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Abstract. This paper introduces a knowledge integration framework based on Dempster-Shafer's mathematical 
theory of evidence for integrating classification results derived from multiple classifiers. This framework enables 
us to understand in which situations the classifiers give uncertain responses, to interpret classification evidence, 
and allows the classifiers to compensate for their individual deficiencies. Under this framework, we developed 
algorithms to model classification evidence and combine classification evidence from difference classifiers, we 
derived inference rules from evidential intervals for reasoning about classification results. The algorithms have 
been implemented and tested. Implementation issues, performance analysis and experimental results are presented. 
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1. Introduction 

In the field of pattern recognition, it has been well rec- 
ognized that a multiple classifier system is effective 
in solving complicated problems such as handwritten 
digit and word recognition [15]. The multiple classi- 
fiers in a system often use different feature sets and clas- 
sification methods to achieve a high recognition rate. 
A multiple classifier system can be in either cascaded, 
parallel or hierarchical configurations (see Fig. 1). In 
a cascaded system, the classification results generated 
by a classifier are often used to direct the classifica- 
tion processes of the successive classifiers. The prob- 
lem with this type of configuration is that since errors 
made by previous classifiers are not recoverable by the 
successive classifiers, the overall system error is the 
accumulation of the errors of individual classifiers in 
the system. In a parallel system, the classifiers gener- 
ate results independently and then a decision process 
integrates the results from all the classifiers. If the de- 
cision process is well designed, the overall system may 
reach peak performance. In addition, classifiers in the 

parallel configuration can be implemented by parallel 
processors to achieve real-time performance. In a hier- 
archical system, the control strategy is a combination 
of cascaded and parallel processing. 

In this paper, we address the problem of decision 
processes in a parallel classification system. The re- 
suits generated by individual classifiers are considered 
knowledge from different sources, therefore the deci- 
sion process is truly the knowledge integration. The 
classification results from individual classifiers may 
contain uncertain, imprecise and inaccurate informa- 
tion. The goal of any classification result integration 
(CRI) algorithms is to generate more certain, precise, 
and accurate system results. A good summary of exist- 
ing techniques for combining classification results can 
be found in [7, 15]. 

The most widely-used approach in dealing with 
uncertainty is the Bayesian method. The Bayesian 
method is based on a well-understood technique from 
probability theory. However, the Bayesian approach 
has been widely criticized for requiring an agent to as- 
sign a subjective prior probability to every event. There 
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Figure 1. Configurations of multiple classifier systems. (a) Cas- 
cading, (b) parallel, (c) hierarchy. 

is also the issue of whether it is reasonable to describe 
confidence by a single point rather than a range [3, 6]. 
In order to overcome the limitation of the Bayesian 
approach, many other approaches have been proposed, 
such as Dempster-Shafer theory [2, 12], Cohen's model 
of endorsements [1] and fuzzy logics [16]. The 
Dempster-Shafer approach recognizes the distinction 
between uncertainty and ignorance by creating belief 
functions, which is based on a relatively new body 
of mathematics commonly called the evidential rea- 
soning. Under evidential reasoning, the fundamental 
measure of belief is represented as an interval bound- 
ing the probability of a proposition, thus allowing the 
representation of ignorance as well as uncertainty. Fur- 
thermore, the theory provides a mechanism for pool- 
ing multiple bodies of evidence. Dempster-Shafer's 
evidential reasoning theory has been investigated for 
sensor fusion [5] and combining classification results 
in pattern recognition by Xu et al. [ 15] at the Concordia 
University in Canada, and Mandler and Schuermann at 
the AEG Research Center Ulm [MaS88]. Xu et al.'s 
method was devised for classification results in the for- 
mat of multiple outputs, i.e., the output from a classi- 
fier contains a list of possible classes [15]. The basic 
probability assignment function was defined based on 
the recognition rate and the substitution rate of classi- 
fiers on different classes. Mandler and Schuermann's 
method in [MaS88] transforms the distance measures 
of different classifiers into confidence values. 

Our approach applies to the classification results that 
contain both class labels and the associated confidence 

values. We present algorithms for modeling and com- 
bining digit classification results, and rules for rea- 
soning about more certain and accurate classification 
results based on combined evidence. We conducted 
experiments within the environment of handwritten 
digit recognition. The input to the proposed system 
were the classification results generated by three dif- 
ferent handwritten digit recognition classifiers, neu- 
ral net (NN), structural template matching (ST), and 
polynomial classifier (PL). The input data to these clas- 
sifiers were digits automatically segmented from hand- 
written ZIP Codes on U.S. mail pieces. In order to 
have a meaningful comparison, we have implemented 
Bayesian method in our experiments. The results of the 
proposed evidential reasoning method are far superior 
than to those of the Bayesian method. 

We begin with a brief overview of the Dempster- 
Shafer theory. Section 3 describes basic pattern recog- 
nition theories, algorithms for modeling classification 
results and evidential reasoning. Section 4 describes 
implementation, performance issues and experiment 
results, and Section 5 concludes our work. 

2. Dempster-Shafer Representation 

Dempster-Shafer theory can be defined by basic prob- 
ability assignments across the propositions in ®, where 
® is called the frame of discernment. A basic probabil- 
ity assignment, or mass assignment M on ® satisfies: 

1. M(~b) = 0, 

2. ~Ac(-) M(A) = 1. 

The quantity M(A) is called proposition A's basic 
probability number, and is understood to be the mea- 
sure of the belief that is committed exactly to A. This 
representation allows one to specify one's belief at ex- 
actly the level of detail that one desires and at the same 
time ignores the propositions about which he doesn't 
have knowledge. From a basic probability assignment, 
we can fully describe the evidence for a proposition Q 
through a pair of functions, support function Spt(Q) 
and plausible function PIs(Q) defined as follows: 

Spt(Q) = ~ M(A), Pls(Q) = 1 - Spt(~)). 
AcQ 

Spt(Q) describes the degree of belief and Pls(Q) de- 
scribes the upper probability of Q. [Spt(Q), PIs(Q)] 
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is called an evidential interval and, u(Q) = Pls(Q) - 
Spt(Q) is a measure of uncertainty. 

Dempster's rule of  combination pools multiple bod- 
ies of  evidence represented by the basic probability 
assignments. Dempster's rule takes two basic prob- 
ability assignments M I  and M2, and produces a new 
basic probability assignment M such that 

1 
M(Q) -- l ~  ~-' M1(A) * M2(B) 

AnB=Q 

K = Z Ml (A)*  M2(B). 
AnS=4~ 

M is called the orthogonal sum of MI and M2 indicated 
by M = M1 @ Me, K is a measurement of, conflict be- 
tween Ml and M2. As long as MI and M2 are not com- 
pletely contradictory, i.e., K ~= 1, M is well defined. 
Dempster's rule is both commutative and associative. 

3. Evidence Modeling and Reasoning 

Our intention is to treat classifiers as specialized knowl- 
edge sources. In this section we shall describe methods 
to model and combine such knowledge sources, and 
the subsequent reasoning process. The following dis- 
cussion assumes we have q classifiers, CL1, CL2 . . . . .  
CLq, p classes in the pattern space, {Co, Cl . . . . .  Cp}. 

3.1. The Problem of Pattern Classification 

The pattern classification problem can be defined for- 
mally by a triplet (P, F, M), where P is the pattern 
space consisting of p mutually exclusive sets, i.e., 
P = Co U C1 tO . . .  tO Cp, Ci is often referred to as 
a c l a s s a n d  Ci I Cj = 0 for a n y i  ~ j , i  _< p and 
j < p; F is a N-dimensional feature vector space 
that represents the patterns in the pattern space; and M 
is a function or a classifier that maps feature vectors 
in F to the classes in pattern space P. The pattern 
classification problem is to find a mapping function M 
that defines a partition of the feature space such that 
different sets in the partition can be mapped to differ- 
ent classes in P. However m many applications, such 
a partition often does not exist in the feature space. 
Figure 2 illustrates this concept. The pattern space is 
on the left side and the feature space is on the right side. 
Feature vectors in the shaded area may be mapped to 
more than one classes. For example the feature vec- 
tors in the dark shaded area of feature sets Fo and Fi 

Figure 2. Mapping from feature space to pattern space. 

classifier l classifier 2 

Figure 3. Illustration of orthogonal feature mapping. 

can be mapped to pattern classes in either Co or C1; 
and the feature vectors in the gray shaded area can be 
mapped to pattern classes in either Co, C1 or Cp. It is 
also possible that some feature vectors have no corre- 
sponding classes. This demonstrates the uncertain and 
inaccurate situations a classifier system may need to 
solve. 

Ideally, we design multiple classifiers to have or- 
thogonal feature sets so that they can compensate each 
other. If  we divide each class Ci in pattern space into a 
partition of subclasses, each classifier will map a num- 
ber of subclasses to a partition of its subfeature space. 
Ideally, the union of the subclasses that each classi- 
fier can uniquely identify is equal to the entire pattern 
space. Figure 3 illustrates this argument. Classifier 1 
provides a unique map from vectors in the unshaded 
area of F0 to the patterns in subclass Col, and from the 
vectors in F1 to subclass C]t. Classifier 2 provides a 
unique map from vectors in the unshaded area of  F0, FI 
and Fp to the patterns in subclass Coo, Clo and Cp re- 
spectively. Note only classifier 2 has a map between 
the class Cp and the feature set Fp. After combining 
classifier 1 and classifier 2 all patterns can be uniquely 
identified. 

Because of the ambiguity in the feature to pattern 
mapping found in many application problems it is well 
recognized that it is advantageous to generate more 
than one classification results [8, 9]. Specifically we 
need a technique that allows individual classifiers to 
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Figure 4. Modeling classification results. 

represent "I don't know", or "I think the input may be 
class i, however my confidence is not high" or "the 
input is either class i or j but not k". A hypothesis 
scheme [9] was developed to represent such uncertain 
and imprecise results. 

3.2. Modeling Classification Results 

The modeling process is built upon a training data set 
containing classification results from individual clas- 
sifiers. Figure 4 illustrates the modeling processes. 
We shall begin by discussing how the usual measure- 
ments performed during pattern to basic probability 
assignment. 

3.2.1. Hypothesis Generation. The hypothesis 
scheme requires a classifier to generate for each in- 
put pattern a hypothesis list. A hypothesis list contains 
pattern classes that closely match the unknown input. 
Additionally, each class on the list is associated with 
a numeric value indicating the confidence of the clas- 
sification. Classifiers generating hypothesis lists can 
be evaluated according to two measures: reliability 
and efficiency. Reliability is the frequency with which 
the correct class is included in the hypothesis list, and 
efficiency is the average length of the hypothesis list. 
Good classifiers are both efficient and reliable. An 
effective classifier will produce short hypothesis lists 
which are correct. 

A pattern classifier is expected to capture the dis- 
similarity between different classes and the similar- 
ity between the patterns of the same class, as well 
as describe possible misclassifications and indicate "I 

don't know" for inputs for which it cannot find good 
classifications. The proposed hypothesis-generating 
strategy provides these capabilities. It reduces erro- 
neous responses by allowing a classifier to produce 
multiple responses when a unique response cannot be 
determined. The confidence values permit identifi- 
cation of ambiguous patterns and situations like "I 
don't know". If the difference between the highest 
and the second highest confidence value is large, it 
indicates that the class with the highest confidence 
value is almost certainly the true class of the input; 
if the first k(k > 1) classes on the hypothesis list have 
very close confidence values, it indicates that the in- 
put is ambiguous; if the highest confidence value on 
the hypothesis list is very low, it is an indication of 
"I don't know". Obviously, if it is desired, a unique 
response can be derived from a hypothesis list by ap- 
plying a decision process to the hypothesized classes 
and their associated confidence values. In a system 
of multiple classifiers, it is possible either to pass a 
hypothesis list generated by a classifier on to other 
classifiers for further processing, or to apply a deci- 
sion process to all the hypothesis lists generated by the 
classifiers in the system to achieve a reliable and unique 
classification. 

Based on the above discussion, we can define a 
hypothesis-confidence list, (Co, Cfo; C1, Cft . . . . .  Cp, 
Cfp), where Cf/is  0 if Ci is not on the hypothesis list 
otherwise Cfi equals the confidence value attached to 
Ci on the hypothesis list. In the following discussion, 
we assume all classifiers under consideration produce 
hypothesis-confidence lists as output. Figure 5 shows 
an example of hypothesis-confidence list. The digit 
classifier generates three hypotheses for the input pat- 
tern, digit classes 3, 5, or 9 with corresponding confi- 
dence values 90, 50 and 70. The list above the output 
arrow is the hypothesis list, and the one below is the 
hypothesis-confidence list. Apparently the two lists, 
hypothesis list and the hypothesis-confidence list, are 
equivalent, namely, a hypothesis-confidence list can be 
derived from a hypothesis list and vice versa. 

3.2.2. Computing Probability-Lists. To combine the 
classification results from different classifiers, a critical 

Figure 5. 

~ , 5 0 ;  9,70) unknown 

d i ~  Digit Classifier (0,0; 1,0; 2,0; 3,90; 4,0; 5,50; 6,0; 7,0; 8,0; 9,70) 

An example of hypothesis and hypothesis-confidence list. 
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issue we must address is the inconsistent confidence 
functions used by the different classifiers. Different 
classifiers can have difl'erent strategies to generate their 
confidence values. There are two problems involved. 
First the confidence values from all classifiers should 
have the same range. One classifiers may generate 
confidence values ranging from 0 to 1, and others may 
range from 1 to 100. The second problem is that the 
same confidence value from different classifiers may 
represent different degrees of support. For example, 
confidence value "60" generated by classifier 1 may 
represent the equivalent support to confidence value 
"80" generated by classifier 2. The first problem can 
be solved by mapping confidence values to a defined 
range. Therefore, without loss generality, we assume 
in the following description that the confidence values 
generated by all classifiers range from 0 to 100. The 
second problem is solved by using the following ma- 
chine learning technique. 

Let I" i be a set of hypothesis-confidence lists gener- 
ated by classifier CL j from a set of patterns belonging 
to class Ci, R/(Cf) be a reliability function, P/(Cf) 
a probability density function of confidence value Cf 
with classifier CLJ for class Ci, 

• For all values ofCf 's  > 0, compute R[(Cf), the num- 
ber of the hypothesis-confidence lists in F j that con- 
tain the confidence value Cf for class Ci 

• Let N/j be the number of hypothesis-confidence lists 
in I'/J that contain a nonzero confidence for class Ci. 
The probability of the pattern with confidence value 

Cf for class Ci is P/J (Cf) = R~!Ct) N~ 
• Find an uncertainty threshold UC{ such that for all 

Cf > UC{, the R](Cf) can be approximated by a 
monotonic curve. 

The reliability function R j (Cf) represents the num- 
ber of patterns in class Ci that are correctly identified 
with confidence value Cf. In theory, the higher con- 
fidence value, more reliable the result is, and there- 
fore, the reliability function should be monotonic in 
theory. However in many applications, because of 
the noise in training data set and/or deficiencies in 
classification algorithms, the reliability function is 
not monotonic in particular when confidence values 
are low. The uncertain threshold UC{ is used to find 
the range of confidence values that are meaningful 
in the reliability function R[. The confidence val- 
ues above UC/ form a monotonic curve, therefore 
they are more reliable than those below UC{. The 

uncertainty threshold will be used later in the reason- 
ing process. 

Now we want to show that P/(Cf) is indeed a proba- 
bility density function of Cf defined on the training set rl. 
(1) We know by the definition that 0 < P/(Cf)  < 1. 

fff R/(Cf~ (2) PJ (Cf) d C f =  E P/(Cf)  = E N 
oo C f > O  C f > O  

X--" number of hc-lists containing Cf for Ci 
N Cf>0 

number of hc-lists containing a Cf > 0 for Ci 

N 

N 

N 

where hc-list represents the hypothesis-confidence 
list. 

(3) Based on (2) we have 

p / ( e b  = E e/(cf ) = 1 - 
CfkTLCf 

Once the probability density function (Cf) is obtained, 
it can be applied to any hypothesis-confidence list, 
HCJ ---- (Co, Cf0; Ca, Cfl; . . . .  Cp, Cfp) generated by 
classifier C L  j , to  achieve a hypothesis-probability 
list, 

HP j = (Co, Pog(Cfo); CI, P~(Cfl); . . . .  Cp, P~(Cfp)). 

The above steps need to be applied to every clas- 
sifier and every pattern class in order to obtain R[ 
and PJ for all 0 < j < q and all 0 < i < p. Figure 6 
shows three R[ functions generated for handwritten 
digit class 2 from a training set containing hypothe- 
ses generated by three classifiers, a back propaga- 
tion based Neural Net classifier, template matching 
and polynomial classifier. The detailed description of 
these algorithms can be found in [4, GaW90]. The 
uncertainty thresholds in Fig. 6(a) to (c) are 30, 40 
and 10. 

3.3. Belief Functions 

Let the frame of discernment be ® = {Co, 
C1,..., Cp, G}, where G represents any pattern 
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Reliability functions of  three classifiers for digit class 2. 

other than Co, C1 . . . . .  Cp. We assume a hypothesis- 
probability list generated by classifier CLi for an input 
pattern is 

HPJ = (Co, Pd(Cfg); C,, PJ(Cf¢); . . . ;  

c~, pi(cf~)). 

p J J Let ot = ~--~k=0 P; (CfD" The mass function M j for 
classifier CLJ can be computed as follows: 

p~ (cfl) 
od 

m j(Ci) = p[(Cf{) 

0 eel < ucl 
( 1 )  

where i = 0 , . .  p. Since MJ(Ci) = Pi(Cfl) only 

when otJ > 1 andCf/j > UC I, it is obvious that 
~'~=oMJ(Ci) < 1. 

The quantity 1 - Y~4P=o MJ(ci)  >_ 0 indicates the 
uncertainty of the classifier for this input. This uncer- 
tainty can be interpreted as the mass function value for 
0 ,  i.e., 

P 
MJ(®) = 1 -- ~ MJ(ci) .  

i=0 

This interpretation is quite reasonable since ® con- 
tains G, which represents anything other than the pat- 
tern classes. Thus M j ( O )  represents the portion of the 
belief that could not be ascribed to any subset of ® 
based on the evidence M j has at present. This rep- 
resentation has several advantages. It allows the rea- 
soning process identify and later the system reject the 
input that are not in the pattern space. In an OCR sys- 
tem, for example, text lines, words and characters are 
all extracted automatically by the processes preceded 
classification. This input to character classification al- 
gorithms may very likely contain partial or merged 
characters or sometimes even non-character patterns, 
and therefore a reasoning system using automatically 
processed data should be prepared to reject input. An- 
other advantage of this representation is that it provides 
the opportunity for combining conflict results gener- 
ated by individual classifiers. How this is accomplished 
will be made more clear during the evidence combina- 
tion discussion. 
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Obviously, 

MJ(dp) = 0 and ~ MJ(A) 
AC® 

P 
= ~_MJ(Ci) + MJ(19) = 1 

i=0 

Hence the function M j satisfies two conditions of the 
basic probability assignment in Dempster-Shafer the- 
ory presented in Section 2. 

3.4. Computing Composite Mass Functions 

After obtaining the mass function M j for each classi- 
fier, we form composite mass functions based on the 
Dempster's rule of combination described in Section 
2. For example combining mass functions from M j 
and M t: 

MJ' l (c i )  : MJ(Ci) (9 Mt(Ci) 

1 . * Ml(Ci)  
- -  1 - k [ M j  ( C i )  

-]-MJ(Ci) * Mz(19) + M J(19) * Ml(Ci)] 

where k = 2 i : / : j  M] (Ci) * Mt(Cj). 
The composition function MJ' l (c i ) sa t i s f ies  the two 
conditions of the basic probability function, and is 
ready to be combined with other mass functions, i.e., 

M = M 1 ( ~ M  2 ~ " "  ( ~ M  q 

Clearly, this operation is commutative and associative. 

The evidence modeling and pooling process described 
above has the following characteristics: 

(1) If  a pattern class receives support from all clas- 
sifiers, its composite mass function has a higher 
value than the pattern classes that receive partial 
support. 

(2) If  a classifier gives a very strong support to a class, 
the composite mass function value for the class 
may still be significant even if the other classifier 
has no evidence to support that class. 

(3) If  the composite mass function is evenly dis- 
tributed among a number of pattern classes, it is 
likely that the input is an ambiguous pattern. 

(4) If  the input pattern is not in the pattern class 
space, the composite mass function should give 

insignificant support to any pattern classes, and 
consequently M(®) is more significant than any 
othe M ( Ci ). 

3.5. Reasoning Process 

For each input pattern, we generate an evidential in- 
terval [Spt(Ci), Pls(Ci)] for each class C in the frame 
of discernment 19 from the composition mass function 
M. Based on the nature of our modeling process, the 
evidential interval can be computed by the following 
formula: 

Spt(Ci) = M(Ci) and Pls(Ci) = 1 - -  ~ M(Cj) 
j-¢i 

We have two special cases to prove. First we need to 
show 19 [1, 1], i.e., 

S p t ( ® )  = P l s ( ® )  = 1. 

Spt(®) = ~ M(A) = ~ M(Ci )  -[- M(®) = 1 
AC® i 

Obviously 

Pls(®) = 1 -Sp t (~ ) )  = 1 

The evidential interval may have one of the following 
forms: 

(1 )  Ci[O, 0]" the input pattern is not Ci 
(2) Ci [0, 1]: no evidence to support Ci. It implies that 

no evidence to support any other classes either, 
therefore the input is garbage. 

(3) Ci [1, 1]: the input pattern is Ci, output Ci and stop 
the process 

(4) Ci[0.3, 1]: evidence provides partial support for 
Ci 

(5) CliO, 0.7]: evidence provides partial support for 
other classes 

(6) Ci[0.3, 0.8]: evidence provides partial support for 
class Ci and other classes 

After the knowledge is represented in the eviden- 
tial intervals, a set of inference rules will be applied 
to the support and plausibility estimates for achieving 
desired classification results. The format of inference 
rules introduced in this paper has the format of "A =~ 
B", which can be interpreted as "statement B can be 
inferred from the statement A". 
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If  our goal is to find a single classification result, 
the reasoning process needs to define an order on the 
evidential intervals. Often we want to find the class 
C with the strongest supporting evidence. Under this 
assumption, two steps of processes can be performed. 
First we may want to find the class that has the maxi- 
mum Spt value. If  there is a tie, we want find the class 
which has the maximum Pls value. If  there is still a 
tie, the process will output all the propositions as the 
possible classes of the input pattern. Formally, we can 
define the following rules: 

Rule 1: 
Ci[spt(Ci), pls(Ci)] spt(Ci) > spt(Cj) ~ Ci > Cj 
Cj [spt(Cj), pls(Cj)] 

Rule 2: 
Ci[spt(Ci), pls(Ci)]spt(Ci) = spt(Cj) 
Cj[spt(C]), pls(Cj)]pls(Ci) > pls(Cj) ~ Ci > Cj 

Rule 3: 
Ci [spt(Ci), pls (Ci)] 
Cj[spt(Cj), pls(Cj)] ~ 

spt(Ci W C j) = max{spt(Ci), spt(Cj)} 
Ci U Cj[spt(Ci U Cj), pls(Ci tO Cj)] 

pls(Ci tO Cj) = rain{ 1, pls(Ci) + pls(Cj)}' 

For example, 

(1) If  we have evidence intervals 4[0.2, 0.4], 7[0.2, 
0.3], 9[0.4, 0.6], we have relation: 9 > 4 > 7. 
The single classification result will be digit class 9. 

(2) If  we have evidence intervals 4[0.2, 0.4], 7[0.2, 
0.3], 9[0.1, 0.6], digit class 4 and 7 have a tie in spt 
value. However, digit class 4 has a larger Pls value, 
and therefore we have 4 > 7 > 9, and output is 
diglt class 4. 

(3) If  we have 4[0.2, 0.6], 7[0.2, 0.6], 9[0.2, 0.6], then 
(4, 7, 9)[0.2, 1] and the output is (4, 7, 9). This 
result is ready to be combined with other available 
knowledge sources for further process. 

Rules 1 and 2 are aimed at deriving single classification 
results, and Rule 3 is used to generate multiple classifi- 
cation results. If  we have multiple knowledge sources 
represented in evidential intervals, we can integrate the 
knowledge directly from evidential intervals by using 
the following rules: 
Rule 4: 
Ci [spt 1 (Ci), pls 1 (Ci) ] 
Ci [spt2(Ci), pls2(Cj)] 

spt(Ci) = max{sptl(Ci), spt2(Ci)} 
Ci [spt(Ci), pls (Ci)], 

pls(Ci) = min{plsl(Ci), pls2(Ci)} 

4. Algorithm Implementation, Performance 
Analysis and Experiments 

The modeling and reasoning algorithms has been 
implemented in the programming language C on a 
SUN Sparcl0workstation. The entire system has two 
major parts: classifier modeling and classification 
result reasoning. The classifier modeling module is 
designed to generate from a training set of data the re- 
liability and the probability density function for every 
classifier and every pattern clasS. The output of this 
program are probability density functions in a tabular 
format and the uncertainty thresholds. Each classifier 
has a corresponding table of probability density func- 
tion and uncertainty thresholds. Each table has m rows 
and n columns, where m is the number of pattern classes 
and n is the number of confidence values. The table 
entry at (i, j )  represents the probability of pattern class 
j with the given confidence value i. The probability 
density functions can be stored in off-line files. The 
classification result reasoning process consists of the 
following steps: 

• For every unknown from a classifier j ,  obtain mass 
function M j from the probability density tables and 
the uncertainty thresholds during the modeling pro- 
cess. 

• Obtain the combined mass function M by applying 
orthogonal sum to mass functions M j. 

• Generate evidential intervals from mass function M. 
• Obtain the classification results by applying the in- 

ference rules to the evidential intervals. 

We conducted experiments to test the algorithm 
within the environment of handwritten digit recogni- 
tion. In the experiment, we used two data sets, training 
and test sets. Both data sets were obtained from hand- 
written ZIP Codes cropped from handwritten address 
blocks of U.S. mail pieces. The ZIP Codes were seg- 
mented by a computer program into individual digits 
which were in turn inputs to the three classifiers. Since 
the digit segmentation was automatic without manual 
cleaning up, the input to the classifiers contained a good 
portion of non-digit patterns. Figure 7 shows five ex- 
amples of bad input in our experiment. The training set 
contained 388 handwritten ZIP Codes, approximately 
2716 digits, and the test set contained 581 handwritten 
ZIP Codes, approximately 4067 digits. 

The classification results, which were in the format 
of hypothesis-confidence lists, were generated by three 
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(a) (b) (c) (d) (e) 
Figure 7. Examples of bad input in the data used in the experiments: (a) is an image of "0" being cut off from the right side, (b) is an image of 
"3" being cut off from the top, (c) is an image of "8" containing extraneous features, (d) is an image of "w", which does not belong to the digit 
domain, (e) is an image of "4" containing a cross line. 

d i f fe ren t  c lassif iers ,  neura l  ne t  (NN),  s t ruc tura l  t em-  

p la te  m a t c h i n g  (ST),  and  p o l y n o m i a l  c lass i f ier  (PL).  

I t  is i m p o r t a n t  to p o i n t  ou t  tha t  the  ev iden t i a l  r eason-  

ing  a l g o r i t h m  we  d e s c r i b e d  above  can  be  app l ied  to 

any  n u m b e r  o f  classif iers ,  a l t h o u g h  we  use  th ree  clas-  

sifiers in  our  expe r imen t s .  E a c h  class i f ier  gene ra t ed  a 

h y p o t h e s i s - c o n f i d e n c e  list  for  e ach  inpu t  pa t t e rn  in the  

f o r m a t  d e s c r i b e d  in Sec t ion  3. In  gene ra t ing  the  re-  

l iab i l i ty  and  p robab i l i t y  func t ions ,  we  sca led  the  con-  

f idence  va lues  to 10, 20,  30, 40,  50, 60, 70,  80, 90  

and  100. A t  the  end  o f  the  m o d e l i n g  process ,  a ta- 

b l e  o f  p robab i l i t y  dens i ty  f u n c t i o n  was  p r o d u c e d  for  

e a c h  classifier .  A t ab le  o f  p robab i l i t y  dens i ty  func-  

t ion  for  c lass i f ie r  C L j  has  10 rows  and  10 co lumns .  

E a c h  row  r ep re sen t s  P / o f  i = 0 . . . . .  9, w h e r e  P / i s  

the  p robab i l i t y  func t i on  o f  c lass i f ier  j for  d ig i t  c lass  i. 

Tables  1, 2 and  3 show the  p robab i l i t y  func t ions  gener-  

a ted  d u r i n g  our  e x p e r i m e n t  for  c lass i f iers  N N ,  ST  and  

P L  respect ive ly .  T h e s e  tab les  we re  s tored in files to be  

u sed  in the  r e a s o n i n g  process .  T h e  m o d e l i n g  process  

was  p e r f o r m e d  on  the  t r a in ing  da ta  set. 

T h e  nex t  i s sue  needs  to be  d i s cus sed  is h o w  to 

eva lua t ing  a c lass i f i ca t ion  resu l t s  in t eg ra t ion  (CRI)  

a lgor i thm.  W e  m u s t  rea l i ze  tha t  a C R I  a l g o r i t h m  is no t  

necessa r i ly  ou t  p e r f o r m  an  ind iv idua l  c lass i f ie r  as we  

expe r i enced  wi th  the  B a y e s i a n  me thod .  T h e r e f o r e  one  

eva lua t ion  c r i te r ion  is tha t  a good  C R I  a l g o r i t h m  s h o u l d  

at  leas t  p e r f o r m  be t te r  t han  any  ind iv idua l  c lass i f iers  

be ing  c o m b i n e d .  O n  the  o the r  hand ,  we  m u s t  a lso real -  

ize tha t  the  p e r f o r m a n c e  o f  a CRI  a l g o r i t h m  is b o u n d e d  

Table 2. Probability function for ST. 

Cf/ 
class 10 20 30 40 50 60 70 80 90 100 

0 0.00 1.00 0.17 0.21 0.72 0.85 0.93 0.91 0.89 0.89 

1 0.00 1.00 0.33 0.50 1.00 1.00 0.67 0.67 1.00 0.86 

2 0.00 0.29 0.48 0.65 0.86 0.98 0.90 0.95 0.95 0.94 

3 0.00 0.00 0.33 0.52 0.82 0.97 0.93 0.96 0.88 0.93 

4 0.00 0.11 0.14 0.44 0.65 0.70 0.92 0.82 0.92 0.85 

5 0.00 0.33 0.50 0.50 0.91 0.89 0.94 0.87 0.92 0.90 

6 0.00 0.33 0.10 0.29 0.40 0.86 0.93 1.00 0.89 0.96 

7 0.00 0.00 0.00 0.18 0.54 0.40 1.00 0.64 0.88 0.89 

8 0.00 0.00 0.00 0.38 1.00 0.82 1.00 0.73 0.83 1.00 

9 0.00 0.00 0.20 0.43 0.60 0.80 0.79 1.00 0.95 0.86 

Table 1. Probability function for NN classifier. Table 3. Probability function for PL. 

Cf/ Cf/ 
class 10 20 30 40 50 60 70 80 90 100 class 10 20 30 40 50 60 70 80 90 100 

0.00 0.00 0.00 0.00 1.00 0.44 0.67 0.73 0.88 0.97 

0.00 0.00 0.00 0.00 0.22 0.29 0.57 0.83 0.85 0.91 

0.00 0.00 0.00 0.57 0.56 0.65 0.65 0.86 0.91 0.95 

0.00 0.00 0.00 0.00 0.10 0.00 0.30 0.55 0.81 0.96 

0.00 0.00 0.00 0.12 0.00 0.23 0.20 0.08 0.56 0.89 

0.00 00.0 00.0 0.33 0.25 0.00 0.33 0.40 0.83 0.90 

0.00 0.00 0.00 0.00 0,10 0.00 0.11 0.27 0.64 0.92 

6.00 0.00 0.00 0.00 0,18 0.33 0.25 0.47 0.86 1.00 

0.00 0.00 0.00 0.00 0.00 0.57 0.20 0.21 0.89 0.85 

0.00 0.00 0.00 0.00 0.00 0.50 0.60 0.50 0.93 0.90 

0 0.00 0.00 0.00 0.50 0.38 0.54 0.60 0.62 0.88 0.90 

1 0.00 0.00 0.00 0.50 0.00 0.33 0.44 0.63 0.89 0.86 

2 0.00 0.00 0.00 0.00 0.69 0.70 0.72 0.70 0.95 0.94 

3 0.00 0.00 0.00 0.33 0.00 0.27 0.85 0.81 0.91 0.92 

4 0.00 0.00 0.00 0.00 0.21 0.41 0.25 0.61 0.85 0.86 

5 0.00 00.0 00.0 0.00 0,14 0.40 0.64 0.89 0.89 0.88 

6 0.00 0.00 0.00 0.00 0,14 0.00 0.54 0.72 0.83 1.00 

7 0.00 0.00 0.00 0.00 0,00 0.22 0.46 0.65 0.82 0.91 

8 0,00 0.00 0.00 0.00 0.18 0.21 0.50 0.74 0.90 1.00 

9 0,00 0.00 0.00 0.00 0.00 0.38 0.70 0.79 0.90 0.96 
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Figure 8. Illustration of upper bound performance of a CRI algo- 
rithm applied to three classifiers: (a), (b) and (c) show the recognition 
space of three individual classifiers, (d) shows superimposed three 
recognition spaces, (e) shows the upper bound space. The shaded 
area in (f) represents the possible recognition space of a CRI algo- 
rithm. 

by the classifiers being combined. Let the recognition 
space of a classifier be the set that contain all the cor- 
rectly recognized samples in the pattern space. The 
upper bound performance of a CRI algorithm can be 
measured by the union of the recognition spaces of the 
classifiers being combined. Figure 8 illustrates this 
notion. In this example, we assume three classifiers 
to be combined. The shaded areas in (a) and (b) and 
(c) represent the recognition spaces of the three clas- 
sifiers respectively. The three recognition spaces are 
superimposed in (d). (e) shows the upper bound space, 
which is the union of the three recognition spaces. It 
is clear that the recognition space of a CRI algorithm 
(see Fig. 8(f)) can never exceed this upper bound space 
and it can be smaller than the recognition space of an 
individual classier. It is important to point out that 
the pattern space and recognition spaces are all data 
dependent. However a CRI algorithm should have its 
recognition space as close to the upper bound space as 
possible on any data set, and a CRI algorithm with a 
larger recognition space is considered better than the 
ones with smaller recognition spaces. 

In order to have a better understanding of the per- 
formance of the evidential reasoning algorithm, we 
have implemented classic Bayesian Formalism [11, 
15]  and tested it on the same two data sets. In 
our implementation, the probability tables used in the 
evidential reasoning were used as the confusion matrix 
in the Bayesian algorithm. We conducted two exper- 
iments to compare the performance of the Bayesian 
method and the proposed evidential reasoning algo- 
rithm, one is on the training data set and another one 
is on a blind test set. The results of both experiments 

Table 4. Experiment results on both training and test sets. 

Recognition Evidential Upper 
rate NN ST PL Bayesian reasoning bound 

Training set 84% 86% 83% 81% 88% 88.9% 
388 Zip codes 
2716 digits 

Testset 85.75% 86.1% 83.2% 80.9% 88% 89.8% 
581 Zip codes 
4067 digits 

are shown in Table 4 along with the upper bound of 
recognition in each data set. In both experiments, the 
evidential reasoning consistently performed better than 
any individual classifiers and its performance is close 
to the upper bound on both data sets. Furthermore, the 
consistent gain of performance over different data sets 
shows that the knowledge integration framework un- 
der evidential reasoning is robust. In these two exper- 
iments, the performance of the Bayesian algorithm is 
worse than the lowest recognition score of the individ- 
ual classifiers. The classic Bayesian method has been 
known for giving poor performance on noisy data [ 15], 
and therefore, the poor performance of the Bayesian 
algorithm could be caused by the noise (see Fig. 7) in 
both the training and the test set. 

5. Conclusion 

We have presented a knowledge integration framework 
for a multiple classifier system, described evidence 
modeling and reasoning algorithms under the frame- 
work, discussed about the performance of CRI algo- 
rithms, and presented our experimental results. 

The modeling process, which converts hypothesis 
lists to probability lists, is implemented as a machine 
learning process that generates probability density 
functions and uncertainty thresholds for each classi- 
fier from a training data set containing classification 
results generated by the classifiers. The reasoning pro- 
cess produces mass function for each individual clas- 
sifier, generates the composite mass function, and the 
evidential intervals. Inference rules for generating sin- 
gle result or multiple results are presented. Inference 
rules for polling evidence directly from evidential in- 
tervals are described. 

Our framework of evidential reasoning has the fol- 
lowing advantages: 

(1) The evidence reasoning has no subjective tun- 
ing parameters. The only parameter used in the 
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reasoning process is the uncertainty threshold 
which is determined automatically during the 

learning process. 
(2) The evidential reasoning process can be quickly 

adapted to any particular type of data set since 
the learning process is automatic and requires no 
manual  adjustment. 

(3) The evidential reasoning framework allows indi- 

vidual classifiers to 

• have their own measurement of confidence 

values 
• represent uncertain, imprecise and inaccurate 

results including "I don ' t  know". 

(4) We argue that the evidential reasoning system pro- 
duces more certain, accurate and precise results 
based on the following two facts: 

• the evidential reasoning system generates one 
hypothesis list from m input hypothesis lists, 
where m > 1 is the number of classifiers in 
the system. Further more the m input hypothe- 
sis lists can contain conflict information, and 
individual hypothesis lists may contain erro- 
neous and less precise information about the 
input pattern. 

• The evidential reasoning system produces bet- 
ter results than any individual classifier on both 
the training and the test data set. 

(5) The implementation of the system is efficient. 
Since the probability functions are generated off- 
line and stored in tabular format, the reasoning 
process can use table-lookup to generate mass 
functions. Furthermore, it can be implemented 
directly on parallel processors since the combi- 
nation of mass functions is communicative and 
associative. 
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