 
(1988)). In terms of its coordinates, little was known about its quadratic loss until 
Lee (1981) showed that the mean square error (MSE) of fLi is less than the usual 
estimator )(i for each i, when )(1, )C2,..-, Xk are independent normal variates. 
Robertson et al. (1988, p. 44) have mentioned that it is of interest to know if such 
a result is valid under other conditions, and in particular, whether it holds true for 
samples from other types of populations. In this article we give a partial answer 
to their question with regard to sampling from exponential distributions and show 
that  the result holds for the case of samples of equal sizes from two exponential 
distributions having ordered means. 

The results of this article will prove useful in reliability when one frequently 
comes across situations where the estimation of means of two ordered exponen- 
tial life distributions is desired. For example, there are situations where one is 
interested in the estimation of the mean lives of two mechanical devices having 
exponential life distributions, of which one is an improvement of the other, and 
naturally the improved device should not have a mean life length less than that of 
the original device. In yet another situation, the interest may be in the estimation 
of the mean lives of two components having exponential life distributions, in which 
one is produced by a standard company whereas the other is manufactured by a 
local company, and where it is known, a priori, that  the mean life of the component 
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of the standard company is not less than that  of the component produced by the 
local company. For more examples of statistical inferences arising from reliability, 
readers may refer to Marshal and Proschan (1965), Barlow et al. (1972), Hollander 
and Proschan (1984), Doksum and Yandell (1984) and Feltz and Dykstra (1985). 

For other references on the estimation of ordered parameters, readers may also 
refer to Blumenthal and Cohen (1968), Cohen and Sackrowitz (1970), Sackrowitz 
(1970) and Kushary and Cohen (1989). 

For i = 1,2, let XO, j = 1, 2 , . . . ,  n be a random sample from an exponential 
distribution with mean A{ satisfying A1 _< A2. The MLE A* of A~ is the isotonic 

n X regression of ) ( i - -  (~-]j=l O) / n with equal weights; moreover, 

2 2 

i= l  i= l  

(see Robertson et aI. (1988)). 
In Section 2 of this paper, we show that  

(1.2) El(A* - Ai) 2] _< E[(Xi - Ai)2], i - - - -  1, 2, 

and study the asymptotic behaviour of the efficiency of A~ relative to )fi- The 
efficiency of A* relative to )(~ has been calculated for some values of n and (A2/A1) 
and these values can be found in Tables 1 and 2. 

Table 1. Efficiency e(A~, -~1 ) of A~ relative to 21,  

n 
A2/~: 

2 5 10 20 30 50 100 1000 

1 1.7777 1.5950 1.5107 1.4549 1.4312 1.4080 1.3853 1.3493 

1.3 1.6358 1.4359 1.3225 1.2201 1.1632 1.0972 1.0320 1.0000 

1.5 1.5547 1.3425 1.2172 1,1124 1.0644 1.0236 1.0023 1.0000 

2.0 1.4025 1.1804 1.0785 1.0185 1.0049 1.0003 1.0000 1.0000 

2.5 1.3034 1.1082 1.0296 1.0030 1.0003 1.0000 1.0000 1.0000 

3.0 1.2367 1.0656 1.0118 1.0005 1.0000 1.0000 1.0000 1.0000 

5.0 1.1105 1.0128 1,0005 1.0000 1,0000 1,0000 1.0000 1.0000 

10.00 1.0351 1.0008 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 2. Efficiency e(A~, X2) of A~ relative to ]/2. 
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n 

2 5 10 20 30 50 I00 1000 

1 1.0666 1.1450 1.1931 1.2304 1.2479 1.2660 1.2850 1.3176 

1.3 1.1186 1.1627 1.1642 1.1360 1.1086 1.0693 1.0242 1.0000 

1.5 1.1167 1.1319 1.1087 1.0656 1.0397 1.0152 1.0015 1.0000 

2.0 1.0880 1.0670 1.0339 1.0088 1.0023 1.0001 1.0000 1.0000 

3.0 1.0448 1.0182 1.0037 1.0001 1.0000 1.0000 1.0000 1.0000 

5.0 1.0150 1.0023 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 

10.00 1.0027 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

. Co-ordinatewise loss of MSE of A~ and A~ 

By using the max-min formula of isotonic regression (see Ba~low et al. (1972)), 
we have 

(2.1) 
(2.2) 

A~ = min()~l, ()fl + X2)/2), 

A~ = max(,~2, (21 h- 22) /2) .  

We introduce the following notations 

(2.3) R(A;) = E[(A~ - A~)2], i = 1, 2. 

(2.4) n()(~) = E[()(i - Ai) 2] = A2/n,  i = 1, 2. 

(2.5) e(A*, X~) -- R ( f f i ) / R ( A * ) ,  i = 1, 2. 

We shall call e(),*, )f{) the efficiency of A* relative to X{, i = 1, 2. For 
convenience, we denote A~/(A1 +A2) by Z~, i = 1, 2, (A2/A1) by yl and (A1/A2) by 
y2- Since A1 < A2, we have yl > 1, 0 < y2 < 1, 0 < Z1 < (1/2) and (1/2) _< Z2 < 1. 

Since Xi has a gamma distribution with pdf 

(2.6)  gi(Y) : ( 1 / ( n  --  1)! ) (n / ,~ i )ny  n-1  exp( - -ny / /~ i ) ,  y >_ 0 

for i = 1, 2 and the relationship 

c~ m--1 

(2.7) (1 / (m - 1)I)(~ m fz ym-1  exp(-c~y) dy = e x p ( - a x )  E ((xx)i/i!  
i=0 
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holds for any positive integer m and for any a > 0, it easily follows that 

(2.8) E[(~ - ~,)2I:t~ : x] 
: [(n + 1)/4n]A~ + A~ - AIA2 + [(~2/2) - ~ ] x  + (x2/4) 

+ e x p ( - ~ / a ~ )  3/4)x ~ ~x/a# / i ! ]  

- (a~/2)x~_,[(~/~)~/i!] 
i = 0  

n + l  

- [ ( n  + 1)/4nlA~Z[(nx/A2)Vi! ] 
i = 0  

n - 1  

- ~lXZ[(nxl~2)i/ i!]  
i----0 

+ AlA2~_,[(r~x/A~)~/ i !]  . 
i = O  

By taking the expectation of (2.8) with respect to the distribution of X1, we have, 
after simplification, 

(2.9) R(AD= (~ + ~)[(n + 1)/4n] - (~1~)/2 
{ ~-1(~+~ 1) 

+ (1 - Z1) n [3(n + 1)/4nlA22Z2 E + Z 1 
i 

i = 0  

n 

-(1/2)A2Zl~( n + 1 ) Z  ~ 
i 

i = 0  

n + l  

- [ ( n +  I)/4n]A~Z( n+i-. 1)Z~ 
i = 0  

n--i 

z ( o + 
i 

i = 0  n } ( n + ~ - l ) ~  . 
+ AIA2Z\ i 

i----O 

Similarly, we obtain 
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(2.10) 

{ .1 ) + (1 - z2) ~ -[3(n + 1)/4n]A~Z~-~( n +i + 1 Z~ 
\ i 

i=0  

+(A21/2)Z2E(n~i)z~ 
i=0 

n + l  

+ [ ( n + l ) / 4 n ] A ~ E (  n +i- .  1)Z ~ 
i=0 

r t -1  

i 
i=0  

- } _ A I A 2 E ( n + i - 1 ) Z  ~ . 
\ i 

i=0  

T H E O R E M  2.1.  

(a) R(~q) < R(21), 
(b) lim(~2/~,)__,~e(A ~, 2 1 )  = 1, 

(c) l i m , , ~  e(A~, J (1 )  = 
1 
4/3 

if As > A1, 
if A2 = A1. 

PROOF. Since (1-  Z1)-m = Ek~--° (m + k - 1 )  Zkl' f°r any p°sitive 

m, it follows from (2.9) that 

(2.11) [R(~T) - R(X1)]/R(X1) 

= n  - [ 3 ( n + l ) / 4 n l E  n + k + l  Z~(1-Z1)  ~+2 
k 

k = n  

k 
k = n + l  

k 
k = n + 2  

oo 

+ E (n  + k)Zlk(1_ z1)n+l 
k 

k = n  

-- YI E (n + k -  1)Zlk(1_ z1)n . 

k 
k = n + l  

Using the relationship between binomial and negative binomial distributions 
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(see Meyer (1970), p. 174) we have from (2.11) 

( 2 . 1 2 )  [ R ( ~ )  - R(21)]/R(2~) 
= n { - [ 3 ( n  + 1)/4n]B(n + 1, 2n + 1, 1 - Z1) 

+ (yl /2)B(n,  2n + 1, 1 - Z1) 

+ [(n + 1)/4nly~B(n - 1, 2 n  + 1, 1 - Z~)  

+ B(n, 2n, 1 - Z1) - y l B ( n -  1, 2n, 1 - Z1)}, 

where 

k 

(2.13) B(k, n, p ) : E ( n r ) P r ( 1 - p )  n-r 
r = 0  

( n )  f o l - P t n - k - l ( 1 - - t ) k d t  ' (2.14) = (n - -  k) k 

for O < _ k < n  

(see Feller (1957), p. 163 for (2.14)). Using (2.14) in (2.12), we obta in  

( 2 . 1 5 )  [ R ( ~ )  - R(R1)] /R(21)  

1/(1+yl) t n - l (  1 t)n-l[A(yl)t2 -t- B(yl ) t  + C] tit, = n ( 2 n )  ~ o n - 

where 

A(yl) = [(2n + 1)/41(y 2 - 2 y l  - 3), 

B(y l )  • (1 /2)(yl  -Jr 4n + 3), 

C = - ( 2 n  + 3)/4.  

It  can be shown tha t  

A(yl) t  2 + B(yl ) t  + C < 0 for t e [0, 1/(1 -Jr- Yl)). 

By (2.15), par t  (a) of Theorem 2.1 holds. 
Since 4t(1 - t) < 1, we have from (2.15) 

I[R(~)/R(X1)]- 11 < n(2n)(1/2) 2n-2 fl/(l+Yl)lA(yl)t2+ B(m)t +Cldt 
JO 

_< n (2 : ) (1 /2 )2n -2{NA(y1 ) l / 3 ] [1 / (1  + yl)] 3 

+[IB(yl)I/2][1/(1 + y l ) ]  2 

+1C1[1/(1 + yl)]}. 

The  r ight -hand side of the above inequali ty tends to zero as Yl -o oo and par t  
(b) of Theorem 2.1 has been established. 
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Consider the case when Yl > 1. Then 

n2(2n + 1 ~ fo z' (2.16) nB(n  + l, 2n + l, 1 -  Zl) = \ n + l ] t n - l ( 1 -  t )n+ldt  

< n2( 2n+ 1] [ZI(I'~ - Zl)] n-1 (1 - t)2dt .  
- \ n + l  

Using Stirling's approximation formula, the right-hand side of (2.16) is asymp- 
totically equivalent to 

n (3/2) [4Z1 (1 - Z1 )] n-  1 (8/3 v ~ )  

and it tends to zero as n --* oo. It follows that the first term of (2.12) tends to 
zero as n ~ ~ ,  so are the remaining terms of (2.12). Paxt (c) of Theorem 2.1 for 
the case A2 > A1 has been established. 

For yl = 1, we have from (2.15) 

[R(A~) - R(X1)] - 1 
2n f l / 2  

----n( ) [ - ( 2 n + l ) t 2 + 2 ( n + l ) t - ( 2 n + a ) / 4 ] t ' ~ - l ( l - t ) ~ - l d t  
n JO 

{ fo fo ----n(2:)  (2n ÷ 2) t n ( 1 - t ) n d t - [ ( 2 n ÷ 3 ) / 4 ]  t n - l ( 1 - t ) ~ - l d t  

f l / 2 tn+l (1  - t) n-1 dt}  
÷Jo 

/o i 1 = n ( 2 n ) ~ ( n + l )  t n ( l - t ) ' ~ d t - [ ( 2 n + 3 ) / 8 ]  t n - l ( l - t ) ' ~ - l d t  
\ n ] [  I 1 } 

+ [(n + 1)/2n] t~(1 - t) ~ dt - (1/n)(1/2) 2n+1 . 

After simplification, the above gives 

As n ~ oo, the first term on the right-hand side tends to zero by using Stirling's 
approximation formula. Thus for A2 = A1, limn-~oo[R(A~)/R(f(1)] = 3/4, which 
proves part (c) of Theorem 2.1. 

THEOREM 2.2. 
(a) R(A~) < R()~2), for n >_ 2, A1 <_ A2 and for n = 1, A1 < A2. R(A~) = 

R(22), for n = 1, A1 = A2. 
(b) lim(;~2/x,)__,~e(A~, -X2)= 1. 

(c) limn--.ooe(A~, )(2) ---- { (4/3)1 /f/f A2A2 => A1.AI' 

PROOF. Proceeding on similar lines as those for Theorem 2.1 and by using 
the relationship 

( n - - 1 )  f o P t k ( 1 - - t ) n - k - l d t  , 0 < k < n .  (2.17) 1 - B(k, n, p) = n k 
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(see Feller (1957), p. 163), we get 

(2.18) 

where 

AND HARSHINDER SINGH 

[R(A~) - R(22) l /R(X2)  

(2; ) l = n [Al(Y2)t 2 + Bl(Y2)t + CI(y2)] ( - t) n-1 dt, 
JO 

AI(y2) = -[(2n + 1)/4l(3 + 2y2 - y2), 

BI(y2) = [(2n + 1)/2](y2 - y22) + n(1 + Y2), 

C1(y2) = [(2n + 1)/4]Y22 - ny2. 

We consider JR(A;)- R(f~2)]/R(f(:) given by (2.18) as a function of Y2 and denote 
it by ¢(Y2). Thus 

= [A1 (y2) t  2 "~- B1 (y2) t  -{- C1 (y2)] t  n - x  (1 - t)  n - 1  dt. 

It can be shown that if 0 < Y2 <_ n / ( n +  1), then y2/(1 +Y2) is the smallest positive 
root of Al(y2)t 2 + Bl(y2)t + C1(y2) = 0 and Al(y2)t 2 + Bl(y2)t + C1(y2) < 0 for 
t C [0, y2/(1 + Y2)). Thus, from (2.19) it follows that  

(2.20) ¢(Y2) < 0 for y2 e (0, n/ (n  + 1)]. 

Differentiating (2.19) twice with respect to Y2 gives 

= ( n ~ {  1)/2]f0 y2/(1+~2) (2.21) ¢"(Y2) n\2n/ [(2n+ t n - l ( 1 -  t)n+l dt 

n - l l  1 }. + [y2/(1 + y~)] [ /( + y2)]~+l[(n + 1)y2 - n] 

Thus, ¢"(Y2) > 0 for Y2 > n/ (n  + 1), which implies that ¢(Y2) is convex in 
[n/(n + 1), 1]. Prom (2.19) we also have 

¢(1) ----- n ( 2 : )  [112[-(2,  + 1)t2+ 2n t -  ( 2 n -  1) /4] tn-1(1-  t) r~-I dt 
JO 

= n ( 2 n )  n t n ( 1 - t ) n d t - [ ( 2 n - 1 ) / 8 ]  t n - l ( 1 - t l ' ~ - l d t  
n 

-[(n + 1)/2nlf01tn(1 - t )  n dt + (i/n)(1~2) 2n+l }. 

After simplification, the above gives 

(2.22)  I11 = [( - - 
k 
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It is easily seen from (2.17) that 

2n--I 
(2.23) E (2n  - 1) (1/2)2n_ 1 = (1/2). 

k 
k=n 

Thus, from (2.22) and (2.23) we have 

S ~ ( 1 ) < 0  for n_>2, 
(2.24) 

¢ ( 1 ) = 0  for n = l .  

Since ¢(Y2) is convex in [n/(n + 1), 1], it follows that 

(2.25) ¢(y2) < O, y2 E (n/(n  + 1), 1). 

Part (a) of Theorem 2.2 follows from (2.20), (2.24) and (2.25). The proofs 
of part (b) and (c) of Theorem 2.2 similarly follow from their counterparts in 
Theorem 2.1. 

From the expressions (2.9) and (2.10), it immediately follows that e(~*, )~i) 
is a function of n and ~2/)~1. By using these expressions, the values of e()~, )~) 
for i = 1, 2 have been calculated by computer for some values of n and )~2/)h. 
These have been tabulated in Tables 1 and 2. 
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