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Asymptotic Behavior of Morphological Filters 
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Abstract. The connection between morphological and stack filters is used in the analysis of the 
statistical properties of. morphological filters. Closed-form expressions for the output distributions of 
morphological filters are given, and their statistical symmetry properties are analyzed. Asytotically 
tight bounds on the expectations of two-dimensional morphological filters, and asymptotic formulas 
for the variances of one-dimensional morphological filters are derived. These results form the basis 
for analyzing general asymptotic properties of morphological filters. 
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1 Introduction 

In most image-processing applications the per- 
formance of the filter depends on how well it 
can suppress the noise and retain the desired 
information. Obtaining quantitative informa- 
tion on how much the filters reduce noise and 
how biased they are requires statistical anal- 
ysis. Since morphological filters are nonlinear 
and are based on geometrical concepts, standard 
statistical methods cannot be directly applied to 
their analysis. Thus it is not surprising that the 
statistical theory of morphological filters is still 
far from mature. Certain statistical properties 
have been analyzed in Stevenson and Arce [1], 
and the restoration and representation proper- 
ties of noisy images with use of morphological 
filters have been studied, e.g., in Schonfeld and 
Goutsias [2].  The connection between stack 
and morphological filters, studied by Maragos 
and Schafer [3] and Koskinen et al. [4], [5], 
can be used in the derivation of the output- 
distribution formulas for morphological filters, 
and the purpose of this paper is to apply the 
stack-filter method both to the derivation of out- 
put distributions and to the asymptotic analysis 
of statistical properties of morphological filters. 
The asymptotic analysis is important because it 
shows us the general behavior of morphological 
filters. 

This paper is organized as follows. In sec- 
tion 2 basic definitions and some basic properties 
of morphological and stack filters are given. To 
obtain an adequate understanding of the filter- 
ing of noisy signals, it is desirable to determine 
the output distribution of the filter in terms of 
the input distributions. In section 3 formulas 
for the output distributions of morphological 
filters are derived for the case of independent 
inputs. These formulas apply to any input dis- 
tribution and can be used when the structur- 
ing set is small to moderately large. Certain 
symmetry properties stemming from the dual- 
ity properties of morphological filters are also 
presented. In section 4 the asymptotic behav- 
ior of dilation and erosion is studied, and in 
section 5 bounds (that are asymptotically tight 
for Laplace distributions) on the expectations of 
a large class of two-dimensional morphological 
filters are derived. In section 6 analytical for- 
mulas for output distributions are derived for 
the case of one-dimensional morphological fil- 
ters. The simulation results in Rustanius et 
al. [6] indicate that these formulas approximate 
the two-dimensional case well. The bias and 
the noise attenuation of the filter depend on 
the noise distribution. The analytical formulas 
of output distributions make it possible to derive 
asymptotic expressions for the output expecta- 
tions and variances for uniform (short-tailed) 
and Laplace (heavy-tailed) input distributions. 
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118 Koskinen and Astola 

2 Basic  Definit ions 

In this section we recall the definitions of mor- 
phological filters that process discrete signals 
by sets (see, e.g., Dougherty and Ciardiana 
[7], Serra [8], Maragos and Schafer [3], [9], 
Matheron [10], and Chu and Del. [11] (one- 
dimensional application)) and the definitions of 
stack filters (see, e.g., Wendt et al. [12] and 
Yli-Harja et al. [13]). 

In this paper the set of natural numbers is 
denoted by N, the  set of integers by Z, and the 
set of real numbers by R. 

The structuring set B is a finite subset of Z (mEN) . 

If B is one dimensional, i.e., if B C Z, and if 
for all k, n E Z(k > 0) the property n, n + k e B 
implies that {n + 1,n + 2 , . . . , n  + k -  1} C_ B, 
then the structuring set B is called convex. The 
symmetric set B e of B is defined by B ~ = { - x  : 
x E B}, the translated set B~, where the set B is 
translated by x E Z TM, is defined by B~ = {x + y : 
y E B}, and the Minkowski sum of structuring 
sets, A, B C Z m, is defined by A + B = {Xl + xz : 
xl EA,  x 2 E B } .  

The operations dilation, erosion, closing, and 
opening by B, B C Z% transform a signal f, f : 
Z TM ---, R, to another signal by the following 
rules: The dilation of f by B is denoted by 
f ® B ~ and is defined by 

( f  ® B'~)(x) = m a x { f ( y ) } ,  x E Z m. 
yEB~ 

The erosion of f by B is denoted by f O B e 
and is defined by 

( f  0 Be)(x) = min{f(y)}, x e Z "~. 
yeB~ 

The closing of f by B is denoted by fB 
is defined by 

and 

= [ ( f  • B s) e x e Z " .  

The opening of f by B is denoted by fB and 
is defined by 

fB(X) = [ ( f e b  '~)®B](x), x E Z  m. 

In the same way that closing and opening 
were defined as dilation followed by erosion 
and erosion followed by dilation, clos-opening 
by the structuring set B is defined as closing by 
B followed by opening by B, and open-closing 
by B is defined as opening by B followed by 
closing by B. The clos-opening of f by B is 
denoted by (fB)B and is defined by 

( f ' ) , ( x )  = [(fly • B e) e B) 
e B  • B] (x ) ,  • e Z m. 

The open-closing of f by B is denoted by (fB) B 
and is defined by 

(:B)B(X) = [(fly e B s) • B) 
e B  e) e B l (x ) ,  . e Z m 

In Boolean expressions we use x A y for "x 
AND y,"xVy for "x OR y," and ~ for "NOT x," 
where x and y are Boolean variables. In some 
formulas binary values are to be understood as 
being real l 's and O's. The number of elements 
in a finite set A is denoted by IAI . 

The relation ">" of binary vectors _x = 
(x l ,x2 , . " ,xn)  and y = (Yl,Y2,"',Yn) is de- 
fined as x _> y if and only if xi >_ yi for all 
i E {1,2 , . . . ,n} .  Because this relation is re- 
flexive, antisymmetric, and transitive, it defines 
a partial ordering on the set of binary vectors. 
This order property is known as the stacking 
property, and it is said that x and y stack if x > y_. 
There is also a natural ordering on Boolean 
functions. Let f and g be two Boolean func- 
tions. We write f > g if and only if f(x_) > g(x_) 
for all x__. A Boolean function f is said to be 
increasing if the relation x > y implies the re- 
lation f(_x) _> f(_y). Filters that are defined by 
increasing Boolean functions are called stack fil- 
ters. The Boolean function gD is a dual of g if 
and only if gD(X_) = g ( ~ )  for all x_. 

Let A be a finite subset of Z m. Then the 
Boolean function g indexed by the set A is a 
Boolean expression of variables za, a ¢ A, de- 
noted by g(_z) = g(Za : a E A). 

Let u(t) denote the real unit-step function 

u ( t ) = { ~  if t >_0, 
otherwise. 
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Then we use a Boolean function with its vari- 
ables indexed by a set to define the correspond- 
ing continuous stack filter in the following way. 
Let A be a finite subset of Z "~, let g(_z) be an 
increasing Boolean function indexed by A, and 
let f : Z "~ ~ R be a signal. Then the continuous 
stack filter S corresponding to g(z_) is defined by 

S ( f ) ( x )  = max{t e RI 

g ( u ( f ( x  + a ) -  t) : a e A) = 1}. 

3 General Statistical Properties 

The objective of this section is to derive out- 
put distributions for morphological filters and 
to study certain symmetry properties of dual fil- 
ters. Knowledge of the properties discussed in 
this section is important when we apply morpho- 
logical filters to noisy signals since it will give us 
an idea of the noise-suppression capability and 
the biasing effects of the filters. 

An attractive property of stack filters is that 
it is possible to derive analytical results for their 
statistical properties. For example, the out- 
put distribution of a continuous stack filter can 
be expressed by using the following proposition 
(Yli-Uarja et al [13]). 

PROPOSITION 1. Let the input values Xb(b ~ B)  
in the window B of a stack filter S be in- 
dependent random variables having distribution 
functions F6(t), respectively. Then the output 
distribution function G(t) of the stack filter S is 

G(t) = ~ 1-I(1 - Fb(t))ZbFb(t) l-zb, (1) 
zCg -1 (0) bEB 

where g(z_) is an increasing Boolean function that 
corresponds to the stack filter S and g-l(0) = 

= o } .  

Example. The Boolean function g(z_) = x_lxo + 
x_lx l  + xoxl corresponds to a median filter 
whose window is B = {-1,0,1}. If the in- 
put at -1  is a random variable having a dis- 
tribution function Fl(t)  and inputs at 0 and 
1 are random variables having a common dis- 
tribution function F2(t), then by Proposition 1 

the output distribution Gin(t) of the median fil- 
ter is G,~(t) = Fl(t)F2(t)  2 + (1 - Fl(t))F2(t)  2 + 
2Fl(t)(1 - F2(t))f2(t). 

In the following we derive the output distribu- 
tions of morphological filters when the values of 
the input signal are independent random vari- 
ables. The following simple proposition gives 
explicit stack-filter expressions for morphologi- 
cal filters (Koskinen et al. [4],  [14]). These 
expressions make it possible to calculate the 
output distributions of morphological filters by 
using Proposition 1. 

PROPOSITION 2. Let B be a structuring set. 
Then the positive Boolean function that corre- 
sponds to stack-fitter expression of 

(a) dilation by B is gd(Z_) = VbeB~, 
(b) erosion by B is g~(z__) = AbeB~, 
(C) closing by B is g~(z) = AaeB-'(VbeBo~), 
(d) opening by B is go(Z) = VaeB,(AbeBoz~), 
(e) dos-opening by B is 

= 

(f) open-closing by B is 
go (Z_) = 

Proof. We will prove only case (e); the other 
cases can be proved in a similar way. Let f 
denote the signal to be clos-opened. We obtain 
the equations 

( fB)B(X) = [(((f ® B*) 0 B) e B ~) @ Bl(x) 

= max(min(min(maxf(x + d)))) 
aCB" bcB~, cEB~ deB~ 

= max( min (max/ (x  + c))) 
aEB" bE(B+B'~)~, ceBb 

= max{t ¢ RI VaCB* (Ab¢(B+B,o),~ 
(V~eB~u(f(x + c) -- t)))  = 1}. (2) 

So, by the definition of the continuous stack 
filter, the Boolean function that corre- 
sponds to clos-opening by B is g~o(z) = 

Because dilations and erosions are, in fact, 
local extremes, their statistical properties are 
extensively studied in the theory of order statis- 
tics; see e.g., Castillo [15] and Galambos [16]. 
Proposition 3 is a simple result of order statistics 
and is here formulated in terms of morphology 
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(Koskinen et al. [4, 14]). It shows that the sta- 
tistical properties of dilation and erosion can be 
analyzed easily and do not depend on the shape 
of the structuring set. 

PROPOSITION 3. Consider a discrete signal f 
and dilation and erosion by structuring set B of 
size n at point x0. Let the values f(xo + b)(b c 
B) be independent random variables having 
the distribution functions Fl(t),F2(t),...,F~(t). 
Then the distribution function Gd of the value 
(f  ~ B*)(xo) is 

a (t) = 1]  (3) 
i=1 

and the distribution function G~ of the value 
(y (3 B'O(xo ) is 

n 

G¢(t) = 1 - H ( 1  - Fi(t)). (4) 
i=1 

Proof. Let the structuring set of the dilation and 
the erosion be B, where the size of B is n. Then 
by Proposition 2 the positive Boolean function 
that corresponds to the stack-filter expression is 
g ( Z )  = VbEBZb for dilation and is p(z_) = /XbcBZb 
for erosion. Since g-l(0) = {0_}, Proposition 1 
implies that 

n 

Gd(t) = E H( 1 - Fi(t))z~Fi(t)l-z' 
~=oi=1 

n 

= H Fi(t). (5) 
i=1 

Similarly, since p-l(o) = {0, 1} ~ -  {1} (all com- 
ponents of l's are l's), by using Proposition 1 
we obtain the result 

n 

Go(t) =  II(1- Fi(t))~Fi(t) 1-~ 
z ¢ !  i=1 

= 1 -  H ( 1 -  (6) 
i=1 

Propositions 4 and 5 (Koskinen et al. [4, 14]) 
are direct consequences of Propositions 1 and 
2. 

PROPOSITION 4. Consider a discrete signal f 
and the closing of f by a structuring set B at 
point x0. Let the values f(xo + b)(b E B + B ~) 
be independent random variables having the dis- 
tribution functions Fb(t), respectively. Then the 
distribution function G~(t) of the value fB(x0) 
of the closed signal is 

G~(t) = ~ I-I (1 - Fb(t))zbFb(t) 1-~b, ( 7 )  
zeg-~(O) beB+ B; 

where g(z__) = /kaEB.~(VbEBZb). 

PROPOSITION 5. Consider a discrete signal f 
and the clos-opening of f by a structuring set 
B at point x0. Let the values f(xo + b)(b E 
(B + B 0 + (B + B')) be independent random 
variables having the distribution functions F6(t), 
respectively. Then the distribution function 
G~o(t) of the value (fB)B(XO) of the clos-opened 
signal is 

Coo(t)= II 
zEg-I (0) bE(B+B'~)+(B+BO 

(1 - Fb(t)) bFb(t) 1-zb, (8) 

where g(z) = VaeB~*(Abe(B+BOo(VceBbZc)). 

Later we will have to know exactly what is 
meant by the term "same shape." The mathe- 
matical definition is given by the following equiv- 
alence relation. 

DEFINITION Let A and B be structuring sets. 
We say that A and B are congruent if A can 
be transformed to B by applying translations, 
reflections, and rotations by w/2. If A and B 
are congruent, then we write A ,-~ B. 

If A ~ B, then Proposition 4 shows that clos- 
ing by A and closing by B have the same sta- 
tistical behavior in the case of independently 
and identically distributed inputs since the same 
Boolean function corresponds to the stack-filter 
expressions of closing by A and closing by B. 
Obviously, this conclusion is also valid for clos- 
opening. 

Propositions 4 and 5 offer a straightforward 
method for calculating output distributions for 
closing and clos-opening. On the other hand, if 
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we know the distribution function of closing by B 
or clos-opening by B, Proposition 6 (Koskinen 
et al. [5]) gives us an easy way to find the 
output distributions of opening by B or open- 
closing by B. The reason for this is that the 
Boolean functions corresponding to the stack- 
filter expressions of opening and open-closing 
are the duals of those that correspond to closing 
and dos-opening. 

P R O P O S I T I O N  6. Let 9 be a positive Boolean 
function, let 9D be the dual of g, let S be the 
stack filter defined by g, and let SD be the 
stack filter defined by gD. Consider the filter- 
ing of a discrete signal f by the stack filter 
S at point x0 where the values in the moving 
window B([B[ = n) of the stack filter S are 
independent random variables having the dis- 
tribution functions Fl(t),F2(t),...,F,,(t). If the 
distribution function of the value S(f)(xo) is 
a(&(t),F2(t),...,F,(t)), then the distribution 
function of the value SD(f)(xo) is 

GD(FI(t), F 2 ( t ) , . . . ,  F,(t)) 
= 1 - G((1 - f l(t)),  (1 - F2(t)), 

• . . ,  ( 1  - F.(t))). ( 9 )  

Proof Because the filtering by S corresponds to 
the positive Boolean function g(_z), Proposition 
1 implies that the distribution function of the 
value S(f)(xo) is 

a(F1 (t), F2(t),..., F,(t)) 
n 

= ~ 1-I(1 - Fi(t))Z~F(t) >~, (10) 
z E G - I ( 0 )  i = 1  

where n is the size of the moving window A 
that corresponds to the stack filter S. Since 9D 
is the dual of g, then 9D(Z) = 0 if and only if 
g(z_-) -- 1. Thus Proposition 1 implies that 

aD(Fx(t), F2(t),..., F,(t)) 
n 

= ~ r I (  1 - Fi(t))z~Fi(t) I-~i 
z_~g~ ~ (0) i =  1 

n 

= I - Z II( I - ~( t ) ) l - z~F i ( t )  ~ 
_zeo -~ (0) i =  1 

= 1 - G((1 - Fl(t)), (1 - F2(t)), 

• . . ,  (1  - F.(t))). (11) 

Example. Consider an image f where the gray- 
level values f ( i , j )  of the pixels are independent 
random variables having a common distribution 
function F(t). Then by Proposition 4 the dis- 
tribution function Go(t) of the pixel values after 
closing by B = {(0,0), (0, 1), (1, 0)} is ac(t) = 
F(t) 7 + 6(1 - F(t))F(t) 6 + 15(1 - F(t))2F(t) s + 
12(1 - F(t))3F(t) 4 + 3(1 - F(t))4F(t) 3. In addi- 
tion, by Proposition 6, after opening by B the 
distribution function is Go(t) = 1 -  ( 1 -  F(t))  7 -  
6(1 - F(t))6F(t) - 15(1 - F(t))SF(t) 2 - 12(1 - 
F(t))4F(t) 3 - 3(1 - F(t))3F(t) 4. 

Proposition 2 shows that the basic morpholog- 
ical filters that are duals (in the morphological 
sense) of each other are duals also in a stack- 
filter sense. This implies the following statistical 
symmetry properties (Koskinen et al. [5]). 

PROPOSITION 7. Consider the filtering of a 
discrete signal f whose values are independent, 
identically and symmetrically distributed random 
variables having a common distribution function 
F(t) and the expectation/~. Let g be a positive 
Boolean function, let 9/) be the dual of g, let S 
be the stack filter defined by g, and let SD be the 
stack filter defined by 9/). If the expectation of 
the values of f after filtering by S is E{S( f ) }  = 

+ ~, then the expectation of the values of 
f after filtering by SD is E{SD(f)}  = # -  ~. 
Moreover, the output variances of S and S/) 
are equal. 

Proof. Proposition i implies that the distribution 
function of the values of the signal after filtering 
by S is (w(z) is the Hamming weight of z) 

G(F(t)) = E (1 - F(t))W(OF(t) ~-w(~-) (12) 
_zeg-l(0)  

and that the distribution function of the values 
of the signal after filtering by S/) is 

GD(F(t)) = E (1-F(t))w(~-)F(t)~-w(~-)" (13) 

z~g51(0) 

Now, Proposition 6 implies that 
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E (1 - F(t))w(~-)F(t) n w(~_) 

= 1 - ~ (1 - F(t))n-"(~-)F(t)w(~-). (14) 

Since F(t) is symmetric, F(# + ~) = 1 - F ( # -  ~), 
implying 

G ( F ( p + ~ ) ) =  E (1-F(#+[))w(-~)  
z~-l(O) 

F ( ~  + ~)~-w(~) 

= 1 -  E (1-F(tt+~))~-w(~-) 
z_cg D' (o) 

F(~ + ~)"(~-) 

= 1 - -  ~ (1-F(tt-~))~(-~) 
ZCgD 1 (0) 

F ( ~  - ~)~-~(z) 

= ] -- GD(F(# - ~)). (15) 

Thus the output distributions of S and SD are 
mirror images with respect to #. This proves 
Proposition 7. 

COROLLARY 7.1. Consider the filtering of a 
discrete signal f whose values are independent, 
identically and symmetrically distributed random 
variables having the expectation #. Let the 
expectation of the output after dilation by B be 
E { f  ® B} = # + ~1, let the expectation of the 
output after closing by B be E { f  e} = # + ~2, 
and let the expectation of the output after clos- 
opening by B be E{(FB)B} = /~ + (3. Then 

(a) after erosion by B the expectation is E { f  0 
B }  = ~ - { 1 ,  

(b) after opening by B the expectation is 
E { y , }  = # - ~2, 

(c) after open-closing by B the expectation is 
E { ( f ~ )  B} = ~ - ¢3. 

COROLLARY 7.2. Consider the filtering of a 
discrete signal f whose values are independent, 
identically and symmetrically distributed random 
variables. Then 

(a) the variances of the dilated signal f ® B and 
the eroded signal f Q B are equal; 

(b) the variances of the closed signal fB and 
the opened signal fB are equal; 

(c) the variances of the clos-opened signal 
(fB)B and the open-closed signal (fB) B a r e  

equal. 

4 Asymptotic Behavior of Dilation and Erosion 

In this section we analyze the asymptotic be- 
havior of dilation and erosion in the cases of 
uniform and Laplace distributions. The results 
that we derive here are important because they 
are useful in the analysis of compound morpho- 
logical operations. First, we recall one concept. 
Let f : N ~ R and g : N ~ R be two func- 
tions. Then f is asymptotically dominated by g 
if and only if there exist real numbers A and 
no such that If(n)l <__ AMn)I for all n > no. 
If f is asymptotically dominated by g, we write 
f (n)  = O(g(n)). The following proposition is a 
direct consequence of Proposition 3. 

PROPOSITION 8. Consider the filtering of a 
discrete signal f whose values are independent 
and identically uniformly distributed on [0, 1]. 
Let B be a structuring set of size n. Then after 
dilation by B, for the expectation 

1 
E { f  ® B} = 1 (16) 

n + l  

and for the variance 

v{y ,  B} = V + O , (17) 

and after erosion by B, for the expectation 

1 
E { f  ® B} = (18) 

n + l  

and for the variance 

1 
V { f  Q B} = -~ + 0 . (19) 

Henceforth, we denote by L(o o the Laplace 
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distribution whose distribution function F ( t )  is 

F ( t )  = e-~lXldx. (20) 
O 0  

When we study the asymptotic behavior of mor- 
phological filters in the case of the Laplace 
distribution, the folloWing two lemmas are very 
useful. 

LEMMA 1. Let F ( t )  be the distribution function 
of the Laplace distribution L(a).  Then it holds 

oo x F(x)"  dx 

1 1 ~ 1 - 2  -~ 
- oen2 - ~  + -a k . (21) 

k=l 

Proof. First we show that 

fo°° ( ~ x )  ~--~. 2.k 
x F ( x )  ~ d x = - i  1 -  

Oz k=l "~ 

Substituting e -~x = 2t, we obtain 

(22) 

x F ( x ) "  dx  

= - x 1 - ae-~Zdx  
2 

= - - (1 - t ) ~ - l ( - 2 ) d t  
2 2 
n fl /2 

= g Jo ( -  In 2t)(1 - t ) " - ld t .  

W e  write 

A ( n )  = f l / 2 ( _  In 2t)(1 - t )n - ld t ,  
Jo 

and so 

(23) 

(24) 

f 
l/2 

A ( n )  = ( -  In 2t)(1 - t) ' -2 
dO 

- t ( -  In 2t)(1 - t ) " -2dt  

f 
l/2 

= A ( n  - 1) + t In 2t(1 - t)~-Zdt 
dO 

fO (1 -- t) n-1 = A ( n -  1) + 1/21n2t n---i" dt 

f 
l/2 (1 - t) n-1 

+ n - - i  dt 
dO 

1 
= A ( n -  1) - -~--~_lA(n) 

(1 - t) n 1/2 

0 

1 
= A(n - 1) - -~--~_lA(n) 

1 - 2 -~ 
-t n (n  - 1)" (25) 

Writing (25) then in form 

1 - 2 -'~ 
n A ( n )  = ( n -  1)A(n - 1) + - -  (26) 

n 

and solving n A ( n )  gives 

1 ~ 1 - 2  -k 
A ( n )  n ~ "  -k- ' (27) 

k=l 

implying equation (22). Since 

x f ( x )  ~ d x -  (28) 
oo a n 2 "  ' 

Lemma 1 follows. 

LEMMA 2. Let F ( t )  be the distribution function 
of the Laplace distribution L(o 0. Then it holds 
that 

f~eoX2 ( d F ( x ) n )  dx 

1 
O~2rt22n-1 

+ V  k=l z=l --i " 

Proof. First we show that 

;2) 
= 7 1 . 

k=l l=1 

(29) 

(30) 
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Substituting e -"~ = 2t, we obtain 

= n-Jo2 f X2 1 -  ~e-~Xdx 

n f °  (ln~gt) 2 = - - (1 - t)'~-l(-2)dt 
2 /2 

= n__n__ fl/2(ln2t)2(1 _ t) '-ldt.  
°£2 JO 

We write 
fl/2 

B(n) = Jo (ln2t)2(1 - t)~-'dt' 

and so 

f 
l/2 

B(n) = (In 2t)2(1 - t) "-z 
J0 

- tOn  202(1 - t),-2dt 

= 1) 

_ £1/2 ton 2t)2( 1 _ t) n-zdt 

= B ( n -  1) 

f 
l/2 (1 -- ~:)n-t 

+ 2 ( -  In 20 dt 
ao n -  1 

fU2(!  n (1 - t) n-I 2t) 2 ao n -  1 dt 

1 
= B ( n -  1) + -~T_IB(n) 

fo  /2 t)  n-1 +2 ( - l n Z t ) ( 1 - n -  1 

Since by equation (27) 

/,1/2 (1 - t) "-1 
2J0 ( - I n 2  0 n - 1  dt 

2 ~ 1 - 2  -~, 
n 2 -  n 2 .~  I¢" 

k=l 

we obtain 

1 
BOO = 1) 

n - 1  
2 ~ 1 - 2  -k 

"t- ~2 __----""~ )g ' 
k=l 

(31) 

(32) 

dr. (33) 

(34) 

(34) 

and solving 

B(n) = in -k ~ 1 
k=l /=1 

as before implies equation (29). Since 

F(x) n d x -  a2n22n_l , 

Lemma 2 follows. 

(36) 

(37) 

LEMMA 3. Let F(t) be the distribution function 
of the Laplace distribution L(c0, and let the 
distribution function of a random variable Y be 
F(t) '~ Then for the expectation of Y 

E { Y }  = 1 In n + O(1),  (38) 
Ol 

and for the variance of Y 

V{Y}  = r/In n + 0(1), (39) 

1 ~ - ~ 2  -k 
= ~ k " (40) 

k=l 

where 

Proof. Since the output distribution function of 
Y is F(t) n, by using Lemma 1 we obtain the 
asymptotic formula for the expectation 

E{Y}  - 1 1 ~ 1 - 2 -k 
~n2--- G + - 

k=l 

1 Inn + 0(1). 
o~ 

(41)  

By Lemma 2 we also obtain the second moment 

E { y 2  } _ 1 
o~2n22n-1 

1 (k~12~--21-~ 2 - t )  (42) 
+ ~ = z=l 

Now, using equations (41) and (42), we obtain 
the asymptotic formula for the variance 
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V{Y} = E{Y 2} - (E{Y}) 2 

_ 1 1 ~ - ~ , 2 ~ - , 1 - 2 - '  
o~2n22n_l  + ~'~ k "/ 

k= l  /=1 
2 

an2------ ~ + - Oz k=l  

OL 2 k l 
k=l  1=1 

- k + o ( 1 )  

1 ~ 1 ~ - , 1 - 2  -~ 

k=l  l=l 

0:. 2 k l 
k=l  l=k+l 

1 ~ 2  - k T ~ - , 1 - 2  -l 
o~ 2 

k=l  /=1 

= V  -z 
k=l  l= l  

1 ~ 1 ~ 1 - 2  -I 

k=l  /=1 

1 ~-~2 -k - 2  -1 

k=l  /=1 

- -  + o ( 1 )  

- -  + O(1) 

1±2  1 
= o~ --7 T l + O(1). (43) 

k=l  /=1 

Thus 

1 ~ 2  -k 
V{Y} = ~-~ -if-In n + O(1). (44) 

k=l  

PROPOSITION 9. Consider the filtering of a dis- 
crete signal f whose values are independent and 
identically distributed random variables having 
the Laplace distribution L(a). Let B be a struc- 
turing set of size n, and let 

1 ~ 2  -k 
= ~-2 k " (45) 

k=l 

Then after dilation by B, for the expectation 

E{f ® B} = _1 In n + O(1) (46) 
a 

and for the variance 

V{f @ B} = ~ In n + O(1), (47) 

and after erosion by B, for the expectation 

E{f e B} = - 1  Inn + O(1) (48) 

and for the variance 

V{f (9 B} = r/In n + O(1). (49) 

Proof. Let F(t) be the distribution function of 
the Laplace distribution L(o 0. Since by Propo- 
sition 3 the distribution function of a random 
variable f @ B is F(t) n, Lemma 3 implies that 

E{f (9 B} = 1 In n + O(1) (50) 
o~ 

and 
V{f@B} = rllnn + O(1). (51) 

Now, Corollary 7.1 implies equation (48), and 
Corollary 7.2 implies equation (49). 

5 Bounds on the Expectations of Two-Dimen- 
sional Closing and Opening 

The nonlinear nature of closings and openings 
makes it difficult to carry out an accurate anal- 
ysis of the effects of noise in the case of two- 
dimensional closing and opening since their sta- 
tistical properties depend on both the shape and 
the size of the structuring set. However, we will 
show that by using the stack-filter method one 
can also derive bounds on the output expecta- 
tions for two-dimensional morphological filters 
when the values of the signal to be filtered are 
independent and identically distributed. 

In the following we derive a lower bound, 
which is asymptotically tight for the Laplace 
distribution, on the expectation of closing by an 
n x n square structuring set. This bound can 
then be used for more general structuring sets 
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containing a square. Moreover, the method of 
this section can also be used for other types 
of structuring sets whose shapes are "symmetric 
enough." The following lemma is a central tool 
in what follows. 

LEMMA 4. Consider a random variable Y whose 
distribution function is u(F(t)), where F(t) is 
a strictly monotonous and piecewise differen- 
tiable distribution function and u : [0, 1] --, [0, 1] 
is a differentiable function. Let the integrals 
f~  tF'(t)dt and f-~oo tu'(F(t))F'(t)dt be finite, 
and let v(t) : [0, 1] ~ [0, co) be a differentiable 
function that satisfies v(0) = 0, v(1) = 1 and 
v(t) > u(t) for all 0 < t < 1. Then for the 
expectation of Y 

f E{Y} >_ tv'(F(t))F'(t)dt. (52) 
O 0  

Proof. Because ffo~ tu'(F(t))F'(t)dt is finite, the 
expectation of Y exists and satisfies 

E{Y} = f :  tu'(F(t))F'(t)dt 

= ~o tu'(F(t))F'(t)dt 
Oo 

+ fo ~ tu'(F(t))F'(t)dt 

- f~  u(F(t))dt 
(X) 

+ f f f (1  - u(F(t)))dt 

= - f~ u(F(t))dt 
~ 3  

+ fo°°(1 - u(F(t)))dt. 

Because f ~  tF'(t)dt is finite, we have 

(53) 

(54) 

Thus the assumption that v(t) : [0, 1] ~ [0, ee) 
is a differentiable function and satisfies v(0) = 
0, v(1) = 1 implies that 

0__ --° 

Now, a manipulation similar to the one above 
leads to the equation 

f ~ tv'(F(t))F'(t)dt 
(X3 

= _ / o  v(F(t))dt 
O 0  

/o + (1 - v(F(t)))dt, (56) 

from which Lemma 4 follows since v(t) >_ u(t) 
for all t • [0, 1]. 

To bound the distribution function of clos- 
ing we need the following combinatorial lemma 
(Koskinen and Astola [17]). 

LEMMA 5. Consider an m × m square Sq(m) = 
{ ( i , j )  • z 2 l -  n < i < n , - n  < j < n } ( m  = 2,~ - 
1), and let Sqn(i, j  ) denote the n x n subsquare 
having its northeast corner at ( / , j ) , l  < i < 
n, 1 < j < n. For l = 0, 1 , . . . ,  m 2 let v(1) denote 
the number of subsets S c_ Sq(m), with ISl = z, 
such that SNS%(i,j) = 0 for some i = 1 , . . . , n  
and j = 1 , . . . , n ,  i.e., 

u(l) = I{~ ¢ c_ Sq(m) I IS[ 

= l, S N S % ( i , j )  = 0 

for some i,j = 1 , . . . , n ) l .  (57) 

Then 

v(1) < ( m l  he) 

_ ( m-n2- 
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Proof Let 1 < l _< r a -  n 2. If we fix (i, j), 
the number of S, (S c_ Sq(m)),lS[ = I and 
S N S q , ( i , j ) =  0, is obviously 

If we just let (i, j )  run through points 1 _< i, j _< 
n, we obtain 

- l ' ( 5 9 )  

which is too crude. To obtain a sharper bound, 
we let ( i , j )  run through the points in the fol- 
lowing order: 

(1, 1), (1, 2 ) , . . . ,  (1, k), 
(2, 1), (3, 1 ) , . . . ,  (k, 1), 
(2, 2), (2, 3 ) , . . . ,  (2, k), 
(3, 2), (3, 3 ) , . . . ,  (3, k), 

(k, 2), (k, 3 ) , . . . ,  (k, k) 

(top border from left to right, left border from 
top to bottom, and the rest row-wise from left 
to right). 

Let us now count for each Sqn(i, j  ) the sets 
S, IS[ = 1 and S n Sqn(i,j ) = 0, so that the sets 
that were counted for Sqn(i - 1, j )  or S%(i, j - 
1) are not counted (they have been counted 
before). This gives 

+ 2n ) 
_ ( m-n2- n)) 

 60, 

The last term in (60) results from the fact 
that the contribution of both points ( i - l ,  j )  and 
(i, j + 1) would otherwise be subtracted twice. 

Astola and Neuvo [18] have shown that when- 
ever the inputs are independent  and identically 
distributed random variables that can attain ar- 
bitrarily large values, the expectation of closing 
(opening) tends to infinity as the size of the 
structuring set increases. The following propo- 
sition (Koskinen and Astola [7]) gives an asymp- 
totically tight bound on the expectation in the 
case of the Laplace distribution. 

PROPOSITION 10. Let f : Z 2 ---+ R be a signal 
whose values are independent and identically 
distributed random variables having a common 
strictly monotonous and piecewise-differentiable 
distribution function F(t). Consider the closing 
of f by a square structuring set 

Sq(n) = {(i , j )  • Z2l 

- k  < i < k , - k  < j < k}, (61) 

where n = 2k - 1. Then after closing by Sq(n), 
for the expectation 

E{fSq(~)}> t G(F(t),n) dt, (62) 

where 

G ( x ,  n )  = n2x  n2 -- 2 ( r t  2 - -  n ) x  n2+n 

+ ( n  2 - 2n + 1)x ng+2n. (63) 

Proof Let M = Sq(n) + Sq(n), and consider the 
characteristic function of each subset S c_ M as 
a Boolean vector of dimension ]M[ = ra = n 2. 
For S C_ M, denote by f Sq (n ) ( s )  t h e  Boolean 
function determined by the output of the closing 
of S by Sq(n). For 1 = 0, 1 , . . . ,  m we write 

= I{S c M I lSl = z, f S q ( n ) ( S )  = O}l. (64) 

Now Proposition 1 implies that the distribution 
function H(t)  of the values of the closed signal 
fB is 

H(t) = u(F(t)), (65) 
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where 

m 

u(x) = ~ u(/)(1 - x)Zx m-1. (66) 
/ = 0  

Substituting the bound of Lemma 5 in (66) and 
performing the summations, we get 

u(x) <_ x n2 + (2n - 2)(x '~2 - x n2+'~) 

+(n  - 1)2(x n2 - 2x '~z+n 

+x"2+2"), (67) 

and the result now follows from Lemma 4. 

COROLLARY 10.1. Consider a gray-level image 
whose pixel values are white noise uniformly 
distributed in [0, 1], and perform closing by an 
n × n square structuring set. Then the expec- 
tation E of the gray-level of the closed image 
satisfies 

E >_ 1 - 5In 2 + O(1). (68) 

This shows that on the constant regions of a 
noisy image the output will follow the upper 
tail of the noise distribution, giving a smooth 
but biased output. 

The following proposition (Koskinen and As- 
tola [7]) shows that for the Laplace distribution 
the above bound (62) is asymptotically tight. 
First we need the following lemma. 

LEMMA 6. Let F(t) be the distribution function 
of the Laplace distribution L(a), and let G(x, n) 
be defined by (63). Then 

t G(F(t),n) dt = 2 Inn + 0(1). (69) 
c~ OZ 

Proof. Applying Lemma 3 to each term of the 
right-hand side of (62), we obtain 

= n--~a ( ln (n2) -  21n(n z + n ) +  ln(n z + 2n)) 
O~ 

2n (ln(n2 + + + ---~- n) - ln(n 2 2n)) 

+ 1 ln(n 2 + 2n) + O(1) 
O~ 

2 In n + 0(1). 
O~ 

(70) 

PROPOSITION 11. Let f : Z 2 ~ R be a signal 
whose values are independent and identically 
distributed random variables having the Laplace 
distribution L(a). Consider the closing of f by 
an n x n square structuring set Sq(n). Then 
after closing by Sq(n), for the expectation 

E{fsq(,0 } = 2 In n + O(1). (71) 
OL 

Proof. From Lemma 6 we obtain an asymptotic 
lower bound for E{fSq('0}, and, surprisingly, 
the same upper bound results from comparing 
closing by Sq(n) to dilation by Sq(n). The 
relation 

fSq(n) _< f • Sq(n) (72) 

implies that 

E{f  Sq(n)} < E { f  @ Sq(n)}, (73) 

and Proposition 9 gives 

E { f  @ Sq(n)} = 2 In n + O(1). (74) 
a 

Proposition 11 now follows from Proposition 10 
and Lemma 6. 

Propositions 10 and 11 were formulated for 
square structuring sets, but they imply similar 
results for a large class of structuring sets that 
can be suitably approximated by a square struc- 
turing set. 

DEFINITION Let A and B be structuring sets. 
Then A is shrouded by B if there exist C such 
that C ~ B and for all c E C ~ there exists an 
a E A "~ such that Aa C_ Co. 

LEMMA 7. Consider the closing of a signal f 
whose values are independent and identically 
distributed random variables. Let A and B be 
such structuring sets that A is shrouded by B. 
Then 

E { f  A} <_ E{fB} .  (75) 
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Proof Since B shrouds A, there exists C such 
that C --, B, and for all c E C * there exists an 
a E A ~ such that Aa C_ Co. Then we obtain the 
relation fA < fC, which implies that E{ f  A} <_ 
E{fC}. Since closing by B and closing by C 
have the same statistical behavior in the case of 
independently and identically distributed inputs, 
we obtain Lemma 7. 

Now we can state the asymptotic results in 
Proposition 12 (Koskinen and Astola [17]). 

PROPOSITION 12. Let f : Z 2 --+ R be a signal 
whose values are independent and identically 
distributed random variables having the Laplace 
distribution L(~), and let p be a real number. 
Consider a sequence Bn, n = 1, 2 , . . . ,  of struc- 
turing sets such that Sq(n) is shrouded by B,  
a n d  n 2 ~ tB, I < pn 2 for n = 1, 2 , . . . .  Then for 
the expectations it holds that 

E{f B'} = 2 1 n n +  O(1) (76) 
Og 

and 

E{fB.} = __2 Inn + O(1). (77) 

Proof By Lemma 7 the assumption that Sq(n) 
is shrouded by B,  implies that 

E{ f  B" } > E{fsq(")}, (78) 

and the relation 

fB. ~ f O B .  (79) 

implies that 

E{:  B'} _ E { f  • B,,}. (80) 

Now by using Propositions 9 and 10 and the 
relation ]BI _< pn 2 we obtain equation (76), and 
by using Corollary 7.1 we obtain equation (77). 

6 Asymptotic Behavior of One-Dimensional 
Morphological Filters 

In general, the statistical properties of morpho- 
logical filters depend on both fhe shape and 

the size of the structuring set. As a result, it 
is difficult to derive analytical expressions for 
these properties. However, in the case of a 
one-dimensional convex structuring set we can 
derive analytical expressions for the output dis- 
tributions, and we can study the second-order 
statistical properties of closing, opening, clos- 
opening, and open-closing when the values of 
the input signal are independent and identi- 
cally distributed random variables (Koskinen et 
al. [5]). These results can also be used to 
approximate the statistical properties of two- 
dimensional morphological filters since the sim- 
ulation results in Rustanius et al. [6] indicate 
that the statistical properties of morphological 
filters are mainly determined by the size of the 
structuring set. 

PROPOSITION 13. Consider a discrete signal f 
whose values are independent and identically 
distributed random variables having a common 
distribution function F(t). Let f be closed by 
using a convex one-dimensional structuring set 
B of length n. Then the distribution function 
Go(t) of the values of the closed signal fB is 

Go(t) = nF(t)" - (n - 1)F(t) "+1. (81) 

Proof Consider the closing by a convex one- 
dimensional structuring set B of length n. By 
Proposition 4 we need to compute the number of 
the vectors z_ = (za, z2, . . . ,  z2,-1) of each weight 
in primage 9-1(0) of the Boolean function 

9(z_) = (82) 

which corresponds to the stack-filter expression 
of closing. 

Now the number of the vectors of weight 
2n - 1 - s in g-l(0) equals the number of the 
vectors of weight 2 n -  1 -  s containing at least 
n consecutive 0's. Divide these vectors into n 
distinct classes in the following way. The class 
Co contains all vectors 

n times 

b (°) = (b, 0 , . . . ' , '6 ,  ,, , , . . . ,  ,), 

and the class Ct contains all vectors such that 

l t imes n t imes 

b(') = ( , , , , . . . , , , f , b , 0 , . . . , 6 , , , , , . . . , , ) ,  
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where • denotes 0 or 1. It is easy to see that 
Co consists of (n-l) 
vectors of weight 2n - 1 - s and Cz consists of 

vectors of weight 2 n - 1 - s  for all I = 1, 2 , . . . ,  n -  
1. So there are 

( n - 1 ) s  n + ( n - l ) ( :  - 2 )  

vectors of weight 2 n -  1 -  s in g-1(0). Now 
Proposition 4 implies that the distribution func- 
tion Go(t) of the closed signal is 

= n - - 1  

Z ~ / t  

+ ( n - 1 ) ( n - 2 ) ) i - n  

(1 - F(t))Zn-l-iF(t)i 

n-1 ( ( n  7 ( n  7 = ,--~0-- 1 )  + ( n - l )  2 ) )  

(1 - F(t))n- l - iF(t )  i+n 

n-1 
( °-1 ) i 

i=0 

(1 - F(t) )"- l - iF( t )  i 

+(n - 1)F(t) '(1 - F(t)) 
n - - ]  

i=0 

(1 - 

= nF(t)  ~ - ( n -  1)F(t) n+l. (83) 

Using Proposition 6, we obtain the following 
corollary. 

COROLLARY 13.1. Consider a discrete signal 
f whose values are independent and identically 
distributed random variables having a common 
distribution function F(t). Let f be opened by 
using a convex one-dimensional structuring set 
B of length n. Then the distribution function 

Go(t) of the values of the opened signal fB is 

Go(t) = 1 - n(1 - F(t))" 

+(n - 1)(1 - F(t)) n+l. (84) 

Let f be a discrete signal whose values are 
independent and identically distributed random 
variables having the Laplace distribution L(a),  
and let f be closed by a convex one-dimensional 
structuring set B of length n. Then Proposition 
13 and Lemmas 1 and 2 imply that for random 
variable y = f~  

and 

E { y }  = 
n + 3  

a(n + 1)2 TM 

1 ( ~ ' ~  1 - 2 - k  + -  
k 

k=l 

n - - i  ) 
+ 2 -n-1 

n + l  

n - 1  
n + l  

(85) 

n 3 + 5n  2 + 2n  
E { y  2} = o~2n2( n -[.- 1)22n 

+V 
/=I 

2 n - 2 ~  1 - -  

n + l  
/=1 

i - 2 -t 

l 

l / Z - l ) .  (86) 

In the same way, using Proposition 1 and Lem- 
mas 1 and 2, one can derive exact output expec- 
tations and variances for all stack filters whose 
windows are of a moderate size and whose in- 
puts are independent random variables having 
a Laplace distribution. 

PROPOSITION 14. Consider a discrete signal f 
whose values are independent and identically 
distributed random variables having a common 
distribution function F(t). Let f be clos-opened 
by using a convex one-dimensional structuring 
set B of length n, where n > 2. Then the 
distribution function Gco(t) of the values of the 
clos-opened signal (fB)B is 

n 2 -- n -- 2F(t_2, ,+ 2 )  
Gco(t) - 2 
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q-(--rt 2 + n + 1)F(t) 2n+1 

+ ~ F ( t )  2n - ( n -  1)F(t) TM 

+nF(t) 'k  (87) 

Proof. Consider the clos-opening by a con- 
vex one-dimensional structuring set B of length 
n > 2. By Proposition 5 we need to compute 
the number of the vectors z_ = (zl, z2,. . .  ,z4n-3) 
of each weight in the preimage 9-1(0) of the 
Boolean function 

g(Z__) -~ VaEB*(AbE(B+B,)a(VcEBbZc)),  (88 )  

which corresponds to the stack-filter expression 
of clos-opening. 

The number of the vectors of weight 4 n - 3 - s  
in 9-1(0) equals the number of the vectors z_ = 
(zl, z2 , . . . ,  z4~-3) of weight 4n - 3 - s such that 
each subvector (zi, z l + i , ' " ,  Z3n-3+i) contains at 
least n consecutive 0's for all i E {1, 2 , . . . ,  n}. 

First we divide 9-1(0) into three dis- 
tinct classes A , B ,  and 6": A = {_z E 
{0,1}4n-31 for some i C { 0 , . . . , n  - 1},zn+i = 
0 , . . . , Z 2 n _ l +  i ----- 0 } , B  --- { z  E {0,1}4n--3[Z2n_ 1 = 

0 and for some nonnegative i , j  such that 
i + j _< n -  2, z,~-1_i = 0,...,ZZn_2_i = 0 and 
Z2n+j -~ 0 , . . .  ,Z3n_l+ j = 0 and for some non- 
negative l, m such that l + re _< n - 4, z2,~-2-1 = 
Z2n+rn = 1}, and C = {z_ 6 {0, 1}4n-3[ZZn_l = 

1 and for some nonnegative i , j  such that 
i + j < n -  2 ,  Z n - l - i  = O, . . .  , Z 2 n - 2 -  i = 0 and 
ZZn+j = O , . . . , Z 3 n _ l +  j ----" 0} .  

Then we divide C again into three dis- 
tinct classes C1,C2  and C3: C1 = {z_ E 
C l z n _  1 --  0 , . . . ,  ZZn_ z = 0} ,  C2 = {z_ E Clz2n  = 

0 , . . . ,  z3,-1 = 0 and for some i such that 0 < i < 
n - 3, z2,~-2-i = 1}, and C3 = {_z 6 C I for some 
nonegative i , j  such that i , j  <_ n -  4,  z2n-2-1  = 

Z2,,+ j = 1}. 
Using the same method as in the proof of 

Proposition 13, we see that class A consists of 

3 n -  3"] + ( n _  1) ( 3 n -  4"] 
s - n /  s - n /  

vectors of weight 4 n -  3 -  s. We can calculate 
directly that class B consists of 

n-3  2 _6 ) 
s - 2 n -  1 

4=1 

n2 - 5n + 6 ( 2 n - 6  ) 2  s - 2 n - 1  (89) 

and that class 6'3 consists of 

n-3  

E i (  2 n - 6 ~ -  2 (2n-6)s_2n (90) 
i= 1' 

vectors of weight 4n - 3 - s. 
It is easy to see that class 6,1 consists of 

( 2 n - 4 ~  2 n - 5 ~  
s - 2 n J  + ( n - 2 ) ( s - 2 n ] '  

and that class C2 consists of 

{ 2 n - 5 ~  
( n -  2) \ s _  2 n J  

vectors of weight 4n - 3 - s. 
So the number t(s) of the vectors of weight 

4n - 3 - s in 9-1(0) is 

+ 2 s - 2 n - 1  

n 2 - -  5 n  + 6 ( 2 n  - 6 
+ 2 ~ s - 2 h i  

+ ( 2 n - 4 " ~  
s - 2 n ]  

+ ( 2 n -  4) ( 2 n  - 5"~ 
s - 2 n J  " 

(91) 

Now the output distribution Gco(t) for clos- 
opening is given by 

4n-3 

Gco(t) = E t(i)(1 - F(t))4~-3-iF(t) ~ 
i=0 

= (2n - 4)(1 - F(t))ZF(t)  2~ 

+ (1 - F(t ) )F( t )  zn 

n 2 --  5 n  + 6 
+ 2 (1 - -  F ( t ; ) ) 3 F ( t )  2n 

n 2 - 5n + 6 
"~ 2 (1 - F(t))2F(t)  2"+1 

+ F ( t F  + - 1 ) ( 1  - F ( t ) ) F ( t )  n 

n 2 -- ~t 
- - 2F~t~2n+zt) 

2 

35 



132 Koskinen and Astola 

+ ( - n  2 + n + 1)F(t) 2n+1 

+ - ~ F ( t )  2~ - (n - 1)F(t) ~+1 

+nF(t) n. (92) 

Using Proposition 6, we obtain the following 
corollary. 

COROLLARY 14.1. Consider a discrete signal 
f whose values are independent and identically 
distributed random variables having a common 
distribution function F(t). Let f be open-closed 
by using a convex structuring set B of length 
n, where n > 2. Then the distribution function 
Got(t) of the values of the open-closed signal 
(IB) B is 

n 2 _ 7~ 
Got(t) = 1 "2- - 2(1 - F(t))2n+2 

- ( - n  2 + n + 1)(1 - F(t)) 2n+1 
~ 2  

n(1 _ F(t)) 2" 

+(n  - 1)(1 - F(t)) n+l 

- F ( t ) ) - .  (93) 

Formula (87) defines the output distribution of 
clos-opening in terms of the input distribution. 
Another formula for the output distribution of 
clos-opening is given in Stevenson and Arce [1], 
but this formula does not define the correct 
output distribution in terms of the input distri- 
bution. 

When the inputs are independent and identi- 
cally distributed random variables, the analytical 
forms of the output distribution functions also 
allow us to compute the asymptotic approxima- 
tions for the expectation and the variance in 
the cases of uniform or Laplace distributions. 
The tails of the uniform density function are 
zero-value, and morphological filters attenuate 
this kind of noise well. On the other hand, the 
density function of Laplace distribution is heavy- 
tailed, and morphological filtering increases the 
variance of this kind of noise. 

Using Propositions 13 and 14, we obtain af- 
ter lengthy computations (performed by using a 
symbolic program) the following result (Kosk- 
inen et al. [5]), which shows that the output 

variance of compound morphological operations 
decreases very fast as the length of the struc- 
turing set increases in the case of the uniform 
distribution. 

PROPOSITION 15. Consider the filtering of a 
discrete signal f whose values are independent 
and identically uniformly distributed on [0, 1]. 
Let B be a convex one-dimensional structuring 
set of length n. Then 

(a) after closing by B, for the expectation 

E{fB}=l- -2+O--n  ( n  l--if) (94) 

and for the variance 

2 v{fB} = + o ; ( 9 5 )  

(b) after opening by B, for the expectation 

E{fB} = 2 + O (96) 

and for the variance 

V{fB} = ~-7 + O ; (97) 

(c) after clos-opening by B, for the expectation 

E{(fB)B} = 1 -- ~nn + O (98) 

and for the variance 

119 (nl__g) 
V{(fB)B} = 64n----- ~ + O ; (99) 

(d) after open-closing by B, for the expectation 

B} = + O (100)  

and for the variance 

(5) V{(IB) B} = 64n---- ~ + 0 . (101) 

The following asymptotic formulas show that 
the output expectations and the output variances 
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of compound morphological operations increase 
logarithmically with the length of the structuring 
set. 

PROPOSITION 16. Consider the filtering of a 
discrete signal f whose values are independent 
and identically distributed having the Laplace 
distribution L(o 0. Let B be a convex one- 
dimensional structuring set of length n, and let 

1 ~ 2  -k 
' = V k " (102) 

k = l  

Then 

V{f  B} = , ( n l n n - ( n -  1)ln(n + 1)) 

+o(1) 
n 

+0(1)  

= • In n + 0 ( 1 ) .  (108) 

Similarly, Lemma 3 and Proposition 14 imply 
that 

E{(fB)B} = 1- Inn + 0(1) (109) 
OL 

and 
V{(fB)B} = , l n n  + O(1). (110) 

(a) after closing or clos-opening by B, for the 
expectation 

E{fB } = E{(fB)B} ..~ 1--Inn + 0(1) (103) 
a 

and for the variance 

V{f  B} = V{(fB)B} = r/lnn + 0(1), (104) 

(b) after opening or open-closing by B, for the 
expectation 

E{I,}  = E{(fu) B} 
1 

- In n + 0 ( 1 )  (105)  
c~ 

and for the variance 

V{fB} = V{(fB) B} = r/ln n + 0(1). (106) 

Proof. Lemma 3 and Proposition 13 imply that 

E{f B} = l ( n l n n - ( n -  1)ln(n + 1)) 
Og 

+0(1)  

1 ( l n n +  ( n -  i ) ln  ( ~ +  1 ) )  
Oz 

+0(1)  
1 

= - I n n  + 0 ( 1 )  (107) 
O~ 

and 

If the length of the structuring set is n, then 
the output variance of linear and median filters 
is O(1/n) for both the uniform and the Laplace 
distributions. On the contrary, Propositions 8, 
9, 15, and 16 show that the output variances of 
morphological filters are O(1/n 2) for uniform 
distribution and the output variances of mor- 
phological filters increase logarithmically with 
the size of the structuring set for the Laplace 
distribution. Thus morphological operations are 
statistically unstable operations whose behavior 
is extremely sensitive to a change in the type of 
noise distribution. 

Propositions 9, 12, and 16 show that the ex- 
pectations of one- and two-dimensional mor- 
phological operations have the same asymptotic 
increasing rate in the case of the Laplace dis- 
tribution. This is evidence of the major role 
of the size of the structuring set when we com- 
pare the effect of the size and the shape of the 
structuring set on the statistical properties. 

The morphological filters and median filters 
have many similar deterministic and impulsive 
noise-attenuation properties; see, e.g., Maragos 
and Schafer [3] and Justusson [19]. However, 
the above results show that the statistical behav- 
iors of these filters differ greatly: morphological 
filters are unstable and median filters are stable 
in a statistical sense, and in the case of short- 
tailed and heavy-tailed noise, the behaviors of 
median and morphological filters are quite op- 
posite. 
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7 Conclusions 

When the output distribution function of a fil- 
ter is known, all other statistical properties of 
this filter can be derived from this distribution. 
In this paper a closed-form expression for the 
output distribution in terms of the input distri- 
bution has been given for morphological filters. 
Certain statistical symmetry properties stemming 
from the duality of morphological filters have 
also been presented. 

By using the expressions of output distribu- 
tions, asymptotic formulas for the output vari- 
ances and for the expectations of morphological 
filters have been derived for the cases of uniform 
and Laplace distributions. These formulas show 
that the asymptotic behavior of morphological 
filters is extremely sensitive to a change in the 
type of noise distribution, leading to the conclu- 
sion that morphological filters may be unstable 
under noisy conditions. 
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