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Summary 

An approach to de novo molecular design, PRO LIGAND, has been developed that, in the environment 
of a large, integrated molecular design and simulation system, provides a unified framework for the 
generation of novel molecules which are either similar or complementary to a specified target. The 
approach is based on a methodology that has proved to be effective in other studies - placing molecular 
fragments upon target interaction sites - but incorporates many novel features such as the use of a rapid 
graph-theoretical algorithm for fragment placing, a generalised driver for structure generation which 
offers a large variety of fragment assembly strategies to the user and the pre-screening of library frag- 
ments. After a detailed description of the relevant modules of the package, PRO_LIGAND's efficacy 
in aiding rational drug design is demonstrated by its ability to design mimics of methotrexate and 
potential inhibitors for dihydrofolate reductase and HIV-1 protease. 

Introduction 

The number of protein structures determined by X-ray 
crystallography and N M R  is ever-increasing and likely to 
grow rapidly within the foreseeable future [1,2]. This state 
of  affairs has led to the growing acceptance of Structure- 
Based Drug Design (SBDD) as a paradigm for the design 
and development of  novel pharmaceutical agents [3-9]. In 
cases where the proposed target molecule is not amenable 
to experimental study, computational techniques such as 
homology modelling [10], pharmacophore mapping 
[11-13] and Comparative Molecular Field Analysis 
(CoMFA) [14] can provide helpful insights to guide the 
design process. 

There is currently intense interest in the development 
of  computational methods which can make use of such 
information to suggest novel structures which may either 
prove to be useful lead compounds or, as is more likely, 
act as a stimulus to the creativity of  the designer. Ideally, 
these techniques should be fast, objective and produce a 
set of diverse yet chemically sensible structures. A number 
of these de novo design programs have been reported 
[15-34] and the field has been recently reviewed [28]. 
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Our in-house expert system for molecular design and 
simulation, PROMETHEUS,  has been enhanced by the 
incorporation of a method for de novo molecular design 
which we have called PRO L I G A N D  (PROmetheus'  
Logically Integrated Generation of Active Novel Drugs), 
By means of this integration, the fifth-generation capa- 
bilities of the GLOBAL language may be used to auto- 
mate and control the de novo design process. Further- 
more, the reproducibility of each design experiment can 
be ensured by the employment of  protocols or 'super- 
algorithms' which may also incorporate human expertise 
(e.g., concerning toxicity prediction) in the form of expert 
system rules or 'fuzzy logic'. For details on the origins of  
the GLOBAL language, the reader is referred to Refs. 35 
and 36. In this paper, the first of a series, the underlying 
philosophy of PRO_LIGAND and its design will be 
described together with test cases demonstrating its utility 
in the process of rational drug design. 

Program description 

De novo design programs can be divided into two 
categories, according to the nature of  the fundamental 
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'building block' employed in the structure-generation 
process. One class of  program seeks to build structures in 
an atom-by-atom manner [19,20,25,29]; this approach has 
some theoretical advantages in terms of the diversity of  
structures that can be produced but in actuality there are 
difficulties both in implementation and in execution [20, 
25,26,29]. Alternatively, structures can be generated by 
assembling pre-stored 3D molecular fragments, usually 
small moieties of  limited conformational flexibility. In 
practice, it seems that such fragment-based methods con- 
stitute the best compromise between the diversity of struc- 
tures produced and the speed of program execution. For 
this reason, PRO_LIGAND has been designed in accord- 
ance with this approach. 

The main tenet of  the philosophy underpinning the de- 
sign of PRO_LIGAND is that of the need for flexibility; 
both in the types of  input information accepted and in the 
mode of structure assembly. In particular, PRO_LIGAND 
is constructed in such a way that an input structure can 
be used as a basis for the generation of structures either 
similar or complementary to it. Thus, given a small or- 
ganic molecule or peptide, PRO_LIGAND can design 
either another small molecule with similar chemical char- 
acteristics or a pseudoreceptor. Alternatively, if presented 
with a receptor structure and knowledge of the position 
of the active site, PRO L I G A N D  can design an organic 
molecule or a peptide to bind to the active site, or an 
analogous receptor site. 
Here, we describe the operation of PRO_LIGAND for 
the design of small organic molecules; peptide design will 
be the subject of  a subsequent paper [37]. A further paper 
will detail the use of PRO_LIGAND with input data 
derived from a series of  active structures or a 3D QSAR 
study [38]. 

The following sections will describe three modules of 
PRO_LIGAND,  each of which has a unique function in 
the design process. These modules are listed below, 
together with a brief description of their function; their 
relationship to each other is illustrated in Fig. 1. 

(1) Design-base Generation - unifies the format of  the 

input information and creates a design base consisting of 
all the atoms of the input structure which are of relevance 
to the design process, e.g., those which comprise the 
active site of a macromolecular target; 

(2) Design-model Generation - transforms the design 
base into a design model by the rule-based conversion of 
atom types and positions to interaction sites. These inter- 
action sites indicate the spatial and physicochemical char- 
acteristics desired in the molecule(s) to be generated by 
the Structure Generation module [39]; 

(3) Structure Generation - builds novel structures con- 
sistent with the design model. PRO_LIGAND follows a 
similar approach to that of the LUDI program [21-23] in 
choosing to build structures by joining molecular frag- 
ments fitted directly onto the interaction sites in the 
design model. Such an approach involves only geometri- 
cal calculations and is therefore rapid compared with 
methods requiring the evaluation of energy functions and 
their derivatives. It is believed that avoiding the latter 
does not introduce serious errors into the design process 
[22]. However, as B6hm points out [23], force-field calcu- 
lations should be carried out after the design procedure 
to verify energetic aspects of the designed molecules. For 
example, it would be necessary to check that a putative 
ligand does indeed fit into the protein binding site in a 
low-energy conformation. 

A fourth module - Structure Refinement - can use the 
initial output from the Structure Generation module as 
the basis for generation of further novel structures which 
have improved design properties. To accomplish this, an 
approach based upon a genetic algorithm [40] has been 
developed. This module will be reported in a subsequent 
paper [41]. 

The modules are driven by keyword-based command 
files and data is passed internally by means of a flexible 
data structure known as the Generalised Molecular Struc- 
ture Descriptor (GMSD). Since the GMSD data structure 
plays a central role in the operation of PRO_LIGAND, 
it will be described first. Thereafter, each of the three 
operational modules will be described in more detail. 

I 
Design Base Generation 

coords o ,  
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Fig. 1. Overview of the PRO_LIGAND architecture. 



Generalised Molecular Structure Descriptor 

The GMSD is a file structure designed to describe a set 
of  labelled points in 3D space. The points may constitute 
a real molecule, a pharmacophore or any of the abstrac- 
tions used by PRO_LIGAND in the design process, such 
as the design base or design model. The GMSD contains 
entries of the format 'KEYWORD value_list'. 

Typical keywords are: 'ATOM',  whose value list con- 
tains atom-based information such as label, type, and 
partial charge; 'CARTESIAN' ,  whose value list holds x, 
y, z co-ordinates for each of the atoms; and ' INTER- 
ACT_SITE' ,  describing the labels assigned to the atoms 
of a molecular fragment. 

Conceptually, the GMSD is divided into two sections: 
the basic information block and the additional information 
block. As the names suggest, the former carries simple 
molecular structure information such as atom types, con- 
nection lists and Cartesian co-ordinates, while the latter 
contains extra information pertaining to the structure, 
such as its interaction sites. 

The structure of  the GMSD makes it extremely flexible 
and very easy to extend if it is decided that new keywords 
are needed. By storing the GMSD in binary form, very 
fast access can be achieved. 

The KEYWORD value_list format is also used in the 
creation of the job and command files and rule bases, 
further contributing to the flexible and unified approach 
embodied in PRO_LIGAND. 

Design-base Generation module 

The initial module of PRO L I G A N D  is the Design-base 
Generation module whose purpose is to take the input 
information as given and transform it into a single, unified 
form (the design base) which can be operated upon by the 
Design-model Generation module according to whether a 
similarity or complementarity approach to structure gen- 
eration is desired. For the purposes of  the current work, 
the input information can be in one of two forms: the co- 
ordinates of  a macromolecular receptor together with an 
active-site specification or a single small organic molecule. 

In the case where the user wishes to define an active 
site in connection with the input, the ACTIVE_SITE 
command is employed. This takes the form 

ACTIVE_SITE atom_i atom_j Ax Ay Az r 

The ACTIVE_SITE keyword permits three modes of 
defining the position and spatial extent of  an active site: 

(1) If  atom_i is different from atom j, then the centre 
of  the active site is taken to be the centre of  mass of  all 
atoms lying between (and including) i and j. Ax, Ay, Az 
are user-definable translations from this centre, but in this 
instance will normally be zero. 
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(2) I f  atom_i and atom_j are the same then this posi- 
tion is taken as the active-site centre. Ax, Ay, Az are user- 
definable translations from this centre. 

(3) I f  either or both of atom_i and atom j are zero, 
then Ax, Ay, Az are assumed to be absolute co-ordinates 
for the active-site centre. 
In all cases r is the user-specified radius of the active site. 

Note that the ACTIVE_SITE keyword can be repeated 
as many times as desired. This enables a precise represen- 
tation of the active site to be built up by spheres placed 
at the user's discretion in a manner somewhat analogous 
to that employed in the D O C K  program of Kuntz et al. 
[42]. In practice, we have found that a simple approach to 
defining the active site is to employ the third option men- 
tioned above, using the co-ordinates of selected heavy 
atoms of a co-crystallised inhibitor to specify the centres 
of  the spheres delineating the active site. The radius cho- 
sen will obviously depend on the example in hand, but we 
have found values of  5-7 A to be sufficient in the cases 
we have examined. I f  no inhibitor positions are available, 
then options (1) or (2) may be more appropriate. 

The exact form of the design base will depend on the 
input information. I f  an active site is specified by the 
user, then the design base will consist of all the atoms 
falling within the limits of the active-site definition(s). On 
the other hand, if no active site is specified, the design 
base simply becomes a copy of the input molecule. In 
either case, the design base is output in GMSD format 
together with a command file containing the appropriate 
commands to run the next module, i.e., Design-model 
Generation. 

Design-model Generation module 

The Design-model Generation module operates on the 
design base to create a design model. The design model 
is a GMSD file containing a set of interaction sites which 
serve to define desired physicochemical properties at 
specific points in space [39]. At present, the types of inter- 
action site employed by PRO_LIGAND are similar to 
those in the LUDI  program [21 23], although the set may 
be readily adapted or extended. These interaction sites 
and their labels are the following: 

(1) Hydrogen bond acceptor: denoted by the vector A- 
Y where, for example, A is a carbonyl oxygen atom and 
Y the attached carbon atom; 

(2) Hydrogen bond donor: denoted by the vector D-X 
where, for example, D is a hydrogen atom in a primary 
amine and X the attached nitrogen atom; 

(3) Lipophilic aromatic: denoted by R where, for 
example, R is a carbon atom in a benzene ring; 

(4) Lipophilic aliphatic: denoted by L where, for 
example, L is a carbon atom in a methyl group. 
The construction and positioning of these sites will be 
described below. 
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The module has two modes of operation: the produc- 
tion of a design model similar to the design base, or the 
production of one which is complementary to it. In the 
'similar-design' mode, the module produces a design 
model which has steric and chemical features similar to 
the input molecule. The Structure Generation module will 
use this to create possible analogues of  the input struc- 
ture. By contrast, in the 'complementary-design' mode, a 
design model is produced which will result in the produc- 
tion of a complementary molecule, for instance a mol- 
ecule to fit in the active site of a receptor, or to bind to 
DNA. It is worth noting at this point that after design- 
model generation, the concepts of 'similar design' and 
'complementary design' are unified, and the operation of 
the Structure Generation module is independent of  which 
type of problem is to be solved. 

The interaction sites in the design model are created 
from the design base using rules which are specified in the 
rule-base file. These rules relate the type and spatial posi- 
tion of interaction sites to be generated to the atom types 
of  the design-base atoms. The format and operation of 
the rule bases are given in detail in Appendix 1 and are 
described briefly below. 

When operating in 'similar design' mode, interaction 
sites are created in the same position as the design-base 
atoms, as illustrated in Fig. 2. The type of the interaction 
site created is related to the design-base atom type 
through a rule; for instance, it is possible to create a 
hydrogen bond acceptor site in the position of the oxygen 
atom of each carbonyl group in the design base. When 
operating in complementary-design mode, a rule again 
relates the type of site generated to a design-base atom 
type, but this time the rule has additional components 
which specify the position of the site with respect to the 
design-base atom (see Fig. 3). The position of the site is 
described in the most general possible way. Sites are 

H O L 
N - -  CH - -  C 

CH~ 

Generate interaction sites 
for similar design 

D A 

L 
X - -  L - - Y  

L 

F ig .  2. G e n e r a t i o n  o f  i n t e r a c t i o n  s i tes  in  s i m i l a r - d e s i g n  m o d e .  

H O 

I 
N - -  CH - -  C 

Y Y 

x 
A 

H 

N - -  

CH 
3 

Generate interaction sites 
for complementary design 

CH - -  

L CH 3 L 

L L 

x 
\ / 

D D 

\ /  
O 

C 

F ig .  3. G e n e r a t i o n  o f  i n t e r a c t i o n  si tes  in  c o m p l e m e n t a r y - d e s i g n  m o d e .  

positioned by means of a rule type at a given bond 
length, valence angle and torsion angle from specified 
design-base atoms, and an alternative rule type is pro- 
vided to give straightforward positioning of interaction 
sites with respect to atoms which are members of planar 
rings. In addition to single-point sites, both rule types 
allow the generation of vector interaction sites consisting 
of two points. This enables the generation of vector hy- 
drogen bond sites which specify the complete geometry of 
groups forming hydrogen bonds with the receptor. When 
operating in complementary-design mode, sites which 
form steric clashes with the receptor are deleted from the 
design model. 

As well as allowing the positioning of individual sites, 
the rule base allows sites to be positioned at equal spatial 
separation in ranges of  bond lengths, valence angles and 
torsion angles. This allows for the creation of design 
models in which, for instance, hydrogen bond contacts 
with non-ideal geometry are allowed. 

There are many advantages of the general and flexible 
nature of  the rule base employed by the Design-model 
Generation module. Firstly, rules and atom types do not 
appear in the program code and hence the same code can 
be used for a variety of molecular systems and force 
fields. All that is required is construction of an appropri- 
ate rule base. Currently, we have standard rule bases in 
use for complementary design to protein receptors and 
DNA and for similar design to general organic molecules 
and peptides. Three sets of atom types are catered for at 
the present time: AMBER [43,44], POLY [45] and COS- 
MIC [46]. Secondly, the rule base can be edited by the 
user. This allows quantities such as the number of sites to 
be generated and the extent of non-ideality of the allowed 



hydrogen bond contacts inter alia to be varied in a 
straightforward manner. We have found that this type of 
flexibility can be very useful as part of a feedback loop, 
using information generated by a run of the Structure 
Generation module to optimise the design process for a 
particular application. Taken together, these features 
permit easy and rapid 'prototyping' of rule bases and thus 
prevent the user from being trapped by hard-coded and 
perhaps over-specialised rules. 

Structure Generation module 

The Structure Generation module builds structures 
using fragment libraries. The structures are consistent 
with the constraints inherent in the design model and the 
building process is controlled by the user input to the 
module. 

Initially, the module reads in the user-supplied data, 
together with information concerning vital files such as 
the design-model files and the fragment library files. 
These data are passed through to the rest of the module 
using a keyword-controlled command file in a manner 
similar to that employed in the other modules. In what 
follows, the first subsection will describe the structure and 
constitution of the fragment libraries used in structure 
generation, the second will discuss the structure building 
process per se, the third will detail some miscellaneous 
options and features available in structure generation, and 
the final subsection will outline the scoring algorithm 
used to rank generated structures. 

Fragment libraries 
In constructing a fragment library, two alternative 

strategies are available. Some workers have used a small 
library (e.g., GroupBuild uses only 14 fragments [26]), 
hoping to take advantage of the fact that a certain diver- 
sity of structures can be constructed from a small set of 
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relatively simple primitive units. The second approach 
defines many more fragments (e.g., the LUDI program 
[21,22]), intending to build each structure from a small 
selection of these fragments. PRO_LIGAND leans to- 
wards the small-library approach, with each library hav- 
ing a maximum of about 50 fragments, although there is 
no actual limit on this number. Small libraries have the 
advantage of being easy to manipulate so that the user is 
able to organize and rank the fragments to give more 
effective building strategies for particular problems. 

The PRO_LIGAND libraries have the structure shown 
in Fig. 4. The peptide library contains conformations of 
the commonly occurring amino acids which can be used 
to build peptide structures, as will be described in a future 
paper. For the present work, it is the organic libraries 
which are of interest. The four parent libraries shown are 
accessed during the four different phases of building (i.e., 
the place, place-join, place-bridge and bridge phases). Each 
of these parent libraries is divided into various sub- 
libraries according to the chemical nature of the frag- 
ments they contain. For example, an 'aro_polar' sub- 
library will contain aromatic fragments with hydrogen 
bonding capability and an 'aliphatic' sublibrary will hold 
aliphatic lipophilic fragments. If the user wishes to exert 
some control over the order in which various fragment 
types are accessed, these sublibraries can be assigned an 
individual rank. The ranking directs the algorithm to 
search through higher ranking fragments before attempt- 
ing to fit lower ranking ones. For instance, if the user 
wishes the hydrogen bonding features in the design model 
to be filled in preference to lipophilic features, the 
'aro_polar' sublibrary would be assigned a higher rank 
than the 'aliphatic' sublibrary. By default, all sublibraries 
are ranked equally. The exact constitution of each of 
them is by no means fixed, and the user can add or delete 
fragments to any sublibrary or create new sublibraries 
tailored for a particular purpose. 

l 
Place 1 

Place 2 

Place 3 

l 
Peptide Library 

[ Fragment Library 1 

L 

Place-Bridge 1 

Place-Bridge 2 

Place-Bridge 3 

l 
Organic Library 

I 
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Place-Join 1 

Place-Join 2 

Place-Join 3 

l 
Bridge 1 

Bridge 2 

Bridge 3 

Fig. 4. Overview of the PRO_LIGAND fragment-library architecture. 
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TABLE 1 
TYPICAL FRAGMENTS CONTAINED IN THE PLACE-JOIN LIBRARY 

Sublibrary Fragments 

Ali_polarl 
Ali_polar2 
Ali_polar3 
Ali_polar4 
Aliphaticl 
Aliphatic2 
Aro_polar 1 
Aro_polar2 
Aromatic 

Acetaldehyde, butyrolactone, cyclohexanone, epoxypropane, formamide, formic acid, methyl acetate, acetamide, urea 
Acetone, propenal, cycloheptanone, formaldehyde, cyanomethane, methyl amine, methyl acetamide, formimine 
Dimethyl sulphoxide, guanidine, methyl carbamate, formamidine, N-methyl hydroxylamine, formaldehyde oxime 
Ammonia, dimethyl ether, dimethyl amine, methanol, water 
Propene, cyclohexane, cyclopropane, cis and trans 2,3-butene, trans butadiene, ethene, methyl cyclopropane, norbornane 
1,3-Dithiane, dimethyl sulphide, ethane, ethyne, isobutane, propyne, methane, propane 
Aniline, pyridine, pyrrole, thiazole 
1,3-Oxazole, 1,3,5-triazine, imidazole, pyrazine, pyrimidine, tetrazole 
Benzene, naphthalene, N-dimethyl analine, thiophene 

As mentioned above, PRO_LIGAND tends towards 
the use of small libraries containing fairly basic chemical 
moieties which can be simply constructed and energy 
minimised. Table 1 lists some of the fragments which 
constitute the place-join library and which are typical of 
those employed by PRO LIGAND. Each of the frag- 
ments in the library is stored in a GMSD file which con- 
tains Cartesian coordinates, atom types etc., and, where 
appropriate, multiple conformations for conformationally 
flexible fragments such as amino acid residues. Each frag- 
ment file also contains labels indicating which atoms (or 
fragment interaction sites) are to be tested for fits onto the 
design-model interaction sites. These interaction site labels 
may be added directly to the GMSD file by hand, or via 
a graphical user interface incorporated in our in-house 
molecular graphics package (PROMETHEUS EYE). The 
latter allows the user to pick atoms in a fragment struc- 
ture and select appropriate labels which will be saved 
automatically with the structure. Typical examples of 
labels for each type of fragment are shown in Fig. 5. As 
can be seen, in addition to the interaction-site types 
described in the previous section, Structure Generation 
also makes use of the 'Join sites' type of interaction site 
during the fragment assembly process, which is denoted 
by vectors J-K. These indicate X-H bonds on each frag- 
ment which are available for forming connections to 
other fragments in the manner of the CAVEAT program 
[47,48]. 

It should be noted that there may be several different 
labellings for each fragment and these may be assigned 
ranks by the user to reflect their anticipated importance 
in the building process. In the fitting process each of these 

representations is considered, with higher ranking repre- 
sentations examined first, since these generally have more 
interaction sites. Representations with the same rank are 
searched through in a random order during the structure- 
generation calculation. It is unnecessary to specify X and 
Y sites on the fragments, since these are generated auto- 
matically at run-time. During Structure Generation, 
PRO_LIGAND also performs methyl rotations at 
increments controllable by the user to ensure that, for 
example, all the hydrogens in the methyl group of meth- 
anol are considered as join sites. 

Building structures 
After reading the user-supplied data and design-model 

files, the module enters a series of drivers. The most im- 
portant of these drivers controls the overall building 
strategy and passes through the four phases of Structure 
Generation, viz. 

(1) placement of fragments 
(2) place-bridging of fragments 
(3) place-joining of fragments 
(4) bridging of fragments 
For each phase there are separate fragment libraries, 

each potentially with its own set of ranked sublibraries. 
It is important to note that the underlying algorithm of 
each phase is identical. The distinction made between 
them is mainly to allow better understanding and control 
of the structure-generation process. 

The amount of building in each phase and the order in 
which the different modes of building are triggered is 
controlled by the user. The placement phase simply places 
library fragments onto the target sites specified in 3D 
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Fig. 5. Labelling of library fragments. 



coordinate space by the design model. The place-joining 
phase attaches the fragment to fragments already placed 
onto the design model, whilst the place-bridging phase 
tries to bridge across two or more already placed frag- 
ments. In both these cases the new fragments hit design- 
model target sites at the same time. The bridging phase 
simply fits bridges between placed fragments, without 
seeking to satisfy any interaction sites in the process. 
These four modes of operation are schematically repre- 
sented in Fig. 6. As a consequence of PRO_LIGAND's  
general driver structure, it is possible to construct mol- 
ecules by sequential linking of fragments in the spirit of 
programs such as GROW [15,16] or by an exhaustive 
placement strategy with a final linking stage in a manner 
akin to LUDI  [21-23]. An advantage of our method is 
that alternative strategies in between these two extremes 
are also available. More details about the structure-gener- 
ation driver are given in Appendix 2. 

After the outer driver has made decisions about the 
mode of building and the libraries used, an inner driver 
is called which searches through a library until it locates 
(or fails to locate) a hit. This driver then controls the 
placement of  the new fragment and performs a number of 
checks on the quality of  the placement. A flow diagram 
illustrating the operation of this part of  the module is 
given in Fig. 7 and is explained in detail below. Note that 
the same driver and operations are employed independent 
of the mode of placement used. 

The module first reads a fragment from the library ac- 
cording to a randomly ordered list. For this fragment, the 
module loops over the different conformations of the 
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fragment in a random order, together with the different 
sets of  fragment interaction sites (also in a random order, 
but respecting any ranking that may be present); these 
loops are not shown in Fig. 7 for clarity. The randomisa- 
tion is important because PRO_LIGAND uses a depth- 
first strategy to circumvent the combinatorial problem of 
building a ligand - in other words, the first acceptable fit 
of a fragment is automatically accepted. This means that 
the order of relevant lists and arrays must be continu- 
ously updated to prevent biases being introduced into the 
procedure. 

The next operation is to establish whether the fragment 
can be placed onto the design model. The detection of a 
possible fit is performed by means of the subgraph iso- 
morphism algorithm of Ullmann [49], using an imple- 
mentation similar to that of Brint and Willett [50]. This 
algorithm has the advantages of  quickly detecting frag- 
ments that do not fit and being able to enumerate all pos- 
sible hits if required. One slight disadvantage is that the 
algorithm compares distance matrices for the design-mo- 
del interaction sites and the fragment interaction sites and 
so cannot detect differences in chirality. A subsequent 
check is thus required when more than three interaction 
sites are being fitted. This chirality check is accomplished 
in a similar manner to that described by Golender and 
Vorpagel [51]. User-supplied tolerances control how tight- 
ly the fragment and the design model must match. After 
locating a hit the algorithm automatically passes the frag- 
ment on for further processing, but the graph matching 
code can be re-entered to generate new hits should the 
current one be rejected subsequently. Note that the Ull- 
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Fig. 6. Available building modes in structure generation. The dots represent interaction sites which may be hit by a placed fragment. Note that 
interaction sites are deleted from around a fragment once it is placed. 
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mann method constitutes an exact matching procedure, 
i.e., all fragment interaction sites must be matched by 
corresponding distinct design-model interaction sites. It is 
possible to envisage a partial matching procedure using a 
clique detection algorithm [52-54] in which the user spec- 
ifies a minimum number of  interaction sites that must be 
matched for each fragment. Such an approach has not 
been adopted here for at least two reasons. Firstly, we are 
concerned that the fitted fragments do not stray too far 
from the edges of the design model, since this implies a 
likely clash with the receptor wall. For this reason, as far 
as possible we attempt to label the fragments so that the 
distribution of interaction sites represents the spatial ex- 
tent of the fragment. By then insisting that all of  these 
sites be hit, we reduce the likelihood of fragments being 
placed in positions giving rise to undesirable steric contact 
with the receptor. Secondly, previous studies have shown 
that clique detection is rather less efficient for the purpose 
of graph matching than the Ullmann algorithm [50], par- 
ticularly when the likelihood of a mismatch is high. Fur- 
thermore, the clique detection algorithm of Bron and 
Kerbosch, which is often used in molecular structure ap- 
plications [13,53,55-57], can be very demanding of virtual 
memory since it requires the manipulation of a matrix 
which is potentially (NF x ND) 2 in size, where NF  is the 
number of  interaction sites on the fragment and ND is 
the number of  interaction sites on the design model. 

The fragment is next fitted onto the design model using 
an rms superposition algorithm. This fitting is weighted, 
so that some interaction sites can be fitted more tightly 
than others if the user so desires. For example, hydrogen 
bonding features will normally be weighted more strongly 
than lipophilic features. Once the fragment has been 

No fit 

Bad clashes 

Unresolved 

bonds 

Poor fit 

Select next fragment from database 

Set up distance matrices 

Find possible fit for fragment 

If successful, position fragment 

Check suitability of fit 

Resolve fragment-fragment clashes 

Create new bonds 

Update interaction site distance matrix 

Fig. 7. Overview of the structure-generation process. 

TABLE 2 
LIBRARY FRAGMENTS USED IN THE CONSTRUCTION 
OF THE MTX MIMIC 

Fragment Number of times used 

Pyrazine 1 
H2CNCHNH (a specialised ring-fusion 1 

fragment) 
Dimethyl aniline 1 
Planar NH 3 2 
Methanol 2 
Propane 1 
Ethane 1 
Formaldehyde 1 

placed on the design model, some tests are performed to 
check the suitability of the fit. The first test searches for 
clashes between already placed fragments and the new 
fragment. It detects whether clashes exist between heavy 
(i.e., non-hydrogen) atoms and if they do, decides wheth- 
er they can be resolved through the formation of bonds. 
Of  course, resolvable clashes will be present for any kind 
of bridge or join fragment, but even with a simple placed 
fragment the algorithm may detect resolvable clashes and 
subsequently form new bonds. When searching for resolv- 
able clashes, a pair of (say) C-H bonds which are suitably 
oriented for bond formation will be sought. I f  such a pair 
does not exist in the current conformation, the algorithm 
will check to see if rotation of available methyl groups 
will allow bond formation. I f  the bonds concerned are too 
far apart for direct bond formation, the possibility of 
inserting a methylene bridge between the fragments is 
automatically considered. 

The next test involves a check to ensure that any pro- 
posed bonds do not involve the joining of an unsuitable 
pair of  atoms, e.g., O-O, N-N and so forth. The final test 
looks for van der Waals clashes between heavy atoms in 
the active site and fragment. If  any of these tests fail, the 
fitted fragment is rejected and the graph matching algo- 
rithm is restarted to look for new fits. 

The fragment is then added to the ligand structure and 
new bonds are created where required. Subsequently, a 
geometry correction is performed to create an ideal geo- 
metry around the bonds just formed. To ensure that these 
corrections have not caused a gross distortion in the 
ligand, it is refitted on the design model. If  this refitting 
fails, the newly joined fragment is rejected and the algo- 
rithm backtracks to the previous partial structure. 

The fitting process is now complete, but it is necessary 
to update the design model. Interaction sites that have 
been hit are removed from the list, as are interaction sites 
that clash (determined by a user-defined tolerance) with 
heavy atoms on the new fragment. Additionally, the par- 
tial ligand structure is examined and most of  its hydrogen 
atoms are used to generate new join sites which are in- 
cluded in the design model. 



The driver is exited when either the library has been 
exhausted or one fragment has been placed. It should be 
noted that no attempt is ever made to differentiate be- 
tween high-scoring or low-scoring fits. Any fit that sat- 
isfies user-definable constraints is immediately accepted. 
This constitutes a depth-first search through solution 
space and solutions of  varying quality and great diversity 
are quickly generated. Since one of the primary functions 
of tools such as PRO_LIGAND is to generate ideas by 
'molecular brainstorming', such a strategy is well justified. 
Subsequent refinement can be used to weed out or 
improve solutions of lower quality. 

Other options and features 
The Structure Generation module can also be 

instructed to increase the frequency of ring fusion during 
the building process. Fusion can be thought of as place- 
bridging, bridging already joined fragments in such a way 
that a ring is created. The place-bridge library contains 
fragments such as butadiene and butane which are in the 
correct conformations to form fused rings. I f  these frag- 
ments are placed in a separate high-ranking library, a 
fusion phase can be included in the strategy. This method 
has been successfully used to reproduce the framework of 
steroids during building. 

Options are present that allow the pre-screening of 
library fragments and their conformations in a manner 
analogous to a 3D database search [58]. This option 
creates a file containing information on whether a par- 
ticular fragment or conformation can ever be fitted onto 
the design model. The program uses this information to 
avoid searching through useless files or conformations 
and thus speeds up the building process. The job can be 
restarted using an existing screen file and the screen file 
can also be edited by hand to exclude fragments that are 
known to be detrimental to a particular building task. 

PRO_LIGAND also has an option for the inclusion of 
a seed fragment, i.e., a structural moiety that forms some 
portion of the ligand and is used as a starting point in 
structure generation. More interestingly, previously gener- 
ated structures or parts of previous structures can be used 
as seeds. The seed option can thus be thought of as trap- 
ping information about important or useful parts of the 
tree-search problem, and allowing future runs to focus on 
these areas. Another approach to this problem that has 
been implemented allows the automatic formation of 
application-dependent fragment libraries. I f  requested, the 
Structure Generation module can produce libraries of 
structures of  size n, where n is the number of original 
fragments in each of the new library fragments and is 
user-definable. The algorithm guarantees that growth can 
occur from each of the fragments it generates. This strat- 
egy allows one to store knowledge about which fragments 
can join to each other and may be used again to reduce 
computational effort in future structure-generation runs. 
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Scoring algorithm 
Once a structure has been built by PRO_LIGAND, it 

is assigned a score to reflect how well it has met the con- 
straints and features of the design model and also other 
intrinsic structural features specified by the user. The 
score is a weighted sum of the number of  interaction sites 
hit together with terms for the number of asymmetric 
carbon atoms, number of rotatable bonds and degree of 
structural disjointness (which may result from a 'place- 
and-join' building procedure). 

More specifically, a structure's score, S, may be cal- 
culated as follows: 

NA ND NAI NAt 

S ~-- Z W A +  Z WD-[- Z WAI + Z WAr 
1 1 1 1 

NRot NAsym NComp- 1 

+ EWRo,+ Z Wasym+ Z %is  
1 1 1 

where NA and N D  are the numbers of  hydrogen bond 
acceptor and donor sites hit by the structure, NA1 and 
NAr are the numbers of lipophilic aliphatic and aromatic 
interaction sites hit by the structure, NRot  and NAsym 
are the number of  rotatable bonds and the number of 
asymmetric carbon atoms in the structure and NComp is 
the number of disjoint components in the structure. W a 
is the contribution to the score for each hydrogen bond 
acceptor site hit and the other weights refer to their 
respective features. 

All the weights mentioned may be specified by the user 
so that those structures which best meet the user's re- 
quirements, both in terms of the design-model constraints 
and intrinsic structural features, will be assigned the top 
scores. The precise values for each of the weights will 
obviously vary from one design problem to another, but 
in general, one would want to weight hydrogen bonding 
features more strongly than lipophilic features and to give 
small penalties (i.e., negative weights) to rotatable bonds 
and asymmetric carbon centres. In general, disjoint struc- 
tures will not be of interest and this can be reflected by 
the assignment of  a large penalty for those structures with 
more than one distinct component. In the absence of 
user-specified values, the program assigns defaults of -0 .1  
to WRot and WAsym, +1.0 to W A and W D, +0.25 to WA~ and 
WAr and -2.0 to Wi)i¢ 

While the above score function is simple, it has proved 
to be quite adequate in practice as an initial 'screen' to be 
applied to the generated structures. Obviously, no scoring 
function, however complex, is going to be accurate or 
flexible enough to replace the experienced judgment of  a 
synthetic or medicinal chemist. The best that can be 
hoped for is some gross ranking of the output to give the 
user some assistance in extracting the solutions worthy of 
further consideration. At present, we are also implement- 
ing a set of clustering and ranking procedures [58,60] to 
allow the user to gain a rapid overview of the structural 
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classes generated. This will be particularly useful when the 
output consists of several hundreds or thousands of struc- 
tures. Such tools are commonly used in conjunction with 
3D database searching systems, where the problem of 
voluminous output, especially from 'flexible' searches, is 
well documented [61-63]. 

Output and graphical analysis 

The output from a PRO_LIGAND run consists of the 
required number of structures in GMSD format, together 
with a log file containing their scores and the history of 
the building process. PROMETHEUS EYE, the graphical 
display package of PROMETHEUS, enables viewing of 
the design base and design model, a dynamic replay of 
each molecule's construction and it offers facilities to aid 
the construction of fragment libraries. 

Results 

As an indication of the capabilities of PRO_LIGAND, 
we have tested the approach using well-characterised 
examples. Below we illustrate the use of the program in 
similar-design mode to design a mimic of the anti-cancer 
agent methotrexate, and in complementary-design mode 
to design potential inhibitors for dihydrofolate reductase 
and HIV-1 protease. It is worth noting that in all these 
examples, the results presented represent the culmination 
of several runs of the structure generation module, which 
is usually instructed to generate in the order of 100 struc- 
tures per run. Such iteration is necessary both to tune the 
various parameters and score weights for a particular 
example and also permits the use of a 'seeding' strategy, 
as exemplified by the HIV-1 protease case. 

Similar design to methotrexate 
As is well known, the enzyme dihydrofolate reductase 

(DHFR) catalyses the NADPH-dependent reduction of 
dihydrofolate (FH 2) to tetrahydrofolate (FH4). FH4 plays 
a vital role in the biosynthesis of thymidylate (dTMP), 
which is an essential building block of DNA. Inhibition 
of D H F R  interrupts the supply of FH4, causing disrup- 
tion in the synthesis of purine and pyrimidine bases and, 
eventually, cell death. The discovery of inhibitors of 

002 H 

NH 2 H3C~ N CO2H 

Fig. 8. The structure of methotrexate (1). 

OH CH2OH 

NH 2 H3C~ N ~  
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H2N 

Fig. 9. A methotrexate mimic (2) designed by PRO LIGAND. 

D H F R has led to several useful drugs for the treatment 
of cancer, bacterial infections and malaria [64]. 

One such inhibitor is methotrexate (1), shown in Fig. 
8, which has been studied for over 30 years and remains 
an important therapeutic agent for cancer and a variety 
of other indications, such as severe cases of rheumatoid 
arthritis and psoriasis. Although methotrexate is of defi- 
nite utility against some forms of cancer, it has shown 
limited activity against other types of malignancy and is 
also rather toxic. For these reasons, it would be desirable 
to develop a drug which possesses a broader range of 
applications and which has less severe side effects [65]. 

To test PRO_LIGAND in similar-design mode, we 
constructed a design base from all the atoms of metho- 
trexate. The heavy-atom positions were taken directly 
from the crystal structure of the inhibitor as crystallised 
with E. coli D H F R (Brookhaven Databank code 4DFR) 
[66] and appropriate hydrogens were added afterwards. 
The Design-model Generation module was then run on 
this design base to yield a design model consisting of 48 
interaction sites (16 R, 12 L, 3 X, 5 D, 3 Y, 9 A). 

This design model formed the input for the Structure 
Generation module. In order to encourage the production 
of ring systems analogous to methotrexate in the designed 
structures, a 'GROW AND_FUSE'  strategy was chosen. 
The choice of this strategy simply instructs the Structure 
Generation module to search the library of fragments 
suitable for fusion before any other during the place- 
bridge phase of building. 

The structure of one of the analogues (2) designed by 
PRO_LIGAND is shown in Fig. 9. As can be seen, the 
structure closely mimics that of methotrexate, particularly 
in the reproduction of the pteridine ring and the para- 
substituted benzene. The main differences lie in the oxida- 
tion states of the hydrogen bond acceptors which form 
the analogue to the glutamate moiety of methotrexate. In 
the molecule designed by PRO_LIGAND, the carboxylic 
acid groups are replaced by an alcohol and an aldehyde. 
In addition, there is an extra rotatable bond in the chain 
linking the two acceptor groups. Finally, the backbone 
amide has disappeared to be replaced by another alcohol 
group. Table 2 lists the fragments that were used by 
PRO_LIGAND to create the designed molecule. 

The typical CPU time required to generate such a 
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structure is in the order of 35 s on an SGI Indy work- 
station. 

Complementary design to DHFR 
Rather than designing molecules which are similar to 

a known lead, another approach to inhibitor design is to 
build structures complementary to the enzyme active site. 
This is a rather less constrained problem and so promises 
to generate a greater diversity of structures. 

For complementary design to DHFR,  we again began 
with the 4DFR crystal structure, specifically, the B chain. 
The atoms comprising the active site were defined as 
those falling within spheres of 5.0 A radius centred on the 
crystallographic positions of the methotrexate atoms. This 
was found to be sufficient to include the residues import- 
ant for inhibitor binding. Two water molecules known to 
be important for binding (B603 and B639) were added to 
give a total of 179 design-base atoms. 

This design base was then operated upon by the 
Design-model Generation module which resulted in a 
design model consisting of 415 interaction sites, shown in 
Fig. 10. In addition to the underlying swathe of lipophilic 
sites which are produced by various backbone and side- 
chain carbon atoms, there are four distinct groups of 
hydrogen bonding interaction sites. Group A is a set of 

donor sites arising partly from the guanidinium group of 
Arg 57, but mainly from that of Arg 52, which also gives rise 
to Group B. The Group C donor sites are produced by 
the water molecule which mediates between Asp 27 and the 
N5 atom of methotrexate. The set of acceptor sites, 
Group D, results from the carboxyl group of Asp 27. 
Finally, two vector acceptor sites appear between Groups 
B and C. These arise from the carbonyl group of Ile 94. 
Other such vectors from this residue and also from Ile 5 
have been removed by the clash-checking algorithm, 
probably because of a bad contact with a hydrogen on 
the receptor. 

Once again, a GROW_AND_FUSE building strategy 
was employed in the structure generation process. One of 
the structures (3) produced by PRO_LIGAND is shown 
in Fig. 11. In this example, PRO_LIGAND has chosen to 
satisfy the Group A sites with a pyrido[3,4-b]-pyridine 
fragment (constructed from the fusion of pyridine with 
CH2NCHCH2). While this fragment is reminiscent of the 
pteridine ring system of methotrexate, it lacks the necess- 
ary hydrogen bond-donating substituents that would 
permit it to bind to Groups C and D. The lipophilic 
linker group is provided by dihydrophenanthrene which 
is attractive both for its rigidity and ready availability. 
However, while PRO LIGAND has met the Group C 

Fig. 10. The design model for complementary design to DHFR. 
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and D sites, the aliphatic ether-containing chain linking 
the tricyclic lipophilic group and the phenolic moiety is 
perhaps rather too flexible. 

In an attempt to reduce this flexibility, the structure 
was put back into PRO_LIGAND as a seed fragment 
and Structure Generation was run with a GENERAL 
building strategy (one in which the user can choose the 
precise number and sequence of fragment placing and 
bridging operations) equivalent to a 'ring-bracing' mode 
[32]. One structure (4) resulting from this run is shown in 
Fig. 12. As can be seen, the chain linking the pyrido[3,4- 
b]-pyridine and dihydro-phenanthrene groups has been 
braced by the formation of a seven-membered ring con- 
taining a sulphur atom. A number of other bridges of this 
nature were also observed, suggesting that there is a size- 
able region of lipophilic space that could be filled in this 
area. Interestingly, PRO_LIGAND failed to bridge the 
chain linking the dihydrophenanthrene and phenolic moi- 
eties. The reason for this is believed to be that any bridg- 
ing fragments placed at this end of the molecule caused 
unacceptable clashes with the receptor. 

Another structure (5) generated by PRO_LIGAND is 
shown in Fig. 13. This structure, containing a lipophilic 
backbone of five fused rings, is rather more rigid than the 
previous example. Again, all the groups of hydrogen 
bond sites are met by this structure. This is illustrated in 
Fig. 14 which shows 5 superimposed upon the hydrogen 
binding sites of the design model. 

It should be noted that all of the above structures were 
built from fragments containing no more than one ring - 
a clear indication of PRO_LIGAND's ability to construct 
complex cyclic structures. The typical CPU time required 
to build a structure complementary to the D H F R  binding 
site was approximately 5 min on an SGI Indigo work- 
station. The time taken for each attempt to ring-brace a 
structure was about 10 s on the same machine. 
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Fig. 11. A potential DHFR inhibitor (3) designed by PRO_LIGAND. 
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Fig. 12. Structure (4), illustrating PRO_L1GAND in ring-bracing mode. 

Complementary design to HIV-1 protease 
In the search for therapeutics and vaccines to treat and 

prevent acquired immunodeficiency syndrome (AIDS), 
much attention has focussed upon its causative agent - 
human immunodeficiency virus (HIV). In the life-cycle of 
HIV, the processing of gag and gag-pol polyproteins by 
the enzyme HIV protease has been shown to be essential 
for viral replication. Thus, it is generally believed that if 
the activity of the protease can be inhibited, the spread of 
viral infection can be attenuated [67,68]. The protease has 
thus become a popular target for rational drug design 
efforts and a number of novel inhibitors have been 
designed using SBDD methods [69-71]. 

As a further illustration of PRO_LIGAND in com- 
plementary-design mode, the approach was used to design 
a ligand to fit the binding site of HIV-1 proteas e. The 
crystal structure used in this example was that of HIV-1 
protease complexed with the inhibitor acetyl pepstatin 
(PDB entry 5HVP) [72]. As in the previous example, the 
active site was defined using the positions of selected 
inhibitor atoms as centres for spheres, in this case of 7.5 
A radius. With the addition of a water molecule necessary 
for mediation in the contact between VaP and Sta 4 in the 
inhibitor and Ile 5° and Ile 25° in the protease [72], a total of 
491 atoms were present in the final design base. 

After the operation of the Design-model Generation 
module, a design model consisting of 855 interaction sites 
was produced. Figure 15 shows a cut through this design 
model and the design base from which it was derived. 
The picture clearly shows how the hydrogen bond interac- 
tion sites represent the position and nature of the desired 
functionality in the ligand to be generated. For instance, 
the water molecule mentioned above gives rise to two sets 
of orange-red vector sites where acceptor groups should 
be situated and carbonyl groups in the active site can be 
seen to spawn blue vector sites for the positioning of 



donor groups. The design model also reflects the approxi- 
mate C2 symmetry of the active site - a feature often 
exploited by effective inhibitors of the enzyme [69,70]. 

To build structures to fit this model, a GROW strategy 
for structure generation was employed. In this strategy, a 
single fragment is placed and then subsequent fragments 
are joined to the current partial ligand. One of the result- 
ing structures (6) is shown in Fig. 16 and is superimposed 
upon the design model in Fig. 17. The structure shown is 
actually the result of several PRO LIGAND runs, during 
which observed desirable features were trapped as 'seeds' 
for subsequent structure generation runs. This iterative 
design process is illustrated in Fig. 18. The figure shows 
firstly the initial thiazole ring seed (7). This was selected 
because it had been seen to fit snugly on the design mo- 
del, while making favourable hydrogen bond contact with 
the mediating water molecule mentioned above and being 
well positioned for the growth of side chains to form the 
backbone of the inhibitor. A subsequent run added a 
reduced amide functionality to this seed. The resulting 
structure (8) was in turn taken as a seed and a further 
structure generation run produced the structure (9) which 
formed the seed fragment for the final structure. 

As can be seen from Fig. 17, the designed molecule can 
be expected to have many favourable hydrogen bond 
interactions with the enzyme active site. Of particular 
interest is the effective 'trapping' of the mediating water 
by the thiazole ring nitrogen and a carbonyl oxygen. It 
should be noted that the main aim of our study was to 
illustrate the power of PRO_LIGAND by producing a 
thought-provoking solution for the backbone of an HIV-1 
protease inhibitor. The simpler design problem of select- 
ing optimal substituents for the S and P subsites has been 
considered by other workers [22,25,26] and could also be 
undertaken by PRO_LIGAND. 

Discussion 

The three examples presented above demonstrate 
PRO_LIGAND's ability to generate, with considerable 
rapidity, diverse and novel chemical structures which 
satisfy the constraints imposed by a design model. These 
structures may be either similar to the input molecule (as 
in the case of the methotrexate mimic) or complementary 
to it (as in the examples of inhibitor design for D H F R  
and HIV-1 protease). 

Of the de novo design programs already described in 
the literature, PRO_LIGAND is perhaps most similar 
to LUDI [21,22] in that structure generation is effected 
by joining molecular fragments placed upon target 
interaction sites. However, there are several points con- 
cerning the design philosophy and implementation of 
PRO_LIGAND that we feel represent significant and 
novel advances in methodology. 

Firstly, in designing PRO_LIGAND, the desire for a 
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unified and general approach to de novo ligand design 
has been at the forefront of our thinking. We have also 
sought to allow the user as much control as possible over 
the design process. This is reflected in many aspects of 
the approach, such as the flexible and readily extendable 
nature of the GMSD interface, the multi-sphere definition 
of the active site, the almost limitless variety of strategies 
available for fragment assembly via the generalised Struc- 
ture Generation driver, the ease with which fragment 
libraries can be assembled and manipulated for particular 
tasks, the development of user-definable rule bases gov- 
erning the nature and position of the interaction sites 
created during design-model generation and the ability to 
weight the terms in the scoring function to give high 
scores to the structures considered desirable by the user. 
The approach taken is sufficiently general to permit 
PRO_LIGAND to design not only organic molecules but 
also peptides and, furthermore, to build structures to 
satisfy pharmacophore maps and CoMFA models. These 
latter applications will be the subjects of future papers. 

A further and fundamental concept is the unification 
of the concepts of 'similar' and 'complementary' design 
by means of the design model. That is, the task of struc- 
ture generation is oblivious to the type of design it is car- 
rying out - the placing and joining of fragments is the 
same in either case. This considerably extends the range 
of design problems to which PRO_LIGAND may be 
applied. 

Other features which we consider to be unique to 
PRO_LIGAND are the use of a proven molecular graph 
theory procedure for fragment placing which we believe 
to be more efficient than that employed in LUDI, the 
pre-screening of library fragments which further increases 
efficiency by immediately removing those fragments 
which cannot fit the design model, and the use of sophis- 
ticated geometry-correction routines in an attempt to 
ensure reasonable geometries in generated structures. 

This last point obviously highlights the fact that in 
developing PRO_LIGAND we have chosen not to use 
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Fig. 13. Structure of another potential DHFR inhibitor (5) designed 
by PRO_LIGAND. 



26 

Fig. 14. Potential inhibitor (5) designed by PRO_LIGAND, showing a fit to the design model. 

Fig. 15. A cut through the design model for complementary design to HIV-1 protease, showing some of the parent features from the enzyme active site. 
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,NH 2 QHO ,O H QHO ,O, 

C+o 
Fig. 16. A potential HIV-1 protease inhibitor (6) designed by PRO_LIGAND. 

force-field methods to guide the structure-generation 
process or to rank the generated structures. There are 
several reasons for this. Firstly, as B6hm has pointed out 
[22], traditional force-field methods are prone to the mul- 
tiple-minimum problem, i.e., a considerable number of  
calculations could be required to determine the 'optimal '  
position of the ligand. Secondly, use of force-field calcula- 
tions is likely to add significantly to the time taken to 
generate a ligand, particularly if the minimisation of the 
growing ligand is carried out with respect to the receptor. 
Finally, a further difficulty arises from the lack of a force 
field which is suitably parameterised to treat both macro- 
molecular and small organic molecules simultaneously. 
Our experience with PRO L I G A N D  has shown that 
useful solutions may be obtained using the purely geo- 
metrical approach advocated by B6hm. It should always 
be borne in mind that PRO_LIGAND is primarily 
intended as an 'idea generator' and not as a substitute for 
the experience and creativity of  medicinal chemists and 
molecular modellers. 

We are, however, actively considering the use of 
limited force-field calculations in the geometry-correction 
process. As it is impossible for the current set of  correc- 
tion rules to take account of every case that may be en- 

6 

countered, there are still occasions when the bond lengths 
or angles in generated structures show deviations from 
their ideal values. The use of  a rapid molecular mechanics 
'clean-up' procedure prior to refitting the partial structure 
back onto the design model would address this problem, 
without adding significantly to the CPU time required for 
structure generation. 

As mentioned earlier, in PRO_LIGAND we have 
chosen to use a fairly small (although readily extendable) 
library of fragments from which to assemble structures. 
In this respect, our method differs significantly from 
LUDI  which uses about 1000 fragments. The ability of  
PRO_LIGAND to construct fused ring systems means 
that only primitive cyclic structures need to be included. 
At present, the default libraries contain a total of less 
than 200 fragments although, of course, there is signifi- 
cant redundancy in terms of the chemical diversity since 
a given fragment (e.g., methanol) may appear in all four 
libraries but can be labelled differently in each. In fact, 
the total number of  chemically distinct fragments is only 
68. Even with this small number, we found no shortage 
of diversity in the structures generated. Of course, invok- 
ing the screening option can reduce this number for any 
particular system. It is our belief that increasing the num- 

Fig. 17. Potential inhibitor (6) designed by PRO_LIGAND, showing a fit to the design model. 
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Fig. 18. Seed fragments used in the generation of (6). 

ber of fragments substantially will generally have a del- 
eterious effect on the execution time of the program, 
while not significantly increasing the novelty or interest of 
the designed structures. 

Conclusions 

We have described an approach to de novo molecular 
design called PRO_LIGAND which we believe embodies 
some significant and novel features both in its design and 
implementation. The utility of PRO_LIGAND has been 
demonstrated by three examples showing its ability to 
build diverse and novel structures which are either similar 
or complementary to a specified molecular target. The 
use and development of PRO_LIGAND within the expert 
system PROMETHEUS remains an active research area. 
Future papers will detail PRO_LIGAND's methodology 
for peptide design, the design of novel molecules from 
pharmacophore models and 3D QSAR information and 
the genetic algorithm-based structure refinement module 
[41], as well as the application of PRO_L1GAND to the 
design of DNA-binding drugs. 
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Appendix 1 

Rule bases for design-model generation 

The flow of  the Des ign-model  Genera t ion  module  is il- 
lus t ra ted in Figs. 19 and 20. When  opera t ing  in similar- 

design mode,  the Des ign-model  Genera t ion  module  gener- 
ates interact ion sites by the processes of  a tom- type  con- 
version and a tom copying. While  type conversion simply 
changes a tom types of  the design-base atoms, a tom copy- 
ing adds  new a toms to the design-base list with identical  
a t t r ibutes  except that  the new a toms have different a tom 
types. Using a tom copying it is possible to create more  
than one interact ion site at the pos i t ion  o f  a given design- 
base atom. 

The main  rule for a tom type conversion is expressed in 
the rule-base file as follows: 

A T O M  R U L E  generic_type db_type(s)  

which reduces a list of  design-base a tom types to a single 
generic type. For  instance 

ATOM_RULE R C A  CB C W  C* C N  CD CE C F  
C G  CP 

reduces all the A M B E R  aromat ic  carbon  a tom types to 
type R. 

The following auxil iary rules control  a tom-type  con- 
version: 

A T O M _ B O N D  db_type l  db_type2(s)  

which specifies that  an a tom of  type db_ type l  should 
only be re typed by an A T O M  RULE rule if  it is bonded  
to an a tom of  type db_type2.  Replacing the 
A T O M _ B O N D  by A T O M  N O T  B O N D  ensures that  the 
retyping only occurs if an a tom of  type db_ type l  is n o t  

bonded  to an a tom of  type db_type2.  

A T O M _ E N V  db_type  db_residue_label(s) 
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Atom type conversion 

Similar 
design 1, Atomcopying 

Complementary 
design [ 

Do complementary design 
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i | 

1~1, Write design model tile ~, 

Fig. 19. Overview of the operation of the Design-model Generation 
module. 

which insists that an atom of type db_type should only be 
retyped if it is part of a residue defined by db_resi- 
due_label. For instance, ATOM_ENV NB HIS says that 
the AMBER type NB should only be retyped if it is part 
of  a histidine residue. 

The ATOM_BOND and ATOM_NOT_BOND rules 
allow nearest neighbours to influence the type conversion 
process. The ATOM_ENV rule allows wider environ- 
mental influence. However, for some applications, a direct 
influence of next-nearest neighbours is required for the 
atom-type conversions. I f  this is the case, the user is pro- 
vided with the option of two passes of  atom-type conver- 
sion. This option is chosen with the TWO_ 
PASS_TYPE_CONV keyword in the rule-base file. 

The rule for atom copying has the format 
ATOM_COPY db_typel new_type(s) and creates copies 
of all atoms with db_typel with types new_type(s). 

When operating in similar-design mode, the module 
simply writes to the design-model file those members of  
the list of  new atom types which were actually changed 
during atom-type conversion or created by atom copying. 
Atoms which retain their original design-base atom type 
are ignored. 

When operating in complementary-design mode the 
module again uses atom-type conversion and copying as 
the first step. This is to allow the aser to manipulate the 
design-base atom types before the complementary inter- 
action sites are generated. This can be useful when a 
number of distinct atom types can be considered equiv- 
alent as far as interaction-site generation is concerned (an 
example here might be the hydrogen atoms in OH and 
N H  groups). After this, the module uses 'complementary 
rules' to generate interaction sites. 

The flow of the Design-model Generation module for 
complementary design after the atom-typing phase is 

illustrated in Fig. 20. The outer loop runs over all the 
atoms in the design base, and the inner one over all the 
complementary rules in the rule base. The module takes 
the design-base atoms one by one and then goes through 
the rule base. Each time a rule is found which applies to 
the current atom type, interaction sites are generated 
according to instructions in the rule. 

There are two types of complementary rule. The first 
is called a 'linear rule'. Here, the position of the site is 
defined by specifying a bond length, a valence angle and 
a torsion angle from the atom giving rise to the site, as 
illustrated in Fig. 21. By default, the second atom (par- 
ent) required to define the valence angle, and the third 
atom (grandparent) required to define the torsion angle, 
are selected randomly by the algorithm from atoms with 
appropriate connections. It is possible, however, to define 
specific atom types for which the algorithm should search 
when assigning parents and grandparents using the 
RULE_PARENT and RULE_GRANDPARENT key- 
words. 

The second type of complementary rule recognised by 
the module is termed a 'ring rule'. Again, the position of 
the site is given by a bond length, a valence angle and a 
torsion angle from the atom giving rise to the site. How- 
ever, in this case the valence angle is measured from a 
dummy atom which is generated on the perpendicular bi- 
sector drawn from the atom giving rise to the site to the 
opposite side of the triangle formed by this atom and two 
atoms connected to it, as illustrated in Fig. 22. The two 
'parent '  atoms are currently randomly selected by the mo- 
dule from those atoms with appropriate connections. In 
most situations the atom in question is connected to only 
two atoms (for instance the unprotonated nitrogen in his- 
tidine) and the random selection makes no difference. 

More atoms 

Start complementary design actions 

Get atom type of next 1 
design-base atom 

i 

1 
, Apply all complementary rules 1 

appropriate to atom type 

Generate interaction sites 1 

Delete sites which clash with 1 
the design-base 

End of complementary design actions I 

Fig. 20. Operation of the Design-model Generation module in com- 
plementary-design mode. 
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Fig. 21. Positioning of  interaction sites by a linear rule. The site S is 
placed with respect to the a tom A, parent  a tom P and grandparent  
a tom GP at a bond  length l, a valence angle a and a torsion angle w. 

When using either of  the above complementary rule 
types, it is possible to put sites in specific positions, or to 
populate ranges of bond length, valence and torsion 
angles with evenly spaced sites. 

The following keyword entries in the rule-base file 
define the complementary rules: 

CMP_LIN_RULE atom_type site_type bndl bndu 
sbnd vall valu sval torl toru stor 
(site_type bndl bndu sbnd vat1 ...) 

This rule generates sites for the 'linear' type rule defined 
above and it means that for each atom in the design base 
typed to atom_type the algorithm should generate a site 
of  type site_type, using parent and grandparent atoms 
which are derived as explained above. The records bndl 
and bndu give lower and upper limits for the distance 
between the site and the atom giving rise to it. Sites are 
then generated by the algorithm at spacing sbnd within 
this range of distances. I f  sbnd is greater than bndl - bndu 
then two sites are generated at the extrema of the range. 
I f  sbnd = 0.0 or bndl = bndu then one site is generated at 
bndl. All distances are in A. The records vall, valu and 
sval work in the same way, placing sites in the range of 
valence angles between vall and valu; and similarly torl, 
toru and stor define the torsional position and spacing of 
sites. It is worth noting at this point that, for the angular 
records, upper and lower limits are in degrees, but the 
spacing of the sites is still in A. The algorithm internally 
generates appropriate angle increments to give sites which 
are approximately evenly spaced on a spherical surface of 
radius bndl at the user-defined spacing value. 

As an example of this rule 

CMP_LIN_RULE LAL L 4.0 4.0 0.0 0.0 180.0 2.0 
0.0 360.0 2.0 

places sites of  type L on the surface of a sphere of radius 
4.0 A at a spacing of 2.0 & around all atoms of type 
LAL. 

Some interaction sites (e.g., the D-X hydrogen bond 
donor sites) require the placing of two points. This can be 
done by simply stating the second site type and its posi- 
tion with respect to the first site directly after the specifi- 

cation of the first point. Now the parent atom becomes 
the original design-base atom and the grandparent atom 
the original parent atom. For example 

CMP LIN_RULE OCB D 1.9 1.9 0.0 110.0 180.0 1.0 
0.0 360.0 1.0 X 1.0 1.0 0.0 180.0 
180.0 0.0 0.0 0.0 0.0 

places sites of  type D 1.9 A from atoms of type OCB in 
the range of valence angles 110 ° 180 ° and in the full 
00-360 ° range of torsions. For each of these sites a fur- 
ther site of type X is 1.0 A from the D site, so that OCB- 
D-X is linear. 

The 'ring' type rule is specified using the following 
keyword: 

CMP_RING RULE ludi_type site_type bndl bndu 
sbnd vall valu sval torl toru stor 
(site_type bndl bndu sbnd vall...) 

This rule works in the same way as the 
CMP_LIN_RULE, except that the 'parent '  and 'grand- 
parent '  atoms are chosen as for a 'ring' rule, as defined in 
Fig. 22. 

When in complementary mode, the final step is dele- 
tion of the interaction sites which make van der Waals 
clashes with the receptor. This requires specification of 
radii for all interaction sites and atoms in the source 
molecule, which is done using the parameter file specified 
by the ATOM_RAD_FILE keyword in the input file. This 
parameter file contains the following keywords: 

ATOM_RAD_INDX integer index atom_type(s) 

which attaches an index to a set of  atom types, and 

ATOM_RAD_VAL integer_index real_radius 

which associates a radius with each of the atom types 
previously assigned the integer_index. 

:: ........ d ' , , ; ,  ..................... .......... 
Di:i ..... i'"''" ...... A ~  ............... 1 ;/ 

P 

Fig. 22. Positioning of  interaction sites by a ring rule. The site S is 
placed at a bond  length 1, a valence angle a and a torsion angle w 
with respect to the a tom A, a d u m m y  atom D and one of  the parent  
a toms P. 
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Appendix 2 
A generalised driver for fragment-based structure generation 

The driver is designed to allow as much flexibility as 
possible in the building process, in the following, the 
strings in bold capitals represent keywords to which the 
user assigns values in the input file to structure gener- 
ation. For example, NFRAG PLACE may be assigned 
the value of 10 and PLACE_BRIDGE_LIBRARY may be 
assigned the value '/usr/people/pro_ligand/pb_lib/aro_ 
polarl 1', where '1' indicates the rank assigned to the 
specified library. A diagram of the loop structure of the 
driver is given in Fig. 23. 

The loops labelled a, b, c and d represent different 
modes of building. The first loop, a, places fragments 
onto the design-model interaction sites. Up to 
NFRAG_PLACE fragments are placed every time this 
loop is traversed. The algorithm searches through all the 
PLACE_LIBRARYs in the order of their respective ranks 
until it has exhausted the libraries or exceeded NFRAG_ 
PLACE. The second loop, b, places fragments onto 
design-model interaction sites whilst also bridging be- 
tween already placed fragments. The algorithm searches 
through the PLACE_BRIDGE_LIBRARYs, each with its 

P 

aTI, 
bll, 
cl 

i[ 

dl. 

Start Generalion of Structure 

:1 
Place Fragments 

:1 
Place-Bridge Fragments 

,1 
Place-Join Fragments 

,1 
Bridge Fragments 

1 
End Generation of Structure 

Fig. 23. Program loop structure of generalised dri'~er for structure 
generation. 

associated rank, until it has exhausted the libraries or 
fitted NFRAG_PLACE_BRIDGE fragments. Additional 
flexibility can be obtained by using purely bridging 
libraries instead of true bridge-place libraries during this 
phase of structure generation. The c loop places frag- 
ments onto interaction sites whilst joining the new frag- 
ment onto already placed fragments. As above, the 
PLACE_JOIN_LIBRARYs are searched through in order 
of rank until NFRAG_PLACE_JOIN fragments have 
been fitted. The d loop represents a final bridging phase 
and has similar options associated with it, although they 
are less useful in this case. 

The G loop is traversed up to MAXIT_GRAND_ 
LOOP times. This allows one to go through a restricted 
place-join and/or bridge-join phase before placing more 
fragments. The P loop is traversed up to MAXIT_ 
PETIT_LOOP times. It allows one (amongst other 
things) to exhaust the place-joining and place-bridging 
phase before resorting to a pure placement phase. 

By specifying a GENERAL strategy, the user is free to 
choose the values for each of the keywords mentioned 
above. In this way, a large variety of types of building are 
available. Alternatively, a selection of specific strategies 
have been 'hard-wired' for easy use. For instance, if the 
LUDI mode of building is selected, the following se- 
quence of commands will be invoked, producing an ex- 
haustive placement of fragments followed by a final 
bridging phase. 

NFRAG PLACE 1 
NFRAG_BRIDGE_JOIN 0 
NFRAG_PLACE_JOIN 0 
NFRAG BRIDGE 1000 
MAXIT_GRAND_LOOP 1000 
MAXIT_PETIT_LOOP 0 

Alternatively, a GROW strategy may be invoked which 
will trigger the following commands and result in a se- 
quential 'build-up' approach to structure generation: 

NFRAG PLACE 1 
NFRAG_BRIDGE_JOIN 0 
NFRAG_PLACE JOIN 1 
NFRAG_BRIDGE 0 
MAXIT_GRAND LOOP 1 
MAXIT_PETIT_LOOP 1000 


