
Journal of Computer-Aided Molecular Design, 9 (1995) 13 32 13
ESCOM

J-CAMD 275

PRO LIGAND: An approach to de novo molecular design.
1. Application to the design of organic molecules

D a v i d E. C la rk , D a v i d Frenkel , S tephen A. Levy, J in Li, C h r i s t o p h e r W. Mur ray ,
B a r r y R o b s o n * , B o h d a n W a s z k o w y c z a n d D a v i d R. Wes thead

Proteus Molecular Design Ltd., Proteus House, Lyme Green Business Park, Macclesfield, Cheshire SKl l OJL, U.K.

Received 17 June 1994
Accepted 28 August 1994

Keywords: Drug design; De novo design; Enzyme inhibitors; Graph theory

Summary

An approach to de novo molecular design, PRO LIGAND, has been developed that, in the environment
of a large, integrated molecular design and simulation system, provides a unified framework for the
generation of novel molecules which are either similar or complementary to a specified target. The
approach is based on a methodology that has proved to be effective in other studies - placing molecular
fragments upon target interaction sites - but incorporates many novel features such as the use of a rapid
graph-theoretical algorithm for fragment placing, a generalised driver for structure generation which
offers a large variety of fragment assembly strategies to the user and the pre-screening of library frag-
ments. After a detailed description of the relevant modules of the package, PRO_LIGAND's efficacy
in aiding rational drug design is demonstrated by its ability to design mimics of methotrexate and
potential inhibitors for dihydrofolate reductase and HIV-1 protease.

Introduction

The number of protein structures determined by X-ray
crystallography and N M R is ever-increasing and likely to
grow rapidly within the foreseeable future [1,2]. This state
of affairs has led to the growing acceptance of Structure-
Based Drug Design (SBDD) as a paradigm for the design
and development of novel pharmaceutical agents [3-9]. In
cases where the proposed target molecule is not amenable
to experimental study, computational techniques such as
homology modelling [10], pharmacophore mapping
[11-13] and Comparative Molecular Field Analysis
(CoMFA) [14] can provide helpful insights to guide the
design process.

There is currently intense interest in the development
of computational methods which can make use of such
information to suggest novel structures which may either
prove to be useful lead compounds or, as is more likely,
act as a stimulus to the creativity of the designer. Ideally,
these techniques should be fast, objective and produce a
set of diverse yet chemically sensible structures. A number
of these de novo design programs have been reported
[15-34] and the field has been recently reviewed [28].

*To whom correspondence should be addressed.

0920-654X/$ 6.00 + 1.00 © 1995 ESCOM Science Publishers B.V.

Our in-house expert system for molecular design and
simulation, PROMETHEUS, has been enhanced by the
incorporation of a method for de novo molecular design
which we have called PRO L I G A N D (PROmetheus'
Logically Integrated Generation of Active Novel Drugs),
By means of this integration, the fifth-generation capa-
bilities of the GLOBAL language may be used to auto-
mate and control the de novo design process. Further-
more, the reproducibility of each design experiment can
be ensured by the employment of protocols or 'super-
algorithms' which may also incorporate human expertise
(e.g., concerning toxicity prediction) in the form of expert
system rules or 'fuzzy logic'. For details on the origins of
the GLOBAL language, the reader is referred to Refs. 35
and 36. In this paper, the first of a series, the underlying
philosophy of PRO_LIGAND and its design will be
described together with test cases demonstrating its utility
in the process of rational drug design.

Program description

De novo design programs can be divided into two
categories, according to the nature of the fundamental

14

'building block' employed in the structure-generation
process. One class of program seeks to build structures in
an atom-by-atom manner [19,20,25,29]; this approach has
some theoretical advantages in terms of the diversity of
structures that can be produced but in actuality there are
difficulties both in implementation and in execution [20,
25,26,29]. Alternatively, structures can be generated by
assembling pre-stored 3D molecular fragments, usually
small moieties of limited conformational flexibility. In
practice, it seems that such fragment-based methods con-
stitute the best compromise between the diversity of struc-
tures produced and the speed of program execution. For
this reason, PRO_LIGAND has been designed in accord-
ance with this approach.

The main tenet of the philosophy underpinning the de-
sign of PRO_LIGAND is that of the need for flexibility;
both in the types of input information accepted and in the
mode of structure assembly. In particular, PRO_LIGAND
is constructed in such a way that an input structure can
be used as a basis for the generation of structures either
similar or complementary to it. Thus, given a small or-
ganic molecule or peptide, PRO_LIGAND can design
either another small molecule with similar chemical char-
acteristics or a pseudoreceptor. Alternatively, if presented
with a receptor structure and knowledge of the position
of the active site, PRO L I G A N D can design an organic
molecule or a peptide to bind to the active site, or an
analogous receptor site.
Here, we describe the operation of PRO_LIGAND for
the design of small organic molecules; peptide design will
be the subject of a subsequent paper [37]. A further paper
will detail the use of PRO_LIGAND with input data
derived from a series of active structures or a 3D QSAR
study [38].

The following sections will describe three modules of
PRO_LIGAND, each of which has a unique function in
the design process. These modules are listed below,
together with a brief description of their function; their
relationship to each other is illustrated in Fig. 1.

(1) Design-base Generation - unifies the format of the

input information and creates a design base consisting of
all the atoms of the input structure which are of relevance
to the design process, e.g., those which comprise the
active site of a macromolecular target;

(2) Design-model Generation - transforms the design
base into a design model by the rule-based conversion of
atom types and positions to interaction sites. These inter-
action sites indicate the spatial and physicochemical char-
acteristics desired in the molecule(s) to be generated by
the Structure Generation module [39];

(3) Structure Generation - builds novel structures con-
sistent with the design model. PRO_LIGAND follows a
similar approach to that of the LUDI program [21-23] in
choosing to build structures by joining molecular frag-
ments fitted directly onto the interaction sites in the
design model. Such an approach involves only geometri-
cal calculations and is therefore rapid compared with
methods requiring the evaluation of energy functions and
their derivatives. It is believed that avoiding the latter
does not introduce serious errors into the design process
[22]. However, as B6hm points out [23], force-field calcu-
lations should be carried out after the design procedure
to verify energetic aspects of the designed molecules. For
example, it would be necessary to check that a putative
ligand does indeed fit into the protein binding site in a
low-energy conformation.

A fourth module - Structure Refinement - can use the
initial output from the Structure Generation module as
the basis for generation of further novel structures which
have improved design properties. To accomplish this, an
approach based upon a genetic algorithm [40] has been
developed. This module will be reported in a subsequent
paper [41].

The modules are driven by keyword-based command
files and data is passed internally by means of a flexible
data structure known as the Generalised Molecular Struc-
ture Descriptor (GMSD). Since the GMSD data structure
plays a central role in the operation of PRO_LIGAND,
it will be described first. Thereafter, each of the three
operational modules will be described in more detail.

I
Design Base Generation

coords o ,
coords

, PRO_LIGAND 1

I ,
Design M°del Generati°n I Structure Generation 1

Fig. 1. Overview of the PRO_LIGAND architecture.

Generalised Molecular Structure Descriptor

The GMSD is a file structure designed to describe a set
of labelled points in 3D space. The points may constitute
a real molecule, a pharmacophore or any of the abstrac-
tions used by PRO_LIGAND in the design process, such
as the design base or design model. The GMSD contains
entries of the format 'KEYWORD value_list'.

Typical keywords are: 'ATOM', whose value list con-
tains atom-based information such as label, type, and
partial charge; 'CARTESIAN' , whose value list holds x,
y, z co-ordinates for each of the atoms; and ' INTER-
ACT_SITE' , describing the labels assigned to the atoms
of a molecular fragment.

Conceptually, the GMSD is divided into two sections:
the basic information block and the additional information
block. As the names suggest, the former carries simple
molecular structure information such as atom types, con-
nection lists and Cartesian co-ordinates, while the latter
contains extra information pertaining to the structure,
such as its interaction sites.

The structure of the GMSD makes it extremely flexible
and very easy to extend if it is decided that new keywords
are needed. By storing the GMSD in binary form, very
fast access can be achieved.

The KEYWORD value_list format is also used in the
creation of the job and command files and rule bases,
further contributing to the flexible and unified approach
embodied in PRO_LIGAND.

Design-base Generation module

The initial module of PRO L I G A N D is the Design-base
Generation module whose purpose is to take the input
information as given and transform it into a single, unified
form (the design base) which can be operated upon by the
Design-model Generation module according to whether a
similarity or complementarity approach to structure gen-
eration is desired. For the purposes of the current work,
the input information can be in one of two forms: the co-
ordinates of a macromolecular receptor together with an
active-site specification or a single small organic molecule.

In the case where the user wishes to define an active
site in connection with the input, the ACTIVE_SITE
command is employed. This takes the form

ACTIVE_SITE atom_i atom_j Ax Ay Az r

The ACTIVE_SITE keyword permits three modes of
defining the position and spatial extent of an active site:

(1) If atom_i is different from atom j, then the centre
of the active site is taken to be the centre of mass of all
atoms lying between (and including) i and j. Ax, Ay, Az
are user-definable translations from this centre, but in this
instance will normally be zero.

15

(2) I f atom_i and atom_j are the same then this posi-
tion is taken as the active-site centre. Ax, Ay, Az are user-
definable translations from this centre.

(3) I f either or both of atom_i and atom j are zero,
then Ax, Ay, Az are assumed to be absolute co-ordinates
for the active-site centre.
In all cases r is the user-specified radius of the active site.

Note that the ACTIVE_SITE keyword can be repeated
as many times as desired. This enables a precise represen-
tation of the active site to be built up by spheres placed
at the user's discretion in a manner somewhat analogous
to that employed in the D O C K program of Kuntz et al.
[42]. In practice, we have found that a simple approach to
defining the active site is to employ the third option men-
tioned above, using the co-ordinates of selected heavy
atoms of a co-crystallised inhibitor to specify the centres
of the spheres delineating the active site. The radius cho-
sen will obviously depend on the example in hand, but we
have found values of 5-7 A to be sufficient in the cases
we have examined. I f no inhibitor positions are available,
then options (1) or (2) may be more appropriate.

The exact form of the design base will depend on the
input information. I f an active site is specified by the
user, then the design base will consist of all the atoms
falling within the limits of the active-site definition(s). On
the other hand, if no active site is specified, the design
base simply becomes a copy of the input molecule. In
either case, the design base is output in GMSD format
together with a command file containing the appropriate
commands to run the next module, i.e., Design-model
Generation.

Design-model Generation module

The Design-model Generation module operates on the
design base to create a design model. The design model
is a GMSD file containing a set of interaction sites which
serve to define desired physicochemical properties at
specific points in space [39]. At present, the types of inter-
action site employed by PRO_LIGAND are similar to
those in the LUDI program [21 23], although the set may
be readily adapted or extended. These interaction sites
and their labels are the following:

(1) Hydrogen bond acceptor: denoted by the vector A-
Y where, for example, A is a carbonyl oxygen atom and
Y the attached carbon atom;

(2) Hydrogen bond donor: denoted by the vector D-X
where, for example, D is a hydrogen atom in a primary
amine and X the attached nitrogen atom;

(3) Lipophilic aromatic: denoted by R where, for
example, R is a carbon atom in a benzene ring;

(4) Lipophilic aliphatic: denoted by L where, for
example, L is a carbon atom in a methyl group.
The construction and positioning of these sites will be
described below.

16

The module has two modes of operation: the produc-
tion of a design model similar to the design base, or the
production of one which is complementary to it. In the
'similar-design' mode, the module produces a design
model which has steric and chemical features similar to
the input molecule. The Structure Generation module will
use this to create possible analogues of the input struc-
ture. By contrast, in the 'complementary-design' mode, a
design model is produced which will result in the produc-
tion of a complementary molecule, for instance a mol-
ecule to fit in the active site of a receptor, or to bind to
DNA. It is worth noting at this point that after design-
model generation, the concepts of 'similar design' and
'complementary design' are unified, and the operation of
the Structure Generation module is independent of which
type of problem is to be solved.

The interaction sites in the design model are created
from the design base using rules which are specified in the
rule-base file. These rules relate the type and spatial posi-
tion of interaction sites to be generated to the atom types
of the design-base atoms. The format and operation of
the rule bases are given in detail in Appendix 1 and are
described briefly below.

When operating in 'similar design' mode, interaction
sites are created in the same position as the design-base
atoms, as illustrated in Fig. 2. The type of the interaction
site created is related to the design-base atom type
through a rule; for instance, it is possible to create a
hydrogen bond acceptor site in the position of the oxygen
atom of each carbonyl group in the design base. When
operating in complementary-design mode, a rule again
relates the type of site generated to a design-base atom
type, but this time the rule has additional components
which specify the position of the site with respect to the
design-base atom (see Fig. 3). The position of the site is
described in the most general possible way. Sites are

H O L
N - - CH - - C

CH~

Generate interaction sites
for similar design

D A

L
X - - L - - Y

L

F ig . 2. G e n e r a t i o n o f i n t e r a c t i o n s i tes in s i m i l a r - d e s i g n m o d e .

H O

I
N - - CH - - C

Y Y

x
A

H

N - -

CH
3

Generate interaction sites
for complementary design

CH - -

L CH 3 L

L L

x
\ /

D D

\ /
O

C

F ig . 3. G e n e r a t i o n o f i n t e r a c t i o n si tes in c o m p l e m e n t a r y - d e s i g n m o d e .

positioned by means of a rule type at a given bond
length, valence angle and torsion angle from specified
design-base atoms, and an alternative rule type is pro-
vided to give straightforward positioning of interaction
sites with respect to atoms which are members of planar
rings. In addition to single-point sites, both rule types
allow the generation of vector interaction sites consisting
of two points. This enables the generation of vector hy-
drogen bond sites which specify the complete geometry of
groups forming hydrogen bonds with the receptor. When
operating in complementary-design mode, sites which
form steric clashes with the receptor are deleted from the
design model.

As well as allowing the positioning of individual sites,
the rule base allows sites to be positioned at equal spatial
separation in ranges of bond lengths, valence angles and
torsion angles. This allows for the creation of design
models in which, for instance, hydrogen bond contacts
with non-ideal geometry are allowed.

There are many advantages of the general and flexible
nature of the rule base employed by the Design-model
Generation module. Firstly, rules and atom types do not
appear in the program code and hence the same code can
be used for a variety of molecular systems and force
fields. All that is required is construction of an appropri-
ate rule base. Currently, we have standard rule bases in
use for complementary design to protein receptors and
DNA and for similar design to general organic molecules
and peptides. Three sets of atom types are catered for at
the present time: AMBER [43,44], POLY [45] and COS-
MIC [46]. Secondly, the rule base can be edited by the
user. This allows quantities such as the number of sites to
be generated and the extent of non-ideality of the allowed

hydrogen bond contacts inter alia to be varied in a
straightforward manner. We have found that this type of
flexibility can be very useful as part of a feedback loop,
using information generated by a run of the Structure
Generation module to optimise the design process for a
particular application. Taken together, these features
permit easy and rapid 'prototyping' of rule bases and thus
prevent the user from being trapped by hard-coded and
perhaps over-specialised rules.

Structure Generation module

The Structure Generation module builds structures
using fragment libraries. The structures are consistent
with the constraints inherent in the design model and the
building process is controlled by the user input to the
module.

Initially, the module reads in the user-supplied data,
together with information concerning vital files such as
the design-model files and the fragment library files.
These data are passed through to the rest of the module
using a keyword-controlled command file in a manner
similar to that employed in the other modules. In what
follows, the first subsection will describe the structure and
constitution of the fragment libraries used in structure
generation, the second will discuss the structure building
process per se, the third will detail some miscellaneous
options and features available in structure generation, and
the final subsection will outline the scoring algorithm
used to rank generated structures.

Fragment libraries
In constructing a fragment library, two alternative

strategies are available. Some workers have used a small
library (e.g., GroupBuild uses only 14 fragments [26]),
hoping to take advantage of the fact that a certain diver-
sity of structures can be constructed from a small set of

17

relatively simple primitive units. The second approach
defines many more fragments (e.g., the LUDI program
[21,22]), intending to build each structure from a small
selection of these fragments. PRO_LIGAND leans to-
wards the small-library approach, with each library hav-
ing a maximum of about 50 fragments, although there is
no actual limit on this number. Small libraries have the
advantage of being easy to manipulate so that the user is
able to organize and rank the fragments to give more
effective building strategies for particular problems.

The PRO_LIGAND libraries have the structure shown
in Fig. 4. The peptide library contains conformations of
the commonly occurring amino acids which can be used
to build peptide structures, as will be described in a future
paper. For the present work, it is the organic libraries
which are of interest. The four parent libraries shown are
accessed during the four different phases of building (i.e.,
the place, place-join, place-bridge and bridge phases). Each
of these parent libraries is divided into various sub-
libraries according to the chemical nature of the frag-
ments they contain. For example, an 'aro_polar' sub-
library will contain aromatic fragments with hydrogen
bonding capability and an 'aliphatic' sublibrary will hold
aliphatic lipophilic fragments. If the user wishes to exert
some control over the order in which various fragment
types are accessed, these sublibraries can be assigned an
individual rank. The ranking directs the algorithm to
search through higher ranking fragments before attempt-
ing to fit lower ranking ones. For instance, if the user
wishes the hydrogen bonding features in the design model
to be filled in preference to lipophilic features, the
'aro_polar' sublibrary would be assigned a higher rank
than the 'aliphatic' sublibrary. By default, all sublibraries
are ranked equally. The exact constitution of each of
them is by no means fixed, and the user can add or delete
fragments to any sublibrary or create new sublibraries
tailored for a particular purpose.

l
Place 1

Place 2

Place 3

l
Peptide Library

[Fragment Library 1

L

Place-Bridge 1

Place-Bridge 2

Place-Bridge 3

l
Organic Library

I
l

Place-Join 1

Place-Join 2

Place-Join 3

l
Bridge 1

Bridge 2

Bridge 3

Fig. 4. Overview of the PRO_LIGAND fragment-library architecture.

18

TABLE 1
TYPICAL FRAGMENTS CONTAINED IN THE PLACE-JOIN LIBRARY

Sublibrary Fragments

Ali_polarl
Ali_polar2
Ali_polar3
Ali_polar4
Aliphaticl
Aliphatic2
Aro_polar 1
Aro_polar2
Aromatic

Acetaldehyde, butyrolactone, cyclohexanone, epoxypropane, formamide, formic acid, methyl acetate, acetamide, urea
Acetone, propenal, cycloheptanone, formaldehyde, cyanomethane, methyl amine, methyl acetamide, formimine
Dimethyl sulphoxide, guanidine, methyl carbamate, formamidine, N-methyl hydroxylamine, formaldehyde oxime
Ammonia, dimethyl ether, dimethyl amine, methanol, water
Propene, cyclohexane, cyclopropane, cis and trans 2,3-butene, trans butadiene, ethene, methyl cyclopropane, norbornane
1,3-Dithiane, dimethyl sulphide, ethane, ethyne, isobutane, propyne, methane, propane
Aniline, pyridine, pyrrole, thiazole
1,3-Oxazole, 1,3,5-triazine, imidazole, pyrazine, pyrimidine, tetrazole
Benzene, naphthalene, N-dimethyl analine, thiophene

As mentioned above, PRO_LIGAND tends towards
the use of small libraries containing fairly basic chemical
moieties which can be simply constructed and energy
minimised. Table 1 lists some of the fragments which
constitute the place-join library and which are typical of
those employed by PRO LIGAND. Each of the frag-
ments in the library is stored in a GMSD file which con-
tains Cartesian coordinates, atom types etc., and, where
appropriate, multiple conformations for conformationally
flexible fragments such as amino acid residues. Each frag-
ment file also contains labels indicating which atoms (or
fragment interaction sites) are to be tested for fits onto the
design-model interaction sites. These interaction site labels
may be added directly to the GMSD file by hand, or via
a graphical user interface incorporated in our in-house
molecular graphics package (PROMETHEUS EYE). The
latter allows the user to pick atoms in a fragment struc-
ture and select appropriate labels which will be saved
automatically with the structure. Typical examples of
labels for each type of fragment are shown in Fig. 5. As
can be seen, in addition to the interaction-site types
described in the previous section, Structure Generation
also makes use of the 'Join sites' type of interaction site
during the fragment assembly process, which is denoted
by vectors J-K. These indicate X-H bonds on each frag-
ment which are available for forming connections to
other fragments in the manner of the CAVEAT program
[47,48].

It should be noted that there may be several different
labellings for each fragment and these may be assigned
ranks by the user to reflect their anticipated importance
in the building process. In the fitting process each of these

representations is considered, with higher ranking repre-
sentations examined first, since these generally have more
interaction sites. Representations with the same rank are
searched through in a random order during the structure-
generation calculation. It is unnecessary to specify X and
Y sites on the fragments, since these are generated auto-
matically at run-time. During Structure Generation,
PRO_LIGAND also performs methyl rotations at
increments controllable by the user to ensure that, for
example, all the hydrogens in the methyl group of meth-
anol are considered as join sites.

Building structures
After reading the user-supplied data and design-model

files, the module enters a series of drivers. The most im-
portant of these drivers controls the overall building
strategy and passes through the four phases of Structure
Generation, viz.

(1) placement of fragments
(2) place-bridging of fragments
(3) place-joining of fragments
(4) bridging of fragments
For each phase there are separate fragment libraries,

each potentially with its own set of ranked sublibraries.
It is important to note that the underlying algorithm of
each phase is identical. The distinction made between
them is mainly to allow better understanding and control
of the structure-generation process.

The amount of building in each phase and the order in
which the different modes of building are triggered is
controlled by the user. The placement phase simply places
library fragments onto the target sites specified in 3D

L A

CH 3 O
\ o

H

H H

\ /
C

J / \ j
H H

L A A

/o 2 o\D J / o \
H j H H CH2 C H 2 - - H

Placing fragment Bridging fragment Place-joining fragment Place-bridging fragment

Fig. 5. Labelling of library fragments.

coordinate space by the design model. The place-joining
phase attaches the fragment to fragments already placed
onto the design model, whilst the place-bridging phase
tries to bridge across two or more already placed frag-
ments. In both these cases the new fragments hit design-
model target sites at the same time. The bridging phase
simply fits bridges between placed fragments, without
seeking to satisfy any interaction sites in the process.
These four modes of operation are schematically repre-
sented in Fig. 6. As a consequence of PRO_LIGAND's
general driver structure, it is possible to construct mol-
ecules by sequential linking of fragments in the spirit of
programs such as GROW [15,16] or by an exhaustive
placement strategy with a final linking stage in a manner
akin to LUDI [21-23]. An advantage of our method is
that alternative strategies in between these two extremes
are also available. More details about the structure-gener-
ation driver are given in Appendix 2.

After the outer driver has made decisions about the
mode of building and the libraries used, an inner driver
is called which searches through a library until it locates
(or fails to locate) a hit. This driver then controls the
placement of the new fragment and performs a number of
checks on the quality of the placement. A flow diagram
illustrating the operation of this part of the module is
given in Fig. 7 and is explained in detail below. Note that
the same driver and operations are employed independent
of the mode of placement used.

The module first reads a fragment from the library ac-
cording to a randomly ordered list. For this fragment, the
module loops over the different conformations of the

19

fragment in a random order, together with the different
sets of fragment interaction sites (also in a random order,
but respecting any ranking that may be present); these
loops are not shown in Fig. 7 for clarity. The randomisa-
tion is important because PRO_LIGAND uses a depth-
first strategy to circumvent the combinatorial problem of
building a ligand - in other words, the first acceptable fit
of a fragment is automatically accepted. This means that
the order of relevant lists and arrays must be continu-
ously updated to prevent biases being introduced into the
procedure.

The next operation is to establish whether the fragment
can be placed onto the design model. The detection of a
possible fit is performed by means of the subgraph iso-
morphism algorithm of Ullmann [49], using an imple-
mentation similar to that of Brint and Willett [50]. This
algorithm has the advantages of quickly detecting frag-
ments that do not fit and being able to enumerate all pos-
sible hits if required. One slight disadvantage is that the
algorithm compares distance matrices for the design-mo-
del interaction sites and the fragment interaction sites and
so cannot detect differences in chirality. A subsequent
check is thus required when more than three interaction
sites are being fitted. This chirality check is accomplished
in a similar manner to that described by Golender and
Vorpagel [51]. User-supplied tolerances control how tight-
ly the fragment and the design model must match. After
locating a hit the algorithm automatically passes the frag-
ment on for further processing, but the graph matching
code can be re-entered to generate new hits should the
current one be rejected subsequently. Note that the Ull-

, o . , .

• , , _ , . , _ , _ . _ . _ . _ . _ , . . , _ , • • • ° ; & , _ . ° _ , & - . , . ,

. i ° ° n , ° , . . :::::::::::::::::::::::::::::::::::

. ° , .

. °

Place

Place-join

Place-bridge

Bridge

- -

. ° , I ' l O ° h -

::::::::::::::::::::::::::::::::::::

. ° , .

v

. ,

. . , ° o , °
. ° ° ,

Fig. 6. Available building modes in structure generation. The dots represent interaction sites which may be hit by a placed fragment. Note that
interaction sites are deleted from around a fragment once it is placed.

20

mann method constitutes an exact matching procedure,
i.e., all fragment interaction sites must be matched by
corresponding distinct design-model interaction sites. It is
possible to envisage a partial matching procedure using a
clique detection algorithm [52-54] in which the user spec-
ifies a minimum number of interaction sites that must be
matched for each fragment. Such an approach has not
been adopted here for at least two reasons. Firstly, we are
concerned that the fitted fragments do not stray too far
from the edges of the design model, since this implies a
likely clash with the receptor wall. For this reason, as far
as possible we attempt to label the fragments so that the
distribution of interaction sites represents the spatial ex-
tent of the fragment. By then insisting that all of these
sites be hit, we reduce the likelihood of fragments being
placed in positions giving rise to undesirable steric contact
with the receptor. Secondly, previous studies have shown
that clique detection is rather less efficient for the purpose
of graph matching than the Ullmann algorithm [50], par-
ticularly when the likelihood of a mismatch is high. Fur-
thermore, the clique detection algorithm of Bron and
Kerbosch, which is often used in molecular structure ap-
plications [13,53,55-57], can be very demanding of virtual
memory since it requires the manipulation of a matrix
which is potentially (NF x ND) 2 in size, where NF is the
number of interaction sites on the fragment and ND is
the number of interaction sites on the design model.

The fragment is next fitted onto the design model using
an rms superposition algorithm. This fitting is weighted,
so that some interaction sites can be fitted more tightly
than others if the user so desires. For example, hydrogen
bonding features will normally be weighted more strongly
than lipophilic features. Once the fragment has been

No fit

Bad clashes

Unresolved

bonds

Poor fit

Select next fragment from database

Set up distance matrices

Find possible fit for fragment

If successful, position fragment

Check suitability of fit

Resolve fragment-fragment clashes

Create new bonds

Update interaction site distance matrix

Fig. 7. Overview of the structure-generation process.

TABLE 2
LIBRARY FRAGMENTS USED IN THE CONSTRUCTION
OF THE MTX MIMIC

Fragment Number of times used

Pyrazine 1
H2CNCHNH (a specialised ring-fusion 1

fragment)
Dimethyl aniline 1
Planar NH 3 2
Methanol 2
Propane 1
Ethane 1
Formaldehyde 1

placed on the design model, some tests are performed to
check the suitability of the fit. The first test searches for
clashes between already placed fragments and the new
fragment. It detects whether clashes exist between heavy
(i.e., non-hydrogen) atoms and if they do, decides wheth-
er they can be resolved through the formation of bonds.
Of course, resolvable clashes will be present for any kind
of bridge or join fragment, but even with a simple placed
fragment the algorithm may detect resolvable clashes and
subsequently form new bonds. When searching for resolv-
able clashes, a pair of (say) C-H bonds which are suitably
oriented for bond formation will be sought. I f such a pair
does not exist in the current conformation, the algorithm
will check to see if rotation of available methyl groups
will allow bond formation. I f the bonds concerned are too
far apart for direct bond formation, the possibility of
inserting a methylene bridge between the fragments is
automatically considered.

The next test involves a check to ensure that any pro-
posed bonds do not involve the joining of an unsuitable
pair of atoms, e.g., O-O, N-N and so forth. The final test
looks for van der Waals clashes between heavy atoms in
the active site and fragment. If any of these tests fail, the
fitted fragment is rejected and the graph matching algo-
rithm is restarted to look for new fits.

The fragment is then added to the ligand structure and
new bonds are created where required. Subsequently, a
geometry correction is performed to create an ideal geo-
metry around the bonds just formed. To ensure that these
corrections have not caused a gross distortion in the
ligand, it is refitted on the design model. If this refitting
fails, the newly joined fragment is rejected and the algo-
rithm backtracks to the previous partial structure.

The fitting process is now complete, but it is necessary
to update the design model. Interaction sites that have
been hit are removed from the list, as are interaction sites
that clash (determined by a user-defined tolerance) with
heavy atoms on the new fragment. Additionally, the par-
tial ligand structure is examined and most of its hydrogen
atoms are used to generate new join sites which are in-
cluded in the design model.

The driver is exited when either the library has been
exhausted or one fragment has been placed. It should be
noted that no attempt is ever made to differentiate be-
tween high-scoring or low-scoring fits. Any fit that sat-
isfies user-definable constraints is immediately accepted.
This constitutes a depth-first search through solution
space and solutions of varying quality and great diversity
are quickly generated. Since one of the primary functions
of tools such as PRO_LIGAND is to generate ideas by
'molecular brainstorming', such a strategy is well justified.
Subsequent refinement can be used to weed out or
improve solutions of lower quality.

Other options and features
The Structure Generation module can also be

instructed to increase the frequency of ring fusion during
the building process. Fusion can be thought of as place-
bridging, bridging already joined fragments in such a way
that a ring is created. The place-bridge library contains
fragments such as butadiene and butane which are in the
correct conformations to form fused rings. I f these frag-
ments are placed in a separate high-ranking library, a
fusion phase can be included in the strategy. This method
has been successfully used to reproduce the framework of
steroids during building.

Options are present that allow the pre-screening of
library fragments and their conformations in a manner
analogous to a 3D database search [58]. This option
creates a file containing information on whether a par-
ticular fragment or conformation can ever be fitted onto
the design model. The program uses this information to
avoid searching through useless files or conformations
and thus speeds up the building process. The job can be
restarted using an existing screen file and the screen file
can also be edited by hand to exclude fragments that are
known to be detrimental to a particular building task.

PRO_LIGAND also has an option for the inclusion of
a seed fragment, i.e., a structural moiety that forms some
portion of the ligand and is used as a starting point in
structure generation. More interestingly, previously gener-
ated structures or parts of previous structures can be used
as seeds. The seed option can thus be thought of as trap-
ping information about important or useful parts of the
tree-search problem, and allowing future runs to focus on
these areas. Another approach to this problem that has
been implemented allows the automatic formation of
application-dependent fragment libraries. I f requested, the
Structure Generation module can produce libraries of
structures of size n, where n is the number of original
fragments in each of the new library fragments and is
user-definable. The algorithm guarantees that growth can
occur from each of the fragments it generates. This strat-
egy allows one to store knowledge about which fragments
can join to each other and may be used again to reduce
computational effort in future structure-generation runs.

21

Scoring algorithm
Once a structure has been built by PRO_LIGAND, it

is assigned a score to reflect how well it has met the con-
straints and features of the design model and also other
intrinsic structural features specified by the user. The
score is a weighted sum of the number of interaction sites
hit together with terms for the number of asymmetric
carbon atoms, number of rotatable bonds and degree of
structural disjointness (which may result from a 'place-
and-join' building procedure).

More specifically, a structure's score, S, may be cal-
culated as follows:

NA ND NAI NAt

S ~-- Z W A + Z WD-[- Z WAI + Z WAr
1 1 1 1

NRot NAsym NComp- 1

+ EWRo,+ Z Wasym+ Z %is
1 1 1

where NA and N D are the numbers of hydrogen bond
acceptor and donor sites hit by the structure, NA1 and
NAr are the numbers of lipophilic aliphatic and aromatic
interaction sites hit by the structure, NRot and NAsym
are the number of rotatable bonds and the number of
asymmetric carbon atoms in the structure and NComp is
the number of disjoint components in the structure. W a
is the contribution to the score for each hydrogen bond
acceptor site hit and the other weights refer to their
respective features.

All the weights mentioned may be specified by the user
so that those structures which best meet the user's re-
quirements, both in terms of the design-model constraints
and intrinsic structural features, will be assigned the top
scores. The precise values for each of the weights will
obviously vary from one design problem to another, but
in general, one would want to weight hydrogen bonding
features more strongly than lipophilic features and to give
small penalties (i.e., negative weights) to rotatable bonds
and asymmetric carbon centres. In general, disjoint struc-
tures will not be of interest and this can be reflected by
the assignment of a large penalty for those structures with
more than one distinct component. In the absence of
user-specified values, the program assigns defaults of -0 .1
to WRot and WAsym, +1.0 to W A and W D, +0.25 to WA~ and
WAr and -2.0 to Wi)i¢

While the above score function is simple, it has proved
to be quite adequate in practice as an initial 'screen' to be
applied to the generated structures. Obviously, no scoring
function, however complex, is going to be accurate or
flexible enough to replace the experienced judgment of a
synthetic or medicinal chemist. The best that can be
hoped for is some gross ranking of the output to give the
user some assistance in extracting the solutions worthy of
further consideration. At present, we are also implement-
ing a set of clustering and ranking procedures [58,60] to
allow the user to gain a rapid overview of the structural

22

classes generated. This will be particularly useful when the
output consists of several hundreds or thousands of struc-
tures. Such tools are commonly used in conjunction with
3D database searching systems, where the problem of
voluminous output, especially from 'flexible' searches, is
well documented [61-63].

Output and graphical analysis

The output from a PRO_LIGAND run consists of the
required number of structures in GMSD format, together
with a log file containing their scores and the history of
the building process. PROMETHEUS EYE, the graphical
display package of PROMETHEUS, enables viewing of
the design base and design model, a dynamic replay of
each molecule's construction and it offers facilities to aid
the construction of fragment libraries.

Results

As an indication of the capabilities of PRO_LIGAND,
we have tested the approach using well-characterised
examples. Below we illustrate the use of the program in
similar-design mode to design a mimic of the anti-cancer
agent methotrexate, and in complementary-design mode
to design potential inhibitors for dihydrofolate reductase
and HIV-1 protease. It is worth noting that in all these
examples, the results presented represent the culmination
of several runs of the structure generation module, which
is usually instructed to generate in the order of 100 struc-
tures per run. Such iteration is necessary both to tune the
various parameters and score weights for a particular
example and also permits the use of a 'seeding' strategy,
as exemplified by the HIV-1 protease case.

Similar design to methotrexate
As is well known, the enzyme dihydrofolate reductase

(DHFR) catalyses the NADPH-dependent reduction of
dihydrofolate (FH 2) to tetrahydrofolate (FH4). FH4 plays
a vital role in the biosynthesis of thymidylate (dTMP),
which is an essential building block of DNA. Inhibition
of D H F R interrupts the supply of FH4, causing disrup-
tion in the synthesis of purine and pyrimidine bases and,
eventually, cell death. The discovery of inhibitors of

002 H

NH 2 H3C~ N CO2H

Fig. 8. The structure of methotrexate (1).

OH CH2OH

NH 2 H3C~ N ~

 . NO/N N
H2N

Fig. 9. A methotrexate mimic (2) designed by PRO LIGAND.

D H F R has led to several useful drugs for the treatment
of cancer, bacterial infections and malaria [64].

One such inhibitor is methotrexate (1), shown in Fig.
8, which has been studied for over 30 years and remains
an important therapeutic agent for cancer and a variety
of other indications, such as severe cases of rheumatoid
arthritis and psoriasis. Although methotrexate is of defi-
nite utility against some forms of cancer, it has shown
limited activity against other types of malignancy and is
also rather toxic. For these reasons, it would be desirable
to develop a drug which possesses a broader range of
applications and which has less severe side effects [65].

To test PRO_LIGAND in similar-design mode, we
constructed a design base from all the atoms of metho-
trexate. The heavy-atom positions were taken directly
from the crystal structure of the inhibitor as crystallised
with E. coli D H F R (Brookhaven Databank code 4DFR)
[66] and appropriate hydrogens were added afterwards.
The Design-model Generation module was then run on
this design base to yield a design model consisting of 48
interaction sites (16 R, 12 L, 3 X, 5 D, 3 Y, 9 A).

This design model formed the input for the Structure
Generation module. In order to encourage the production
of ring systems analogous to methotrexate in the designed
structures, a 'GROW AND_FUSE' strategy was chosen.
The choice of this strategy simply instructs the Structure
Generation module to search the library of fragments
suitable for fusion before any other during the place-
bridge phase of building.

The structure of one of the analogues (2) designed by
PRO_LIGAND is shown in Fig. 9. As can be seen, the
structure closely mimics that of methotrexate, particularly
in the reproduction of the pteridine ring and the para-
substituted benzene. The main differences lie in the oxida-
tion states of the hydrogen bond acceptors which form
the analogue to the glutamate moiety of methotrexate. In
the molecule designed by PRO_LIGAND, the carboxylic
acid groups are replaced by an alcohol and an aldehyde.
In addition, there is an extra rotatable bond in the chain
linking the two acceptor groups. Finally, the backbone
amide has disappeared to be replaced by another alcohol
group. Table 2 lists the fragments that were used by
PRO_LIGAND to create the designed molecule.

The typical CPU time required to generate such a

23

structure is in the order of 35 s on an SGI Indy work-
station.

Complementary design to DHFR
Rather than designing molecules which are similar to

a known lead, another approach to inhibitor design is to
build structures complementary to the enzyme active site.
This is a rather less constrained problem and so promises
to generate a greater diversity of structures.

For complementary design to DHFR, we again began
with the 4DFR crystal structure, specifically, the B chain.
The atoms comprising the active site were defined as
those falling within spheres of 5.0 A radius centred on the
crystallographic positions of the methotrexate atoms. This
was found to be sufficient to include the residues import-
ant for inhibitor binding. Two water molecules known to
be important for binding (B603 and B639) were added to
give a total of 179 design-base atoms.

This design base was then operated upon by the
Design-model Generation module which resulted in a
design model consisting of 415 interaction sites, shown in
Fig. 10. In addition to the underlying swathe of lipophilic
sites which are produced by various backbone and side-
chain carbon atoms, there are four distinct groups of
hydrogen bonding interaction sites. Group A is a set of

donor sites arising partly from the guanidinium group of
Arg 57, but mainly from that of Arg 52, which also gives rise
to Group B. The Group C donor sites are produced by
the water molecule which mediates between Asp 27 and the
N5 atom of methotrexate. The set of acceptor sites,
Group D, results from the carboxyl group of Asp 27.
Finally, two vector acceptor sites appear between Groups
B and C. These arise from the carbonyl group of Ile 94.
Other such vectors from this residue and also from Ile 5
have been removed by the clash-checking algorithm,
probably because of a bad contact with a hydrogen on
the receptor.

Once again, a GROW_AND_FUSE building strategy
was employed in the structure generation process. One of
the structures (3) produced by PRO_LIGAND is shown
in Fig. 11. In this example, PRO_LIGAND has chosen to
satisfy the Group A sites with a pyrido[3,4-b]-pyridine
fragment (constructed from the fusion of pyridine with
CH2NCHCH2). While this fragment is reminiscent of the
pteridine ring system of methotrexate, it lacks the necess-
ary hydrogen bond-donating substituents that would
permit it to bind to Groups C and D. The lipophilic
linker group is provided by dihydrophenanthrene which
is attractive both for its rigidity and ready availability.
However, while PRO LIGAND has met the Group C

Fig. 10. The design model for complementary design to DHFR.

24

and D sites, the aliphatic ether-containing chain linking
the tricyclic lipophilic group and the phenolic moiety is
perhaps rather too flexible.

In an attempt to reduce this flexibility, the structure
was put back into PRO_LIGAND as a seed fragment
and Structure Generation was run with a GENERAL
building strategy (one in which the user can choose the
precise number and sequence of fragment placing and
bridging operations) equivalent to a 'ring-bracing' mode
[32]. One structure (4) resulting from this run is shown in
Fig. 12. As can be seen, the chain linking the pyrido[3,4-
b]-pyridine and dihydro-phenanthrene groups has been
braced by the formation of a seven-membered ring con-
taining a sulphur atom. A number of other bridges of this
nature were also observed, suggesting that there is a size-
able region of lipophilic space that could be filled in this
area. Interestingly, PRO_LIGAND failed to bridge the
chain linking the dihydrophenanthrene and phenolic moi-
eties. The reason for this is believed to be that any bridg-
ing fragments placed at this end of the molecule caused
unacceptable clashes with the receptor.

Another structure (5) generated by PRO_LIGAND is
shown in Fig. 13. This structure, containing a lipophilic
backbone of five fused rings, is rather more rigid than the
previous example. Again, all the groups of hydrogen
bond sites are met by this structure. This is illustrated in
Fig. 14 which shows 5 superimposed upon the hydrogen
binding sites of the design model.

It should be noted that all of the above structures were
built from fragments containing no more than one ring -
a clear indication of PRO_LIGAND's ability to construct
complex cyclic structures. The typical CPU time required
to build a structure complementary to the D H F R binding
site was approximately 5 min on an SGI Indigo work-
station. The time taken for each attempt to ring-brace a
structure was about 10 s on the same machine.

N N

CH 3

02H3

OH

Fig. 11. A potential DHFR inhibitor (3) designed by PRO_LIGAND.

N N

OH3

I
~ S

4

OH

Fig. 12. Structure (4), illustrating PRO_L1GAND in ring-bracing mode.

Complementary design to HIV-1 protease
In the search for therapeutics and vaccines to treat and

prevent acquired immunodeficiency syndrome (AIDS),
much attention has focussed upon its causative agent -
human immunodeficiency virus (HIV). In the life-cycle of
HIV, the processing of gag and gag-pol polyproteins by
the enzyme HIV protease has been shown to be essential
for viral replication. Thus, it is generally believed that if
the activity of the protease can be inhibited, the spread of
viral infection can be attenuated [67,68]. The protease has
thus become a popular target for rational drug design
efforts and a number of novel inhibitors have been
designed using SBDD methods [69-71].

As a further illustration of PRO_LIGAND in com-
plementary-design mode, the approach was used to design
a ligand to fit the binding site of HIV-1 proteas e. The
crystal structure used in this example was that of HIV-1
protease complexed with the inhibitor acetyl pepstatin
(PDB entry 5HVP) [72]. As in the previous example, the
active site was defined using the positions of selected
inhibitor atoms as centres for spheres, in this case of 7.5
A radius. With the addition of a water molecule necessary
for mediation in the contact between VaP and Sta 4 in the
inhibitor and Ile 5° and Ile 25° in the protease [72], a total of
491 atoms were present in the final design base.

After the operation of the Design-model Generation
module, a design model consisting of 855 interaction sites
was produced. Figure 15 shows a cut through this design
model and the design base from which it was derived.
The picture clearly shows how the hydrogen bond interac-
tion sites represent the position and nature of the desired
functionality in the ligand to be generated. For instance,
the water molecule mentioned above gives rise to two sets
of orange-red vector sites where acceptor groups should
be situated and carbonyl groups in the active site can be
seen to spawn blue vector sites for the positioning of

donor groups. The design model also reflects the approxi-
mate C2 symmetry of the active site - a feature often
exploited by effective inhibitors of the enzyme [69,70].

To build structures to fit this model, a GROW strategy
for structure generation was employed. In this strategy, a
single fragment is placed and then subsequent fragments
are joined to the current partial ligand. One of the result-
ing structures (6) is shown in Fig. 16 and is superimposed
upon the design model in Fig. 17. The structure shown is
actually the result of several PRO LIGAND runs, during
which observed desirable features were trapped as 'seeds'
for subsequent structure generation runs. This iterative
design process is illustrated in Fig. 18. The figure shows
firstly the initial thiazole ring seed (7). This was selected
because it had been seen to fit snugly on the design mo-
del, while making favourable hydrogen bond contact with
the mediating water molecule mentioned above and being
well positioned for the growth of side chains to form the
backbone of the inhibitor. A subsequent run added a
reduced amide functionality to this seed. The resulting
structure (8) was in turn taken as a seed and a further
structure generation run produced the structure (9) which
formed the seed fragment for the final structure.

As can be seen from Fig. 17, the designed molecule can
be expected to have many favourable hydrogen bond
interactions with the enzyme active site. Of particular
interest is the effective 'trapping' of the mediating water
by the thiazole ring nitrogen and a carbonyl oxygen. It
should be noted that the main aim of our study was to
illustrate the power of PRO_LIGAND by producing a
thought-provoking solution for the backbone of an HIV-1
protease inhibitor. The simpler design problem of select-
ing optimal substituents for the S and P subsites has been
considered by other workers [22,25,26] and could also be
undertaken by PRO_LIGAND.

Discussion

The three examples presented above demonstrate
PRO_LIGAND's ability to generate, with considerable
rapidity, diverse and novel chemical structures which
satisfy the constraints imposed by a design model. These
structures may be either similar to the input molecule (as
in the case of the methotrexate mimic) or complementary
to it (as in the examples of inhibitor design for D H F R
and HIV-1 protease).

Of the de novo design programs already described in
the literature, PRO_LIGAND is perhaps most similar
to LUDI [21,22] in that structure generation is effected
by joining molecular fragments placed upon target
interaction sites. However, there are several points con-
cerning the design philosophy and implementation of
PRO_LIGAND that we feel represent significant and
novel advances in methodology.

Firstly, in designing PRO_LIGAND, the desire for a

25

unified and general approach to de novo ligand design
has been at the forefront of our thinking. We have also
sought to allow the user as much control as possible over
the design process. This is reflected in many aspects of
the approach, such as the flexible and readily extendable
nature of the GMSD interface, the multi-sphere definition
of the active site, the almost limitless variety of strategies
available for fragment assembly via the generalised Struc-
ture Generation driver, the ease with which fragment
libraries can be assembled and manipulated for particular
tasks, the development of user-definable rule bases gov-
erning the nature and position of the interaction sites
created during design-model generation and the ability to
weight the terms in the scoring function to give high
scores to the structures considered desirable by the user.
The approach taken is sufficiently general to permit
PRO_LIGAND to design not only organic molecules but
also peptides and, furthermore, to build structures to
satisfy pharmacophore maps and CoMFA models. These
latter applications will be the subjects of future papers.

A further and fundamental concept is the unification
of the concepts of 'similar' and 'complementary' design
by means of the design model. That is, the task of struc-
ture generation is oblivious to the type of design it is car-
rying out - the placing and joining of fragments is the
same in either case. This considerably extends the range
of design problems to which PRO_LIGAND may be
applied.

Other features which we consider to be unique to
PRO_LIGAND are the use of a proven molecular graph
theory procedure for fragment placing which we believe
to be more efficient than that employed in LUDI, the
pre-screening of library fragments which further increases
efficiency by immediately removing those fragments
which cannot fit the design model, and the use of sophis-
ticated geometry-correction routines in an attempt to
ensure reasonable geometries in generated structures.

This last point obviously highlights the fact that in
developing PRO_LIGAND we have chosen not to use

CHO

O" ~ C H 3
HN_._.I/C H20 i~, ~

H 3 C ~ IN'~cH3

5

Fig. 13. Structure of another potential DHFR inhibitor (5) designed
by PRO_LIGAND.

26

Fig. 14. Potential inhibitor (5) designed by PRO_LIGAND, showing a fit to the design model.

Fig. 15. A cut through the design model for complementary design to HIV-1 protease, showing some of the parent features from the enzyme active site.

27

,NH 2 QHO ,O H QHO ,O,

C+o
Fig. 16. A potential HIV-1 protease inhibitor (6) designed by PRO_LIGAND.

force-field methods to guide the structure-generation
process or to rank the generated structures. There are
several reasons for this. Firstly, as B6hm has pointed out
[22], traditional force-field methods are prone to the mul-
tiple-minimum problem, i.e., a considerable number of
calculations could be required to determine the 'optimal '
position of the ligand. Secondly, use of force-field calcula-
tions is likely to add significantly to the time taken to
generate a ligand, particularly if the minimisation of the
growing ligand is carried out with respect to the receptor.
Finally, a further difficulty arises from the lack of a force
field which is suitably parameterised to treat both macro-
molecular and small organic molecules simultaneously.
Our experience with PRO L I G A N D has shown that
useful solutions may be obtained using the purely geo-
metrical approach advocated by B6hm. It should always
be borne in mind that PRO_LIGAND is primarily
intended as an 'idea generator' and not as a substitute for
the experience and creativity of medicinal chemists and
molecular modellers.

We are, however, actively considering the use of
limited force-field calculations in the geometry-correction
process. As it is impossible for the current set of correc-
tion rules to take account of every case that may be en-

6

countered, there are still occasions when the bond lengths
or angles in generated structures show deviations from
their ideal values. The use of a rapid molecular mechanics
'clean-up' procedure prior to refitting the partial structure
back onto the design model would address this problem,
without adding significantly to the CPU time required for
structure generation.

As mentioned earlier, in PRO_LIGAND we have
chosen to use a fairly small (although readily extendable)
library of fragments from which to assemble structures.
In this respect, our method differs significantly from
LUDI which uses about 1000 fragments. The ability of
PRO_LIGAND to construct fused ring systems means
that only primitive cyclic structures need to be included.
At present, the default libraries contain a total of less
than 200 fragments although, of course, there is signifi-
cant redundancy in terms of the chemical diversity since
a given fragment (e.g., methanol) may appear in all four
libraries but can be labelled differently in each. In fact,
the total number of chemically distinct fragments is only
68. Even with this small number, we found no shortage
of diversity in the structures generated. Of course, invok-
ing the screening option can reduce this number for any
particular system. It is our belief that increasing the num-

Fig. 17. Potential inhibitor (6) designed by PRO_LIGAND, showing a fit to the design model.

28

7

NH 2 CHO 0 8

NH 2 CHO 0 9 H

Fig. 18. Seed fragments used in the generation of (6).

ber of fragments substantially will generally have a del-
eterious effect on the execution time of the program,
while not significantly increasing the novelty or interest of
the designed structures.

Conclusions

We have described an approach to de novo molecular
design called PRO_LIGAND which we believe embodies
some significant and novel features both in its design and
implementation. The utility of PRO_LIGAND has been
demonstrated by three examples showing its ability to
build diverse and novel structures which are either similar
or complementary to a specified molecular target. The
use and development of PRO_LIGAND within the expert
system PROMETHEUS remains an active research area.
Future papers will detail PRO_LIGAND's methodology
for peptide design, the design of novel molecules from
pharmacophore models and 3D QSAR information and
the genetic algorithm-based structure refinement module
[41], as well as the application of PRO_L1GAND to the
design of DNA-binding drugs.

Acknowledgements

We thank Richard Sykes for the development of the
PROMETHEUS EYE package which has facilitated and
augmented the development and presentation of
PRO_LIGAND.

References

1 Walkinshaw, M.D., Med. Res. Rev., 12 (1992) 317.
2 Fesik, S.W., J. Biomol. NMR, 3 (1993) 261.
3 Navia, M.A. and Murcko, M.A., Curr. Opin. Struct. Biol., 2

(1992) 202.
4 Kuntz, I.D., Science, 257 (1992) 1078.
5 Bugg, C.E., Carson, W.M. and Montgomery, J.A., Sci. Am., 269

(1993) 60.
6 Ealick, S.E. and Armstrong, S.R., Curr. Opin. Struct. Biol., 3

(1993) 861.
7 Reich, S.H. and Webbel; S.E., Perspect. Drug Discov. Design, 1

(1993) 371.
8 Greet, J., Erickson, J.W, Baldwin, J.J. and Varney, M.D., J.

Med. Chem., 37 (1994) 1035.

9 Verlinde, C.L.M.J. and Hol, W.GJ., Structure, 2 (1994) 577.
10 Blundell, T.L., Sibanda, B.L., Sternberg, MJ.E. and Thornton,

J.M., Nature, 326 (1987) 347.
11 Mayer, D., Naylor, C.B., Motoc, I. and Marshall, G.R., J.

Comput.-Aided Mol. Design, 1 (1987) 3.
12 Sheridan, R.E, Nilakantan, R., Dixon, J.S. and Venkataraghavan,

R., J. Med. Chem., 29 (1986) 899.
13 Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzar, J., Lico, I.

and Pavlik, EA., J. Comput.-Aided Mol. Design, 7 (1993) 83.
14 Cramel; R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem.

Soc., 10 (1988) 5959.
15 Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11

(1991) 314.
16 Moon, J.B. and Howe, WJ., In Wermuth, C.G. (Ed.) Trends in

QSAR and Molecular Modelling 92 (Proceedings of the 9th Euro-
pean Symposium on Structure-Activity Relationships: QSAR and
Molecular Modelling), ESCOM, Leiden, 1993, pp, 11-19.

17 Miranker, A. and Karplus, M., Protein Struct. Funct. Genet., 11
(1991) 29.

18 Caflisch, A., Miranker, A. and Karplus, M., J. Med. Chem., 36
(1993) 2142.

19 Nishibata, Y. and Itai, A., Tetrahedron, 47 (1991) 8985.
20 Nishibata, Y. and Itai, A., J. Med. Chem., 36 (1993) 2921.
21 B6hm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.
22 B6hm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.
23 B6hm, H.-J., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design:

Theory, Methods and Applications, ESCOM, Leiden, 1993, pp.
386-405.

24 Lewis, R.A., Roe, D.C., Huang, C., Ferrin, T.E., Langridge, R.
and Kuntz, I.D., J. Mol. Graph., 10 (1992) 66.

25 Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol.
Design, 7 (1993) 23.

26 Rotstein, S.H. and Murcko, M.A., J. Med. Chem., 36 (1993) 1700.
27 Gillet, V.J., Johnson, A.P., Mata, E, Sike, S. and Williams, E, J.

Comput.-Aided Mol. Design, 7 (1993) 127.
28 Gillet, V.J., Newell, W., Mata, R, Myan, G., Sike, S., Zsoldos, Z.

and Johnson, A.E, J. Chem. Inf. Comput. Sci., 34 (1994) 207.
29 Pearlman, D.A. and Murcko, M.A., J. Comput. Chem., 14 (1993)

1184.
30 Tschinke, V. and Cohen, N.C., J. Med. Chem., 36 (1993) 3863.
31 Ho, C.WM. and Marshall, G.R., J. Comput.-Aided Mol. Design,

7 (1993) 623.
32 Leach, A.R. and Lewis, R.A., J. Comput. Chem., 15 (1994) 233.
33 Leach, A.R. and Kilvington, S.R., J. Comput.-Aided Mol. Design,

8 (1994) 283.
34 Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Pro-

tein Struct. Funct. Genet., 19 (1994) 199.
35 Ball, J., Fishleigh, R.V., Greaney, E, Li, J., Marsden, A., Platt,

E., Pool, J.L. and Robson, B., In Bawden, D. and Mitchell, E.M.
(Eds.) Chemical Structure Information Systems: Beyond the
Structure Diagram, Ellis Horwood, Chichester, 1990, pp. 107
123.

36 Robson, B., Ball, J., Fishleigh, R.V., Greaney, E, Li, J., Marsden,
A., Platt, E. and Pool, J.L., Biochem. Soc. Syrup., 57 (1991) 91.

37 Frenkel, D., Clark, D.E., Li, J., Murray, C.W, Robson, B., Wasz-
kowycz, B. and Westhead, D.R., J. Compnt.-Aided Mol. Design,
submitted for publication.

38 Waszkowycz, B., Clark, D.E., Frenkel, D., Li, J., Murray, C.W,
Robson, B. and Westhead, D.R., J. Med. Chem., 37 (1994) 3994.

39 Klebe, G., J. Mol. Biol., 237 (1994) 212.
40 Goldberg, D.E., Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley, Reading, MA, 1989.

29

41 Westhead, D.R., Clark, D.E., Frenkel, D., Li, J., Murray, C.W.,
Robson, B. and Waszkowycz, B., J. Comput.-Aided Mol. Design,
9 (1995) in press.

42 Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin,
T.E., J. Mol. Biol., 161 (1982) 269.

43 Weiner, S.J., Kollman, RA., Case, D.A., Singh, U.C., Ghio, C.,
Alagona, G., Profeta Jr., S. and Weiner, R, J. Am. Chem. Soc.,
106 (1984) 765.

44 Weiner, S.J., Kollman, RA., Nguyen, D.T. and Case, D.A., J.
Comput. Chem., 7 (1986) 230.

45 Robson, B. and Platt, E., J. Mol. Biol., 188 (1986) 258.
46 Morley, S.D., Abraham, R.J., Haworth, I.S., Jackson, D.E.,

Saunders, M.R. and Vinter, J.G., J. Comput.-Aided Mol. Design,
5 (1991) 475.

47 Bartlett, RA., Shea, G.T., Telfer, S.J. and Waterman, S., In
Roberts, S.M., Ley, S.V. and Campbell, M.M. (Eds.) Chemical
and Biological Problems in Molecular Recognition, Royal Society
of Chemistry, Cambridge, 1989, pp. 182-196.

48 Lauri, G. and Bartlett, EA., J. Comput.-Aided Mol. Design, 8
(1994) 51.

49 Ullmann, J.R., J. Assoc. Comput. Machinery, 23 (1976) 31.
50 Brint, A.T. and Willett, R, J. Mol. Graph., 5 (1987) 49.
51 Golender, V.E. and Vorpagel, E.R., In Kubinyi, H. (Ed.) 3D

QSAR in Drug Design: Theory, Methods and Applications,
ESCOM, Leiden, 1993, pp. 137-149.

52 Bron, C. and Kerbosch, J., Commun. Assoc. Comput. Machinery,
16 (1973) 575.

53 Brint, A.T. and Willett, R, J. Chem. Inf. Comput. Sci., 27 (1987) 152.
54 Ho, C.W.M. and Marshall, G.R., J. Comput.-Aided Mol. Design,

7 (1993) 3.
55 Kuhl, ES., Crippen, G.M. and Friesen, D.K., J. Comput. Chem.,

5 (1984) 24.
56 Smellie, A.S., Crippen, G.M. and Richards, W.G., J. Chem. Inf.

Comput. Sci., 31 (1991) 386.

57 Grindley, H.M., Artymiuk, EJ., Rice, D.W and Willett, R, J.
Mol. Biol., 229 (1993) 707.

58 Jakes, S.E. and Willett, P., J. Mol. Graph., 4 (1986) 12.
59 Willett, R, Similarity and Clustering in Chemical Information

Systems, Research Studies Press, Letchworth, 1987.
60 Bawden, D., In Warr, W.A. (Ed.) Chemical Structures 2: The

International Language of Chemistry, Springer, Heidelberg, 1993,
pp. 383-388.

61 Martin, Y.C., Bures, M.G. and Willett, R, In Lipkowitz, K.B.
and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol.
1, VCH, New York, NY, 1990, pp. 213-263.

62 Moock, T.E., Henry, D.R., Ozkabak, A.G. and Alamgir, M., J.
Chem. Inf. Comput. Sci., 34 (1994) 184.

63 Clark, D.E., Jones, G., Willett, R, Kenny, RW. and Glen, R.C.,
J. Chem. Inf. Comput. Sci., 34 (1994) 197.

64 Kuyper, L.E, In Perun, T.J. and Propst, C.L. (Eds.) Computer-
Aided Drug Design, Marcel Dekker, New York, NY, 1989, pp.
327-369.

65 Ramnarayan, K., Hausheer, EH. and Singh, U.C., CDA News,
8 (1993) 18.

66 Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and
Kraut, J., J. Biol. Chem., 257 (1982) 13650.

67 Kohl, N.E., Emini, E.A., Schlief, W.A., David, L.J., Heimbach,
J.C., Dixon, R.A.F., Scolnick, E.M. and Sigal, I.S., Proc. Natl.
Acad. Sci. USA, 85 (1988) 4686.

68 McQuade, TJ., Tomaselli, A.G., Liu, L., Karacostas, V., Moss,
B., Sawyer, T.K., Heinrikson, R.L. and Tarpley, W.G., Science,
247 (1990) 454.

69 Appelt, K., Perspect. Drug Discov. Design, 1 (1993) 23.
70 Fitzgerald, EM.D., Curr. Opin. Struct. Biol., 3 (1993) 868.
71 Redshaw, S., Exp. Opin. Invest. Drugs, 3 (1994) 273.
72 Fitzgerald, RM.D., McKeever, B.M., VanMiddlesworth, J.F.,

Springer, J.E, Heimbach, J.C., Leu, C.-T., Herber, W.K., Dixon,
R.A.E and Darke, EL., J. Biol. Chem., 265 (1990) 14209.

Appendix 1

Rule bases for design-model generation

The flow of the Des ign-model Genera t ion module is il-
lus t ra ted in Figs. 19 and 20. When opera t ing in similar-

design mode, the Des ign-model Genera t ion module gener-
ates interact ion sites by the processes of a tom- type con-
version and a tom copying. While type conversion simply
changes a tom types of the design-base atoms, a tom copy-
ing adds new a toms to the design-base list with identical
a t t r ibutes except that the new a toms have different a tom
types. Using a tom copying it is possible to create more
than one interact ion site at the pos i t ion o f a given design-
base atom.

The main rule for a tom type conversion is expressed in
the rule-base file as follows:

A T O M R U L E generic_type db_type(s)

which reduces a list of design-base a tom types to a single
generic type. For instance

ATOM_RULE R C A CB C W C* C N CD CE C F
C G CP

reduces all the A M B E R aromat ic carbon a tom types to
type R.

The following auxil iary rules control a tom-type con-
version:

A T O M _ B O N D db_type l db_type2(s)

which specifies that an a tom of type db_ type l should
only be re typed by an A T O M RULE rule if it is bonded
to an a tom of type db_type2. Replacing the
A T O M _ B O N D by A T O M N O T B O N D ensures that the
retyping only occurs if an a tom of type db_ type l is n o t

bonded to an a tom of type db_type2.

A T O M _ E N V db_type db_residue_label(s)

30

Input files

Atom type conversion

Similar
design 1, Atomcopying

Complementary
design [

Do complementary design
L ~ctions N
i |

1~1, Write design model tile ~,

Fig. 19. Overview of the operation of the Design-model Generation
module.

which insists that an atom of type db_type should only be
retyped if it is part of a residue defined by db_resi-
due_label. For instance, ATOM_ENV NB HIS says that
the AMBER type NB should only be retyped if it is part
of a histidine residue.

The ATOM_BOND and ATOM_NOT_BOND rules
allow nearest neighbours to influence the type conversion
process. The ATOM_ENV rule allows wider environ-
mental influence. However, for some applications, a direct
influence of next-nearest neighbours is required for the
atom-type conversions. I f this is the case, the user is pro-
vided with the option of two passes of atom-type conver-
sion. This option is chosen with the TWO_
PASS_TYPE_CONV keyword in the rule-base file.

The rule for atom copying has the format
ATOM_COPY db_typel new_type(s) and creates copies
of all atoms with db_typel with types new_type(s).

When operating in similar-design mode, the module
simply writes to the design-model file those members of
the list of new atom types which were actually changed
during atom-type conversion or created by atom copying.
Atoms which retain their original design-base atom type
are ignored.

When operating in complementary-design mode the
module again uses atom-type conversion and copying as
the first step. This is to allow the aser to manipulate the
design-base atom types before the complementary inter-
action sites are generated. This can be useful when a
number of distinct atom types can be considered equiv-
alent as far as interaction-site generation is concerned (an
example here might be the hydrogen atoms in OH and
N H groups). After this, the module uses 'complementary
rules' to generate interaction sites.

The flow of the Design-model Generation module for
complementary design after the atom-typing phase is

illustrated in Fig. 20. The outer loop runs over all the
atoms in the design base, and the inner one over all the
complementary rules in the rule base. The module takes
the design-base atoms one by one and then goes through
the rule base. Each time a rule is found which applies to
the current atom type, interaction sites are generated
according to instructions in the rule.

There are two types of complementary rule. The first
is called a 'linear rule'. Here, the position of the site is
defined by specifying a bond length, a valence angle and
a torsion angle from the atom giving rise to the site, as
illustrated in Fig. 21. By default, the second atom (par-
ent) required to define the valence angle, and the third
atom (grandparent) required to define the torsion angle,
are selected randomly by the algorithm from atoms with
appropriate connections. It is possible, however, to define
specific atom types for which the algorithm should search
when assigning parents and grandparents using the
RULE_PARENT and RULE_GRANDPARENT key-
words.

The second type of complementary rule recognised by
the module is termed a 'ring rule'. Again, the position of
the site is given by a bond length, a valence angle and a
torsion angle from the atom giving rise to the site. How-
ever, in this case the valence angle is measured from a
dummy atom which is generated on the perpendicular bi-
sector drawn from the atom giving rise to the site to the
opposite side of the triangle formed by this atom and two
atoms connected to it, as illustrated in Fig. 22. The two
'parent ' atoms are currently randomly selected by the mo-
dule from those atoms with appropriate connections. In
most situations the atom in question is connected to only
two atoms (for instance the unprotonated nitrogen in his-
tidine) and the random selection makes no difference.

More atoms

Start complementary design actions

Get atom type of next 1
design-base atom

i

1
, Apply all complementary rules 1

appropriate to atom type

Generate interaction sites 1

Delete sites which clash with 1
the design-base

End of complementary design actions I

Fig. 20. Operation of the Design-model Generation module in com-
plementary-design mode.

31

Fig. 21. Positioning of interaction sites by a linear rule. The site S is
placed with respect to the a tom A, parent a tom P and grandparent
a tom GP at a bond length l, a valence angle a and a torsion angle w.

When using either of the above complementary rule
types, it is possible to put sites in specific positions, or to
populate ranges of bond length, valence and torsion
angles with evenly spaced sites.

The following keyword entries in the rule-base file
define the complementary rules:

CMP_LIN_RULE atom_type site_type bndl bndu
sbnd vall valu sval torl toru stor
(site_type bndl bndu sbnd vat1 ...)

This rule generates sites for the 'linear' type rule defined
above and it means that for each atom in the design base
typed to atom_type the algorithm should generate a site
of type site_type, using parent and grandparent atoms
which are derived as explained above. The records bndl
and bndu give lower and upper limits for the distance
between the site and the atom giving rise to it. Sites are
then generated by the algorithm at spacing sbnd within
this range of distances. I f sbnd is greater than bndl - bndu
then two sites are generated at the extrema of the range.
I f sbnd = 0.0 or bndl = bndu then one site is generated at
bndl. All distances are in A. The records vall, valu and
sval work in the same way, placing sites in the range of
valence angles between vall and valu; and similarly torl,
toru and stor define the torsional position and spacing of
sites. It is worth noting at this point that, for the angular
records, upper and lower limits are in degrees, but the
spacing of the sites is still in A. The algorithm internally
generates appropriate angle increments to give sites which
are approximately evenly spaced on a spherical surface of
radius bndl at the user-defined spacing value.

As an example of this rule

CMP_LIN_RULE LAL L 4.0 4.0 0.0 0.0 180.0 2.0
0.0 360.0 2.0

places sites of type L on the surface of a sphere of radius
4.0 A at a spacing of 2.0 & around all atoms of type
LAL.

Some interaction sites (e.g., the D-X hydrogen bond
donor sites) require the placing of two points. This can be
done by simply stating the second site type and its posi-
tion with respect to the first site directly after the specifi-

cation of the first point. Now the parent atom becomes
the original design-base atom and the grandparent atom
the original parent atom. For example

CMP LIN_RULE OCB D 1.9 1.9 0.0 110.0 180.0 1.0
0.0 360.0 1.0 X 1.0 1.0 0.0 180.0
180.0 0.0 0.0 0.0 0.0

places sites of type D 1.9 A from atoms of type OCB in
the range of valence angles 110 ° 180 ° and in the full
00-360 ° range of torsions. For each of these sites a fur-
ther site of type X is 1.0 A from the D site, so that OCB-
D-X is linear.

The 'ring' type rule is specified using the following
keyword:

CMP_RING RULE ludi_type site_type bndl bndu
sbnd vall valu sval torl toru stor
(site_type bndl bndu sbnd vall...)

This rule works in the same way as the
CMP_LIN_RULE, except that the 'parent ' and 'grand-
parent ' atoms are chosen as for a 'ring' rule, as defined in
Fig. 22.

When in complementary mode, the final step is dele-
tion of the interaction sites which make van der Waals
clashes with the receptor. This requires specification of
radii for all interaction sites and atoms in the source
molecule, which is done using the parameter file specified
by the ATOM_RAD_FILE keyword in the input file. This
parameter file contains the following keywords:

ATOM_RAD_INDX integer index atom_type(s)

which attaches an index to a set of atom types, and

ATOM_RAD_VAL integer_index real_radius

which associates a radius with each of the atom types
previously assigned the integer_index.

:: d ' , , ; ,
Di:i i'"''" A ~ 1 ;/

P

Fig. 22. Positioning of interaction sites by a ring rule. The site S is
placed at a bond length 1, a valence angle a and a torsion angle w
with respect to the a tom A, a d u m m y atom D and one of the parent
a toms P.

32

Appendix 2
A generalised driver for fragment-based structure generation

The driver is designed to allow as much flexibility as
possible in the building process, in the following, the
strings in bold capitals represent keywords to which the
user assigns values in the input file to structure gener-
ation. For example, NFRAG PLACE may be assigned
the value of 10 and PLACE_BRIDGE_LIBRARY may be
assigned the value '/usr/people/pro_ligand/pb_lib/aro_
polarl 1', where '1' indicates the rank assigned to the
specified library. A diagram of the loop structure of the
driver is given in Fig. 23.

The loops labelled a, b, c and d represent different
modes of building. The first loop, a, places fragments
onto the design-model interaction sites. Up to
NFRAG_PLACE fragments are placed every time this
loop is traversed. The algorithm searches through all the
PLACE_LIBRARYs in the order of their respective ranks
until it has exhausted the libraries or exceeded NFRAG_
PLACE. The second loop, b, places fragments onto
design-model interaction sites whilst also bridging be-
tween already placed fragments. The algorithm searches
through the PLACE_BRIDGE_LIBRARYs, each with its

P

aTI,
bll,
cl

i[

dl.

Start Generalion of Structure

:1
Place Fragments

:1
Place-Bridge Fragments

,1
Place-Join Fragments

,1
Bridge Fragments

1
End Generation of Structure

Fig. 23. Program loop structure of generalised dri'~er for structure
generation.

associated rank, until it has exhausted the libraries or
fitted NFRAG_PLACE_BRIDGE fragments. Additional
flexibility can be obtained by using purely bridging
libraries instead of true bridge-place libraries during this
phase of structure generation. The c loop places frag-
ments onto interaction sites whilst joining the new frag-
ment onto already placed fragments. As above, the
PLACE_JOIN_LIBRARYs are searched through in order
of rank until NFRAG_PLACE_JOIN fragments have
been fitted. The d loop represents a final bridging phase
and has similar options associated with it, although they
are less useful in this case.

The G loop is traversed up to MAXIT_GRAND_
LOOP times. This allows one to go through a restricted
place-join and/or bridge-join phase before placing more
fragments. The P loop is traversed up to MAXIT_
PETIT_LOOP times. It allows one (amongst other
things) to exhaust the place-joining and place-bridging
phase before resorting to a pure placement phase.

By specifying a GENERAL strategy, the user is free to
choose the values for each of the keywords mentioned
above. In this way, a large variety of types of building are
available. Alternatively, a selection of specific strategies
have been 'hard-wired' for easy use. For instance, if the
LUDI mode of building is selected, the following se-
quence of commands will be invoked, producing an ex-
haustive placement of fragments followed by a final
bridging phase.

NFRAG PLACE 1
NFRAG_BRIDGE_JOIN 0
NFRAG_PLACE_JOIN 0
NFRAG BRIDGE 1000
MAXIT_GRAND_LOOP 1000
MAXIT_PETIT_LOOP 0

Alternatively, a GROW strategy may be invoked which
will trigger the following commands and result in a se-
quential 'build-up' approach to structure generation:

NFRAG PLACE 1
NFRAG_BRIDGE_JOIN 0
NFRAG_PLACE JOIN 1
NFRAG_BRIDGE 0
MAXIT_GRAND LOOP 1
MAXIT_PETIT_LOOP 1000

