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The inevitability of the “paradox of
redistribution” in the allocation of
voting weights

Dietrich Fischer and Andrew Schotter*

Abstract

In voting bodies, when voting weights are reallocated, it may be observed
that the voting power of some members, as measured by the Shapley-
Shubik and Banzhaf power indices, increases while their voting weight
decreases. By a simple constructive proof, this paper shows that such a
“paradox of redistribution” can always occur in any voting body if the
number of voters, n, is sufficiently large. Simulation results show that the
paradox is quite frequent (up to 30 percent) and increases with n (at least
for small n). Examples are given where the Banzhaf and Shapley-Shubik
indices are not consistent in demonstrating the paradox.

Introduction

It is well known that the number or percentage of votes that a member in
a voting body has is not a reliable index of his power. One example given by
Brams and Affuso (1976) clearly illustrates this point. In a paper entitled,
“Power and Size: A New Paradox,” Brams and Affuso show that in the
European Economic Community, when Ireland, Denmark, and Great Britain
were admitted as members, the voting power (as measured by the Banzhaf,
Coleman, and Shapley-Shubik power indices) of Luxembourg increased
even though its fraction of the votes decreased.’ They call this the “Paradox
of New Members.” More recently, Dreyer and Schotter (in progress)
examined the distribution of voting power in the International Monetary
Fund (as measured by the Banzhaf power index) following a redistribution
of the voting weights. Again certain paradoxical results appeared which were
counter to the intent of the planners and could have been avoided if proper
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attention was paid to the distinction between voting weights and voting
power.

In their paper, Dreyer and Schotter show that in the reassignment of
voting weights, thirty eight countries had their voting weights reduced yet
gained in voting power when power was measured by the Banzhaf power
index.? (See Appendix A for a summary of their results.) Their example
differs from Brams and Affuso’s in that at the International Monetary Fund
no new members were added but rather the weights of the existing members
were merely changed. Consequently, one could call their paradox the
“Paradox of Redistribution,” although Brams and Affuso’s result could be
considered a special case of theirs, in which one voter simply had a zero
weight before the redistribution and a positive weight afterward, thereby
becoming equivalent to a new member,

In this paper we consider the question of whether or not this paradox
is possible for voting bodies of any size no matter what their distribution of

" voting weights or their decision rules when power is measured either by the
Banzhaf or the Shapley-Shubik power index. In other words, is the paradox
inevitable for any voting body, or are there vote distributions and decision
rules for voting bodies which are “paradox proof,” that is, for which we can
find no other voting distribution which will increase some member’s power
while decreasing his voting weight? Our main results state that for
Banzhaf power index, no paradox proof vote distribution exists for any
voting body with n = 6 members, and for the Shapley-Shubik index, no
paradox proof vote distribution exists for any voting body with n > 7. We
will then show that when we restrict our voting rule to be a simple majority
rule or when we restrict the voting distribution in a reasonable way by plac-
ing a lower bound on the weight of the smallest voter in the voting body,
we are able to lower the size of the voting body in our results from n > 6
and n 2 7 to n 2 4, Simulation results are also reported which show that
the paradox is not at all a rare occurence.

1. Power indices
Before we proceed to discuss our results, let us briefly review the power
indices that we will be using. To do this, let NV be the set of voters in a voting

body indexed i=1, ,n,and let w=(wy,...,w,) be a vote distribution

normalized such that w; > 0 and Z‘ . w; = 1. The voting body is then fully
i= .

described by an n+1-tuple v = (d; wy, . . . w,), where d is the decision rule

of the body indicating the minimum fractlon of votes that must be exceeded
for the voting body to take collective action binding on all members,® and
(wy, ..., w,) is a vote distribution. Let S be any subset of voters SCN
Then we can deﬁne the value of coalition § as:
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A voter is “critical” in a coalition S if his defection from that coalition
changes the coalition from a winning to a losing coalition [i.e., v(S) =1
andv(S~- {i})=0].

The Banzhaf index for member i is then defined as:

;J[V(S)' (S~ {i})]

T ST )-v- G )]
js

i

P

This index, then, describes the proportion of critical defections of member i.

n .
It follows that  pp = 1.2
i=1
The Shapley-Shubik index for a member i is slightly more complex. It
concerns itself with the proportion of permutations of the n members in
which i’s defection from a winning coalition is critical. More formally, it
can be written as:

; >, (s=1)!(n=-s)! .
phs = F1EED L iy n(s- )
where § is the number of members in the subset S and # is the total number
of members in the voting body.

II. The paradox of redistribution for a three member voting body
Consider the following voting body:

, o (0,55 35 10
100’100’ 100° 100’

where 70/100 is the decision rule and (55/100,35/100, 10/100) is the vote
distribution. The Banzhaf and Shapley-Shubik power indices associated with
this voting body are both (1/2, 1/2, 0). Now let us redistribute the votes,
keeping the decision rule the same, so that the following voting body is
determined:

70 50 25 25

v = (150°100° 100" 100

).
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Here the Banzhaf index® is (3/5, 1/5, 1/5), while the Shapley-Shubik index
is (2/3, 1/6, 1/6), showing that although member 1’s voting weight de-
creased from 55/100 to 50/100, his power increased.® _

Now it might be interesting to ask whether in a three member voting
body there exist vote distributions which are paradox proof in the sense
that any redistribution of the votes which starts at one of these distributions
must give a voter less voting power if it gives him less weight. The answer is
yes, and as a matter of fact there are an infinite number of such vote distri-
butions, as is illustrated in Appendix B. For the purpose of illustration,
however, consider the following voting body, v = (70/100; 55/100, 23/100,
22/100). Here the power distribution is (3/5, 1/5, 1/5) if the Banzhaf index
is used, and (2/3, 1/6, 1/6) if the Shapley-Shubik index is used. The reader
can check for himself that it is not possible to give a voter more power by
diminishing his voting weight. Consequently, the vote distribution (55/100,
23/100, 22/100) is a paradox proof distribution for a three-member voting
body with decision rule 4 = 70/100.

IH1. The inevitability of the paradox of redistribution

The question we investigate in this paper, then, is the circumstances under
which the paradox illustrated above is inevitable. To do this we must
demonstrate how, given a vote distribution w =(w,, ..., w,) and a voting
rule d, we can construct a new vote distribution w’ = (wy,...,w,) which
gives at least one voter a smaller proportion of the vote yet gives him more
power, when power is measured by either the Banzhaf or the Shapley-
Shubik power index. The following propositions do just that.

Proposition 1: For voting bodies with n > 6, a paradox is always possible
no matter what initial vote distribution exists, when power is defined by the
Banzhaf index.

Proof of Proposition 1

1. For any voting rule d and any weight w;, of voter 1, his maximum
power is at least 1/5, no matter how small w, is. He can achieve this power
by assigning weight w, =d ~ w, /2 - 8/2tovoter2, w3 =1 -d - w,[2-8/2
to voter 3, and ws =...=w, = 8/(n - 3) to the remaining voters where &
is arbitrarily small.”. In particular ws +...+w, =8 <w; /2 +8/2, that is,
8 < wy, so that the voters 4, ..., n are all dummies with zero voting
power.

2. If there are 6 voters, the weakest of them has at most power 1/6 (since
the power indices add up to 1). By point 1 of the proof, the weakest voter
can now redistribute the weights of the other voters and increase his power
to 1/5, keeping his voting weight constant. However, since he can achieve a
power of 1/5 with an arbitrarily small voting weight, he can in fact decrease
his weight to any small positive value and still increase his power. Q.E.D.
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Proposition 2: For voting bodies with n > 7, a paradox is always possible
no matter what initial vote distribution exists, when power is defined by the
Shapley-Shubik index.

Proof of Proposition 2
Analogous to the proof of Propostion 1.

The import of these theorems is that for any voting body v = (d;
Wi,...,w,)—where n > 6 for the Banzhaf case and n > 7 for the Shapley-
Shubik case — any initial vote distribution is subject to the paradox of
redistribution in that there always exists another vote distribution such that
in the redistribution of voting weights, at least one player’s weight is de-
creased while his voting power is increased. It is in this sense that the
paradox is inevitable.

One shortcoming of our results is that they do not give us any indication
of the minimum size of the redistribution necessary to create the paradox.
Clearly, our results would be more disturbing if for any given initial distribu-
tion of votes there was another distribution within a small neighborhood of
the original which would create the paradox. It is interesting to note that in
the International Monetary Fund example summarized in Appendix A, the
redistribution of voting weights was not a “drastic” one. Also, our simula-
tion results given in Section VI demonstrate that the occurrence of the
paradox is not a rare event.

IV. Some further results

Our results so far are rather general in that we do not constrain the decision
rule used in our voting bodies in any way. However, the most common
voting rule is the simple majority voting rule and when this rule is used, it
is possible to show that both for the Banzhaf and the Shapley-Shubik power
indices no paradox proof vote distributions exist for n > 4.

Proposition 3: If the voting rule used is the simple majority voting rule
(i.e.,if d = 1/2), then for n > 4 a paradox is always possible.

Proof of Proposition 3
Let 1 be the weakest voter. (Every voter’s weight is always positive, thus
wy > 0.) Voter 1 can now achieve a power of 1/3 by distributing the weights
as wy, Wy =(1-wy = 8)/2, w3 =w,, wg =8/(n-3)=... =w, with§ > w,.
Then voters 4, .. ., n all have zero voting power and voters 1,2 and 3 have
power 1/3 each. This is true both for the Banzhaf and the Shapley-Shubik
power indices.

With four or more voters in a voting body, the weakest voter has, at most,
power 1/4 (in general 1/n < 1/4). But the weakest voter can increase his
power to 1/3 by redistributing the voting weights of the remaining players
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as indicated while keeping his voting weight the same. However, since voter
1 can achieve a power of 1/3 even with an arbitrarily small voting weight,
he can in fact decrease his voting weight and still increase his power. Thus a
paradox of redistribution always exists forn > 4 and d = 1/2. QE.D.

Instead of restricting the voting rule as we did in Proposition 3, we could
have placed a restriction on the vote distribution. One restriction would be
to constrain the weight of the smallest voter. If we make the restriction that
the voter with the smallest voting weight (say voter i) has a weight
w; > 2d - 1 initially (which in the case of d = 51% merely requires that he
have more than 2% of the vote), then it is possible to prove that no paradox
proof vote distributions exist for n > 4 for both the Banzhaf and Shapley-
Shubik power indices.

Proposition 4: 1f the decision rule is d and if the voter with the smallest
voting weight in the voting body v = (d; wy, . . ., wn) has a weight greater
than 2d - 1, then with n > 4 (and either the Banzhaf or the Shapley-Shubik
index) a paradox is always possible.

Proof of Proposition 4
The weakest voter (say voter 1) has at most power 1/n < 1/4. We can in-
: l-w;-8
crease his power to 1/3 by assigning weights wy, w, =w3 = —-—51-——-, wq =

=w, =8/(n-3)withwy +w, =(1+w; = 8)/2>dord<w, - (2d-1),
where it is always possible to choose & > Q, by assumption. Q.E.D.

V. The reverse paradox

Instead of looking for a paradox of the kind discussed up to now, where a
voter whose voting weight is decreased gains more power, we may also ask
whether the reverse situation exists. Are there cases, where a voter gains in
terms of voting weight, but loses in voting power? The answer is, of course,
yes. For whenever there is a paradox of the first kind in going from a votlng
we1ght distribution w = (wy, ..., w,) to anew dlstnbutlon w' (w I
w ) i.e., if some voter i is ass1gned a lower weight w‘ < w; but gams in
power (p; > p)), 8 then a reverse paradox is observed in going from the new
voting weight distribution w' to the old distribution w, since then voter i is
assigned a greater voting weight but loses in terms of power.

The question arises whether this reverse kind of paradox is also inevitable;
i.e., given any initial voting weight distribution w, does there always exist a
new distribution w' which exhibits a reverse paradox? The answer is clearly
no if we allow dictators to be present. For example, assume one voter has a
weight exceeding the required majority (say w; > d), that is, where one
voter is a dictator with power equal to 1, and all the remaining voters are
dummies with zero voting power. Then it is clear that the dictator (voter 1)
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is the only one who can possibly lose power, but he certainly will not do so
if his voting weight is increased. All the other voters can only increase their
power or keep it unchanged, regardless of what happens to their voting
weights. Thus, we see that in this case no reverse paradox is possible.

Fortunately, however, we do not have to limit ourselves to such extreme
cases, for even when we exclude the possibility that one of the voters is a
dictator, there still exist “paradox proof” voting weight distributions in the
reverse sense, for any number of voters n, provided that the required majority
d is sufficiently high. We shall see that a voting body in which each member
has veto power is paradox proof in the reverse sense. To show this, we make
use of the following:

Lemma 1: Any voter who has veto power (i.e., any voter { whose weight is
w; 2 1 - d) has at least as much power as any other voter in the voting
body, when power is measured by either the Banzhaf or the Shapley-
Shubik power index.

Proof of Lemma 1
Assume voter i has veto power, Then he must be a member of every winning

coalition S since].ezs w; > d can hold only if ieS. Also, he is critical in every

coalition, since].ES, w; < d forevery § " which does not include voter ;.

The Banzhaf power index for voter i:
Py = 5 ()= ¥(S- D1/ 75 [(8)-v(S- T ]I,

is directly proportional to the number of winning coalitions S in which j is
a critical member. No other voter can possibly belong to more winning
coalitions or be a critical member in more winning coalitions, since i belongs
to every winning coalition and is critical in each one of them. Therefore, no
other voter can have a higher Banzhaf power index than 7.

The Shapley-Shubik power index of voter i:

I —

-5 (=11 (=) 1] ()= »(S- {1,

i
Pss

=

is proportional to the number of winning coalitions § in which i is critical,
multiplied by a certain factor (s~ 1) ! (n= s)!, whose size depends only on
the size s of the respective winning coalition S, but not on the voter i. That
is, given some winning coalition §, every critical member of S derives the
same measure of power from membership in S, when power is measured by
the Shapley-Shubik index. Thus, the same argument as before again applies,
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namely that voter i is at least as powerful as any other voter, since he is a
critical member of any winning coalition. No other voter can outdo him in
this respect.

This completes the proof of Lemma 1.

Corollary: A voter who has veto power in a voting body with » members
has at least power 1/r, when power is measured by either the Banzhaf or
the Shapley-Shubik index,

Proof of the Corollary to Lemma 1

Suppose to the contrary that voter i has veto power, and that p} 5 <1n
(or p§ s < 1/n). Then there must exist at least one other voter whose power
index is larger than 1/n, for otherwise the power indices of all voters would
sum up to less than 1. But according to Lemma 2, it is impossible to find
another voter whose power index is greater than that of /. This completes
the proof of the corollary.

Proposition 5: Any voting weight distribution in which every member has
veto power is paradox proof in the reverse sense.

Proof of Proposition 5

According to the corollary of Lemma 1, every voter in a voting body where
each voter has veto power must have a power of at least 1/n (measured by
either the Banzhaf or the Shapley-Shubik index), and since the power
indices sum up to 1, the power of each voter is exactly 1/n. If now the
voting weight of any voter is increased, he still keeps his veto power, regard-
less of how voting weights are redistributed among the remaining voters.
That is, his power is at least 1/n, and can therefore not decrease. Thus, it
is impossible to find any voter whose power decreases when his voting
weight increases. This completes the proof of Proposition 5.

In light of Proposition 5, it may be interesting to note under what condi-
tions a voting weight distribution can exist in which all voters have veto
power, We have:

Proposition 6: A voting weight distribution w = (wy, ..., w,) in a voting
body v = (d; wq,. .., w,) which gives every voter a veto can exist if and
only ifd > 1~ 1/n.

Proof of Proposition 6

a. Necessity. The weakest member in a voting body of size n has a voting
weight of at most 1/n (otherwise the weights would sum up to more than 1).
If he is to have veto power, the decision rule must bed > 1 - 1/n.

b. Sufficiency. If 4 > 1 -~ 1/n, then there exists at least one weight
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distribution which gives each voter a veto, namely w = (1/n, ..., 1/n). (In
general, there exists a continuum of such distributions, the more, the
larger d is.)

Does the result that a reverse paradox is not inevitable mean that it is
less likely to occur when voting weights are reallocated than a paradox of
the first kind? Not at all. In fact, from the symmetric relationship between
a paradox and a reverse paradox, which was discussed at the beginning of
this section, it follows that for any number n of voters and any decision rule
d a reverse paradox is exactly as likely to occur as a paradox of the kind
discussed earlier, provided that the voting weight distributions w and w'
before and after redistribution are independent random selections from the
same probability distribution. In the next section, we report some simula-
tion results which allow us to estimate the frequency with which one may
find a paradox of redistribution.

V1. The frequency of paradoxes of redistribution: a Monte Carlo simulation
In proving Propositions 1 and 2, where we showed that if the number of
voters is n > 6 for the Banzhaf index and n > 7 for the Shapley-Shubik
index, a paradox of redistribution is always possible, we used rather special
redistribution patterns, giving very small voting weights to all but a few
members of the voting body. The question naturally arises whether such
paradoxical situations occur with any significant frequency, or whether we
are merely attacking windmills. Another question one may ask is whether
the frequency of a paradox will tend to increase or decrease as the number n
of voters increases.

To answer these questions, we have simulated a large number of
random redistributions of voting weights, for various numbers of
voters n and decision rules d, and counted the number of paradoxes
observed. For each redistribution, we selected two random vectors of

voting weights, w = (wy,...,w,), and w' =(w},..., w,), which were
independent and uniformly distributed on the (n- 1)-dimensional unit
simplex given by w; + ...+ w, =1, w;, 20(=1,...,n)°

For each such pair of voting weight distributions we computed the Banzhaf
and the Shapley-Shubik power index before and after redistribution and
tested whether any voter had increased power with a smaller voting weight,
or the reverse.’® Table 1 summarizes the results for the Banzhaf power
index and Table 2 for the Shapley-Shubik power index.!!
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Figure 1 graphically represents a portion of the results listed in Table 1.
These results clearly show that the frequency of a paradox is by no means
negligible, reaching as high as 30 percent for n = 6 voters, under the radical
redistribution of voting weights assumed here. We can also conclude that the
frequency of a paradox increases with the number # of voters, at least for
the range of relatively small # explored here. With respect to the parameter
d (the decision rule) the probability of the occurence of a paradox apparently
drops at first, reaches a minimum for about d = 0.7, and then increases
again as d approaches 1. We do not have any simple and plausible explana-
tion for this behavior.

Probability of
a Paradox

A

L ) . decision
@ : i L . > rule d

Figure 1. 95% confidence intervals for the probability of a paradox of redistribution
for the Banzhaf power index, for varioussnumbers n of voters and decision rulesd.

o 4

In order to verify at least one entry in Tables 1 and 2, we have computed
the theoretical probability of a paradox for n = 3 and d = 0.5. As is shown
in Appendix C, this probability is equal to 1/16 = 0.0625. We would there-
fore expect that approximately 625 paradoxes would occur among 10,000
randomly selected voting weight redistributions. The observed number of
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617 paradoxes lies well within the expected range.

Finally, it may be interesting to note that there are cases where a paradox
occurs when power is measured by the Banzhaf index, but not as measured
by the Shapley-Shubik index, and vice versa. Table 3 gives an example each
where such a discrepancy occurs.'?

Table 3. Two examples of voting weight distributions with # = 4 voiers and
decision rule d = 0.6

Case (a) Case (b)
i=1 2 3 4 1 2 3 4

Voting w, | 378 202 254 166 | 066 081 410 444
weights w, | 279 187 071 464 | 358 089 401 .152
Banzhaf P 13 16 13 16 | 0 0 12 12

power indices | P% 1/5 1/5* 0 3/5 |3/10 1/7160 1/2 1/10

Shapley-Shubik| pks | 1/3  1/6 1/3 1/6 0 0 12 12
powerindices | pi ' | 1/6 1/6 0 2/3 |1/4 1/12 7/12*1/12

Note.

1. In Case (a) a paradox is observed when power is measured by the Banzhaf index,
but not when measured by the Shapley-Shubik index. Case (b) shows the opposite. The
power indices which cause the paradox are marked by an asterisk.

VII. Conclusions

In this paper we have seen that the “Paradox of Redistribution” reported by
Dreyer and Schotter (in progress) is an inevitable paradox of power, in the
sense that for any voting body (with n > 6 in the Banzhaf case andn > 7
in the Shapley-Shubik case)} with an initial vote distribution w =
(Wi, ..., w,), there exists another vote distribution w' = (w{,..., wy)
which gives at least one voter a smaller proportion of the vote yet gives him
more power, when power is measured either by the Banzhaf or the Shapley-
Shubik power indices. Furthermore, we have found that the paradox does
in fact occur with surprising frequency (about 30 percent in a body of n = 6
voters with simple majority rule, if the voting weights before and after
redistribution are assumed to be purely random).

These results should then serve as a warning to organizations that are
planning vote redistributions in their voting bodies, since the actual result
of the redistribution may be opposite to the intended goal of the planners.
Such unintended results can only be avoided if the distinction between
voting power and voting weights is recognized.
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Appendix A

Occurrence of the paradox of redistribution in the international monetary
fund!

Present voting system Proposed voting system
d=.80 d= 85
Country % of Vote % of Power % of Vote % of Power
Luxembourg 14 0020 A3 .0021
Papua New Guinea .14 .0020 .13 .0021
Jordan 15 .0021 13 .0021
Honduras A5 0022 .14 .0023
Cyprus 16 0022 .14 0023
Malagasy Republic .16 0022 .14 .0023
Ethiopia .16 0023 .14 .0023
Liberia 17 .0024 .14 .0024
Yemen (P.D.R)) 17 0024 .16 .0025
Costa Rica .18 .0025 .16 .0025
Cameroon .19 0026 17 .0027
Guatemala .19 0027 18 .0029
Panama 19 .00271 17 .00274
Bahamas 14 0200 13 .0022
Dominican Republic 21 .0030 19 . 0031
Kenya .23 .0032 22 .0036
Tunisia 23 0032 21 0034
Syria 23 0033 21 .0034
Jamaica 24 .0034 23 .0038
Burma .26 .0037 23 .0038
Trinidad & Tobago 27 ~ 0039 .25 .0041
Uruguay .29 .0041 26 .0042
Sudan .30 .0043 27 0044
Ghana 35 .0049 31 0051
Sri Lanka .38 0054 34 .0056
Iraq 41 .0059 .39 .0064
Morocco 43 0061 41 .0067
Zaire 43 0061 42 .0068
Ireland 45 0064 43 .0069
Peru 46 0065 45 .0073
Bangladesh 46 0066 42 .0068
Turkey .54 0078 53 .0086
Egypt .66 .0074 .60 .0096
Romania .66 .0045 .64 0120
Pakistan .80 0114 73 0116
Norway .82 .0116 .76 0120
Denmark .88 0125 .79 01255
Austria 91 0129 .84 0132

Note 1.

These results compare the Banzahf indices for a redistributien of voting weights with
d = .80 in the existing system and d = .85 in the proposed system as the rules prescribe.
As Brams and Affuso (1976) point out in their article and as our examples in Sections
IT and. VI illustrate, however, this result is not an artifact of the change in the decision
rule but could occur with the same decision rule used in the existing and proposed
systems.
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Appendix B
Paradox proof vote distributions for three voters

In a voting body with n = 3 voters, there always exists a set of distributions which are
paradox proof, no matter what the voting rule d is. In the following three figures the
paradox proof vote distributions are represented by shaded areas, in barycentric co-
ordinates on the open simplex with w, +w, + w,; = 1and w; >0 (i =1, 2, 3). Three
cases must be distinguished for 1/2 < d < 3/5 (Figure 2a), 3/5 <d < 2/3 (Figure 2b),
and 2/3 <d < 1 (Figure 2¢). For 1/2 £d < 3/5, there is a single contiguous region of
paradox proof points in the center. For 3/5 < d < 2/3, there are 4 such regions. For
2/3 <d < 1, there are 3 such regions.

Figure 2. Paradox proof voting weight distributions (shaded areas) for # = 3 voters on
the unit simplex Z = {w | = w;=1,w;>0,i=1,2,3}fora) 1/2<d < 3/5;) 3/5
<d<2/3;0)2/3%d< 1.



Public choice

64

The numbers in the various areas give the Banzhaf power index for voters 1,2 and 3,
respectively. For the Shapley-Shubik index, the power indices and the dividing lines
between the various areas remain the same, except that the power distributions such as
pg = (3/5, 1/5, 1/5) etc., are replaced by pgg = (2/3, 1/6, 1/6). It is easy to verify that
for the indicated points in the shaded areas no voter can increase his power if his
weight remains constant (for example on a horizontal line for voter 1).

Appendix C
Calculation of the theoretical probability for the occurrence of a paradox

To verify the first entry in Tables 1 and 2, we derived the theoretical probability for
the occurence of a paradox of redistribution when n = 3 and d = 0.5. In this case, the
vector of power indices (as measured by either the Banzhaf or the Shapley-Shubik
index) can be any of the 4 possible combinations shown in Figure 3(a). For a paradox
to occur, one of the voters must increase his power index from 0 to 1/3 while his
voting weight is reduced. If the initial distribution of voting weights is given by the
vector w* = (w¥, w¥, w¥) shown in Figure 3(b), then a paradox occurs if w' lies in the
shaded area. (For example, if w' lies in the small shaded triangle at the bottom of
Figure 3(b), then the weight of voter 1 was reduced, while his power increased from
0to1/3)

W,

Voter §

FAN >
Voter 2 Voter 3 2 \—F/ \__.;*___./3 o wy /2 w3
3 2
{a) (b) (c)

Figure 3. Starting from the voting weight distribution w* = (w¥, w¥, w%), a paradox
occurs if w' lies in the shaded area.

Given that the initial weight distribution is w*, the probability of a paradox is equal
to the ratio between the sum of the two shaded areas and the area of the unit
simplex*:

p(w*) = (wH? +(whH?.
We can simplify the problem by eliminating the coordinate w, =1~ w, - w, and

transform the unit simplex into the triangle shown in Figure 3(c), which is defined by
w, 20,w, 2 0andw, +w, < 1.The probability that the initial weight distribution

*We recall here that we assumed that each point on the unit simplex has equal proba-
bility of being selected for w and w', and that w and w' are stochastically independent.
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lies in the lower left triangle defined by w, + w, < 1/2 and that a paradox occurs is
then given by the expression:

~ 12 1/2-w, I 1-w,
p= I f p(w)dw3 dw, [ I 7 dw,dw,
w, =0 w; =0 wy =0 w, =0

where p(w) =w,*+ w,?, After some simplification, this yields B = (1/96) / (1/2) =
1/48. A symmetry cong{deratlon shows that a paradox can also occur, with this same
probability P when w lies in any of the other two corner areas. Thus, we find P =
3P= 1/16 for the probability of a paradox.

A similar expression can be derived for the probability of a reverse paradox, and also
yields 1/16. But this follows directly from the symmetry between a paradox and a
reverse paradox.

Notes

1.

Joseph Raanan (1976) has proven that his paradox is not a peculiarity of the particular
power indices used by Brams and Affuso, but it is true for any power index satisfying
four reasonable axioms. Consequently, what Brams and Affuso have illustrated is a
true paradox of power and not a paradox of power indices.

2.
In the process of redistributing the voting power, the IMF also changed the voting rule
from a necessary 80 percent to a necessary 85 percent majority. As our paper illus-
trates, however, the paradox is not an artifact of this change and could occur without
it.
3

d must be at least equal to 1/2, otherwise two or more conflicting decisions could be
adopted. The requirement iezs w; > d for a winning coalition is slightly different from

standard usage which only requires Zw; > d. The latter rule is usually applied to
distributions of integer numbers of votes. In the case of continuous voting weight
distributions, with which we are concerned here, Tw; > d seems a more natural condi-
tion for a winning coalition. We shall frequently refer to the “simple majority rule”
which is represented by d = 1/2 using the above definition. With the standard defini-
tion there is no value of d which precisely describes the simple majority rule, once
continuous voting weights are admitted. Corporations often use a 51 percent rule for a
winning coalition, but his is more than a simple majority.

. 4.

For a discussion of the relationship of the Banzhaf index to the Coleman index, see
Brams and Affuso (1976, pp. 31-34).

5.

Voter 1 is critical in the coalition {1,2}, {1, 3}and {1,2, 3}, Voter 2 is critical in
coalition {1, 2 }and voter 3 is critical in coalition {1, 3}. This directly yields the
Banzhaf index given.
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6.
The paradox of new members can be demonstrated as follows. Consider the following
voting body, v = (70/100; 60/100, 40/100, 0). This is in essence a two voter voting
body. Now redistribute the votes so that the following voting body is determined:
= (70,100; 50/100, 25/100, 25/100). The original Banzhaf power index is (1/2,
1/2, 0), as is the original Shapley-Shubik index, while the new Banzhaf index is (3/5,
1/5, 1/5) and the new Shapley-Shubik index is (2/3, 1/6, 1/6) which illustrates the
“Paradox of New Members™.

7.

Suppose, for example, w, = 1%, d = 70% and there are n = 8 voters. Then the first
voter has a Banzhaf power index of 1/5 if the voting weights are distributed as (using
§=05%)w, =1%,w, =69.25%,w; =29.25%,w, =w; =...=w, =0.1%.

8.

p; and p; stand for either the Banzhaf or the Shapley-Shubik power index.

9.

A method to generate a random vector w which is uniformly distributed on the
(n ~ 1)-dimensional unit simplex is the following. We first choose # — 1 random
numbers y1 SERE Yn—1 Which are independent and uniformly distributed in the inter-
val0<y;<1(=1,...,n- 1) Then we permute the y; to bring them into non-
decreasmg order 0 < yl < v .Sy S 1A umformly distributed random
vector on the unit simplex is then givenby w, =y, W, S¥, -, . .., Wyo1 =¥y 1
- Yn-2. Wp =1 - y;,,_1. To see this, we note that the vectory = (yl, .. 1) is
uniformly distributed on the (n - 1)-dimensional hypercube C,,_.q = {¥ | 0¥ <n
i=1, ,n}t. Rearranging the coordinates into increasing order maps tl’llS pomt
y € C,, 1 mto apointy' € Z,,_y on the (n - 1)-dimensional simplex, Z,,_; = {10
Sy S0 Sypo1 1), where Zyy_ | € Cpeyq. (Zy—. is not a unit simplex.) y' is
uniformly d1stnbuted on Z,_, that is, every pomt in Zn—l has equal probab]hty of

being selected. The transformation w, = y,, w, =y, -y\,...,w, = 1 -3,
mapsZ,_; into the n - 1 dimensional unit simplex Z,_; = {w[l.z w;=1,w; 20,
i=1,...,n}, keeping the property that each point in Z,,_ ; has equal probability
of being selected.

10.

Efficient algorithms to compute the Banzhaf and the Shapley-Shubik power index
using generating functions are given in Brams and Affuso (1976).

11,

A 95% confidence interval of the probability of the occurrence of a paradox was calcu-
lated by using the fact that the number np of paradoxes has a binominal distribution
with an unknown probability p and a number m of tnals equal to the number of simu-
lation runs performed. An unbiased estimator for p is P = np/m, and the standard error

of the estimation is e = p(l—p)/m. A 95% confidence interval was taken as

(ﬁ -196¢, ﬁ +1.96¢), using the normal approximation to the binomial distribution.
12,

In Appendix B, we will see that for n = 3 voters a paradox for the Banzhaf index
occurs if and only if it also occurs for the Shapley-Shubik index. But for n 2 4 this
need no longer be true, and therefore the entries in Tables 1 and 2 differ in some
places for n 2 4.
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