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Abstract 

In voting bodies, when voting weights are reallocated, it may be observed 
that the voting power of some members, as measured by the Shapley- 
Shubik and Banzhaf power indices, increases while their voting weight 
decreases. By a simple constructive proof, this paper shows that such a 
"paradox of redistribution" can always occur in any voting body if the 
number of voters, n, is sufficiently large. Simulation results show that the 
paradox is quite frequent (up to 30 percent) and increases with n (at least 
for small n). Examples are given where the Banzhaf and Shapley-Shubik 
indices are not consistent in demonstrating the paradox. 

Introduction 
It is well known that the number or percentage of votes that a member in 
a voting body has is not a reliable index of his power. One example given by 
Brams and Affuso (1976) clearly illustrates this point. In a paper entitled, 
"Power and Size: A New Paradox," Brains and Affuso show that in the 
European Economic Community, when Ireland, Denmark, and Great Britain 
were admitted as members, the voting power (as measured by the Banzhaf, 
Coleman, and Shapley-Shubik power indices) of  Luxembourg increased 
even though its fraction of the votes decreased. 1 They call this the "Paradox 
of New Members." More recently, Dreyer and Schotter (in progress) 
examined the distribution of  voting power in the International Monetary 
Fund (as measured by the Banzhaf power index) following a redistribution 
of the voting weights. Again certain paradoxical results appeared which were 
counter to the intent of  the planners and could have been avoided if proper 
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attention was paid to the distinction between voting weights and voting 
power. 

In their paper, Dreyer and Schotter show that in the reassignment of 
voting weights, thirty eight countries had their voting weights reduced yet 
gained in voting power when power was measured by the Banzhaf power 
index. 2 (See Appendix A for a summary of their results.) Their example 
differs from Brams and Affuso's in that at the International Monetary Fund 
no new members were added but rather the weights of the existing members 
were merely changed. Consequently, one could call their paradox the 
"Paradox of Redistribution," although Brains and Affuso's result could be 
considered a special case of theirs, in which one voter simply had a zero 
weight before the redistribution and a positive weight afterward, thereby 
becoming equivalent to a new member. 

In this paper we consider the question of whether or not this paradox 
is possible for voting bodies of any size no matter what their distribution of 
voting weights or their  decision rules when power is measured either by the 
Banzhaf or the Shapley-Shubik power index. In other words, is the paradox 
inevitable for any voting body, or are there vote distributions and decision 
rules for voting bodies which are "paradox proof," that is, for which we can 
fred no other voting distribution which will increase some member's power 
while decreasing his voting weight? Our main results state that for 
Banzhaf power index, no paradox proof vote distribution exists for any 
voting body with n _> 6 members, and for the Shapley-Shubik index, no 
paradox proof vote distribution exists for any voting body with n > 7. We 
will then show that when we restrict our voting rule to be a simple majority 
rule or when we restrict the voting distribution in a reasonable way by plac- 
ing a lower bound on the weight of the smallest voter in the voting body, 
we are able to lower the size of the voting body in our results from n > 6 
and n > 7 to n _> 4. Simulation results are also reported which show that 
the paradox is not at all a rare occurence. 

I. Power indices 
Before we proceed to discuss our results, let us briefly review the power 
indices that we will be using. To do this, let N be the set of voters in a voting 
body indexed i = 1 . . . . .  n, and let w = ( w l ,  • • • ,  w n )  be a vote distribution 

n 
normalized such that w i > 0 and F, w i = 1. The voting body is then frilly 

i = 1  
described by an n+ 1-tuple v = ( d ;  w l ,  • • • W n ) ,  where d is the decision rule 
of the body indicating the minimum fraction of votes that must be exceeded 
for the voting body to take collective action binding on all members, a and 
( w l  . . . . .  w n )  is a vote distribution. Let S be any subset of voters SC_.N. 

Then we can define the value of coalition S as: 
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v(S) = 0 i f  ~ w < d ,  ieS i -  

v(S) = 1 i f /  w i> d. 

A voter is "critical" in a coalition S if his defection from that coalition 
changes the coalition from a winning to a losing coalition [i.e., v(S) = 1 
andv(S-  { i ) )  =0] .  

The Banzhaf index for member i is then defined as: 

z Iv(S)- v(s- {i))] 
p~ = S  

~ Iv(S) - v (S -  ~j ) )] 
! S  

This index, then, describes the proportion of critical defections of member i. 
n 

It follows that ~ p~ = 1. 4 
i 1 

The Shapley-Shubik index for a member i is slightly more complex. It 
concerns itself with the proportion of permutations of the n members in 
which i's defection from a winning coalition is critical. More formally, it 
can be written as: 

i ~ (s- 1) ! (n-s)  ' 
pss  = [ ,~! "] [ v ( s ) - v ( s -  {i))] 

where s is the number of members in the subset S and n is the total number 
of members in the voting body. 

II. The paradox of redistribution for a three member voting body 
Consider the following voting body: 

7 0 .  55 35 1 0 ) ,  
v = ( 100' 100 ' 100' 100 

where 70/100 is the decision rule and (55/100, 35/100, 10/100)is the vote 
distribution. The Banzhaf and Shapley-Shubik power indices associated with 
this voting body are both (1/2, 1/2, 0). Now let us redistribute the votes, 
keeping the decision rule the same, so that the following voting body is 
determined: 

, 7 0 .  50 25 25 
v = ( 1 0 0 , 1 0 0 '  100' 100 )" 
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Here the Banzhaf index s is (3/5, 1/5, 1/5), while the Shapley-Shubik index 
is (2/3, 1 / 6 ,  1/6), showing that although member l 's  voting weight de- 
creased from 55/100 to 50/100, his power increased. 6 

Now it might be interesting to ask whether in a three member voting 
body there exist vote distributions which are paradox proof in the sense 
that any redistribution of the votes which starts at one of these distributions 
must give a voter less voting power if it gives him less weight. The answer is 
yes, and as a matter of  fact there are an infinite number of  such vote distri- 
butions, as is illustrated in Appendix B. For the purpose of illustration, 
however, consider the following voting body, v = (70/100; 55/100, 23/100, 
22/100). Here the power distribution is (3•5, 1/5, 1/5) if the Banzhaf index 
is used, and (2/3, 1/6, 1/6) if the Shapley-Shubik index is used. The reader 
can check for himself that it is not possible to give a voter more power by 
diminishing his voting weight. Consequently, the vote distribution (55/100, 
23/100, 22/100) is a paradox proof distribution for a three-member voting 
body with decision rule d = 70/100. 

III. The inevitability of the paradox of redistribution 
The question we investigate in this paper, then, is the circumstances under 
which the .paradox illustrated above is inevitable. To do this we must 
demonstrate how, given a vote distribution w = ( w ~  . . . . .  W n )  and a voting 
rule d, we can construct a new vote distribution w '  = ( w ' l ,  • • • ,  Wn) '  which" 
gives at least one voter a smaller proportion of the vote yet gives him more 
power, when power is measured by either ~he Banzhaf or the Shapley- 
Shubik power index. The following propositions do just that. 

P r o p o s i t i o n  1:  For voting bodies with n > 6, a paradox is always possible 
no matter what initial vote distribution exists, when power is defined by the 
Banzhaf index. 

P r o o f  o f  P r o p o s i t i o n  1 

1. For any voting rule d and any weight wl ,  of voter 1, his maximum 
power is at least 1/5, no matter how small wl is. He can achieve this power 
by assigning weight w2 = d - w l /2  - 5/2 to voter 2, w3 = 1 - d - wl /2  - 5/2 
to voter 3, and w ,  = . . .  = w n = 5 [ ( n  - 3) to the remaining voters where 5 
is arbitrarily small. 7 . In particular w 4  + • • • + w n = 5 < w l / 2  + 5/2 ,  that is, 
5 < w~, so that the voters 4 . . . .  , n are all dummies with zero voting 
power. 

2. If  there are 6 voters, the weakest of them has at most power 1/6 (since 
the power indices add up to 1). By point 1 of  the proof, the weakest voter 
can now redistribute the weights of the other voters and increase his power 
to 1/5, keeping his voting weight constant. However, since he can achieve a 
power of 1/5 with an arbitrarily s m a l l  voting weight, he can in fact d e c r e a s e  

his weight to a n y  small positive value and still increase his power. Q.E.D. 
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Proposition 2: For voting bodies with n _> 7, a paradox is always possible 
no matter what initial vote distribution exists, when power is defined by the 
Shapley-Shubik index. 

Proof of  Proposition 2 
Analogous to the proof of Propostion 1. 

The import of these theorems is that for any voting body v = (d; 
w ~ , . . . ,  Wn) - where n > 6 for the Banzhaf case and n > 7 for the Shapley- 
Shubik c a s e -  any initial vote distribution is subject to the paradox of 
redistribution in that there always exists another vote distribution such that 
in the redistribution of voting weights, at least one player's weight is de- 
creased while his voting power is increased. It is in this sense that the 
paradox is inevitable. 

One shortcoming of our results is that they do not give us any indication 
of the minimum size of  the redistribution necessary to create the paradox. 
Clearly, our results would be more disturbing if for any given initial distribu- 
tion of votes there was another distribution within a small neighborhood of 
the original which would create the paradox. It is interesting to note that in 
the International Monetary Fund example summarized in Appendix A, the 
redistribution of voting weights was not a "drastic" one. Also, our simula- 
tion results given in Section VI demonstrate that the occurrence of the 
paradox is not a rare event. 

IV. Some further results 
Our results so far are rather general in that we do not constrain the decision 
rule used in our voting bodies in any way. However, the most common 
voting rule is the simple majority voting rule and when this rule is used, it 
is possible to show that both for the Banzhaf and the Shapley-Shubik power 
indices no paradox proof vote distributions exist for n _> 4. 

Proposition 3: I f  the voting rule used is the simple majority voting rule 
(i.e., i fd  = 1/2), then for n _> 4 a paradox is always possible. 

Proof o f  Proposition 3 
Let 1 be the weakest voter. (Every voter's weight is always positive, thus 
wl > 0.) Voter 1 can now achieve a power of 1/3 by distributing the weights 
as wl, w2 = ( l -w1  - 8)/2, w3 =w2, w4 = ~ / ( n - 3 ) = . . .  =w n with6 > w~. 
Then voters 4 . . . .  , n all have zero voting power and voters 1,2 and 3 have 
power 1/3 each. This is true both for the Banzhaf and the Shapley-Shubik 
power indices. 

With four or more voters in a voting body, the weakest voter has, at most, 
power 1/4 (in general 1In < 1/4). But the weakest voter can increase his 
power to 1/3 by redistributing the voting weights of the remaining players 
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as indicated while keeping his voting weight the same. However, since voter 
1 can achieve a power of 1/3 even with an arbitrarily small voting weight, 
he can in fact decrease his voting weight and still increase his power. Thus a 
paradox of redistribution always exists for n > 4 and d = 1/2. Q.E.D. 

Instead of restricting the voting rule as we did in Proposition 3, we could 
have placed a restriction on the vote distribution. One restriction would be 
to constrain the weight of the smallest voter. If we make the restriction that 
the voter with the smallest voting weight (say voter i) has a weight 
w i > 2 d -  1 initially (which in the case o f d  = 51% merely requires that he 
have more than 2% of the vote), then it is possible to prove that no paradox 
proof vote distributions exist for n _> 4 for both the Banzhaf and Shapley- 
Shubik power indices. 

Proposit ion 4: If the decision rule is d and if the voter with the smallest 
voting weight in the voting body v = (d; w x , . . . ,  Wn) has a weight greater 
than 2d - 1, then with n >_ 4 (and either the Banzhaf or the Shapley-Shubik 
index) a paradox is always possibte. 

P r o o f ' o f  Proposit ion 4 
The weakest voter (say voter 1) has at most power 1In <_ 114. We can in- 

l - w 1 - 6  
crease his power to 1/3 by assigning weights w l , w ~  =w3 - ~ - - - ,  w4 = 

. . .  = w n = ~ / ( n -  3) with w~ + w~ = (1 + w~ - 5)/2 > d or 6 < wl - (2d- 1), 
where it is always possible to choose ~ > 0, by assumption• Q.E.D. 

V. The reverse paradox 
Instead of looking for a paradox of the kind discussed up to now, where a 
voter whose voting weight is decreased gains more power, we may also ask 
whether the reverse situation exists. Are there cases, where a voter gains in 
terms of voting weight, but loses in voting power? The answer is, of course, 
yes. For whenever there is a paradox of  the first kind in going from a voting 

• o o ~ t 

weight distribution w = ( w l ,  • • .  w n) to a new dlstnbutxon w = (w 1 . . . . .  ~ I 
I 

Wn),  i.e., if some voter i is assigned a lower weight w i < wi but gains in 
power (p~ > pi), s then a reverse paradox is observed in going from the new 
voting weight distribution w' to the old distribution w, since then voter i is 
assigned a greater voting weight but loses in ,terms of power. 

The question arises whether this reverse kind of paradox is also inevitable; 
i.e., given any initial voting weight distribution w, does there always exist a 
new distribution w' which exhibits a reverse paradox? The answer is dearly 
no if we allow dictators to be present. Fgr example, assume one voter has a 
weight exceeding the required majority (say wx > d), that is, where one 
voter is a dictator with power equal to 1, and all the remaining voters are 
dummies with zero voting power. Then it is clear that the dictator (voter 1) 
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is the only one who can possibly lose power, but he certainly will not do so 
if his voting weight is increased. All the other voters can only increase their 
power or keep it unchanged, regardless of what happens to their voting 
weights. Thus, we see that in this case no reverse paradox is possible. 

Fortunately, however, we do not have to limit ourselves to such extreme 
cases, for even when we exclude the possibility that one o f the  voters is a 
dictator, there still exist "paradox proof" voting weight distributions in the 
reverse sense, for any number of voters n, provided that the required majority 
d is sufficiently high. We shall see that a voting body in which each member 
has veto power is paradox proof in the reverse sense• To show this, we make 
use of the following: 

Lemma 1: Any voter who has veto power (i.e., any voter i whose weight is 
w i >_ 1 - d )  has at least as much power as any other voter in the voting 
body, when power is measured by either the Banzhaf or the Shapley- 
Shubik power index. 

Proof o f  Lemma 1 
Assume voter i has veto power. Then he must be a member of every winning 

• ~ 
coalition S since ]eS w~ > d can hold only if ieS. Also', he is critical in every 

coalition, since]e S, wj <_ d for every S' which does not include voter i. 

The Banzhaf power index for voter i: 

is directly proportional to the number of winning coalitions S in which i is 
a critical member• No other voter can possibly belong to more winning 
coalitions or be a critical member in more winning coalitions, since i belongs 
to every winning coalition and is critical in each one of them. Therefore, no 
other voter can have a higher Banzhaf power index than i. 

The Shapley-Shubik power index of voter i: 

~ 1 Z 
Pss  = -~-(. S [(s-1) ! ( n - s )  !] I v ( S ) -  v ( S -  ( i ~ ) I ,  

is proportional to the number of winning coalitions S in which i is critical, 
multiplied by a certain factor ( s -  1) ! ( n -  s)!,  whose size depends only on 
the size s of the respective winning coalition S~ but not on the voter i. That 
is, given some winning coalition S, every critical member of S derives the 
same measure of power from membership in S, when power is measured by 
the ShapleyiShubik index. Thus, the same argument as before again applies, 
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namely that voter i is at least as powerful as any other voter, since he is a 
critical member of any winning coalition. No other voter can outdo him in 
this respect. 

This completes the proof of Lemma 1. 

Corollary: A voter who has veto power in a voting body with n members 
has at least power l/n, when power is measured by either the Banzhaf or 
the Shapley-Shubik index. 

Proof of the Corollary to Lemma 1 
Suppose to the contrary that voter i has veto power, and that p~ < 1In 
(or i Pss < l/n). Then there must exist at least one other voter whose power 
index is larger than 1 In, for otherwise the power indices of  all voters would 
sum up to less than 1. But according to Lemma 2, it is impossible to find 
another voter whose power index is greater than that of i. This completes 
the proof of the corollary. 

Proposition 5: Any voting weight distribution in which every member has 
veto power is paradox proof in the reverse sense. 

Proof of Proposition 5 
According to the corollary of  Lemma 1, every voter in a voting body where 
each voter has veto power must have a power of  at least 1In (measured by 
either the Banzhaf or the Shapley-Shubik index), and since the power 
indices sum up to 1, the power of each voter is exactly 1In. If now the 
voting weight of any voter is increased, he still keeps his veto power, regard- 
less of how voting weights are redistributed among the remaining voters. 
That is, his power is at least l/n, and can therefore not decrease. Thus, it 
is impossible to find any voter whose power decreases when his voting 
weight increases. This completes the proof of Proposition 5. 

In light of Proposition 5, it may be interesting to note under what condi- 
tions a voting weight distribution can exist in which all voters have veto 
power. We have: 

Proposition 6: A voting weight distribution w = (wl . . . .  , Wn) in a voting 
body v = (d; wl . . . . .  Wn) which gives every voter a veto can exist if and 
only if d __> 1 - 1 In. 

Proof of Proposition 6 
a. Necessity. The weakest member in a voting body of size n has a voting 

weight of  at most 1In (otherwise the weights would sum up to more than 1). 
If  he is to have veto power, the decision rule must be d > 1 - 1In. 

b. Sufficiency. If d _> 1 - l/n, then there exists at least one weight 
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distribution which gives each voter a veto, namely w = (1 In  . . . .  , l / n ) .  (In 
general, there exists a continuum of such distributions, the more, the 
larger d is.) 

Does the result that a reverse paradox is not inevitable mean that it is 
less likely to occur when voting weights are reallocated than a paradox of 
the first kind? Not at all. In fact, from the symmetric relationship between 
a paradox and a reverse paradox, which was discussed at the beginning of 
this section, it follows that for any number n of  voters and any decision rule 
d a reverse paradox is exactly as likely to occur as a paradox of the kind 
discussed earlier, provided that the voting weight distributions w and w'  
before and after redistribution are independent random selections from the 
same probability distribution. In the next section, we report some simula- 
tion results which allow us to estimate the frequency with which one may 
fred a paradox of redistribution. 

VI. The frequency of paradoxes of redistribution: a Monte Carlo simulation 
In proving Propositions 1 and 2, where we showed that if the number of 
voters is n > 6 for the Banzhaf index and n > 7 for the Shapley-St~ubik 
index, a paradox of redistribution is always possible, we used rather special 
redistribution patterns, giving very small voting weights to all but a few 
m~mbers of  the voting body. The question naturally arises whether such 
paradoxical situations occur with any significant frequency, or whether we 
are merely attacking windmills. Another question one may ask is whether 
the frequency of a 15aradox will tend to increase or decrease as the number n 
of voters increases. 

To answer these questions, we have simulated a large number of 
random redistributions of  voting weights, for various numbers of 
voters n and decision rules d ,  and counted the number of  paradoxes 
observed. For each redistribution, we selected two random vectors of 
voting weights, w = ( w l , . . . ,  Wn) ,  and w '  = ( w ' l  . . . . .  W'n),  which were 
independent and uniformly distributed on the ( n -  1)-dimensional unit 
simplex given by w l  + . . .  + w n = 1, w i > 0 (i = t . . . . .  n). 9 

For each such pair of  voting weight distributions we computed the Banzhaf 
and the Shapley-Shtibik power index before and after redistribution and 
tested whether any voter had increased power with a smaller voting we~ight, 
or the reverse. 1° Table 1 summarizes the results for the Banzhaf power 
index and Table 2~ for the Shapley-Shubik power index. 11 
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Figure 1 graphically represents a portion of the results listed in Table 1. 
These results clearly show that the frequency of a paradox is by no means 
negligible, reaching as high as 30 percent for n = 6 voters, under the radical 
redistribution of voting weights assumed here. We can also conclude that the 
frequency of a paradox increases with the number n of  voters, at least for 
the range of relatively small n explored here. With respect to the parameter 
d (the decision rule) the probability of the occurence of a paradox apparently 
drops at first, reaches a minimum for about d = 0.7, and then increases 
again as d approaches 1. We do not have any simple and plausible explana- 
tion for this behavior. 

Probability of 
a Paradox 

.4 

. 2  ¸ 

n n:6t t ~ I ~  

~ .  / 0 = -  ~. / / 

- t / 

N ~ - -  ~ 
% ~  . . . . . .  ~ ~ 

~ _  ~ ~ ~ / 
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/ 
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b . . . . .  ,'A 
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n:~ p . . . . .  ~ . - g "  
~ ~  

, •  _ deczsion 
I I I I i ~ '  r u l e  d 

. 5  . 6  .7  . 8  . 9  

Figure 1. 95% confidence intervals for -the probability of a paradox of redistribution 
for the Banzhaf power index, for various,numbers n of voters and decision rules d. 

In order to verify at least one entry in Tables 1 and 2, we have computed 
the theoretical probability of a paradox for n = 3 and d = 0.5. As is shown 
in Appendix C, this probability is equal to 1/16 = 0.0625. We would there- 
fore expect that approximately 625 paradoxes would occur among 10,000 
randomly selected voting weight redistributions. The observed number of 
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617 paradoxes lies well within the expected range. 
Finally, it may be interesting to note that there are cases where a paradox 

occurs when power is measured by the Banzhaf index, but not as measured 
by the Shapley-Shubik index, and vice versa. Table 3 gives an example each 
where such a discrepancy occurs) 2 

Table 3. Two examples of voting weight distributions with n = 4 voters and 
decision rule d = 0.61 

Voting ~ 
weights I w( , 

Banzhaf [P~  ' 
power indices I P~.'B ' 

Shapley-Shubik I Pis s 
power indices ~ 

No te. 

Case (a) 
i = 1  2 3 4 

.378 .202 .254 .166 

.279 .187 .071 .464 

1/3 1/6 1/3 1/6 
1/5 1/5"  0 3/5 

1/3 1/6 1/3 1/6 
1/6 1/6 0 2/3 

Case (b) 
1 2 3 4 

.066 .081 .410 .444 

.358 .089 .401 .152 

0 0 1/2 1/2 
3/10 1/10 1/2 1/10 

0 0 i/2 1/2 
1/4 1/12 7/12"1/12 

~ t  

1. In Case (a) a paradox is observed when power is measured by the Banzhaf index, 
but not when measured by the Shapley-Shubik index. Case (b) shows the opposite. The 
power indices which cause the paradox are marked by an asterisk. 

VII. Conclusions 
In this paper we have seen that the "Paradox of Redistribution" reported by 
Dreyer and Schotter (in progress) is an inevitable paradox of power, in the 
sense that for any voting body (with n _> 6 in the Banzhaf case and n > 7 
in the Shapley-Shubik case) with an initial vote distribution w = 
( w l  . . . . .  Wn),  there exists another vote distribution w '  = (w'~ . . . .  , W'n) 
which gives at least one voter a smaller proportion of the vote yet gives him 
more power, when power is measured either by the Banzhaf or the Shapley- 
Shubik power indices. Furthermore, we have found that the paradox does 
in fact occur with surprising frequency (about 30 percent in a body of n = 6 
voters with simple majority rule, if the voting weights before and after 
redistribution are assumed to be purely random). 

These results should then serve as a warning to organizations that are 
planning vote redistributions in their voting bodies, since the actual r.esult 
of the redistribution may be opposite to the intended goal of the planners. 
Such unintended results can only be avoided if the distinction between 
voting power and voting weights is recognized. 



c choice 

Appendix A 

Occurrence of the paradox of redistribution in the international monetary 
fund ~ 

Present voting system Proposed voting system 
d = .80 d = .85 

Country % of Vote % of Power % of Vote % of Power 

Luxembourg .14 .0020 .13 .0021 
Papua New Guinea .14 .0020 .13 .0021 
Jordan .15 .0021 .13 .0021 
Honduras .15 .0022 .14 .0023 
Cyprus .16 .0022 .14 .0023 
Malagasy Republic .16 .0022 .14 .0023 
Ethiopia .16 .0023 .14 .0023 
Liberia .17 .0024 .14 .0024 
Yemen (P.D.R.) .17 .0024 .16 .0025 
Costa Rica .18 .0025 .16 .0025 
Cameroon .19 .0026 .17 .0027 
Guatemala .19 .0027 .18 .0029 
Panama .19 .00271 .17 .00274 
Bahamas .14 .0200 .13 .0022 
Dominican Republic .21 .0030 .19 .0031 
Kenya .23 .0032 .22 .0036 
Tunisia .23 .0032 .21 .0034 
Syria .23 .0033 .21 .0034 
Jamaica .24 .0034 .23 .0038 
Burma .26 .0037 .23 .0038 
Trinidad & Tobagu .27 .0039 .25 .0041 
Uruguay .29 .0041 .26 .0042 
Sudan .30 .0043 .27 .0044 
Ghana .35 .0049 .31 .0051 
Sri Lanka .38 .0054 .34 .0056 
Iraq .41 .0059 .39 .0064 
Morocco .43 .0061 .41 .0067 
Zaire .43 .0061 .42 .0068 
Ireland .45 .0064 .43 .0069 
Peru .46 .0065 .45 .0073 
Bangladesh .46 .0066 .42 .0068 
Turkey .54 .0078 .53 .0086 
Egypt .66 .0074 .60 .0096 
Romania .66 .0045 .64 .0120 
Pakistan .80 .0114 .73 .0116 
Norway .82 .0116 .76 .0120 
Denmark .88 .0125 .79 .01255 
Austria .91 .0129 .84 .0132 

Note  1. 
These results compare the Banzahf indices for a redistributinn of voting weights with 

d = ~80 in the existing system and d = .85 in the proposed system as the rules prescribe. 
As Brams and Affuso (1976) point out in their article and as our examples in Sections 
II and. ",rl illustrate, however, this result is not an artifact of the change in the decision 
rule but  could occur with the same decision rule used in the existing and proposed 
systems. 
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Appendix B 

Paradox proof vote distributions for three voters 

In a voting body with n = 3 voters, there always exists a set of distributions which are 
paradox proof, no matter what the voting rule d is. In the following thr~e figures the 
paradox proof vote distributions are represented by shaded areas, in barycentrie co- 
ordinates on the open simplex with w I ÷ w 2 + w 3 = 1 and w i > 0 (i  = 1, 2, 3). Three 
cases must be distinguished for 1/2 < d < 3/5 (Figure 2a), 3/5 < d < 2/3 (Figure 2b), 
and 2/3 <_ d < 1 (Figure 2c). For 1/2 _< d < 3/5, there is a single contiguous region of 
paradox proof points in the center. For 3/5 < d < 2/3, there are 4 such regions. For 
2/3 < d < 1, there are 3 such regions. 
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Figure 2. Paradox proof v, oting weight distributions (shaded areas) for n = 3 voters on 
t h e u n i t s i m p l e x Z =  (w Zwi=  l , w i > O , i =  l ,2 ,3}fora)  l/2<d<3/5;b).3/5 
< d < 2 / 3 ; c )  2 / 3 < _ d < l .  
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The numbers in the various areas give the Banzhaf power index for voters 1, 2 and 3, 
respectively. For the Shapley-Shubik index, the power indices and the dividing lines 
between the various areas remain the same, except that  the power distributions such as 
PB = (3/5, 1/5, 1/5) etc., are replaced by PSS = (2/3, 1/6, 1/6). It is easy to verify that  
for the indicated points in the shaded areas no voter can increase his power if his 
weight remains constant (for example on a horizontal line for voter 1). 

Appendix C 

Calculation o f  the theoretical probability for  the occurrence o f  a paradox 

To verify the first entry in Tables 1 and 2, we derived the theoretical probability for 
the occurence of  a paradox of  redistribution when n = 3 and d = 0.5. In this case, the 
vector o f  power indices (as measured by either the Banzhaf or the Shapley-Shubik 
index) can be any of  the 4 possible combinations shown in Figure 3(a). For a paradox 
to occur, one of  the voters must  increase his power index from 0 to 113 while his 
voting weight is reduced. If the initial distribution o f  voting weights is given by the 
vector w * = (w~, w~, w~) shown in Figure 3(b), then a paradox occurs if w'  lies in the 
shaded area. (For example, if w' lies in the small shaded triangle at the bo t tom of  
Figure 3(b), then the weight o f  voter 1 was reduced, while his power increased from 
0 to 1/3.) 

W I 

Voter I I I ~ ~ , ,  

";t . . . .  " , , ,  
Voter 2 Voter 5 2 . ~ - ~ 0 ~ ~/~ ~ ~ ~ 

(a) (hi (el 

Figure 3. Startif~g from the voting weight distribution w*  = (w~,  w~*, w*~), a paradox 
occurs if w' lies in the shaded area. 

Given that  the initial weight distribution is w*, the probability of  a paradox is equal 
to the ratio between the sum of  the two shaded areas and the area of the unit 
simplex* :. 

p(w*) = (wD ~ + (w~)". 

We can simplify the problem by eliminating the coordinate w~ = 1 - w I - w~ and 
transform the unit  simplex into the triangle shown in Figure 3(c), which is defined by 
w I > 0, w~ > 0 and w 1 + w~ <_ 1. The probability that the initial weight distribution 

*We recall here that  we assumed that  each point on the unit  simplex has equal proba- 
bility of  being selected for w and w', and that  w and w' are stochastically independent.  
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lies in the lower left triangle defined by w: + % _< 1/2 and that a paradox occurs is 
then given by the expression: 

~ 1/2 l / 2 - w  I 1 1 - w l  
= f f p ( w ) d w ~  d w  I / f f d w ~ d w  1 

w 1 = 0  w~ = 0  wl = 0  w~ = 0  

where p ( w )  = wa a + wa 2, After some simplification, this yields ff = (1/96) / (1/2) = 
1/48. A sym~metry con~deration shows that a paradox can also occur, with this same 
probability P,  when w lies in any of the other two corner areas. Thus, we find P = 
3P = 1116 for the probability of  a paradox. 

A similar expression can be derived for the probability of a reverse paradox, and also 
yields 1116. But this follows directly from the symmetry between a paradox and a 
reverse paradox. 

Notes 

1o 
Joseph Raanan (1976) has proven that his paradox is not a peculiarity of the particular 
power indices used by Brams and Affuso, but  it is true for any power index satisfying 
four reasonable axioms. Consequently, what Brams and Affuso have illustrated is a 
true paradox of power and not a paradox of power indices. 

2. 
In the process of redistributing the voting power, the IMF also changed the voting rule 
from a necessary 80 percent to a necessary 85 percent majority. As our paper illus- 
trates, however, the paradox is not an artifact of this change and could occur without 
it. 
3. 
d must be at least equal to 1/2, otherwise two or more conflicting decisions could be 

~; 
adopted. The requirement i eS  wi  > d for a winning coalition is slightly different from 

standard usage which only requires ~ w  i >_ d. The latter rule is usually applied to 
distributions of integer numbers of votes. In the case of continuous voting weight 
distributions, with which we are concerned here, ~ w  i > d seems a more natural condi- 
tion for a winning coalition. We shall frequently refer to the "simple majority rule" 
which is represented by d = 1/2 using the above definition. With the standard defini- 
tion there is no value of d which precisely describes the simple majority rule, once 
continuous voting weights are admitted. Corporations often use a 51 percent rule for a 
winning coalition, but  his is more than a simple majority. 

4 .  
For a discussion of the relationship of the Banzhaf index to the Coleman index, see 
Brams and Affuso (1976, pp. 31-34). 
5. 
Voter 1 is critical in the coalition (1, 2 ) ,  (1, 3 ) and (1, 2, 3 ) ,  Voter 2 is critical in 
coalition (1, 2 )and  voter 3 is critical in coalition (1, 3 ) .  This directly yields the 
Banzhaf index given. 
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6 ,  

The paradox of  new members  can be demonst ra ted  as follows. Consider the  following 
voting body,  v -- (70/100;  60/100,  40/100,  0). This is in essence a two voter voting 
body.  Now redistribute the  votes so that  the following voting body  is determined:  
v' = (70,100; 50/100,  251100, 25[100).  The  original Banzhaf  power index is (1/2, 
1/2, 0), as is the original Shapley-Shubik index,  while the  new Banzhaf  index is (3/5, 
1/5, 1/5) and the  new Shapley-Shubik index is (2/3,  1/6, 1/6) which illustrates the  
"Paradox of  New Members" .  

7. 
Suppose,  for example,  w~ -- 1%, d = 70% and there are n = 8 voters. Then  the first 
voter has a Banzhaf  power index of  1/5 if the  voting weights are distributed as (using 
~ = 0.5%) w~ = 1%, w 2 = 69.25%, w 3 = 29.25%, w 4 = w s = . . .  = w 8 = 0.1%. 

8. 
P i  and p~ stand for either the Banzhaf  or the  Shapley-Shubik power index. 

9. 
A method  to generate a r andom vector w which is uni formly distr ibuted on the  
( n -  1 ) -d imens iona l  uni t  simplex is the  following. We first choose n - 1 random 
numbers  Y l  • • ,  Y n -  1 which are independent  and uni formly distr ibuted in the inter- 
val 0 < Y i  '<" 1 ( i  = 1 , . . . ,  n - 1). T hen  we permute  t h e y / t o  bring them into non-  

~ ~ - -  . . ,  - -  t - -  

decreasing order 0 <_ y l  < y2 < < Y n - 1  < 1. A uni formly distributed random 
_ ~ ~ ~ ~ 

vector on the  uni t  simplex is then  given by w~ - y ~ ,  w z - Y z  - Y l  , • • • ,  W n -  1 = Y h -  1 

- Y ' n - 2 ,  W n  = 1 - Y h -  1. To see this, we note  that  the  vector y = ( y ~  . . . . .  Y n -  1) is 
uniformly distr ibuted on the (n - 1 ) -d imens iona l  hypercube  C n _  1 = { Y  I 0 < y  <_ 1, 
i = 1 , . . . ,  n }. Rearranging the  coordinates into increasing order maps  this point  

i ' " ' ' ' e C n _  1 nto a p o m t y  e Z n _  1 on the  (n - 1 ) -d imens iona l  smaplex, Z n _  1 = { Y  I 0 
Y<- Y '~ < . . . .  < Yn' - 1 <_ 1 } ,  where  Z n' - 1 C C n _  1" (Zn-' 1 is" no t  a untt" s~mplex.)" y ' is 
uniformly distr ibuted on Z ~_  1, that  is, every point  in Z ~ _  1 has equal probabil i ty of  
being selected. The  t ransformat ion w~ = y'~, w 2 = y ' ~ - y ' ~ , . . .  , w  n = 1 -Yn-l' 

m a p s Z ~ _  1 into the  n - 1 dimensional  uni t  simplex Z n _  1 = ( w [ ~  w i = 1,  w i > 0, 

i = 1 , . . . ,  n ) ,  keeping the  property  tha t  each point  in Z n _  1 has  equal probabili ty 
of  being selected. 

10. 

Efficient algori thms to compute  the  Banzhaf  and the Shapley-Shubik power index 
using generating funct ions  are given in Brams and Affuso (1976).  

11. 

A 95% confidence interval o f  the probabili ty o f  the  occurrence o f  a paradox was calcu- 
lated by  using the  fact tha t  the  number  n p  o f  paradoxes has  a binominal  distr ibution 
with an u n k n o w n  probabili ty p and a number  m o f  trials equal to the number  o f  simu- 
lation runs  performed.  An unbiased est imator  for p is ~ = n p ] m ,  and the  s tandard error 

o f  the est imation is e = X / ~  1 - p ) [ r n .  -^ A 95% confidence interval was taken as 

(~  - 1.96 e, ~ + 1.96 e), using the normal  approximat ion  to the  binomial  distr ibution.  

12. 

In Appendix  B, we will see tha t  for n = 3 voters a paradox for the  Banzhaf  index 
occurs if and only if it also occurs for the  Shapley-Shubik index. But  for n ~ 4 this 
need no longer be true, and therefore the  en.tries in Tables 1 and 2 differ in some 
places for n > 4. 
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