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Abstract. This is the first of a series of three papers describing experiments on the dispersion of trace heat 
from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the 
wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm 
wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were 
measured with a special three-hot-wire anemometer designed for optimum performance in flows of high 
turbulence intensity. We found that: 

(i) The momentum flux due to spatial correlations between time-averaged streamwise and vertical 
velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy. 

(ii) In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local 
production) near the top ofthe canopy, and was the principal gain mechanism lower down. Wake production 
was greater than shear production throughout the canopy. Pressure transport just above the canopy, 
inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss. 

(iii) In the shear stress budget, wake production was negligible. The role of turbulent transport was 
equivalent to that in the turbulent energy budget, though smaller. 

(iv) Velocity spectra above and within the canopy showed the dominance of large eddies occupying much 
of the boundary layer and moving downstream with a height-independent convection velocity. Within the 
canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies 
characteristic of wake turbulence. 

(v) Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the 
top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; 
it suggests some reappraisal of inferences previously drawn from quadrant analysis. 

1. Introduction 

Over the last few years, it has been recognized that turbulence within and just above 
a plant canopy is dominated by quite coherent structures which (i) have vertical length 
scales at least as large as the canopy height, (ii) are intermittent and energetic, and (iii) 
account for most of the transport of momentum and scalar properties such as heat, 
water vapour and CO,. The experimental evidence for this fairly recent development 
in our picture of canopy turbulence comes from observations of coherent waving 
(‘honami’) in cereal canopies (Finnigan, 1979a, b); from conditional analysis of 
turbulence data close to roughness arrays in the wind tunnel (Raupach, 1981) and plant 
canopies in the field (Shaw etal., 1983); and from two-point velocity measurements 
above and within canopies (Seginer and Mulhearn, 1978). These large, coherent 
structures have been visualized principally as gusts, following the work of Finnigan 
(1979b). 

’ Present address: Head, Horticultural Engineering Division, National Institute OfAgricultural Engineering, 
Wrest Park, Silsoe, Bedford MK45 4HS, U.K. 
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Such a picture has profound implications for theories of scalar transport or dispersion 
in the canopy environment. It has been realized for some time that simple gradient- 
diffusion theories for scalar and momentum transport are untenable because their basic 
requirement - that the length scale of the mixing process be substantially smaller than 
that of the inhomogeneity in the mean scalar or momentum gradient - is seriously 
violated (Corrsin, 1974). In the search for alternatives, attention has been directed to 
higher-order closure theories (Wilson and Shaw, 1977; Finnigan, 1985), or to random- 
flight theories in which the trajectories of dispersing tracer particles are represented by 
a Markov process in Lagrangian velocity space (e.g., Legg, 1983). However, from both 
the fundamental and practical viewpoints, these theories are still at an early stage of 
development. 

This paper is the first of a series of three describing experiments on the dispersion 
of a passive scalar (trace heat) in a wind-tunnel model of a plant canopy. The overall 
aims of the work are to elucidate further the properties and dynamics of turbulence 
within and just above plant canopies, to give insight into how this turbulence disperses 
passive scalar additives, and to enable the developing theories mentioned above to be 
guided by good-quality data. This paper considers the aerodynamics of the model 
canopy - the wind field. The second paper (Coppin, Raupach and Legg, 1986, hence- 
forth called II) treats dispersion from a horizontal plane source within the canopy, at 
a height of 0.80 h, (where h, is the canopy height), while the third (Legg et al., 1986, 
henceforth called III) considers dispersion from a lateral line source, at height 0.85 h,.. 

Although the main motivation for this work was the scalar dispersion studies (II and 
III), the aerodynamic results were significant in several respects. Two new techniques 
were used: firstly, the data have been interpreted using the concept of spatial averaging, 
which not only smooths the spatial variability of the canopy but also incorporates 
directly all the dynamical effects ofthe canopy into the equations governing the averaged 
flow. Secondly, the velocity sensor was a three-hot-wire probe designed for measuring 
two velocity components in highly turbulent flows (Legg et al., 1984), which permitted 
more reliable measurements of the turbulence within the canopy than had been possible 
in previous experiments using X-wires. Besides giving useful new or confirmatory data 
on dispersive fluxes, spectral dynamics and the budgets for turbulent energy and shear 
stress, these measurements indicate that X-wires are subject to errors within the canopy 
(especially for quadrant analysis of the shear stress) and that some reappraisal is 
necessary in this light. 

2. Spatially Averaged Equations 

To describe flow and transport in the plant canopy environment, we must use spatially 
averaged conservation equations for momentum and scalars for two main reasons: they 
incorporate naturally the surface influences which produce form and viscous drag and 
scalar sources and sinks, and they average the spatial variability imposed by plant parts. 
This averaging process is far more than a matter of statistical smoothing, as it introduces 
additional, physically significant terms accounting for dispersive fluxes and wake pro- 
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duction. Wilson and Shaw (1977) and Raupach and Shaw (1982) considered area 
averages over a horizontal plane intersecting numerous plants, while Finnigan (1985) 
generalized the area average to a volume average over any volume V within the canopy 
and gave volume-averaged equations for scalar conservation and transport. The two 
types of average are identical when Vis an extensive, infinitesimally thin horizontal slab. 

For later reference, we here give the volume-averaged form of the mean momentum 
equation. The volume average of any scalar or vector component $(x, t) is denoted by 
angle brackets and is defined as 

(qQ(x, 2) = i 
V 

$(x + r,Odr, 
V 

(1) 

where the averaging volume V excludes plant parts. Decomposing $ into its volume 
average and a departure therefrom (denoted by a double prime), we have 

+ = (4) + $” 3 (2) 

where the departure $“(x, t) satisfies 

(qf’) = 0 (3) 

provided that the length scale of the spatial averaging in each coordinate direction is 
much less than the corresponding length scale of large-scale, nonrandom inhomogeneity. 
For a horizontally uniform canopy with systematic variation in the vertical direction 
only, this condition is met by making V a thin, horizontal slab. 

The volume-averaging operator does not commute with spatial differentiation (or with 
temporal averaging if the plants are waving). Instead, Equation (1) implies that 

$ni dS 3 
SI 

(4) 

% 
(-> 

ve 1 =-++ at at v ss gb vini dS , 

so+sz 

where S, is the outer or free part of the bounding surface S of V, S, is the part of S which 
coincides with plant surfaces (so that S = SO + S,), ni is the unit normal vector pointing 
away from S into V and vi is the velocity of the surface S. If these plants are waving 
or fluttering, vi will be nonzero over S,; however, vi is zero over S,, since the whole 
averaging volume does not move. 

We next apply the volume-averaging operator to the continuity equation and the 
Reynolds equation for mean momentum conservation at a single point. For a flow 
without buoyancy forces, these equations are (employing the tensor summation con- 
vention) 
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where ui and xi are velocity and position vectors, t time, p the kinematic pressure and 
v the kinematic viscosity; overbars and single primes denote, respectively, single-point 
time averages and departures therefrom. Volume averaging gives 

and 

‘(“i> _ 0 

C?Xi 
(7) 
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at ax, 
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axxi ax, 
(8) 

with 

a+,) Zij = -(u&!) - (ii,,ii,~) + VT, 
I 

(9) 

(11) 

Here f, and f, are the form and viscous drag force vectors exerted on a unit mass of 
air within the averaging volume, rq is the volume-averaged kinematic momentum flux 
or stress tensor, and ajan denotes differentiation along nj. Equation (9) shows that zG 
includes not only the conventional turbulent and molecular stresses (the first and last 
terms, respectively), but also a dispersive stress (the middle term) due to spatial 
correlation within V of time-averaged but position-dependent quantities (Wilson and 
Shaw, 1977). These volume-averaged equations do not contain vi, and so are true for 
both rigid and waving canopies. 

From now on we shall use meteorological rather than tensor notation, writing 
xi = (x, y, z) and ui = (u, v, w) with the x-coordinate in the mean streamwise direction 
and the z-coordinate normal to the ground. The averaging volume V will be regarded 
as a thin horizontal slab of variable height z; since we are considering a regular model 
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canopy, it is sufficient for V to encompass only one ‘unit cell’ of the canopy on the xy 
plane. To an excellent approximation, spatially averaged flow properties within our 
canopy (except very close to its leading edge) are functions of z only, as shown later; 
also, the mean streamwise pressure gradient is zero and the flow is stationary. With 
these constraints, the streamwise component of Equation (8) becomes 

(12) 

where f, (= fF1 + f,,) is the total streamwise drag per unit mass of air within the 
averaging volume. When form drag is the principal drag mechanism, a suitable 
parameterization for f, is 

f, = -$C,a(ii)‘, (13) 

where CD is an element drag coefficient and a is the element area density (frontal area 
per unit volume). Because CD is an in situ drag coefficient, it must account for the effects 
upon the drag of canopy turbulence, through both intensity and length scale, and also 
of ‘sheltering’ within the canopy. 

3. Experimental Arrangement and Technique 

3.1. THE WIND TUNNEL AND MODEL CANOPY 

The experiments were done in the CSIRO Pye Laboratory wind tunnel, an open-return 
blower tunnel with a 5.5 : 1 two-dimensional contraction and a working section 10.6 m 
long, 1.78 m wide, and 0.65 m high (Wooding, 1968). The tunnel arrangement is shown 
in Figure 1. A 50 mm fence tripped the flow entering the working section, generating a 
deep turbulent boundary layer that was developed initially over a section of roughness 
constructed from 15 mm stones (Mulhearn and Finnigan, 1978). The stony surface was 
raised (see Figure 1) so that its zero-plane displacement matched that estimated apriori 
for the canopy (48 mm). The flow then encountered the model canopy, which extended 

Rough Model 

Fig. 1. The experimental arrangement. Note exaggerated vertical scale. 
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for 3.0 m in the streamwise direction and covered the full width of the tunnel. The 
canopy was an array of vertical aluminium strips, each 10 mm wide, 1 mm thick, and 
60 mm tall, arranged in a regular diamond pattern with 60 mm cross-stream and 44 mm 
streamwise spacing, as shown in Figure 2. Downstream of the canopy, the flow 
encountered a similar raised stony surface to that used for initial flow development. 
Because heat was the tracer for the dispersion experiments, the whole floor beneath the 
working section was insulated with a sheet of polystyrene foam, 25 mm thick. The 
flexible roof of the working section was adjusted to give zero streamwise pressure 
gradient over the canopy. The coordinate origins were the leading edge of the canopy 
(x = 0) and the ground surface beneath the canopy elements (z = 0). For later reference, 
the main physical and aerodynamic parameters are summarized in Table I. 
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Fig. 2. View from above of the arrangement ofroughness elements, showing locations for three-wire probe 
traverses (A to J) and sonic traverses (K to M). 

TABLE I 

Summary of physical and aerodynamic parameters 

Canopy height 
Frontal area index 
Boundary-layer depth 
Free-stream velocit) 
Mean velocity at h, 
Friction velocity 
Roughness length 
Zero-plane displacement 
Reynolds numbers: 

boundary-layer 
roughness 

4 60 mm 
0.23 

540 mm 
11.25ms-’ 

3.40 m s-’ 
1.03 m s- ’ 
8.7 mm 

43 mm 

4.0 x lo5 
600 
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3.2. VELOCITY MEASUREMENTS 

The Z.J and w components of the velocity vector were measured with the three-hot-wire 
anemometer described by Legg et al. (1984), which consists of a standard, vertically- 
oriented X-wire probe with an additional vertical wire adjacent to it. Each hot-wire was 
1 mm long, and the lateral distance between the outermost wires was 2.5 mm. The 
three-wire probe was specifically designed to yield maximum information in the highly 
turbulent flow just above and within the model canopy. In contrast to the conventional 
X-probe, which has an acceptance angle of less than f. 45’ and gives reasonable 
accuracy only in turbulence intensities (i, = a$) of less than 0.3, the three-wire probe 
has an acceptance angle close to k 90” and performs satisfactorily when i, is 0.5 or 
higher. As the velocity data were measured in conjunction with the heat dispersion 
experiments (II and III), the full sensor assembly consisted of the three-wire probe for 
measuring u and w and a cold-wire thermometer for measuring the temperature 8. 

The three-wire probe in this application is subject to errors of several kinds, including 
(a) error at high turbulence intensities due to short-term flow reversals in the streamwise 
direction; (b) error due to contamination of the (u, W) velocity vector by lateral 
(u-component) velocity fluctuations; (c) the effect of heat dispersed from one hot-wire 
on the readings of another; (d) the effect of fluctuating air temperatures upon the 
hot-wires; and (e) the loss of high-frequency coherence due to the spatial separation of 
the wires. Errors (a) and (b) were estimated theoretically by Legg et al. (1984); however, 
we have not applied their error estimates as corrections to any of the data in this paper, 
or in II or III. Our results for U’ w ’ suggest that the errors estimated by Legg et al. (1984) 
may be too large (see Section 5). Error (c) was insignificant (as shown by examining 
signals from individual hot-wires with and without the other hot-wires turned on) while 
(d) was a small error which was corrected for during data processing. Error (e) is 
probably not serious for velocity, as the maximum wire separation in the three-wire 
probe (2.5 mm) is substantially less than either the canopy depth (60 mm) or the width 
of the canopy elements (10 mm), which control the length scales of the shear and wake 
turbulence, respectively, within the canopy. 

Vertical traverses, each consisting of 20 levels between z = 5 mm and z = 380 mm, 
were made with the sensor assembly at stations between x = 0.44 m and x = 2.47 m. 
All signals were low-pass filtered at 1 kHz (Butterworth, 96 dB/octave), digitized on-line 
at 2 kHz and recorded on magnetic tape continuously for 20 s at each measurement 
position. The velocity data were processed by first applying a nonlinear wind calibration 
to obtain instantaneous effective cooling velocities for the three wires, accounting for 
error (d) as in Raupach and Legg (1983). Then the cooling velocities were converted 
to time series for u and w by method 1 of Legg et al. (1984) which takes approximate 
account of u-component velocity fluctuations. From these time series, all moments of 
u and w up to third order were calculated. 

Because turbulence intensities within and just above the canopy were very high 
(i, z 0.6), supplementary measurements of mean streamwise velocity in the region 
z < 100 mm were made with a miniature one-component sonic anemometer with a path 
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length of 100 mm (an early version of the instrument of Coppin and Taylor, 1983). The 
sonic gives a line average of the velocity component along the sound path, and suffers 
from none of the three-wire probe errors (a) to (e). 

Vertical and streamwise gradients of measured moments, required for the calculation 
of turbulent diffusivities and budgets, were calculated at each x-station from measure- 
ments at positions C and D (see Figure 2). Sliding polynomials (e.g., 5 point, third 
degree) were fitted to each vertical profile of each moment, enabling fitted values and 
vertical derivatives to be read at 35 preset heights between 5 and 250 mm. Results from 
the profiles at positions C and D were then averaged, giving values that were taken to 
represent horizontal averages within a canopy cell; this assumption is justified in the 
next section. For ( u ) and 2 (U) / dz below z = 70 mm, sonic data rather than three-wire 
probe data were used. Finally, averaged vertical profiles at all x-stations were 
combined to calculate streamwise derivatives. 

4. Local Heterogeneity in the Wind Field 

4.1. MEAN WIND FIELD AND DISPERSIVE MOMENTUM FLUX 

For our model canopy with its large bluff elements, local heterogeneity is very severe 
because of the presence of separation zones to the front and rear of each element. A 
survey of the local wind pattern (with the restriction that measurements were impossible 
very close to the elements) was undertaken only at x = 1.25 m. However, we show later 
that there was negligible streamwise evolution of the wind pattern within the canopy for 
x > 0.5 m, so the results given in this section apply everywhere except very close to the 
leading edge of the canopy. 

Figure 3(a) shows three-wire profiles of E(z) at 10 positions (A to J in Figure 2) within 
a canopy cell at x = 1.25 m. The sonic data for U(z), shown in Figure 3(b), are line 
averages of U over 100 mm diagonal paths (K, L, and M in Figure 2), also at x = 1.25 m. 

Both types of data illustrate the strong horizontal heterogeneity of the flow within the 
canopy, with profiles measured in element wakes (A, F, G, and K) giving substantially 
lower U values than the horizontal average. 

Figure 3(c) shows the horizontally-averaged* mean wind profile (G)(z) from the 
sonic and three-wire probe. In the lower half of the canopy, (E) from the three-wire 
probe is significantly higher than that from the sonic. Because of the flow reversal 
problems associated with the three-wire probe, we regard the sonic profile as the more 
reliable measurement within the canopy and therefore use it in subsequent analysis, as 
already outlined. However, Figure 3(b) shows that the uncertainty in (ti) from the sonic 
is about + 0.25 m se- ’ from the horizontal variability alone. 

* For the three-wire probe, the average was (A + B + 2C + D + E + (F + G)j2 + 2H + 21+ J)/12, 
(obtained by partitioning a canopy cell, in the xy plane, into regions represented by the various profiles, 
and then weighting each profile by the fraction of the total area that it represents). The sonic average was 
weighted as (2SK + 1.75(L + M))/6 to account for the fact that no sonic data could be obtained from the 
diagonal path through the elements themselves, which should more closely resemble K than L or M. 
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Fig. 3. (a) three-wire profiles of G(z); (b) sonic profiles of ii(z); (c) profiles of (Z)(z) from the sonic and 
the three-wire probe. All measurements made within a canopy cell at x = 1.25 m. In (a), symmetrically placed 
positions are represented by a single line. Positions C and D, although not symmetric, differ insignificantly 

and are shown by only one line. 

The systematic nature of the mean wind field variation across a canopy cell is better 
illustrated in Figure 4, where contours of equal U and W are shown at z = 62 mm, just 
above the top of the canopy. The U contours show the wake region and a meandering 
high-speed jet of air snaking between the elements. The W contours are superimposed 
upon an apparent horizontal average, (W), of about - 0.15 m s- ‘, which is approxi- 
mately consistent with the estimate of Legg et al. (1984) for the apparent W induced by 
three-wire probe errors. We can confidently attribute the measured (C) to probe error 
because continuity requires that (W)(z) = 0 in the absence of streamwise development 
of the flow beneath z. If the measured (E) is removed from Figure 4(b) as an offset 
error which is everywhere constant, then a pattern emerges of local updraught just in 
front of each canopy element, with a roughly equal and opposite strength and area of 
local downdraught some distance behind each element. The maximum streamline slopes 
in these updraught and downdaught regions are about + 4’. 

From Figure 4 we can calculate the dispersive momentum fluw (U”E” ) : at 
z = 62 mm, (E”,“) is about -0.01 m2 se2, whereas (u’w’) is - 1.06 m2 ss2 (see 
later). Thus, the dispersive momentum flux at this height is negligible compared to the 
turbulent flux. Unfortunately, this finding cannot be extended reliably to heights within 
the canopy because of the inability to measure very close to the elements and also 
because of the three-wire probe errors induced by high turbulence intensities. However, 
dispersive fluxes appear to remain small at least in the upper part of the canopy; for 
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Fig. 4. Contours of (a) ii, (b) W at z = 62 mm, for a canopy cell at x = 1.25 m. Shaded region in (a) 
represents the meandering high-speed jet. 

example, at z = 40 mm, we estimate (U”E” ) to be 0.05 of (m) . The firm conclusion 
is that dispersive momentum fluxes are insignificant for z 2 h,. This agrees with earlier 
findings from more limited data (Mulhearn, 1978; Raupach et al., 1980). 

4.2. TURBULENT WIND FIELD 

Figure .5(a) shows vertical profiles of m at the same positions relative to the canopy 
elements as in Figure 3(a). The scatter in m within the canopy is very large, with 
I?? / being least behind an element (position F, G, and H). Measured U’WI values are 
positive in the lowest quarter or so of the canopy. Because of the high three-wire probe 
errors in this region, it is not possible to interpret the positive m values with 
confidence. However, if real, they may be associated with systematic recirculations in 
element wakes, and hence with significant dispersive fluxes, in the lower canopy. There 
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is evidence for such recirculations from the behaviour of the mean plume height from 
a lateral line source (see III). 

For comparison, Figure 5(a) also shows a (u’ w’ ) profile derived by integrating 
Equations (12) and (13) with the assumptions that CD is independent of height in the 
canopy, that dispersive and molecular contributions to the momentum flux are negligible 
and that (m) = 0 at z = 0 (in other words, that the momentum absorbed by the 
ground is negligible compared with that absorbed by the elements). The value of CD was 
set so that ( U’W’ ) at h,, when calculated by this method, matched the three-wire 
measurement; this gave CD = 1.6. The (u’w’) profile from Equations (12) and (13) 
falls well within the wide scatter of the measured m profiles in Figure 5(a). 

The value CD = 1.6 is rather high but not implausible. The drag coefficient of a 
rectangular plate, normally exposed to a uniform stream, varies from 1.18 to 2 as the 
aspect ratio increases from 1 to infinity (Hoerner, 1965). The turbulent environment 
within the canopy, however, means that the free-stream drag coefficient is of little 
relevance (Finnigan and Raupach, 1986). 

The ow profiles within the canopy (Figure 5(b)) show pronounced local maxima near 
z = h, and just behind an element, where significant longitudinal vorticity generation 
occurs in the element’s wake. Not surprisingly, no such local maxima are evident in the 
o,, profiles (Figure 5(c)). The o, profiles do not vary systematically among positions B 
to J within the canopy, and are represented by a single line. The turbulence intensities 
cr,Ji and 0,/U do not vary strongly either with height or with position (B to J), taking 
values of about 0.38 and 0.55, respectively. These are substantially lower than the values 
reported by Wilson et al. (1982) for a corn canopy in the field; those authors found that 
0,/U was between 0.5 and 2 and o,/U between 1 and 4, the highest values occurring low 
in the canopy. 

The data in Figure 3 and 5 confirm that profiles at positions C and D are representative 
of horizontally averaged profiles within a canopy cell. Measurements at these positions 
only were used in the work reported from here on. 

5. Large-Scale Properties of the Turbulent Wind Flow 

5.1. OVERALL STREAMWISE DEVELOPMENT 

The overall streamwise development of the boundary layer above and within the model 
canopy is shown in Figure 6 by profiles of ii, o,,, 0, and u’w’ at five x-stations between 
x = 0.44 and x = 2.47 m. All profiles were measured at position D in Figure 2. The 
height axis has not been normalized because the flows in the outer boundary layer and 
within the canopy require different normalizing length scales. 

The flow above the canopy is developing as one would expect of a smooth-to-rough 
transition. Thus , U’ w’ , o, and a, all decrease strongly with height at x = 0.44 m, but 
are approximately independent of height (up to at least z = 120 mm) at x = 2.47 m, 
indicating the development of an equilibrium surface layer over the model canopy. 
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Within the canopy there is negligible development with x except for o, upstream of 
x=lm. 

We now examine in detail the second and third moments of u and w, deferring a 
consideration of the mean wind ii to the next section. 

5.2. SHEAR STRESS AND FRICTION VELOCITY 

At x = 2.47 m, a layer of approximately constant shear stress, m, has been established 
between h, and 2 h, (z = 60 to 120 mm). The total kinematic drag on the canopy defines 
the friction velocity U, , since 

uz = - (u’w’) - (,“,“) + v!w) 
z=h, 

(14) 

in the absence of streamwise development within the canopy. However, the dispersive 
and molecular flux terms are negligible; also, for z L h, there is no significant difference 
between (u’w’) and u)wI at position D (see Figure 5). Hence u’, is given to a close 
approximation by the ?? values from the constant-stress layer evident in Figure 6. 
Determinations at x-stations between 0.44 and 2.47 m give u”, = 1.06 m2 s 2, with 
negligible dependence on x. 

An independent value for u’, can be obtained from the integral momentum balance 
equation for an adiabatic turbulent boundary layer with zero pressure gradient (Rouse, 
1959, p. 317): 

where U, is the free stream velocity, 0 the momentum thickness 

and Z the integral 

05) 

07) 

Table II shows e(x) and Z(x) at several x-stations; with the integral momentum 
equation, these data give u’, = 1.00 f 0.1 m2 s -2, so both methods for finding u’, agree 
to within experimental error. Henceforth, we use the value from the three-wire measure- 
ments. This comparison provides support for the uncorrected three-wire measurements 
of u and w in the region z 2 h,, and also suggests that the three-wire probe errors 
estimated by Legg et al. (1984) are too large. Their calculations imply a measured 1 U’ w ’ 1 
at z = h, of only 70 y0 of the true value, which is not supported by the direct comparison. 
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TABLE II 

Components of the integral momentum balance 

x 64 0 (mm) I (mm) 

0.44 48.5 - 3.2 
1.50 51.4 - 4.5 
2.41 66.0 - 4.8 

5.3. STANDARD DEVIATIONS OF u AND w 

The standard deviations cr, and cr, (Figure 6) are approximately independent of height 
in the constant-stress region above the canopy. In this region the ratios oJu* and a,/u, 
are 2.06 and 1.21, respectively, both slightly lower than the widely-used typical values 

auk z 2.5 and a,&* z 1.25 in the near-neutral atmospheric surface layer (e.g., 
Panofsky, 1974). The fact that au/u*, in particular, is rather low suggests that our 
boundary layer does not have as much large-scale ‘inactive motion’ (Bradshaw, 1967) 
as the atmospheric surface layer or typical laboratory boundary layers which simulate 
it (Fackrell and Robins, 1982; Raupach and Legg, 1983). This is probably so because, 
in the present experiment, the length scales associated with the canopy were not 
sufficiently small compared with the total boundary-layer depth 6; for example, the ratio 
h,/6 was 0.11. In contrast, for the gravel-roughness boundary layer of Raupach and Legg 
(1983), h,/6 was 0.013, and in the atmosphere, h,/6 is of order lo- 3. 

5.4. HIGHER VELOCITY MOMENTS 

The velocity third moments in skewness form (e.g. Sk,,, = u’u’/(da,,,)) are shown 
in Figure 7. For the region above the canopy, comparable data have been presented by 
Seginer et al. (1976), Mulheam and Finnigan (1978), Raupach (198 1) and Andreopoulos 
and Bradshaw (1981) for laboratory flows, and Maitani (1979) for the near neutral 
atmospheric surface layer. These data agree with ours in the following broad respect: 
the skewnesses all cross zero somewhere just above the canopy, subsequently increasing 
in magnitude with further increase in height, and alternating in sign (i.e., an even power 
of u makes the skewness positive) so that 

Sk,,, z - 2 Sk,,,, M 2 Sk,,, = - 1.5 Sk,,, . 

These numerical ratios, from the data above the zero-crossing height in Figure 7, are 
close to those found by Raupach (198 1) over several cylinder-roughened surfaces with 
different roughness densities. Maitani’s (1979) summary of skewness measurements in 
the near-neutral atmospheric surface layer reveals no systematic departures from zero 
at heights up to 22 m, suggesting that the increasing magnitude of the skewnesses with 
height, as observed in laboratory boundary layers, is an essentially outer-layer effect. 

The situation within the canopy is not so simple. Our data, like that of Seginer et al. 

(1976), Maitani (1979) and Raupach (1981), show that the skewnesses there alternate 
in sign as in the outer layer, but in the opposite sense (so that an odd power u makes 
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the skewness positive). However, we find that the ratios between skewnesses are 
different to those in the outer layer and change considerably with height. At z = 0.7 h,, 
for example, we have 

Sk,,, z - 4 Sk,,,, z 5 Sk,,, z - 1.5 Sk,,, , 

the striking aspect of which is the relative smallness of the ‘mixed) skewnesses Sk,,, 
and Sk,,,. The ‘pure’ skewnesses for u and w  are both large within the canopy, 
respectively reaching maximum magnitudes of + 1.0 and - 0.8; these high values 
provide evidence for the existence in our canopy of the intermittent, energetic, down- 
ward-moving gusts of the kind that Finnigan (1979b) found to be dominant in 
momentum transfer to waving wheat. As the canopy floor is approached, the u skewness 
remains large and positive but the w  skewness approaches zero, probably because the 
solid boundary deflects downward-moving gusts into horizontal motions resembling 
transient wall jets. Our skewness profiles for u and w  within the canopy agree well with 
the only other known detailed measurements within a model canopy, those of Seginer 
et al. (1976). 

Figure 8 shows the kurtoses K,, and K, for u and w. Just above the canopy, both 
K,( z 2.5) and K,( z 3.5) are fairly close to the Gaussian value of 3; both increase with 
z above the canopy in accord with known behaviour in equilibrium, zero-pressure- 
gradient boundary layers (Raupach, 1981). Within the canopy, K, remains less than 4 
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Fig. 8. Kurtoses (a) K, and (b) K, at five x-stations. Details as in Figure 6. 
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or so but K, reaches quite high values, up to 7 or more. Hence, w  is subject to extreme 
events with significantly greater than Gaussian probability, as well as being negatively 
skewed. 

6. Mean Wind Field and Associated Parameters 

6.1. LOGARITHMIC WIND PROFILE 

Figure 9 shows (U)(z) plotted against ln(z - d) at five x-stations. The zero-plane 
displacement d was determined by the centre-of-pressure theorem (Thorn, 1971; 
Jackson, 1981) which can be written 
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Fig. 9. Logarithmically plotted mean wind profile at five x-stations. Details as in Figure 6 
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Equation (13) was used to findfx by assuming CD and a to be independent of height; 
they then disappear from Equation (18), leaving an expression for din terms of (Ti) (z). 
The sonic profile for (ii) gives d = 43 mm or d/h = 0.72. 

The logarithmic law 

(19) 

(where k( = 0.40) is the von I&man constant and z. the roughness length) is shown in 
Figure 9 as a straight line drawn using the independently measured value of u* 
(1.03m s-l). Th 1’ h b e me as een made tangential to the (ti) profile at the farthest 
downstream x-station (x = 2.47 m), where the boundary layer over the canopy is most 
developed. In fact, the measured (li) profile obeys the logarithmic law only in a very 
limited inertial sublayer, bounded above by a conventional outer layer and below by a 
well-defined ‘roughness sublayer’. In this sublayer, the profile slope a(U)/& is sub- 
stantially less than the logarithmic law prediction, as observed also by Raupach et al. 
(1980) close to several cylinder-roughened surfaces of varying density. From the limited 
inertial sublayer at x = 2.47 m, we obtain z. = 8.7 mm or zo/h, = 0.14. This is a high 
but not implausible roughness length which, together with the roughness concentration 
il = 0.23, places the model canopy at the peak of the z,/h, versus A curve given by 
Raupach et al. (1980). 

6.2. EDDY DIFFUSIVITY FOR MOMENTUM 

Figure 10 shows the experimentally derived eddy diffusivity for momentum, defined by 

(u’w’) = -K,a(ii)/az. (20) 

J 
0 0.2 04 06 0.6 

Km/‘Qc 
Fig. 10. Momentum eddy diffusivity KM at five x-stations. Straight line represents the inertial-sublayer 

diffusivity K* = ku, (z - d). 
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The roughness sublayer is clearly evident as a region between z = h, and z = 1.5 h, 
where K,,,, is enhanced above its inertial-sublayer value, K* = ku,(z - d). At z = h,., 
K,,,, = 2.0 K*. With increasing x, a self-preserving profile for KM (and for (U), from 
Figure 9) develops from the surface upwards, so that the roughness sublayer becomes 
self-preserving before the inertial sublayer. Figure 10 also shows that in this experiment 
the inertial sublayer is ‘squeezed out’ between the roughness sublayer and an outer layer 
in which K, is independent of z. This is another consequence of the high value of h,./6 
compared with the atmosphere and most other laboratory rough-wall boundary layer 
flows. 

7. Spectra and Length Scales for u and w  

Spectra show the behaviour of the time and length scales of the turbulence and also 
enable the dissipation rate for turbulent energy to be estimated. Figure 11 shows u and 
w spectra at four heights above the canopy, plotted against frequency n. The spectra 
collapse with no scaling, or (equivalently) when plotted against the dimensionless 
frequency f = nL,/UA where the length scale L, and the advection velocity U, are 
constant or everywhere proportional to one another. The collapse is particularly striking 
for the u spectra. Both spectra appear much more scattered when plotted with the 
inertial-sublayer scaling f = n(z - d)/-( ) u z , w IC h’ h is not surprising given the absence of 
a well-developed inertial sublayer in the present experiment. 
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Fig. 11. Above-canopy spectra for (a) u; (b) w. Measurements at position D, x = 2.47 m. 

One interpretation of the spectral collapse against n(or nL,/U,,) is to consider the 
spectra the result of a population of large, long-lived, coherent eddies with a mean 
streamwise spacing (L,) proportional to the boundary-layer depth 6, and an advection 
velocity U,, which is independent of height, despite the existence of a mean shear. The 
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idea that L, zc 6 underlies the concept of mixed-layer scaling for the unstable atmospheric 
boundary layer, where the u-spectrum peak wavelength is found to be 1.5 6 and height- 
independent (Kaimal, 1978). If L, is assumed independent of z in our experiment, then 
U, must be also because of the scaling demonstrated in Figure 11. A rough estimate of 
U, is the average of (E)(z) between h, and 6, about 8 m s - i in our case. The u and 
w  spectra in Figure 11 have peak frequencies (n,) of 6 and 20 Hz, respectively, corre- 
sponding to peak wavelengths (U,/n,) of 2.3 6 for the u spectrum and 0.7 6 for the w  
spectrum. 

For the inertial subrange, the Kolmogorov hypotheses predict the spectral densities 
of u and w  (&,, and &,, respectively) to be 

nq5u,,(n) = c(,&2’3(2 7cn/i4) - 2’3 

(21) 
ybw,,(n) = c(,&2’3(2 m/Z) - 2’3 

where E is the dissipation rate, and a, and a,,, are constants. The assumption of local 
isotropy gives a, = 4aJ3, while many empirical determinations give a, z 0.5 (Monin 
and Yaglom, 1975). The Taylor ‘frozen turbulence’ hypothesis has been assumed in the 
usual way for the small eddies in the inertial subrange. The u and w  spectra both exhibit 
some inertial subrange with the required - 2/3 slope, except for the w  spectrum just 
above the canopy, which shows wake influence (see below). The rolloff in the spectra 
above 500 Hz is caused by the low-pass filtering of the signals. 

Spectra of u and w  within the canopy are shown in Figure 12. No dimensionless 
frequency f can be found to collapse the data. The reason is most clear from the w  
spectrum, where two peaks are evident: a low-frequency peak at IE z 20 Hz, closely 
related to the peak in the w  spectrum above the canopy, and a higher frequency peak 
at n z 100 Hz, which becomes progressively more dominant as z/h, decreases. This 
result is consistent with the idea that canopy momentum transfer is dominated by gust 
motions associated with larger-scale coherent eddies above the canopy. As the gusts 
move downwards through the canopy, they progressively transfer their energy from large 
(boundary-layer) to small (element-wake) scales, through the action of form drag by the 
canopy elements (Raupach and Shaw, 1982). In such a situation, at least two length 
scales are significant in the spectra, to different extents at different heights, so that no 
single length scale can be found. The u spectra also show a shift towards a higher- 
frequency peak as z/h, decreases, though it is less pronounced than for the w  spectra 
because the low-frequency energy is much higher for u than for W. Thus, the low- 
frequency component remains more dominant within the canopy. 

The cospectrum of WV is shown in Figure 13 in area-preserving (rather than log-log) 
form, at four heights within and one above the canopy. (As for the spectra, uw cospectra 
collapse well above the canopy, so only one example suffices). Not surprisingly, the peak 
frequency of the uw cospectrum is similar to that of the u spectrum. However, the 
unexpected feature of the cospectrum is the change in sign at high frequencies, especially 
at mid-canopy levels (z = 29.0 and 45.7 mm). At the lowest level (z = 13.1 mm) the 
cospectrum is everywhere positive, consistent with the observed positive U’ w’ value 
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Fig. 13. Cospectra for WV. Measurements at position D, x = 2.47 m. 

there (see section 4.2). Although these results must be viewed with great caution because 
of the three-wire probe uncertainties associated with high-intensity turbulence, it is 
possible that they are substantially correct and are associated with systematic recircu- 
lations in element wakes, as discussed earlier. 

For comparison between this and similar experiments, it is wothwhile to compute the 
Eulerian turbulent length scales L,, and LEU, defined by 

L 
ii 

Ew = - 
s 

~&vf(t)w’(t + r)dz 
60 

L, = $ 
s 

=I 
u’(t)u’ (t + 7) dr 

u 0 

(22) 

where zr is the time lag for the first zero crossing of the autocovariance function. These 
scales, especially LEw, have been suggested as turbulence-derived scales relevant to 
scalar dispersion within the canopy (Wilson et al., 1982). Figure 14 shows L,, and L,, 
for our data, in comparison with the results of Wilson et al. (1982) from a corn canopy 
and Seginer et al. (1976) from a model canopy of vertical rods. Our measurements are 
consistent in form with the behaviour of KM (Figure 10) but are higher than those of 
both Wilson et al. (1982) and Seginer et al. (1976). 

8. Budgets for Turbulent Energy and Shear Stress 

8.1. THE TURBULENT ENERGY BUDGET 

For the conditions of our experiment (a stationary flow with no buoyancy forces and 
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Fig. 14. The length scales L,, and L,, defined by Equation (22). 

no mean streamwise evolution, over and through a canopy with rigid elements), the 
spatially averaged turbulent energy budget simplifies to 

1 q42) I- = -(+p 
2 i?t 

(@ Z)-:(":":;)-g;r';; 

p, PW r, r, 

-i (pT) + v$($) - (E)) (23) 

TP Tm D 
where q* = u,‘u,! is twice the turbulent energy and E is the dissipation rate 
v(&: /c~x~)(&+ /ax,). Tensor notation is used where convenient. P, is shear production; 
P, wake production; T,, Td, Tp and T,,, the turbulent, dispersive, pressure and molecular 
transport terms, respectively, and D the dissipation. All these terms are familiar from 
conventional above-canopy analyses except P, and Td; Td is directly analogous to the 
dispersive momentum flux divergence in Equation (S), while P,, accounts for the con- 
version of mean kinetic energy to turbulent energy in element wakes by working of the 
mean flow against drag. It can be shown that 

(24) 
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provided that (1) there is negligible direct dissipation by the canopy of mean kinetic 
energy to heat (without prior conversion to wake turbulence), and (2) the dispersive 
stress (I&!%!,! ) and the dispersive flux of kinetic energy are both negligible (Raupach 
and Shaw, 1982)*. Physically, (2) means that the turbulent energy arising from work 
against drag on elements within an averaging volume is produced within the same 
averaging volume. We have shown that (E”,” ) is negligible, at least for z 2 h,, and 
will extend this by assuming that the necessary dispersive fluxes vanish so that Equation 
(24) holds everywhere. Equations (24) and (12) (with the assumption that dispersive and 
molecular contributions to the shear stress are negligible) give 

(25) 

which enables the wake production term to be evaluated in practice. 
Figure 15(a) shows measurements (at x = 2.47 m) of P,, P,,,, T, and D (= - (6)). 

Two different measurements of D are shown. The dots denote values from the inertial 
subrange u and w  spectra, assuming cc, = 0.5; see Equation (21) and Figures 11 and 12. 
The broken line denotes the residual -P, - P, - T,. which is equal to D if Td, T, and 
T, are all negligible; of these, T, is certainly negligible, T, is small at least for z 2 h, 
(by analogy with the dispersive momentum flux) and T, is considered below. Note also 
that the assumption of no mean streamwise evolution, used to eliminate terms involving 
mean streamwise derivatives from Equation (23), was checked by measuring the terms 
for advection and streamwise turbulent transport. Both were negligible. 

Shear production and wake production both have strong peaks, of comparable 
magnitude, near z = h,. Unlike an equilibrium surface layer, where production is 
approximately balanced by dissipation, there is a large downward turbulent transport 
of turbulent energy into the canopy, T, being a loss near z = h, of about one third of the 
combined production terms. Dissipation is highest at about z = 0.8 h,, but remains 
significant in the lower part of the canopy where it is balanced mainly by transport from 
above. These general features agree remarkably well with the second-order closure 
predictions of Wilson and Shaw (1977). 

The residual and spectral measurements of (E) show fair agreement within the 
canopy, but there an inertial subrange cannot be assumed because of high-frequency 
wake production. Therefore, this agreement cannot be taken as significant. Just above 
the canopy, however, there is a discrepancy of a factor of two between the two measure- 
ments of ( E) , which we believe to be greater than can be accounted for by known errors 
of assumption or measurement. If the discrepancy is, in fact, real, it implies significant 
pressure transport in the p/2 budget for z between about h, and 2 h,, such that T, 
roughly balances the loss due to T,. 

The result that T, is significant over rough surfaces is not new (Maitani, 1979; 

* Raupach and Shaw omitted&, from Equation (24) (their Equation (17)), equating direct dissipation by 
the canopy, of mean kinetic energy to heat, with working of the mean flow against viscous drag. This is 
not true in general. 
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Fig. 15. (a) The turbulent energy budget at x = 2.47 m. Open circles, dissipation from u spectrum; closed 
circles, dissipation from x spectrum. (b) The shear stress budget at x = 2.47 m. 

Andreopoulos and Bradshaw, 1981; Raupach, 1981). However, our budget result 
implies that, for z between h, and 2 h,, the combination of T, and T, is much smaller 
than T, alone. Therefore, the flow just above the canopy is in approximate local 
equilibrium (production balancing dissipation), as also observed in neutral and unstable 
atmospheric surface layers well above the roughness (Bradley et al., 1981). Note that 
the local equilibrium cannot extend far into the canopy. If we interpret literally our 
observed discrepancy between spectral and residual measurements of dissipation in the 
lower part of the canopy, despite the cautions above, the implication is that both T, and 
T,, are positive. 

8.2. THE SHEAR STRESS BUDGET 

For the same conditions as for Equation (23) the spatially-averaged shear-stress budget 
is 
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+ YE (u’w’) + p’ 
i3Z2 

~ ( (z+z))-2v(z 2). (26) 

where terms correspond in name and mnemonic with Equation (23) except for the 
pressure-strain term, @‘, which is the dominant destruction term for the shear stress since 
molecular dissipation (0) is small (Wyngaard et&., 1971). Other terms which are 
probably small in Equation (26) are dispersive flux divergence (Td), molecular flux 
divergence (T,) and wake production (P,). The negligibility of P, follows from the 
equation 

( 

7 ” ui uj 
aG+;T;Ts 

ax, k J ax, > 
= (‘i)(fFk + fVk) + (‘k)(fFi + fVi) (27) 

which is a tensor generalization of Equation (24), valid under the same constraints and 
derivable by the same method. When i = 1 and k = 3, as in the shear stress budget, the 
right-hand side of Equation (27) becomes negligible because fF3 + fn (vertical drag) 
and ( U3) are both negligible. 

Figure 15(b) shows measurements at x = 2.47 m of P, and T, in Equation (26) 
together with the residual -P, - T,, equal to T, + Q if other terms are small. As with 
the turbulent energy budget, shear production peaks strongly near z = h,, while turbulent 
transport is a loss near z = h, and a gain lower down. However, the role of transport 
in the shear stress budget is relatively smaller than in the turbulent energy budget. This 
can be understood thus: just above z = h,, the ratio of the shear production terms in 
the shear stress and turbulent energy budgets is 1 ( w” )/(m) 1 = 1.6, whereas the 
ratio of the fluxes responsible for turbulent transport in the two budgets is 
I (u’ w”)/( ~‘q’~/2) I = 0.2. Since the flux of shear stress is relatively so much smaller 
than the flux of turbulent energy while shear production rates are comparable, it is likely 
that turbulent transport (the vertical gradient of the flux) will be of less importance for 
shear stress than for turbulent energy. 

Our results for the shear stress budget, as for the turbulent energy budget, agree well 
with the model predictions of Wilson and Shaw (1977). 
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9. Conditional Statistics of the Shear Stress 

The technique of ‘quadrant-hole analysis’ (Lu and Willmarth, 1973) enables some 
information about the structure of turbulent transport to be deduced from turbulence 
measurements at a single point. It was used by Finnigan (1979b) in a field investigation 
of momentum transfer to a waving wheat canopy, by Shaw et al. (1983) in a similar study 
for a relatively inflexible corn canopy, and by Raupach (198 1) in a laboratory investi- 
gation of the effect of roughness density on the momentum transfer process close to a 
rough surface. These studies all showed that, within the canopy, most of the momentum 
transfer occurs during short, intermittent gusts or sweeps. Here we present briefly a 
similar analysis for the present experiment. 

The four quadrants (i) in the U’ w’ plane are conventionally labelled as outward 
interactions (i = 1; U’ > 0, w’ > 0), ejections (i = 2; U’ < 0, w’ > 0), inward interactions 
(i = 3; u’ < 0, w’ < 0) si,w and sweeps (i = 4; U’ > 0, w’ < 0). We consider u’(t) and 
w’(t) at a single point and define the normalized conditional stress si, H as 

1 

s 

7 

‘i, H = ---~ 
a,a,T o 

u’(t)w’(t)Zj,H(u’, ,‘)dt, (28) 

where 1,. H(~‘, w ’ ) is an indicator function which is 1 when (u’ (t), w’ (t)) is in the ith 
quadrant and when 1 U’ (t)w’(t)i is greater than Hcr,o,, and zero otherwise. The 
parameter H, the ‘hole size’, sets a hyperbolic exclusion zone in the u’ w’ plane. Hence, 

si H , is the stress contribution, normalized by a,~,,,, arising from periods when the vector 
(u’(t), w’(t)) is in quadrant i and the instantaneous stress / u’(t)w’(t)l is greater than 
Ha,a,. The time fraction during which the stress contribution si, H is being made is 

When H = 0, so that there is no exclusion zone, we have 

where ruw is the correlation coefficient u’ w ’ /o,o,. Note that we have normalized both 
si, Hand H with a,a, (following Lu and Willmarth, 1973) rather than with U’ w’ (following 
the canopy studies mentioned above). This is necessary to permit comparison between 
flow regions of very different r,,. 

Figure16 shows si, H plotted against H for three heights within and one just above the 
canopy, while Table III gives related information, including the correlation coefficients 
rUw. Just above the canopy (z/h, = 1.13), the ejection (i = 2) and sweep (i = 4) quadrants 
make approximately equal contributions to the shear stress at all hole sizes H, with much 
smaller and similarly symmetric contributions from the interaction quadrants (i = 1, 3). 
This behaviour is characteristic of a strongly negatively correlated joint Gaussian 
probability density function (pdf) for U’ and w’ ; the measured r,, of - 0.47, and the 
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skewnesses and kurtoses at this level, are consistent with this. An approximately joint 
Gaussian pdf for U’ and w’ and a shear stress which is not biased towards either 
ejections or sweeps are properties of the neutrally stratified inertial sublayer (Raupach, 
1981). Also, the transport process is quite intermittent; half the momentum transfer 
occurs when H > 1.7, yet this transfer occurs only 10% of the time. 
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Fig. 16. Stress fractions qN plotted against hole size H. Measurements at position D, x = 2.47 m. 

Within the canopy, sweeps contribute more to momentum transfer than ejections, 
evident from the values in Table III of s4, o/sZ, o, the ratio of momentum transfer by all 
sweeps to that by all ejections, irrespective of hole size. This ratio is almost 1.3 in the 
upper half of the canopy where most of the momentum is absorbed. However, the 
importance of sweeps becomes even greater when attention is restricted to the more 
intense events contributing to the stress. This can be done by defining the hole size H’ 
above which half the momentum transfer occurs: 

j ,  si, H’ = r,,P . (31) 

Table III shows H’ and s4, HP /sZ, H,, the ratio of momentum transfer by sweeps to that 
by ejections when only the stronger events (those outside the exclusion zone deflned by 
H’) are considered. Intense sweeps are far more important than intense ejections within 
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TABLE III 

Parameters pertaining to the quadrant-hole analysis in Figure 16 

I (mm) 29 46 51 68 
r/h, 0.48 0.76 0.95 1.13 
r - - 
Ef;: 

-0.11 -0.31 0.43 0.47 
2.7 2.0 I.8 1.7 

s4, oih, 0 1.20 1.31 1.22 1 .oo 
s 4.H’~~Z.H~ 6.45 3.26 2.16 1.02 

t 4.w 0.032 0.070 0.106 0.103 
I= I 

the canopy, and their dominance increases with decreasing height. Furthermore, the 
entire momentum transfer process becomes more intermittent; the total time fraction 
occupied by the more intense events diminishes as z/h, decreases, as shown in Table III. 
At z/h, = 0.48, half the momentum transfer occurs in only 3% of the time. 

These features agree broadly with the findings of Finnigan (1979b), Raupach (198 1) 
and Shaw et al. (1983), though with two significant points of disagreement in detail. 
Firstly, equality between sweep and ejection contributions to U’W’ above the canopy 
occurs as low as z/h, = 1.13 in this experiment, whereas Raupach (198 1) found equality 
at z/h, z 4. This is another indication of the fact that hJ6 in our experiment is too large 
to allow the formation of a well-defined inertial sublayer in which the pdf for U’ and w ’ 
is close to joint Gaussian. Instead, this region is ‘squeezed’ between the sweep- 
dominated roughness sublayer and the ejection-dominated outer layer. 

Secondly, the extent of sweep domination within the canopy, as measured by 
sq, 0/s2,0, is less in the present work than in any of the other three studies. (We find 

s4,o s2.0 I z 1.3; Shaw et al. (1983) found about 2, the other studies higher still.) Two 
factors explain this difference: firstly, we used a three-wire probe for the velocity 
measurements whereas Finnigan (1979b) and Raupach (1981) both used X-wires. 
Another paper (Coppin and Raupach, 1986) will show that X-wires can cause severe 
overestimates of sq, c/sZ, 0 and other similar parameters of the quadrant-hole analysis 
when used in high-intensity turbulence. This is likely to account for much of the 
difference between the present work and the results of Finnigan and Raupach. The other 
factor is the absence of a well-defined inertial sublayer in this experiment, which 
probably meant that the turbulence structure in our canopy was influenced somewhat 
by the outer layer and was therefore less biased towards sweeps than it would have been 
if an inertial sublayer had existed. Since the outer layer is ejection-dominated (Raupach, 
1981), it is reasonable to suppose that an inadequate inertial sublayer ‘buffer’ between 
the outer layer and the canopy will reduce the extent of sweep dominance within the 
canopy. 
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10. Conclusions 

A fairly complete picture now exists of the structure of turbulence in a uniform, neutrally 
stratified, nonwaving plant canopy, at least as far as single-point statistics are concerned. 
Spectra show the importance of eddies larger than the canopy itself. As the ground is 
approached these eddies become increasingly asymmetric in the sense that the joint pdf 
of U’ and w’ becomes increasingly nonGaussian. This has several related consequences 
(Raupach, 1981): (i) the third moments of U’ and w’ become large, with the u skewness 
strongly positive and the w  skewness strongly negative; (ii) turbulent transport is crucial 
in the turbulent energy budget and (to a lesser extent) in the shear stress budget; and 
(iii) sweeps account for more shear stress within the canopy than ejections. The main 
contributions of the present work to this picture are (i) the measurement of turbulent 
energy and shear stress budgets, especially the wake production and turbulent transport 
terms; (ii) the quantification of the dispersive momentum flux, which turns out to be 
practically negligible, at least for z 2 h,; and (iii) the reappraisal of the behaviour of shear 
stress within the canopy under quadrant analysis. This was made possible by the 
three-wire probe, and shows that earlier work with X-wires overstated the extent to 

which the sweep quadrant dominates momentum transport. However, the reappraisal 
does not change the essential picture. 

There are two main areas for further work. Firstly, more measurements - including 
direct ones (Sigmon et al., 1983) - are needed on the role of pressure fluctuations. Our 
data suggest that pressure transport cancels turbulent transport in the turbulent energy 
budget just above the canopy, a result which needs confirmation and extension. 
Secondly, multipoint statistics, both conventional and conditional, are needed to round 
out the picture offered by single-point measurements. 
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