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The assessment of the behaviour or physiology of cultured fish has always been difficult due to the 
timing of sampling, differences between experimental and aquaculture conditions and to 
methodological bias arising from repeated fish handling. The development of biotelemetry 
techniques offers a wide range of possibilities to improve both production and management in 
aquaculture through monitoring of behaviour or physiology of free-swimming fish inside their 
culture environment. Thus knowing how key parameters are changing can allow faster adjustment 
of feeding times to activity rhythms, more objective identification of the preference/tolerance 
margins towards environmental variables and precise assessment (from ‘the fish’s point of view’) 
of the impact of environmental or operational stressors on fish. This paper briefly reviews the 
techniques that might be applied in aquaculture and focuses on relevant systems and estimators of 
fish activity: movements, vertical distribution, use of demand-feeders, muscular activity and heart 
rate. Species or size-related limitations and use of automatic monitoring stations are reviewed and 
evaluated. Perspectives of integrated biomonitoring in aquaculture are discussed, using 
telemetered fish as reliable probes in the detection of abnormal situations such as changes of 
water quality or altered environments. 
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INTRODUCTION 

Aquaculture is nowadays turning to a high rearing density ‘aquaindustry’ (Hempel, 1993), 
facing economic and environmental constraints that lead producers to fine-tune their 
operations, increase feeding efficiency and minimize food waste to cope with the rising 
costs of feedstuffs and increasing concern over pollution resulting from poorly organized 
feeding schedules (Poxton, 1991; Seymour and Bergheim, 1991). Predictive feeding charts 
(based on food ratio, texture and diet formulation) account for factors that control long- 
term variations of food intake but may prove inefficient at the levels - daily or subdaily - 
actually controlling fish activity or appetite. Feed conversion rates and fish growth can be 
improved by adapting meal frequency or timing of food distribution to the species (e.g. 
Greenland and Gill, 1979, on channel catfish, Ictafurus punctatus; Noeske and Spieler, 
1984, on common carp, Cyprinus carpio, and Carrillo et al., 1986, on sea bass, 
Dicentrarchus lab-ax; review, Boujard and Leatherland, 1992) but clearly need some sort 
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FIG. 1. Relational diagram of the use of biotelemetty in aquaculture. 

of feedback or indication. Similarly, high rearing densities in modem aquaculture 
increase mortality risks and urge the need for efficient alarm-coupled monitoring 
systems to detect environmental degradation that could interfere with fish survival, 
stress and growth. In a recent review, Poxton (1991) pointed out that realistic criteria of 
environmental quality and safety margins under intensive farming conditions were 
generally unavailable and that methods should be developed to control water quality 
fluctuations and impact on fish health. 

In this context (Fig. l), selected aspects of fish behaviour and physiology are probably 
the most objective variables to be assessed in culture conditions. Their real-time 
monitoring would represent one of the most relevant steps in improving aquaculture 
management through the answer to fundamental questions such as: 

l How are fish distributed in the culture environment? 
l How do the activity and physiological rhythms of fish depend on culture conditions 

(density, light intensity, temperature, . . .)? 
l To what extent may their appetite be affected by environmental variations (wind, 

oxygen concentration, turbidity, . . .) or operational stressors (delousing, transfer, 
removal of dead fish)? 

l What delay is required for fish conditioning and what is its long-term efficiency? 

These questions may be difficult to address in aquaculture environments when using 
only conventional observation techniques (Scherer, 1992), mainly due to major 
restrictions imposed by the culture environment itself (light intensity, turbidity, depth, 
distance, . . .) on the continuous assessment of fish behaviour. On the other hand, 
conclusions from laboratory experiments may be misleading due to discrepancies 
between experimental and actual aquaculture conditions (fish density, environment). 
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The study by Tang and Boisclair (1993) on the influence of size of enclosures on the 
swimming characteristics of fish show that models of spontaneous swimming cost, 
developed using respirometry experiments in small aquaria, may not represent the 
complexity of swimming patterns, and consequently the cost of spontaneous swimming 
in large enclosures or in the field. This statement is also relevant for alarm systems using 
probe fish (e.g. ‘truitometre’ or ichthyotest; Huve, 1982). 

Various techniques have been used to assess the behaviour of cultured fish (review, 
Poncin and Ruwet, 1994). Investigations of diurnal and tidal rhythms of both appetite and 
swimming activity in Atlantic salmon,Salmo salar, in commercial cages were made using 
a video camera (Kadri et al., 1991). Floen et al. (pers. comm.), Huse and Holm (1993), and 
Juell(1993) applied PC-based echo integration to the study of the vertical distribution of 
Atlantic salmon in net pens. The leaping behaviour in Atlantic salmon was monitored 
through the use of infrared cells for the assessment of stress situations (Furevik et al., 
1993). The timing and intensity of demand-feeding activities have been assessed through 
computerized monitoring of self-feeders (Anthouard and Wolf, 1988; Begout et al., 1994). 
In addition to these techniques that provide information on the average behaviour of fish, 
there have been new developments of underwater telemetry techniques with various 
possibilities for real time monitoring of many aspects of activity and physiology of free- 
swimming individual fish. Since its beginning in 1957, underwater biotelemetry has been 
applied to more than 160 aquatic species, including 110 fish species (Bar-as, 1991). 
Surprisingly, its use in aquaculture environments is more recent (Mohus and Holand, 
1983; Holand, 1987; Begout and Lagardere, 1993) and the investigated species far less 
numerous, despite logistic advantages arising from restricted range or ease of tag 
recovery. This paper briefly reviews the possibilities of improving stock management 
through the use of underwater biotelemetry. 

BASIC CONCEPTS IN BIOTELEMETRY 

Potentially, biotelemetry allows the remote sensing of the positions, movements, aspects 
of physiological or behavioural variables of an animal - or of environmental conditions 
around it - by means of radio (30-150 MHz) or acoustic signals (20-300 kHz). An 
individual can be equipped with a transmitter sending a signal which can be carrying 
information about heart rate or some other measurement of interest. Different 
transmitters are individualized by different frequencies or coded pulses. The signal is 
detected by hydrophones for acoustic and antennas for radio signals respectively. The 
distance at which the signals will be detected will mainly depend on the power radiated 
by the transmitter, the sensitivity of the receiving station and propagation losses. 

The propagation of radio signals in air and water has been extensively investigated 
(Velle et al., 1979). The received signal strength (RSS, dBm) in an open environment is 
given by the equation: 

RSS = ERP - Losswater - LOssif - LOSSair + Cain, - LOSS, (1) 

where ERP is the external radiated power of the transmitter (dBm); Loss,,~,, = d, x 
(&Ad,), with d, = depth of transmitter (m) and aI.,,jad, = propagation loss 
depending on conductivity and frequency (-1.75 dB m-l for each increment of 100 &S 
cm-’ at frequencies between 30 and 150 MHz); LOSSif is the loss at the air-water interface 
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FIG. 2. Conductivity-related variations of the reception range for a fish standard radio transmitter 
(ERP = -40 dBm) detected in an open environment by a three-element Yagi antenna (+6 dBd) 
connected through a 30 m RGs8u feeder to a receiver with a -145 dBm sensitivity. Immersion 
depths, l-10 m. Solid curves, 40 MHz; broken curves, 150 MHz. 

(30 dB); LOSSair = 17.7 + 20 log (d,Jwavelength) (dB), with dair = linear distance 
between transmitter and receiving antenna (m); Gain,, is the gain of the receiving 
antenna (dBd); and Losst is the loss in the transmission line (dB rn-‘; e.g. 0.0317 dB m-l 
for a standard coaxial RG5su line). As illustrated in Fig. 2, the use of radio signals is 
restricted to relatively shallow waters (< 10 m) with low or medium conductivity 
(< 50&1000 @Zi cm-t). 

Acoustic signals propagate omnidirectionally in water, the spheric propagation mode 
implying that the range dependency of the intensity obeys the inverse square law. This 
spreading loss is further modified by losses due to signal absorption or scattering when 
acoustic waves encounter a target (MacLennan and Simmonds, 1992). The overall 
acoustic propagation losses (compared with a transmitter source at 1 m) are given by 
the general equation (Anon., 1968): 

Hr = 10 log rl + 10 log r + a, + A (2) 

where r is the distance to the transmitter source; rl is the mean depth of the 
environment; a, is the absorption loss and A is the scattering loss. A 100 kHz transmitter 
radiating at a power of 0.01 W cm-’ and giving a level of 151 dB/re 1 PPa at a distance of 
1 m will undergo a signal loss of 71 dB through propagation, corresponding to a detection 
range of approximately 500 m (Mohus and Holand, 1983). Scattering loss and frequency 
attenuation are 51 dB and 20 dB, respectively. Under bad weather conditions, the range 
of this transmitter would be cut down to 200 m due to ambient noise (e.g. 25 dB decrease 
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of signal-to-noise ratio during heavy rain). In earthen ponds or salt marshes used in 
aquaculture, the attenuation of acoustic signals can be as high as 25 dB in less than 10 m 
(Lagardere et al., 1990). In this type of environment, the useful range of a standard fish 
transmitter (e.g. V2B-2L model from Vemco, 136 dB/re 1 p,Pa at 1 m) is cut down to 20-25 
m. Acoustic signals are thus preferred in marine or freshwater deep and calm 
environments and are limited by the presence of vegetation, water turbulence, ambient 
noise and non-detection through ice or thermocline. 

Both systems have intrinsic limitations but their variety allows the experimenter to 
choose the appropriate technique in almost all aquaculture environments. Combined 
acoustic/radio tags (e.g. Solomon and Potter, 1988) are less disadvantaged by 
environmental restrictions but may require larger batteries or have a shorter life span for 
the same weight of transmitter. In any case, the experimenter will be confronted by 
traditional trade-off constraints between the operational life of the transmitter and its 
bulk or weight (see ‘transmitter attachment’) and to a lesser extent by its radiated power 
and detection range, because range is restricted in most modern culture modes. 

A possible way of partly solving this trade-off constraint is provided by the use of 
pulsed signals. Pulsed signals not only permit the telemetry of various parameters 
through variations of the transmitter pulse rate, using various sensors and circuits (see 
below), but also increase the operational life of the transmitter, in comparison with 
continuous signals. In addition, the use of different pulse intervals on the same frequency 
allows discrimination between several individual transmitters using this frequency, 
resulting in higher scanning performances by heterodyne receivers. The latest 
developments in transmitter technology involve digitally encoded signals (e.g. Lotek 
Engineering Inc., 1992) coupled to very low pulse rates (around 12 pulses min-I). Using 
these transmitters permits up to 170 fish per frequency with operational life or power 
increased by 400% but requires automatic stations for individual identification. Further 
information on underwater telemetry techniques is given in Stasko and Pincock (1977), 
Winter (1983), Baras (1991) and Priede and Swift (1992). 

Simple - position only - radio or acoustic transmitters currently cost between US $150 
and US $200 (+ US $ 20-30 for temperature or mercury tilt activity circuit; + US $200- 
300 for electromyogram tags). Receivers cost from US $ 700 to over US $ 10 000 for 
automatic data-logging stations. This investment implies that a fish should keep its 
transmitter as long as its battery operates or at least for the duration of the study. 
However, the attachment procedure granting the maximum retention rate may not be the 
most adapted to secure a minimum interference with fish physiology. 

TRANSMllTER ATTACHMENT 

In any tagging study, the experimenter is hoping that equipping fish with radio or 
acoustic transmitters does not interfere with fish survival, growth, performances or 
behaviour. Three attachment modes are most frequently used in fish: external 
attachment by a harness (lateral or mid-dorsal), gastric insertion, or surgical 
implantation inside the body cavity. Both general and procedure-specific biases have 
been found in numerous studies (Baras, 1991). A ratio of transmitter weight to fish weight 
exceeding 2.5% often induces unrecoverable negative buoyancy (bluegill, Lepomis 
macrochirus, Ciallepp and Magnuson, 1972; Atlantic salmon, Fried et al., 1976). Recent 
developments in battery technology (use of lithium thionyl chloride cells which have an 
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energy density about 18 times higher than that of Ni-Cad cells) have partly solved the 
traditional compromise between transmitter weight - or bulk - and range or operational 
life. The smallest available radio and acoustic transmitters still weigh about 0.8 g and 1.3 
g, respectively, restricting the use of telemetry tags to fish above 30-40 g. 

Regardless of attachment mode and transmitter-to-fish-weight ratio, fish handling and/ 
or presence of transmitter may result in hyperactivity post-release (e.g. Atlantic cod, 
Cadus morhua, Hawkins et al., 1974; sole, Sofea solea, Lagardere et al., 1988) and an 
increase in oxygen consumption (rainbow trout, Oncorhynchus mykiss, Lewis and Muntz, 
1984) or in hypoactivity (rainbow trout, Zimmermann, 1980). Normal activity rhythms, 
though, do not systematically imply that fish are not affected by the tagging procedure: 
Lagardhe (unpublished) showed that sea bass weighing around 400 g lost 10 to 15 g 
during the first post-operative week despite their feeding activity (detected from faecal 
analysis and use of self-feeder) being similar to those of untagged fish (see also Fig. 4). 
Weight losses in tagged fish may also originate from lower feeding rates (e.g. largemouth 
bass,Micropterus salmoides, Ross and McCormick, 1981) and are either maintained in the 
long run (e.g. largemouth bass, Mesing and Wicker, 1986; channel catfish, Ictafurus 
punctatus Carmichael, 1991) or rapidly recovered (barbel, Barbus bar-bus, Bar-as, 1992). 

External transmitters can be rapidly fixed (2-3 min) using a harness with attachment 
wires passing through the dorsal musculature. The procedure may not require a 
complete anaesthetization of fish and allows a rapid recovery as well as the direct 
identification of tagged fish. Wounds are usually treated with antibiotic paste (e.g. 
polymixin sulphate or bacitracin) and further abrasion may be reduced by the use of 
neoprene pads between the tag and the epidermis. Depending on their position on the 
body of the fish, externally attached transmitters may, however, cause balance 
modifications, increase drag and be responsible for irregular swimming (e.g. Atlantic 
salmon, Thorpe et al., 1981; largemouth bass, Mellas and Haynes, 1985), especially in fast- 
flowing environments (e.g. raceways). In the long run, the drag may result in the erosion 
of dorsal muscles (Baras, 1992). In ponds, transmitters may get entangled in the 
vegetation (e.g. yellow perch, Perca flauescens, Ross and McCormick, 1981; pike, Esox 
lucius, Lucas et al., 1993). However, Lagardere (unpublished) showed that this 
attachment mode was valid to study the activity of turbot, Scophthalmus maximus, at 
medium to high rearing densities in saltmarshes (up to twelve 300 g fish mm2). 

Stomach insertion of a sterilized transmitter with a plunger requires only a sedation of 
fish and is usually completed within 30-60 s. Originally developed for anadromous 
salmonids non-feeding during their upstream migration, this attachment procedure may 
interfere with feeding because it modifies the degree of stomach fullness. Its use is 
further questioned by possible regurgitation (e.g. yellowtail, Seriola quinqueradiata, 
Ichihara et al., 1972; sea trout, Safmo trutta trutta, Solomon and Storeton-West, 1983) or 
induced gut atrophy (chinook salmon, Oncorhynchus tshawytscha, Haynes, 1978). It is 
thus probably unsuitable in most aquaculture applications. 

Intraperitoneal implantation is undoubtedly the most invasive procedure, because it 
requires complete anaesthetization, ventral incision, transmitter insertion and use of 
suture material to close the insertion (Hart and Summerfelt, 1975). Surgical staples 
(Mulford, 1984; Filipek, 1989) or cyanoacrylate adhesives (Nemetz and MacMillan, 1988) 
enable faster closing of the incision but their efficiency is still to be investigated in most 
species. More detailed information on anaesthesia and surgery procedures provided by 
Summerfelt and Smith (1990). Surgery is more likely to cause infection than other 
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methods. Prophylactic treatment with antibacterial and fungicidal agents may thus be 
worth employing to maximize post-operative survival (Valliere et al., 1986) although 
their influence may not be significant (Lucas, 1989, for rainbow trout). Intraperitoneally 
implanted transmitters may cause rectal erosion (e.g. rainbow trout, Bidgood, 1980) or 
alteration of gonads or viscera (e.g. grass carp, Ctenopharyngodon idella, Schramm and 
Black, 1984). Transmitters may be encapsulated by peritoneum (Lucas, 1989) or even by 
an adventitious loop of the intestine, resulting in transintestinal expulsion (Marty and 
Summerfelt, 1986), an alternative pathway to expulsion through the rupture of the 
incision zone (Prince and Maughan, 1978) or through the body wall (Lucas, 1989). 
However, many workers have found no apparent effects of this attachment procedure on 
survival, growth or behaviour of fish (e.g. cod, Pedersen and Andersen, 1985), at least not 
beyond the post-operative stress period (barbel, Kalpers et al., 1989). It has also been 
proved reliable for long-term retention of transmitter (e.g. 2 y in barbel, Baras, 1992; 3 y 
in common carp, Johnsen, 1980, and even 9 y in walleye, Stizostedion oitreum (J. D. 
Winter, pers. comm.). As with gastric insertion, the transmitter is closer to the centre of 
gravity of the fish and causes less interference with swimming and long-term growth 
processes than external transmitters with attachment harnesses passing through the 
dorsal musculature. 

It should be pointed out that the success and innocuity of a given attachment 
procedure is highly variable from one species to another, depending on environment, 
physiology or behaviour. Solomon and Storeton-West (1983) showed that adult Atlantic 
salmon retained transmitters inserted into their stomach whereas regurgitation 
consistently occurred within 15 days in sea trout. In barbel (Kalpers et al., 1989) or chub, 
Leuciscus cephalus (Baras, unpublished.), surgical incisions closed with resorbable 
suture material (catgut) using atraumatic needles gave significantly better growth and 
long-term survival than with permanent suture material (silk, nylon) and cutting needles. 
The opposite trend was observed in tilapia Oreochromis aureus (Thoreau and Baras, 
1995), due to their very thick and hard skin, resulting in larger tunnelling and holes when 
using atraumatic needles. 

This brief and non-exhaustive review stresses the need for feasibility studies, using 
dummy transmitters or sham attachment, to tailor the attachment procedure to the 
species in question when no information is at hand in the literature. Experimenters 
should also be aware of national legislation on animal welfare, e.g. requesting a licence to 
practice surgery on fish. In this context, aquaculture environments offer logistic facilities 
to assess and measure post-operative stress inside the environment where the telemetry 
study will be conducted, minimizing methodological biases that may arise from 
environmental discrepancies. As a corollary, these facilities also represent an ideal test- 
bed for feasibility studies on wild fish. 

FISH POSITIONING SYSTEMS 

Fixing the position of fish in the horizontal plane of its culture environment may prove 
relevant for many purposes in aquaculture: e.g. defining the optimal size of the culture 
environment, determining wintering places or sites to catch breeders or ranched fish 
(‘Judas’ fish concept; Hasler and Henderson, 1963; Johnsen, 1980). Additionally, 
monitoring the visits of fish to discrete sites such as feeding areas allows the evaluation 
of feeding schedules with fish activity and/or appetite (e.g. Atlantic salmon, Juell and 
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Westerberg, 1993; sea bream, Sparus aurata, Begout and Lagardere, 1994), or of the 
efficiency of fish conditioning towards aggregating devices (cod, Midling and 0eiestad, 
1993). 

Horizontal positioning can be conventionally achieved by triangulation, using 
directional antennae or hydrophones (Holliday et al., 1974) or by more sophisticated 
systems (see respective advantages and limitations in Table 1). Because most culture 
modes in modern aquaculture (net pens, cages, raceways, tanks, . . .) restrict fish 
movements to a fixed range, a convenient alternative to conventional triangulation is to 
determine the relative arrival times of acoustic signals to a fixed array of omnidirectional 
hydrophones (Fig. 3(a)); the position of the transmitter corresponds to the intersection 
of the hyperbolas traced from signal arrival times and sound velocity (inverse of the 
principle of hyperbolic navigation; e.g. Hawkins et al., 1974; Holand et al., 1974; Lagardere 
et al., 1990; Juell and Westerberg, 1993). A similar system has been evaluated for radio 
signals (Lemnell, 1980) but requires a high accuracy for the measurement of signal time 
arrival, due to the high propagation velocity of electromagnetic waves (e.g. 33 ns gives a 
10 m accuracy). Armstrong et al. (1988) proposed an elegant alternative system (RAFIX), 
using combined acoustic/radio transmitters located in polar coordinates with a single 
(but mixed) receiving station: the signal source direction is given by a directional 
hydrophone or antenna and range is measured from the time lag between the arrival of 
radio and acoustic signals. Sound velocity (C, m s-‘) in water varies with environmental 
conditions, following the equation (Anon., 1968; Medwin, 1975): 

C = 1410 + (4.21 ?= - 0.037 Fp2) + 1.10 S + 0.018 D (3) 

with T a is the water temperature (“C), S is salinity (%o) and D is depth (m). Algorithms for 
the calculation of two-dimensional Cartesian coordinates from a minimum of two time 
lags of signal arrival to three hydrophones are given in Tobias (1976), Rindorf (1981), 
Hardman and Woodward (1984) and Lagardere et al. (1990). Hydrophones are often 
connected via underwater cables to a shore-based receiver and time-interval counter 
(e.g. Lagardere et al., 1990; Urquhart and Smith, 1992; Juell and Westerberg, 1993). 
Konagaya (1982) and Konagaya and Cai (1989) used radio (27 or 40 MHz) sonobuoys to 
relay acoustic pulses to shore-based stations. Despite its elegance, this system is more 
prone to signal jamming by citizen’s band (CB) sets on fishing boats in coastal waters, 
depending on the official allocation of frequencies by governmental offices. In any case, 
experimenters should be aware of the frequencies allocated by their national agencies to 
minimize any major interference by any other kind of radio signals. 

Systems based on acoustic time lags have variable accuracy, depending on the output 
level of the transmitter or on signal attenuation and scattering (e.g. caused by dense fish 
schools in intensive aquaculture). Juell and Westerberg (1993), however, found that the 
range and accuracy of this system was adequate while monitoring the movements of 
Atlantic salmon in a population of 1750 fish within a 12 x 12 x 7 m sea cage. Positional 
accuracy is also dependent on the number and respective positions of the hydrophones 
within the array (usually triangular arrays with at least three hydrophones spaced 20,200 
or 300 m apart) and on the position of the transmitter within the array, with maximum 
disparities when the hyperbolae intersect at small angles. The accuracy of acoustic 
position fixing is also dependent on signal processing. Heterodyne receivers that allow 
the monitoring of positions of several transmitters tuned to different frequencies (+0.5 
kHz within the range 71-86 kHz) face technical constraints (frequency changes to obtain 
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low-frequency outputs) limiting the accuracy of time arrival to about 1 ms, resulting in 
errors of real positions of about 1 m (e.g. Hawkins et al., 1974, 1980; Hawkins and 
Urquhart, 1983; Urquhart and Smith, 1992). Glass et al. (1992) monitored with this 
equipment up to eight individuals of saithe, Pollachius uirens, equipped with 14.9 g tags 
(165 dB/re 1 PPa at 1 m) with an array of six hydrophones extending to 17 756 m2. If the 
study requires a very precise tracking of a single fish in a restricted space (e.g. use of self- 
feeders, precise estimate of fish activity budget), a much better accuracy can be obtained 
by acoustic emission pulse analysers having constant response time after the first 
acoustic pulse is detected. Lagardgre et al. (1990) observed disparities between real and 
mean calculated positions as small as 6-36 cm for 6 g (136 dB/re 1 PPa at 1 m) 
transmitters in a 30 m2 pen situated in a saltmarsh surveyed by an array of four 
hydrophones. Recent developments of this system now allow an accuracy of 10 p.s in 
detecting signal time arrival, resulting in a theoretical position-fixing accuracy of 2 cm in 
the centre of the array and a practical accuracy of 10 cm (BCgout and Lagard&e, 1994). 

An alternative to fish location is to monitor discrete key sites, such as visits to feeding 
areas (e.g. Juell and Westerberg, 1993; BCgout et al., 1994; Fig. 4) or to aggregating 
devices (tuna sp., Holland et al., 1990; skipjack, Katsuwonus pelamis, Caure, 1991; cod, 
Midling and 0eiestad, 1993). Various systems have been developed to monitor the 
overall distribution of food in a culture environment, using electromechanical sensors 
coupled to demand-feeders (e.g. Anthouard and Wolf, 1988). However, when using 
demand-feeding systems, it is generally assumed that all fish have learned to operate the 
trigger, though it does not imply that all fish bite with the same frequency, resulting in 
highly variable individual growth patterns. This hypothesis can only be checked through 
a system combining the automatic recording of individual fish with the monitoring of the 
demand-feeding system. Br;inn& and Alan;irg (1993) used the PIT (passive integrated 
transponder)-tag entry stations developed by Prentice et al. (1990) on Arctic charr, 
Salvefinus alpinus, as small as 48 g (tag inserted into the isthmus of the fish, posterior to 
the pectoral fin) in 1 m3 standard rearing tanks. At low densities (15 fish ma), accuracies 
of bite detection ranging from 91% to 99.5% were obtained with small detecting loop 
antennae (inner diameter: 13 cm) placed around the trigger of the demand-feeder. This 
technique allowed B&m& and Alan;irZ to show that there was a strong dominance 
hierarchy in which one or two individuals monopolized the trigger and had the highest 
growth rate. This powerful and time-saving tool, however, has basic limitations at high 
rearing densities, because the detection range of PIT-tags is limited to a few cm whereas 
food is often distributed over a larger surface in which the presence of other fish may 
represent an obstacle to tag detection. Additionally, code identification may fail when the 
antenna is attacked from an oblique angle or, as a corollary, if some tags are injected 
obliquely into fish (Brtinn& and Alar&Z, 1993). In such environments, radio or acoustic 
tags can be used and detected by antennae or hydrophones connected via a switching 
box to a programmable data-logging receiving station (e.g. Lotek Engineering Inc. SRX- 
400 receiver with Event Log PGM; Fig. 3(b)). This receiver scans a programmed frequency 
table at fixed (2 0.1 s) or variable intervals, depending on a programmed algorithm 
defining a priority scan of frequencies detected on a master antenna. This concept is 
similar to that of the sonobuoy automatic listening stations developed by Solomon and 
Potter (1988) and used by Potter (1988; radio and combined acoustic/radio tags) and 
Moore et al. (1990; micro acoustic tags, 1.3 g) to study salmonid migrations in estuaries. 
The latest developments in automatic stations now allow the monitoring of the presence/ 
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a 

b 

Portable Computer: software Locafish 

Arrival times measuring clock 

* Transmitter 

Hydrophone 

Switching 
box 

DATA DISPLAY AND PROCESSING 

Time Fish Signal strength Pulse 
Al A2 A3 A4 A5 interval 

VW 
llh22’16 1 0 0 0 0126 600 
llh22’17 2 0 0 210 0 140 600 
llh22’16 4 10 0 0 0136 800 
llh22’19 4 15 0 0 0135 750 

11 h22’27 4185 0 0 0140 350 

Modem I-- Radio 
Phone 

SCANNING TABLE 
Scanning 

Fish Frequency Time 
a 1 40.605 MHz 1 s 
- 2 40.615MHz 1s 
0 3 40.625 MHz 1 s 

FIG. 3. (a) Functional diagram of an acoustic positioning system using an array of four 
omnidirectional hydrophones. Fish are located from the relative signal arrival times at the 
hydrophones. (b) Diagram of a radio telemetry site-monitoring system scanning programmed 
frequencies on antennas (Al-A4) with restricted range (shaded areas). A full-size antenna (A5) 
masters the whole area for the permanent monitoring of a tag (fish 4) equipped with a sensor and 
circuitry modifying the interpulse interval (e.g. depending on movement). Increasing received 
signal strengths for fish 4 on antenna 1 indicates that the fish comes closer to the site surveyed 
by the antenna. The data logger is equipped with event log processing for site monitoring, pulse 
processing for special telemetry applications (temperature, oxygen, heart rate) and code 
processing for digitally encoded transmitters. 
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19 October1993, 06-07 h 19 October1993, IO-II h 

FIG. 4. Track diagrams and use of a self-feeder (open circle) by an acoustically tagged sea bass 
in a shoal of 60 fish in a saltmarsh. (a) Fish track before feeding; (b) fish track during feeding with 
indication of residence under the self-feeder. 

absence of up to 2000 fish in eight sites within 5 s with a single receiver when using 
digitally encoded signals (Lotek Engineering Inc., 1992). 

In addition to fish location in the horizontal plane, knowledge of the vertical 
distribution of fish may also be relevant in defining the optimal depth in culture 
environments, feeding regime or timing of food distribution, especially when fish are 
confronted with trade-off constraints between light-induced surface avoidance and food 
attraction (e.g. Atlantic salmon in marine net pens; Juell, 1993; Fern6 et al., 1995). 
Because depth influences sound propagation in water (Anon., 1968), it can be deduced 
from time arrivals of acoustic signals to hydrophones. Algorithms for the calculation of 
three-dimensional coordinates from an array of four hydrophones are provided by 
Hardman and Woodward (1984). Similarly, using signal strengths from radio sources of 
known location may help in determining fish depth (depending on conductivity and 
frequency; Velle et al., 1979), although the use of pressure-sensing transmitters (Luke 
et al., 1973; Williams, 1990) gives more reliable estimates, independent of signal 
attenuation. 

FISH ACTIVITY RHYTHM AND BEHAVIQUR 

Knowledge of fish activity rhythms in aquaculture environments represents a key item in 
tailoring feeding schedules to fish appetite (Kadri et al., 1991). As mentioned above, fish 
activity rhythms can be obtained by monitoring the frequency and duration of visits of 
fish to feeding areas or food distribution by coupling a transmitter to demand feeders 
(Begout et al., 1994). These systems may nevertheless fail to assess individual feeding 
activities of pronounced bottom feeders or when the food portion distributed exceeds 
the appetite of the biting fish. With some exceptions (Boujard and Leatherland, 1992) 
locomotor and feeding activities are synchronous or consecutive, at least in non-starving 
fish (e.g. atipa, Hoplosternum littorale, Boujard et al., 1990). Estimates of feeding rhythms 
can thus be deduced from locomotor activity rhythms and obtained from distances 
travelled between successive tracking locations, with an accuracy depending on 
positioning frequency and accuracy (e.g. Lagardere et al. 1990). 
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Within the error polygon constructed from accuracy estimates, tracking techniques 
using heterodyne receivers cannot easily discriminate small-scale changes in position: a 
clumping of successive locations on a discrete spot may be interpreted as rest or as 
intense activity. This problem can be simply solved by equipping transmitters with an 
activity circuit coupled to a mercury tilt and switching the interpulse interval to short or 
long period depending on the position of the tilt (e.g. Baras, 1995). Using this technique, 
Baras et al., (1995) studied the adaptation of tilapias, 0. aweus, to different timings of 
food distribution and found that fish could match the new timing within 24 h. Similarly, 
they showed that arrhythmic activities were consistently observed consecutively to a 
major environmental stress (e.g. 4-7 “C variation in water temperature inside the culture 
environment), accounting for the higher feed conversion rates achieved at that time with 
24 h feeding schedules. 

Stress or health status in cultured fish may also be reflected by abnormally high 
frequency of typical behaviours. Furevik et al. (1993), using infrared cells and underwater 
video cameras, showed that high leaping activity in Atlantic salmon was associated with 
acute stress or heavy louse infestation, whereas high rolling activity reflected buoyancy 
compensation subsequent to stress exposure (delousing, anaesthesia). These typical 
behaviours can also be discriminated from telemetry signals based on specific sequences 
of signal amplitudes and pulsation rhythms of activity-circuit transmitters (e.g. Nams, 
1989; Baras, 1992). 

FISH PHYSIOLOGY AND METABOLISM 

In addition to activity and behaviour, physiological variables from fish are the most likely 
candidates to shed some light on how culture conditions affect fish health, especially 
when measuring stress or components of energy budgets (e.g. muscular activity, 
ventilation rate, heart rate; see list of telemetered parameters and references in Baras, 
1991). 

Stasko and Horrall (1976) observed that the undulations of the body and tail of fish 
generated a Doppler effect, causing rhythmic beats in continuous-wave transmitters 
which reflected tailbeat frequency. Continuous-wave transmitters have, though, been 
abandoned in favour of pulsed transmitters with circuits that change the interpulse 
interval proportionally to the value of the variable sensed by the transmitter. Ross et al. 
(1981) detected variations of tail beat frequency in brown trout from tags sending a pulse 
for each impulse over a 50 p,V threshold sensed by the electrodes anchored into caudal 
red muscles. When considering energy expenditures, it should be stressed that changes 
of speed, direction and position are more energy-demanding than swimming at constant 
speed, as shown by Weatherley et al. (1982) in respirometry studies coupled to 
telemetered electromyograms from epaxial myomeres in rainbow trout. Electromyogram 
transmitters have also been used to monitor jaw movements with electrodes inserted 
into the adductor mandibulae muscles (e.g. brown trout, Oswald, 1978) and respiratory 
frequency, with electrodes inserted into levator arcus palatini muscles (e.g. rainbow 
trout, Rogers and Weatherley, 1983). The acoustic system developed for field use (Rogers 
et al., 1984) has been further improved to allow long-term monitoring (up to 7 months for 
a 16-20 g package; Kaseloo et al., 1992). 

Heart rates can be telemetered from electrodes inserted into the muscles near the 
pericardium, using feedback circuits to filter most of the high-frequency noise from 
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muscle activity. The electrodes have to be inserted carefully: a recent study by Keen and 
Farrell (1994) using an in situ working-perfused-heart preparation, emphasizes the 
necessity to leave intact the pericardium to maintain normal heart rate. The signal 
transmitted is either the whole electrocardiogram (ECG FM transmitters; Nomura and 
Ibaraki, 1969; Wardle and Kanwisher, 1974) or the heart rate itself, by coupling a linear 
potentiometer to trigger a high-power pulse for each R wave of the QRS complex of the 
ECG (Priede and Young, 1977; Armstrong et al., 1989; Sureau and Lagardere, 1991). 
Monitoring systems removing false pulses caused by noise have recently been developed 
for use on personal computers (Floen et al., pers. comm.). In Dover sole, heart rate is 
closely correlated to locomotor activity (Sureau and Lagardere, 1991; Fig. 5(a)), whereas 
in cod (Priede and Tytler, 1977) or in sea bass (Sureau and Lagardere, 1991; Fig. 5(b)), the 
two variables are dissociated, at least for routine movements. Heart rate is more closely 
related to metabolism (Lucas et a/., 1991) and allows estimates of meal energy intake. 
Lucas and Armstrong (1991) obtained a correlation, with ? as high as 0.988, between 
meal energy and standardized estimated cost for digestion from heart rates in pike. 

Additionally, monitoring how fish apportion their time working at different metabolic 
rates may help in predicting mortality risks or assessing the implications of 
environmental or operational stressors. Bjordal et al. (pers. comm.) studied the impact 
on Atlantic salmon of different operational procedures in fish farming. They showed that 
operations as common as removal of dead fish in cages may cause a mild stress in fish 
and interfere with their appetite. Fish handling or delousing procedures increased heart 
rates by over lOO%, the stress extending until the following morning. Conversely, the 
frequency of missing heart beats can be used as a general index of sensory 
responsiveness and well-being of the fish (Priede, 1983). 

FISH ENVIRONMENT 

The exposure of fish to environmental fluctuations in factors such as temperature, light, 
dissolved oxygen and organic compounds may variously affect fish health, appetite or 
growth. Various automated water-quality data acquisition systems have been developed 
for aquaculture purposes (e.g. Losordo et al., 1988; review, Poxton, 1991) but need some 
feedback about the correspondence between sampling sites and places actually 
occupied by fish, especially in heterogeneous environments. Combining real-time 
monitoring of fish position and of environmental variables in aquaculture will thus be 
most relevant if what is happening in fish culture systems is to be understood and 
correctly managed to minimize food waste and pollution. 

In natural culture environments (pond, lagoon, saltmarsh), fish have few possibilities 
to buffer the impact of environmental (meteorological and hydrological) variations 
through vertical or horizontal migrations. Changes of spontaneous activity or swimming 
in response to these environmental stressors are often among the first symptoms 
observed but are difficult to quantify (Scherer, 1992). Lagardere and his co-researchers 
(Lagardere et al., 1988, 1994; BCgout and Lagardere, 1993) used acoustic tracking 
systems coupled to environmental monitoring to study the influence of wind and rain on 
the swimming activity of Dover sole and sea bass. They found a significant increase in 
swimming activity under gusty winds and a decrease of feeding activity under heavy rain. 
Similar applications of telemetry techniques (Mosneron Dupin and Lagardere, 1990; 
Sureau and Lagardere, 1991; Rabben and Furevik, 1993; Baras, 1995) have confirmed in 
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FIG. 5. Synchronous monitoring by acoustic telemetry of swimming activity and heart rate in 
marine fish. Variables are closely associated in Dover sole (a) and dissociated in sea bass (b), at 
least under a minimum effort threshold. Vertical bars show distance moved in 15 min; note 
differing vertical scales. 
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natural environments the influence of temperature evidenced in experimental aquaria or 
tanks. Juell and Westerberg (1993) showed how the social environment (fish density) 
interferes with the activity of Atlantic salmon. 

A further improvement is to monitor environmental variables in the places actually 
occupied by fish, using transmitters equipped with various sensors detecting the 
variations of temperature (e.g. Berman and Quinn, 1991), salinity (Priede, 1982) or 
dissolved oxygen (Priede et al., 1988). Using ‘probe fish’ equipped with environmental 
sensing transmitters represents an efficient alternative to combined environmental 
remote sensing and fish positioning systems, especially for a precise and fast assessment 
of the actual environmental preferences of new cultured species (Sutterlin and Stevens, 
1992). This probe fish concept can also be transposed outside of the culture environment 
itself, i.e. to monitor physiological variables from fish during their transportation or to 
test for the adaptation of cultured fish to their restocking environment (e.g. Baras and 
Philippart, 1989). 

NEW DEVELOPMENTS AND PERSPECTIVES 

By comparison with other applications of telemetry techniques (animal migration and 
distribution, interspecific relationships, reaction to gears), aquaculture environments 
represent ideal test-beds for the development and use of state-of-the-art technologies. 
Fish of different species, size, age and more or less used to handling are available and can 
be tagged with sophisticated, expensive tags thanks to the ease of tag recovery and the 
possibility to reduce functioning costs to battery replacement. Considering the short 
range required, the trade-off constraint between battery size and performance can be 
orientated towards the latter parameter. Recent developments in ‘intelligent’ 
programmable tags further allows one to increase the operational life of the transmitter, 
e.g. through a day/night option circuit, activating the transmitter during the most critical 
period of the 24 h cycle (i.e. night-time and early morning when the concentration of 
dissolved oxygen reaches its daily minimum). Similarly, these tags may be programmed 
not to pulse during a time corresponding to the post-operative stress (e.g. MMT 
transmitters from ATS Inc. for radio tags, delayed-start pingers from VEMCO for acoustic 
tags). 

Future developments and applications of telemetry systems in aquaculture will mainly 
depend on the following. 

1. Advances in battery miniaturization and reduction of tag weight and bulk, e.g. 
through the replacement of piezoelectric ceramics by PVDF films (polyvidilene or 
polyvinylidene fluoride; G. G. Urquhart, pers. comm.). 

2. Improvement of the sensitivity of receivers (-150 to -160 dBm) and signal 
processing, using more sophisticated methods of analysing the signals from simple 
and inexpensive transmitters (Shields, 1980; Nams, 1989). 

3. Developments in sensor technology, because any variable that can be sensed 
electronically can be carried by a radio or acoustic signal, with a precision mainly 
depending on the accuracy of inter-pulse measurement (1 ms with digital receivers). 
The ‘probe fish mentioned earlier can be further improved to reach an integrated 
biomonitoring stage, using the telemetry of electrophysiological activities from fish 
olfactory - or gustatory (see amendment in Hara, 1993) - epithelium to detect with 
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higher precision and reliability minute concentrations of pollutants that cannot be 
detected with available chemical probes (Kudo and Ueda, 1976; A. Moore, pers. 
comm.). Similarly, sensors for stress hormones such as cortisol could be expected, 
although their emergence is not in sight. 

4. Developments in data storage and retrieval: in feasibility studies aiming at studying 
fish physiology inside the culture environment, the traditional trade-off between 
power and performance may almost be wiped out through the use of data-storage 
tags (archival tags) announced by Robinson (1986) and recently used by Metcalfe et 
al. (1992) to monitor the migrations of plaice, Pleuronectes platessa, in the open sea. 
Archival tags do not send any signal but allocate the energy from the battery for 
sensing variables at a programmed sampling rate (2 1 s) and storing information on 
EPROM (permanent memory) with a logging capacity of up to 1 MByte (CSIRO, 
Tasmania). The data are retrieved when the fish is recaptured, although a 
monitoring stage could be reached by coupling data logging and transponding 
technologies, with information transmitted when the tag is energized by an external 
power source, e.g. in feeding sites or around aggregating devices (‘data-storage 
transponder’ concept). The comparison between logged environmental variables 
and daily growth increments retrieved from otoliths (natural data loggers of 
growth) would allow a more precise assessment of how fish growth is influenced by 
environmental variations. 

1. Fish telemetry emerges as a powerful, multipurpose and promising tool in aqua- 
culture research and development: because it is based on individual behaviour, it 
represents an ideal complement to techniques such as underwater video (e.g. 
Bjordal et al., 1988), demand-feeder monitoring (Begout et al., 1994) or PC-based 
echo integration (e.g. Juell, 1993) that provide information on average behaviour of 
fish in aquaculture environments. 

2. Special attention should be dedicated to the relative innocuity of tagging procedure 
and duration of post-operative stress, especially if the animal is to be used as a 
‘probe fish sensing the quality of its environment. 

3. Telemetric systems have intrinsic limitations but their variety nearly always allows 
the experimenting aquaculturist to choose the appropriate technique meeting both 
specific and environmental requirements, the major limitation referring to 
maximum transmitter-weight-to-fish-weight ratio excluding fingerlings from present 
telemetric investigations. 

4. In spatially limited aquaculture environments (short-range detection), interference 
with farming routines and labour costs can be minimized by using automated 
systems, either for data logging or for real-time monitoring of fish activity, 
metabolism, stress and environment (Fig. 6). Automated systems should, however, 
be precisely calibrated before blind use and application. 

In our opinion, experimenters interested in starting telemetry projects or surveys in 
aquaculture should first answer positively a list of five crucial questions, inspired by 
Kenward (1987). (a) Is telemetry the best or only way to provide adequate answers to the 
questions asked? (b) Can I tag the animal? (c) Can I detect it and retrieve information in a 
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FIG. 6. Illustrated synthesis of most possible applications of telemetry in aquaculture. (a) 
Investigated aspects. 1, Fish position in horizontal plane; 2, activity; 3, position in water column; 
4, metabolism; 5, food distribution; 6, access to feeding zones and site monitoring (shaded 
areas); 7, food wastage; 8, surfacing activity (leaping); 9, pollutant detection; 10, environmental 
variables (dashed rectangle). (b) investigation methods and techniques (details in text). PIT-tag 
entry stations and PC-based echo integration (open rectangles) as alternative and complementary 
techniques. From Baras and Philippat-t (1994). 

practical way? (d) Are the precision and sampling frequency compatible with the 
objectives of the study or survey? (e) Can I afford it? In most cases, technical 
developments now allow positive answers to be given to questions b, c and d. The major 
bottleneck remains the overall cost of the telemetry equipment. Although it is not a rule 
of thumb, according to the opinion of most manufacturers, the cost of equipment is 
globally in inverse ratio to the numbers manufactured. Such an example was provided in 
the 1980s by the development of affordable telemetry equipment for numerous hunters 
interested in tracking their dogs and may be worth considering for the future of telemetry 
projects in aquaculture. 
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