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Clustering Properties of Hierarchical Self-Organizing Maps 
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Abstract. A multilayer hierarchical self-organizing map (HSOM) is discussed as an unsupervised 
clustering method. The HSOM is shown to form arbitrarily complex clusters, in analogy with 
multilayer feedforward networks. In addition, the HSOM provides a natural measure for the 
distance of a point from a cluster that weighs all the points belonging to the cluster appropriately. 
In experiments with both artificial and real data it is demonstrated that the multilayer SOM forms 
clusters that match better to the desired classes than do direct SOM's, classical k-means, or Isodata 
algorithms. 
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I Introduction 

Most of the neural-network research in pattern 
recognition, image processing, and vision has 
been focused on supervised learning. Super- 
vised neural networks, such as the multilayer 
perceptron (MLP), provide a highly efficient 
model-free method for designing an arbitrar- 
ily complex nonlinear classifier iteratively from 
examples. There are many sample cases show- 
ing the power of neural classifiers over classical 
methods; for a review see, e.g., [1]. 

A central theoretical result giving impetus to 
the increasing interest in neural networks is that 
an MLP with only one nonlinear hidden layer 
can approximate any continuous function on a 
compact domain to an arbitrary precision, or 
as a classifier it can form arbitrarily complex 
class boundaries [2], [3]. The close relationship 
between the outputs of the MLP and the optimal 
Bayes classifier has also been clarified [4]. 

However, there are some problem domains 
that cannot be solved with merely a powerful 
classifier. When the abstraction level of the 
classification task increases, the shapes of the 
regions associated together become increasingly 
complex, requiring impossibly large amounts of 
training data to form the class boundaries. 

Perhaps the most important examples of such 
problems are in machine vision and image un- 

derstanding. The essential tasks are locating and 
recognizing individual objects and compiling a 
useful interpretation from the objects and their 
relations. Both of these subtasks have proven to 
be extremely difficult. The classical approach of 
programming the a priori knowledge or model 
of the objects into the solution has severe limi- 
tations in handling all the natural variations in 
images. Also, the methods cannot easily adapt 
to unanticipated or changing situations. 

To handle the large variability of natural 
scenes the image-analysis system must have a 
large number of free parameters in the early 
stages, and estimating the parameters requires a 
lot of data. Using any neural network trained by 
supervision for the entire image-analysis system 
would therefore require a huge network with a 
correspondingly huge number of manually clas- 
sified samples, and collecting the samples would 
clearly be very expensive. 

This dilemma can be solved by using unsu- 
pervised learning techniques in early stages to 
reduce the number of degrees of freedom in the 
data. Then the final supervised classifiers, giving 
semantic labels to objects or their primitives, can 
have a much smaller number of free parameters, 
thus requiring fewer preclassified training sam- 
ples. This scheme is especially suitable for scene 
analysis, since it is fairly unexpensive to collect 
large amounts of image data and to train a neu- 
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ral network with them, as long as the images do 
not need manual analysis and classification. 

The biological neural networks seem to have 
a similar basic structure, at least at the low- 
est levels. Although the very first stages in the 
sensory information pathways are genetically de- 
termined, the signals are thereafter fed to sen- 
sory maps. It has been shown that these maps 
can be formed by means of self-organization 
[5], and there is biological evidence from, e.g., 
deprivation experiments that the maps are in- 
deed spanned by input data during the develop- 
ment of the network. Very profound conclusions 
about biological-image-analysis methods cannot 
be drawn at present. The role of expectations 
and guessing as means of creating bootstrap data 
for supervised learning is not known, but it is 
likely that the biological systems contain contin- 
uous hypothesis-generation and testing mecha- 
nisms and that feedback throughout the system 
is a very important factor in guiding the learning 
process. 

In the next sections we discuss the use of 
a multilayer version of the self-organizing map 
(SOM) neural network, the hierarchical self- 
organizing map (HSOM), as a clustering pre- 
processor in an image-analysis system. The ba- 
sic one-layer SOM, covered in section 2, divides 
the input space into convex regions in a fashion 
analogous to a one-layer feedforward network. 
The SOM is shown to have more desirable prop- 
erties than do classical clustering methods: it 
provides a natural measure for the distance of 
a point from a cluster that is adaptive to the 
local statistics of the data. The SOM forms 
one complex shape following the data distribu- 
tions in the space, so that regions of the map 
can be interpreted as clusters in the space, and 
the difference of the cluster indices is corre- 
lated to the weighted distance of all the points 
in the clusters. In the multilayer hierarchical 
SOM, discussed in section 3, the outputs of 
the first SOM are fed into another SOM as 
input, causing the SOM to divide into distinct 
cluster representations. The HSOM is shown 
to form arbitrarily complex clusters, in analogy 
with multilayer feedforward networks. Section 
4 contains experimental results on synthetic and 
real data that confirm the desirable properties 

of the HSOM. 

2 Self-Organizing Map 

2.1 Basic SOM 

The SOM, introduced by Kohonen [6], is one 
of the best-known unsupervised-learning neural 
networks. It belongs to the class of vector- 
coding algorithms. In vector coding the prob- 
lem is to place a fixed number of vectors, the 
codewords, into the input space, which is usually 
a high-dimensional real space. Each codeword 
will correspond to and represent a part of the 
input space: the set of points in the space that 
are closer in distance to that codeword than to 
any other codeword. This produces a Voronoi 
tessellation into the space. The overall criterion 
in usual vector coding is to place the codewords 
in such a way that the average distances from 
the codewords to the input points belonging to 
their own Voronoi compartment are minimized. 

One way to understand the SOM is to con- 
sider it to be a neural-network implementation 
of this basic idea: each codeword is the weight 
vector of a neural unit. However, there is an es- 
sential extra feature in the SOM. The neurons 
are arranged in a 1-, 2-, or multidimensional 
lattice such that each neuron has a set of neigh- 
bors, e.g., in two dimensions either four or eight 
neighbors can be chosen. The goal of learning 
is not only to find the most representative code 
vectors for the input space in mean square sense 
but also to realize a topological mapping from 
the input space to the grid of neurons. Mathe- 
matically, this can be defined as follows. 

For any point x in the input space £/, one or 
several of the codewords are closest to it. In the 
following, the distance is the Euclidean distance, 
but a generalization to other distance functions 
would be straightforward. Assume that mb is the 
closest among all the codewords ml , . . . ,  raM: 

II x - m b  II = 

m i n i [ x - m y  [I, j =  1 , . . . ,M,  (1) 

Where j is the usually multidimensional index 
giving the position of mj in the lattice. To make 
the correspondence unique, assume that some 
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tie-breaking rule is used if several codewords 
happen to be at exactly the same minimum dis- 
tance from x. The unit b having the weight 
vector mb is then called the best-matching unit 
for vector x, and index b = b(x) can be consid- 
ered to be the output of the map. Note that 
for fixed x equation (1) defines the index b of 
the best-matching unit and for fixed b equation 
(1) defines the Voronoi compartment of unit b 
as the set of points that satisfy (1). By the 
above relation the input space is mapped to the 
discrete set of neurons. If each neuron is taken 
to represent one cluster, then the clusters will 
have a convex polyhedral shape. 

A topological mapping is defined as follows: 
if an arbitrary point x c 22 is mapped to unit 
i, then all points in a neighborhood of x are 
mapped either to i itself or to one of the units 
in the neighborhood of i in the lattice. This im- 
plies that if i and j are two neighboring units, 
then their Voronoi compartments have a com- 
mon boundary. Whether the topological prop- 
erty can hold for all units, however, depends 
on the dimensionalities of the input space and 
the neuron lattice. In some earlier works on 
topologically ordered neuron layers [7], such a 
mapping was made one-to-one by using a contin- 
uum instead of the discrete neuron lattice and 
by requiring that neighborhoods of points be 
mapped to neighborhoods. Because no genuine 
topological maps between two spaces of different 
dimensions can exist, a two-dimensional neural 
layer can only follow locally two dimensions of 
the multidimensional input space. 

The Kohonen algorithm for self-organization 
of the code vectors is as follows [5]: 

(i) Choose initial values randomly for the 
weight vectors rni of the units i. 

(ii) Repeat steps (iii) and (iv) until the algorithm 
has converged: 

(iii) Draw a sample x from the probability dis- 
tribution of the input samples, and find the 
best matching unit b according to equation 
(1). 

(iv) Adjust the weight vectors of all units by 

mj := my + 7 * hb,j * (x - my), (2) 

where 7 is a gain factor and hb, j is the so- 
called neighborhood function; usually it is a 

function of the distance b - j  of units b and j 
measured along the lattice. (In the original 
version [6] the neighborhood function was 
equal to 1 for a certain neighborhood of 
b and was 0 elsewhere. The neighborhood 
and the gain 3' should slowly decrease in 
time.) 

The convergence and the mathematical proper- 
ties of this algorithm have been considered by 
several authors, e.g., [6], [8], and [9]. 

2.2 SOM Optimization 

The map algorithm is related to an energy func- 
tion in [8] and [10]. Let lib denote the set in the 
input space where (1) holds, i.e., the Voronoi 
compartment of unit b. Let p(x) denote the 
probability density of the inputs x. Define the 
cost or energy function as 

E ( m l , . . . , m M )  

= ]f x - m k  '12 

• k 

(3) 

The functional (3) is piecewise differentiable. 
Let us write it in the equivalent form 

E = E(ml,. . . ,mM) 

= / ~ hb,k ll x - mk ll2 P(z)d(z), (4) 

with b defined appropriately as the index of the 
best-matching unit. This moves the discontinuity 
of the V,. to the function 

b = b(x, ml, . . . ,  raM). (5) 

The usual way to minimize a functional like E, 
in which the density p(x) is unknown, is to resort 
to sample functions: for each x define 

El(X, m l , . . . , m M )  = E h b , k  I] x -  mk ]12 • (6 )  
k 

Functional E is the mean value of this with 
respect to the density p(x). Functional El is 
well defined and unique (i.e., a function) almost 
everywhere in the space of its arguments, except 
the set of x, mi , . . . ,  mM defined by the condition 
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that x has exactly the same distance from two 
or more points rn~: 

S = {x, mx, . . . ,mM[ II x--rob II 

= II x - m~ II for some i # b}. (7) 

In fact, for any fixed ml , . . . ,  mM the set S con- 
sists of all the borders of the Voronoi tessellation 
in the x-space. Denote the complement of S by 
S. In S the index b, hence hb,k, is not unique, 
but in S the index b is unique and is piecewise 
constant. It is not affected by any gradient with 
respect to x or one of the rn~. Note that S is 
a closed set and that S is open. This means 
that if (x, m l , . . . ,mM)  E -S, there is some e- 
neighborhood that is also in S. Any differential 
change in z or some rni stays within this neigh- 
borhood. Because b cannot change its value 
within one connected region of S, it follows 
that b is constant over this neighborhood. 

It now holds that E1 is differentiable in all 
mi as long as (x, m j , . . . ,  raM) E S, and it holds 
that 

dE1 
~m--S - 2hb,~(z- rod. (8) 

A steepest-descent minimization of E1 leads di- 
rectly to the usual SOM learning rule: 

1 dE1 
m,(t + 1) = m~(t) - ~T drm(t ) (9) 

= mi(t) + 7hb,i(x(t) -- mi(t)) (10) 

i = 1 , . . . ,n .  (11) 

Thus the original SOM algorithm (with constant 
neighborhood function) is a gradient-descent 
method based on sample functions El. 

It was shown by Kohonen [10] that when the 
goal is to minimize the original function E of 
(3), extra terms appear in the algorithm because 
of the discontinuities at the set S. 

The minimization of E becomes straightfor- 
ward in a special case when there is no neigh- 
borhood, 

hi,j = 5~ d. (12) 

In this case the learning algorithm and the re- 
sulting behavior of the map become similar to 
vector quantization (VQ) according to the k- 
means algorithm [11]. This can be seen from 
the following expansion, which may have wider 

applicability in the analysis of the energy func- 
tion E. It can be further expressed in a form 
that contains only the zeroth-, first-, and second- 
order moments over regions V~ but no other 
integrals. Let 

= fv. p(z)dz, O9 i 

1 fy~ xp(x)dz, 
Ci---- 60i 

= ~ II z - c~ II 2 p(x)dx. 5r i 

Then 

E = E E hi,k 
i k 

f .  ll z - II 5 p(x)dx m k  

= E E h ,  k 
i k 

~[11 x - 112 + II - 112 ci  ci  m k  

-2 (x  - cdT(ci - mk)lp(x)dz 

i i k 

It has been assumed that Y]k h~,k = 1 for all i. 
If h~,k = 5~,k, then we obtain 

E - -  }-~a~ + }--~o~ l[ c~-  m~ 112 . (13) 
i i 

Now mi = ei is at least a local minimum because 
at these points the gradient with respect to rnj 
is zero. At the same time, the sum ~ i  a~ is 
minimized. This is the basic VQ coding solution. 

2.3 SOM and Clustering 

Many proposed clustering algorithms have been 
based on minimum-spanning trees, graph theory, 
etc. [12] capable of forming arbitrarily complex 
clusters. The methods use different distance 
measures D(xi, Ck) for the points x l , . . .  ,XN to 
be clustered from the clusters C1,. . . ,CK, and 
they also use different iterative or one-pass al- 
gorithms by which all the points are allocated 
into clusters. A usual criterion is based on the 
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distance of each point from its nearest cluster: 
for point xi, let D(xi, Ck(i)) = mink D(xi, Ck). 
Then the function to be minimized in clustering 
is 

N 

J(CI, . . . ,  CK) = E D(xi, Ck(i)). (14) 
i=1 

If D(xi, Ck) is measured as the distance of xi 
from the nearest point in the cluster Ck, 

D(xi, Ck) = minj{d(x~, yj), yj e Ck}, (15) 

the resulting clusters will be long chains in the 
space, which is desirable if the data from each 
class are known to have long irregular distribu- 
tions. The single-linkage clustering method [12] 
uses this distance measure. However, the dis- 
tance from the closest point does not take into 
account the cluster shape. A good measure 
would be an appropriately weighted distance 
from all the points in the cluster, assuming that 
it could be computed without large cost. 

The SOM is now shown to use such a measure 
implicitly. The following analysis is based on the 
energy function E in (3). For comparisons with 
the standard clustering framework, we assume 
in the following that the input distribution is 
discrete uniform, i.e., there exists only a finite 
sample x l , . . . , xN  of possible input vectors. We 
also assume that the neighborhood function h6,j 
is a function of the difference j -  b only and 
use the name h ( j -  b) for it. The function will 
be assumed to be spherically symmetrical and 
monotonically nonincreasing in the sense that 

h(k l )  = h(k2) if II kl II = II k2 II, (16) 

h(k~) > h(k2) if II k2 I1~11 kl II, (17) 

where I[ kl I1 is a norm of the discrete (multidi- 
mensional) index space. 

Instead of the Voronoi compartments, it is 
now more appropriate to use the following 
Voronoi index sets: 

!b = {i1 II xi - m b  11 
= rain II x~ - ms II,J = 1 , . . . ,  M} ,  (18) 

which gives the indices of all vectors xi falling 
into the Voronoi compartment of rob. 

The energy function now becomes 

E(ml , . . . ,mM)= E E h ( i - k )  
i k 

II ~ - -~k II 2 • (19) 
pEI~ 

The cost introduced by one data sample zp is 

E'(xv) = E h(b(xv) - k) 11 Xp - mk II 2 . (20) 
k 

The cost function E'(xp) can be interpreted as 
the distance from the point xp to the duster 
represented by the whole SOM network, and 
learning tries to minimize the total distance from 
points to the duster. 

When the SOM training has converged, the 
gradient of the cost function is zero for each 
unit, regardless of whether the state is a global 
or a local minimum: 

d E  _ 2 E h ( i -  k) E ( x v  " ink) = 0. (21) 
d m k  i veil 

Note that, because there are only a finite set 
of vectors xi, a differential variation of mk will 
not change the index sets Ii. Denote now the 
number of vectors x v for p E Ii by Ni, and 
denote the mean of xp for p E I i  by ci, i.e., 
ci = (1/N~))-~.vel~ xv" We now make the approx- 
imations 

N1 = N2 . . . . .  N . ,  (22) 

and 
h ( i -  k) = 1 for all k. (23) 

i 

Equation (23) is no restriction because any con- 
stant value can be used instead of unity. Equa- 
tion (22) can be motivated as follows: it is equiv- 
alent to the condition that, under the assump- 
tion of equal probabilities for all input vectors 
Xl, . . . ,  xs, each unit mk has an equal probability 
of being the best-matching unit. In training with 
the Kohonen algorithm, for high-dimensional 
data the units will become equiprobable. Be- 
cause of equation (22), equation (21) gives 

h(i - k ) ( c ~  - i n k )  = O, ( 2 4 )  
i 
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and, finally, because of (23), 

rn~: = ~ h(i - k)ci. (25) 
i 

This can be interpreted as a convolution of the 
sequence h with the sequence e l , . . . ,  CM to yield 
the corresponding vectors m~:. Now (25) can be 
substituted into the cost function (20) to yield 

E'(xp) = h(b(xp) -k). 
k 

Xp -- ~i 
h(i - k)-~i J~I~ xj 2. 

(26) 

In (26) the summation is first computed over 
all the units i and then over all the samples xj 
mapped to the unit. By changing the summation 
to run over all the data samples we get 

= h ( b ( x , , )  - k ) .  
k 

Xp N 2 

- Z k )  . 
T:I Nb(.~) 

(27) 

To further simplify the expression we can ap- 
proximate the unit locations mj by the centers 
of their tessellations cj since the neighborhood 
function is a low-pass filter (by (17) it is a non- 
increasing function), and then each unit will be 
in the weighted average of the tessellation cen- 
ters of its neighbors. Clearly, the more curved 
the map is, the more the mj move away from 
the % since a curved map contains more high 
frequencies that the neighborhood filters out. 
For a locally linear map low-pass filtering has 
no effect and the rnj coincide with the % Then 
Eq. (20) simplifies to 

= h ( b ( x , , )  - k ) .  
k 

ggp Nk i~Eik xi 2" (28) 

The cost introduced by xp is then the weighted 
distance from all the other points in the training 

data. The weighting depends on how far away 
the points are mapped on the lattice. The 
virtue of the weighting is that the weighting 
always encompasses roughly the same amount 
of data samples and since the distances on the 
map reflect the distances in the input space, the 
weighting decreases as the distance of the data 
points increases. 

3 Hierarchical  SOM 

The hierarchical SOM is here defined as a two- 
dimensional SOM whose operating principle is 
as follows: 

(i) For each input vector x the best matching 
unit is chosen from the first-layer map and 
its index b is input to the second layer. 

(ii) The best-matching unit for b is chosen from 
the second-layer map and its index is the 
output of the network. 

One thing is immediately clear from the above: 
because each first layer map unit i has a convex 
polyhedral Voronoi region V/defined by (1) and 
each second-layer unit j is the best-matching 
unit for a subset, say, i l  . . . .  ~ ig, of the first-layer 
indices, the second-layer unit is in fact the best 
matching unit for any x E uK=:v/,. This region 
is an arbitrary union of nonoverlapping convex 
polyhedral regions. Any region in Nn can be 
approximated by such a union to an arbitrary 
accuracy when the number of component regions 
V/~ is arbitrarily large. Thus clusters of arbitrary 
shapes can be represented by the two-layer map. 

By analogy to the basic approximation re- 
sult of two-layer Perceptron networks [3], this is 
purely an existence result. There is no guaran- 
tee that a certain predetermined cluster shape 
could be learned by the map. However, in un- 
supervised learning this is an empty question 
because by definition no target clustering can 
exist. 

In [9] and [13] the theory of hierarchical maps 
is derived from the principles of coding theory. 
It is shown that the hierarchical map minimizes 
the decoding squared error if the training neigh- 
borhood in SOM equals the probability distri- 
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Fig. I. Example of clusters forms of the HSOM for spiral 
data. 

bution of errors in the codes. In hierarchical 
VQ the higher-order map quantization error is 
the source for the lower-order map code errors. 
In this context the hierarchical SOM is optimal 
in quantization. 

In clustering terminology, whereas the first 
SOM layer forms one large cluster of all the data 
samples so that the total distance of the samples 
from the cluster is minimized, the second map in 
HSOM then splits the large cluster into equal- 
size parts. Since the distance relations of the 
data samples are preserved on the map, the 
cluster numbers or indices of the best-matching 
units can be used as a measure of distance of 
the original data samples. What is gained by the 
HSOM is that each high-dimensional data vector 
is mapped to a low-dimensional discrete value 
so that a comparison of the values implicitly 
contains a comparison of the original distances. 

Figure 1 shows an example of decision regions 
of the HSOM. The black spiral-shaped stripes 
are the data points. The HSOM in the figure 
contained 100 units in the first layer and two 
units in the second layer. Regions mapped to 
the two clusters defined by the two second-layer 
units are shown as different gray levels. 

The main advantage of HSOM clustering with 
respect to classical clustering methods, e.g., k- 
means, is the adaptive distance measure. In 
the k-means or Isodata family of methods [11] 
clusters that are too large are split into smaller 
ones and clusters that are too small are merged 
together until all the clusters are of the desired 
size. In practice it is very difficult to determine 

a suitable size for the clusters. Also, Isodata 
clustering algorithms can make only convex clus- 
ters because of the nearest-neighbor clustering 
rule. 

Unlike simple linkage clustering, the HSOM 
offers a distance measure that takes into account 
all the points in the cluster. As can be seen 
from (20), the cost introduced by one data point 
contains the distance of the point from all the 
other clusters, weighted by the distance of each 
cluster along the lattice. 

4 Experimental Results 

In an experiment with artificial data, random 
Gaussian input classes with elongated shapes 
were generated (see figure 2) and the confusion 
matrices of clusterings, i.e., the distribution of 
each class among the clusters, were formed. 
The perfect clustering would be such that each 
cluster contains data points from only one class. 

An appropriate measure for the goodness of 
any clustering ensemble is the mean columnwise 
entropy of the confusion matrix. It measures 
the width of the distribution of points from one 
class. For example, if we have 10 true classes 
and 40 clusters, the perfect clustering would 
map each class into a maximum of four clusters, 
corresponding to the entropy 2.0. An entropy 
value of 3, say, would indicate that each class is 
on average distributed into eight clusters. 

In each experiment run we generated a new 
data ensemble of 10 Gaussian-distributed classes 
with random class centers, principal-axis direc- 
tions, and variances. The variances of the classes 
were bounded so that the main-axis variance 
was randomly 1 to 10 times the minor-axis vari- 
ance. The number of data samples in each 
class was either constant (N = 300) or random 
(200 _< N _< 400). 

Clustering the data was tested with 1-dimen- 
sional maps of sizes 40, 20, 10, and 5 units for 
both SOM and HSOM. The first-layer map for 
the HSOM always contained 160 units. 

The results averaged over several class ensem- 
bles are presented in figures 3 and 4. The figures 
show two entropy measures for both SOM and 
HSOM networks: clusters/class is the column- 
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Fig. 2. Example test set of 10 clusters. 

wise entropy, i.e., it tells how many clusters are 
used to cover one class, and classes/cluster is the 
rowwise entropy, i.e., it tells how many classes 
each cluster has collected samples from. The 
ordinate axes in the figures show the widths of 
the distribution compared to those for perfect 
clustering. For example, the value 2.0 for (10 
classes)/(40 clusters) means that the classes are 
on average spread into eight clusters instead of 
four, which would be the optimum case. 

In figure 3 all the classes contained the same 
number of data points (N = 300), which favors 
SOM-type clustering methods that try to make 
equal-size clusters. In figure 4 the class sizes 
were random (200 _< N < 400), so that optimal 
VQ of the space is quite different from optimal 
clustering. 

In every case the SOM has a better clus- 
ters/class measure, since the clusters of SOM 
are more compact and fewer clusters are needed 
to represent a class. The classes/cluster mea- 
sure is better for HSOM, since the one-layer 
map cannot track the class boundaries as well 
as HSOM and each cluster collects points from 
nearby classes (cf. figure 1). The classification 
error depends on the classes/cluster measure, 
since the classifier cannot separate the classes 
once they have been mapped to the same cluster. 

Direct classification errors were also measured 
for SOM and HSOM, and the results are given 
in table 1. Each unit was labeled into the class 
that gave the largest number of hits for the 
unit, and the classification errors were all the 
hits from any other classes. This corresponds 
to the a posteriori Bayes classifier, since the hit 
rates for each cluster measure the probability 
density of the classes in the duster regions, and 
classification is done according to the largest 
probability. 

Note that the class distributions in figure 2 
would be rather easy to separate with any sim- 
ple classifier and that the classification errors 
of unsupervised clustering cannot be compared 
with any result of direct-supervised classifiers. 
The purpose of the clustering network was, as 
explained in section 1, to reduce the complexity 
of the data when there were not enough pre- 
classified samples to train a supervised classifier. 
For the same reason, the SOM network was not 
fine tuned by LVQ [5]. The classification error 
gives only an approximate lower limit for the 
number of errors if only the cluster identities 
are passed on to the classifier. For comparison, 
the Bayes classification error, estimated by the 
one-nearest-neighbor rule by using all the data 
samples, is about 5%, whereas the errors after 
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the different clustering methods are about 30%. 
The SOM and k-means have similar figures 

for classification errors in Table 1, which stems 
from the fact that k-means is effectively a batch- 
training version of the SOM without a neigh- 
borhood [9]. 

The experiments with the Isodata algorithm 
were performed with the Khoros data-processing 
and visualization tool 1. The Isodata algorithm 
implemented in the Khoros system contains en- 
hanced features to adapt the clusters to the local 
statistics of the data and to simplify selection of 
the split and merge parameters, but still it re- 
quired much more manual experimenting than 
the almost automatic HSOM to find the optimal 
clustering. 

Table I. Classification errors in the clustering tests. 

Method Errors(%) 
k-means 30.3 
SOM 30.7 
Isodata 28.0 
HSOM 26.3 

As a practical example we used HSOM to 
cluster sensory information from low-level fea- 
ture detectors in a computer-vision system. The 
special feature of sensory information is that 
the signal space is often very high dimensional, 
but the actually occurring signals are implicitly 
rather low dimensional since the primary feature 
detectors tend to be orthogonal or otherwise 
mutually exclusive. 

As the primary feature detectors we used Ga- 
bor filters (Gaussian band-pass filters in the fre- 
quency domain) in eight different orientations 
and two frequencies, 7r/2 and ~r/4, giving a total 
of 16 different spatial filters, which were ap- 
plied to each point in the image. The ensuing 
16-dimensional feature vectors at each pixel po- 
sition were mapped with a 100-unit SOM to 
feature values. Another set of features were 
obtained by first mapping both resolutions sep- 
arately by a 100-unit map and then clustering 
the map outputs by a second 100-unit map. For 
a complete description of the object-recognition 
system see [14]. 

1 Khoros is software environment for data processing and 
visualization, a free software package copyrighted by the Uni- 
versity of New Mexico, Albuguerque, NM 87106. 

Fig. 5. Test images for table 2. from left to right and from 
top to bottom: T1, T2, J1, J2, P1, P2. 

Distortions in the imaging (i.e., different light- 
ings, contrasts, viewing angles) make the Gabor- 
filter responses move in the 16-dimensional 
space in a regular way. For example, increasing 
contrast makes all the edges sharper, increasing 
the responses of the high-frequency filters. If 
the clustering algorithm can find such regular 
trajectories and map them to the same cluster, 
the distortion tolerance of classification should 
be increased. 

As a test problem we recognized human faces. 
According to our experiments the feature set 
produced by the HSOM is indeed clearly more 
distortion tolerant than that of the direct SOM. 
Examples of the tests are given in table 2. We 
compared the features by compiling normalized 
histograms of the features over each image in 
figure 5 and computing inner products of the 
histograms; this is a simplified form of the sub- 
space classifier. One of the test images from 
each class was selected as the class prototype, 
and the other images were compared with the 
prototype. 

In larger experiments we have been able to 
classify 19 out of 20 similar face images by 
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using only  the  h i s tog rams  o f  the  100 h ie ra rch ica l  
f e a t u r e s  and  the  s u b s p a c e  classifier.  

Table 2. Comparison of SOM and HSOM features (see text 
for details). 

Class Prototype Image 
HSOM SOM 

Test 
Image T1 J1 PI T1 J1 P1 
T1 1.000 0 .212 0.212 1.000 0.515 0.627 
T2 0.550 0.295 0.508 0.790 0 .504 0.698 
J1 0.212 1.000 0.730 0.515 1.000 0.933 
J2 0.291 0 .814  0.717 0.572 0 .984 0.980 
P1 0.212 0 .730 1.000 0.627 0 .933 1.000 
P2 0.231 0 .703 0.860 0.568 0.985 0.971 

Face  r ecogn i t i on  was se lec ted  as a tes t  case 
b e c a u s e  h u m a n  faces  c lear ly  con ta in  d is t inct  fea-  
tu res  tha t  c h a r a c t e r i z e  the  face  invar iant ly  to  

changes  in imag ing  condi t ions .  T h e  p u r p o s e  
was to ver i fy  w h e t h e r  the  H S O M  ne twork  can 
find such f ea tu re s  in an unsupe rv i sed  way. T h e  
classif ier  u sed  in t he  e x p e r i m e n t s  is very pr imi-  
t ive s ince  it loses all l oca t ion  i n fo rma t ion  f rom 
the  f e a t u r e s  and  only the  re la t ive  f r equenc ies  of  

t he  f e a t u r e s  in the  image  are  cons ide red .  The  
successful  tes ts  show tha t  the  f ea tu re s  ex t rac ted  
by the  H S O M  are  r a t h e r  robus t  and  d i s to r t ion  
to l e ran t .  
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